JP2011117710A - Liquid supercooling system - Google Patents

Liquid supercooling system Download PDF

Info

Publication number
JP2011117710A
JP2011117710A JP2010041758A JP2010041758A JP2011117710A JP 2011117710 A JP2011117710 A JP 2011117710A JP 2010041758 A JP2010041758 A JP 2010041758A JP 2010041758 A JP2010041758 A JP 2010041758A JP 2011117710 A JP2011117710 A JP 2011117710A
Authority
JP
Japan
Prior art keywords
pipe
liquid
suction pipe
heat exchange
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010041758A
Other languages
Japanese (ja)
Inventor
Hyo-Chan Bae
ベ,ヒョチャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Motor Co
Kia Corp
Original Assignee
Hyundai Motor Co
Kia Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Motor Co, Kia Motors Corp filed Critical Hyundai Motor Co
Publication of JP2011117710A publication Critical patent/JP2011117710A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/026Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled and formed by bent members, e.g. plates, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors
    • F28F9/0253Massive connectors, e.g. blocks; Plate-like connectors with multiple channels, e.g. with combined inflow and outflow channels

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid supercooling system of high efficiency and low manufacturing costs. <P>SOLUTION: This liquid supercooling system includes a suction pipe connecting an evaporator and a compressor, and having a spiral groove along its outer periphery, a liquid pipe connecting a condenser and an expansion valve, a heat exchange pipe in which the suction pipe is penetrated, and which is connected with the liquid pipe at its one end, so that heat can be exchanged between the suction pipe and the liquid pipe, and a connection block connected with the liquid pipe at one side and connected with the suction pipe and the heat exchange pipe at the other side. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は冷却システムに係り、より詳しくは、パイプの結合構造を改善してエアコンシステムの効率、NVH性能、および製造効率を向上させるための液体過冷システムに関する。   The present invention relates to a cooling system, and more particularly, to a liquid supercooling system for improving the coupling structure of pipes to improve the efficiency, NVH performance, and manufacturing efficiency of an air conditioning system.

一般的に車両では車両内部の温度を調節するためにヒーターまたはエアコンを作動させる。
冬季のように低い温度を上げるために使われるヒーターは、エンジンの作動によって発生する熱を利用して空気を加熱すれば良いので使用し易く、燃料の消耗が少ない。
しかし、夏季のように高い温度を下げるために使われるエアコン(air conditioner)は、高温の車両外部から低温の車両内部へ熱が自然に流れる方向に逆行する方向に(車両の内部から車両の外部に)熱を伝達しなければならないため、別途の構造が必要であり、燃料の消耗が多い。
Generally, in a vehicle, a heater or an air conditioner is operated to adjust the temperature inside the vehicle.
A heater used to raise a low temperature such as in winter is easy to use because it only needs to heat the air using the heat generated by the operation of the engine and consumes less fuel.
However, air conditioners that are used to lower high temperatures, such as in the summer, reverse the direction in which heat naturally flows from the outside of a hot vehicle to the inside of a cold vehicle (from the inside of the vehicle to the outside of the vehicle). In addition, since heat must be transferred, a separate structure is required and fuel consumption is high.

このようなエアコンには図1(a)に示すような冷却システムが使われる。冷却システムは冷凍機または冷蔵庫のように液体が蒸発する時に周囲から熱を奪う蒸発熱を利用したものであり、冷媒としては低温においても蒸発し易い液体が用いられるが、通常にはフロンガスが用いられる。
冷却システムの基本構造は、密封された鉄製容器の中で電動機と圧縮機(Compressor)を直結させ、電動機で圧縮機を回転させて冷媒を圧縮する。
このように圧縮された冷媒は凝縮機(Condenser)を通過するが、凝縮機は銅パイプの表面にアルミニウムピン(pin)を装着したものであり、冷媒が有する熱を空気中に発散させて冷却液化する作用をする。
Such an air conditioner uses a cooling system as shown in FIG. The cooling system uses evaporative heat that draws heat from the surroundings when the liquid evaporates, such as a refrigerator or refrigerator. A liquid that easily evaporates even at low temperatures is used as the refrigerant. It is done.
In the basic structure of the cooling system, an electric motor and a compressor are directly connected in a sealed iron container, and the compressor is rotated by the electric motor to compress the refrigerant.
The refrigerant compressed in this way passes through a condenser, and the condenser has an aluminum pin (pin) attached to the surface of a copper pipe, and cools by radiating the heat of the refrigerant into the air. It acts to liquefy.

凝縮機を通過した高温高圧の液体状態の冷媒は膨張バルブ(Expansion Valve)を通過するが、部分開放された管または毛細管などのような膨張バルブを冷媒が通過する時、仕事の関与なしで、凝縮機から伝達される高温高圧の液体状態の冷媒は圧力および温度が下がる。
膨張バルブを通過した冷媒は蒸発機(Evaporator)に伝達されるが、蒸発機は通常細いパイプなどからなっており、凝縮機とほほ同じ構造になっている。圧縮された冷媒は蒸発機において蒸発して周囲の熱を奪う。したがって、蒸発機の表面に接触した空気の温度は下がり、空気中の水分は蒸発機の表面に水滴となって除去される。
The high-temperature and high-pressure liquid refrigerant that has passed through the condenser passes through an expansion valve, but when the refrigerant passes through an expansion valve such as a partially opened tube or capillary tube, no work is involved. The high temperature and high pressure liquid refrigerant transmitted from the condenser decreases in pressure and temperature.
The refrigerant that has passed through the expansion valve is transmitted to an evaporator (evaporator). The evaporator is usually composed of a thin pipe or the like, and has almost the same structure as the condenser. The compressed refrigerant evaporates in the evaporator and takes away ambient heat. Therefore, the temperature of the air in contact with the surface of the evaporator decreases, and moisture in the air is removed as water droplets on the surface of the evaporator.

このような一般的な冷却システムの効率をより高めるために図1(b)のような過冷システムが使われた。過冷システムは冷媒が各々の装置を移動する間に熱交換を通じて過冷却度を増大させるためのものであり、蒸発機(Evaporator)から圧縮機(Compressor)に低温低圧の気体状態の冷媒が伝達されるサクションパイプ1と、凝縮機(Condenser)から膨張バルブ(Expansion Valve)に高温高圧の液体状態の冷媒が伝達されるリキッドパイプ2を熱交換パイプ3の内部で近接させ、低温の気体冷媒と高温の液体冷媒との間の熱交換をする。
これにより、エアコンシステムの性能および効率(COP)を向上させ、圧縮機の消費動力を約14%減少させ、小さい容量の圧縮機使用が可能となる利点があり、また、車両の全体燃費も約1%以上向上させることができる。
In order to further increase the efficiency of such a general cooling system, a supercooling system as shown in FIG. 1B was used. The supercooling system is intended to increase the degree of supercooling through heat exchange while the refrigerant moves through each device. The low-temperature and low-pressure gaseous refrigerant is transferred from the evaporator to the compressor. A suction pipe 1 and a liquid pipe 2 to which a high-temperature and high-pressure liquid refrigerant is transferred from a condenser (Condenser) to an expansion valve (Expansion Valve) inside the heat exchange pipe 3, Exchange heat with high-temperature liquid refrigerant.
This has the advantage of improving the performance and efficiency (COP) of the air conditioning system, reducing the power consumption of the compressor by about 14%, and enabling the use of a compressor with a small capacity, and also reducing the overall fuel consumption of the vehicle. It can be improved by 1% or more.

しかし、図2に示すように、リキッドパイプ2が熱交換パイプ3と連結される時に「T」字形の結合構造をなすため、「T」字加工が必要なだけでなく、リキッドパイプ2を通過する冷媒の流路が急激に変化するために振動および騒音を引き起こす。
また、サクションパイプ1、リキッドパイプ2、および熱交換パイプ3が結合する部位において、冷媒が進行する方向と反対方向に逆流および渦巻き(Vortex)が発生するため、冷媒の圧力損失が発生し、振動および騒音を引き起こす。
そのほか、過冷システムの製造工程においても、熱交換パイプ3を加工した後、リキッドパイプ2を連結するために拡管および縮官工程を経なければならないため、費用がさらに必要となるだけでなく、冷媒流入部の形状による冷媒の圧力損失および渦巻き(Vortex)が発生するという問題点があった。
However, as shown in FIG. 2, when the liquid pipe 2 is connected to the heat exchange pipe 3, a “T” -shaped connection structure is formed, so that not only “T” processing is required, but also the liquid pipe 2 passes through the liquid pipe 2. This causes a sudden change in the flow path of the refrigerant, causing vibration and noise.
Further, in the part where the suction pipe 1, the liquid pipe 2, and the heat exchange pipe 3 are coupled, a reverse flow and a vortex are generated in the direction opposite to the direction in which the refrigerant travels. And cause noise.
In addition, in the manufacturing process of the supercooling system, after the heat exchange pipe 3 is processed, it is necessary to go through a pipe expansion and contraction process in order to connect the liquid pipe 2. There has been a problem that pressure loss of the refrigerant and vortex are generated due to the shape of the refrigerant inflow portion.

特開平05−231724号公報Japanese Patent Laid-Open No. 05-231724

前記のような問題点を解決するために、本発明は、パイプ間結合構造を改善し、冷媒の圧力損失を防止してシステムの効率を改善させ、冷媒の渦巻きおよび逆流を防止してNVH性能を向上させ、製造工程を単純化してより効率が良く、製作費用が安価な液体過冷システムの提供を目的とする。   In order to solve the above problems, the present invention improves the coupling structure between pipes, prevents the pressure loss of the refrigerant, improves the efficiency of the system, prevents the swirling and backflow of the refrigerant, and improves the NVH performance. The purpose of the present invention is to provide a liquid supercooling system that improves efficiency, simplifies the manufacturing process, is more efficient, and is less expensive to manufacture.

前記のような目的を達成するための本発明の構成は、蒸発機と圧縮機を連結し、外周に沿って螺旋状の溝が形成されているサクションパイプ、凝縮機と膨張バルブを連結するリキッドパイプ、内部には前記サクションパイプが貫通し、一側末端は前記リキッドパイプと連結され、前記サクションパイプとリキッドパイプとの間の熱交換を可能にする熱交換パイプ、および一側は前記リキッドパイプに連結され、他側は前記サクションパイプおよび熱交換パイプに連結される連結ブロック、を含んでなることを特徴とする。   In order to achieve the above-described object, the present invention includes a suction pipe in which an evaporator and a compressor are connected and a spiral groove is formed along the outer periphery, and a liquid in which a condenser and an expansion valve are connected. A pipe, an inside of the suction pipe penetrates, one end of the pipe is connected to the liquid pipe, a heat exchange pipe enabling heat exchange between the suction pipe and the liquid pipe, and one side of the liquid pipe The other side includes a connection block connected to the suction pipe and the heat exchange pipe.

前記連結ブロックの内部には、前記リキッドパイプから伝達される冷媒が通過できる通路、および前記サクションパイプと熱交換パイプが結合できる内部空間が予め形成され、前記通路は緩やかな曲線形態からなり、前記内部空間中の一部直径が相対的により大きく形成され、冷媒が前記サクションパイプを回転して囲んで流入されることを特徴とする。   Inside the connection block, a passage through which the refrigerant transmitted from the liquid pipe can pass and an internal space in which the suction pipe and the heat exchange pipe can be coupled are formed in advance, and the passage has a gently curved shape, A partial diameter in the internal space is formed to be relatively larger, and the refrigerant flows around the suction pipe by rotating.

本発明によれば、「T」字形態で急激に変化する流路の代わりに緩やかな曲線形態からなる流路を通過して冷媒が伝達されることによって冷媒の進入による圧力の損失を最小化することができ、冷媒の逆流および渦巻きを防止することができるためにエアコンシステムの効率を改善させることができ、振動および騒音が減らせるためにNVH性能も向上させることができる。
また、予め形成された連結ブロックによって各パイプを連結することができるため、パイプの製造原価が節減でき、パイプ加工工程が縮小できるために製造時間が短縮でき、車両の製造原価を下げることができる。
According to the present invention, pressure loss due to refrigerant entering is minimized by passing the refrigerant through a gently curved channel instead of a channel that changes rapidly in a “T” shape. Therefore, it is possible to improve the efficiency of the air conditioner system because the reverse flow and swirl of the refrigerant can be prevented, and the NVH performance can be improved because the vibration and noise can be reduced.
In addition, since each pipe can be connected by a connection block formed in advance, the manufacturing cost of the pipe can be reduced, the pipe processing process can be reduced, the manufacturing time can be reduced, and the manufacturing cost of the vehicle can be reduced. .

(a)は、従来使われた冷却システムを示す概略図である。 (b)は、過冷システムを示す概略図である。(A) is the schematic which shows the cooling system used conventionally. (B) is the schematic which shows a supercooling system. 従来使われた過冷システムを示す斜視図および部分拡大図である。It is the perspective view and partial enlarged view which show the supercooling system used conventionally. 本発明に係る液体過冷システムを示す斜視図および部分拡大図である。It is the perspective view and partial enlarged view which show the liquid supercooling system which concerns on this invention. 従来使われた過冷システムを製造する工程を示すフローチャートである。It is a flowchart which shows the process of manufacturing the supercooling system used conventionally. 本発明に係る液体過冷システムを製造する工程を示すフローチャートである。It is a flowchart which shows the process of manufacturing the liquid supercooling system which concerns on this invention. 従来使われた過冷システムにおける騒音を測定したグラフである。It is the graph which measured the noise in the supercooling system used conventionally. 本発明に係る液体過冷システムにおける騒音を測定したグラフである。It is the graph which measured the noise in the liquid supercooling system which concerns on this invention.

以下、添付図面に基づいて本発明をより詳細に説明する。
図3は本発明に係る液体過冷システム100を示す斜視図および部分拡大図である。
本発明の液体過冷システム100は、蒸発機と圧縮機を連結し、外周に沿って螺旋状の溝が形成されているサクションパイプ10と、凝縮機と膨張バルブを連結するリキッドパイプ20と、内部にはサクションパイプ10が貫通し、一側末端はリキッドパイプ20と連結され、サクションパイプ10とリキッドパイプ20との間の熱交換を可能にする熱交換パイプ30、および一側はリキッドパイプ20に連結され、他側はサクションパイプ10および熱交換パイプ30に連結される連結ブロック40を含んで構成される。
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.
FIG. 3 is a perspective view and a partially enlarged view showing the liquid supercooling system 100 according to the present invention.
The liquid supercooling system 100 of the present invention connects an evaporator and a compressor, a suction pipe 10 in which a spiral groove is formed along the outer periphery, a liquid pipe 20 that connects a condenser and an expansion valve, Inside, a suction pipe 10 penetrates, one end is connected to a liquid pipe 20, a heat exchange pipe 30 that enables heat exchange between the suction pipe 10 and the liquid pipe 20, and one side is a liquid pipe 20. The other side includes a connection block 40 connected to the suction pipe 10 and the heat exchange pipe 30.

本発明は、冷媒を使って周囲の温度を下げる従来の冷却システムを基礎にし、装置の間に連結されて冷媒が伝達されるパイプの間に熱交換を可能にする過冷システムを適用している。
特に、サクションパイプ10、リキッドパイプ20、および熱交換パイプ30を連結する際、各々のパイプを直接溶接によって連結するのではなく、連結ブロック40によって各々のパイプを連結している。
連結ブロック40は各々のパイプを内部に含むことができるように所定の厚さを有することが好ましく、剛性を維持するために様々な金属材質およびプラスチック材質などを使用してもよい。各々のパイプと連結される部位は冷媒が漏れないようにシーリング処理を施すことがより好ましい。
The present invention is based on a conventional cooling system that uses a refrigerant to lower the ambient temperature, and applies a supercooling system that allows heat exchange between pipes connected between devices to which the refrigerant is transmitted. Yes.
In particular, when connecting the suction pipe 10, the liquid pipe 20, and the heat exchange pipe 30, the pipes are connected by the connection block 40 instead of being directly connected by welding.
The connection block 40 preferably has a predetermined thickness so that each pipe can be included therein, and various metal materials and plastic materials may be used to maintain rigidity. It is more preferable to perform a sealing process on the portion connected to each pipe so that the refrigerant does not leak.

連結ブロック40は、各々のパイプが内部に含まれ、車両の内部に位置できるものであれば、直六面体、円柱、球形などの様々な形態に形成することができ、本発明では直六面体に形成したものを例示している。
連結ブロック40はサクションパイプ10および熱交換パイプ30が貫通しており、サクションパイプ10の外周には螺旋状の溝が形成され、熱交換パイプ30の内部を貫通して連結されている。この時、螺旋状の溝と熱交換パイプ30の内側とは所定の間隔をおいて離隔しており、冷媒がサクションパイプ10の外側を螺旋状に回転しながら移動することができるため、表面積を広くしてより迅速に熱交換することができる。
The connection block 40 can be formed in various forms such as a hexahedron, a cylinder, and a sphere as long as each pipe is included in the inside and can be located inside the vehicle. In the present invention, the connection block 40 is formed in a hexahedron. This is an example.
The connection block 40 is penetrated by the suction pipe 10 and the heat exchange pipe 30, and a spiral groove is formed on the outer periphery of the suction pipe 10, and is connected through the inside of the heat exchange pipe 30. At this time, the spiral groove and the inside of the heat exchange pipe 30 are spaced apart from each other at a predetermined interval, and the refrigerant can move while spirally rotating outside the suction pipe 10. It can be widened to exchange heat more quickly.

連結ブロック40に連結されるリキッドパイプ20は、サクションパイプ10の螺旋状の溝に連結され、溝と熱交換パイプ30内部の間の空間に冷媒が流れるようになっている。この時、リキッドパイプ20からサクションパイプ10を経て熱交換パイプ30に冷媒が伝達されるようにするために連結ブロック40に形成された通路41を通過するが、本発明では通路41が緩やかな曲線形態からなることを特徴とする。
すなわち、図3の拡大図に示すように、サクションパイプ10と熱交換パイプ30は互いに同一線上に位置しており、リキッドパイプ20はサクションパイプ10と平行状態で連結ブロック40に挿入される。サクションパイプ10と熱交換パイプ30に冷媒が流入されるために通路41を緩やかな曲線形態に形成し、従来の「T」字結合によって冷媒の流動方向が急激に変化することを防止できるため、冷媒進入による圧力損失が最小にできる。
The liquid pipe 20 connected to the connection block 40 is connected to the spiral groove of the suction pipe 10 so that the refrigerant flows into the space between the groove and the heat exchange pipe 30. At this time, the refrigerant passes through the passage 41 formed in the connecting block 40 so that the refrigerant is transmitted from the liquid pipe 20 through the suction pipe 10 to the heat exchange pipe 30. In the present invention, the passage 41 is a gentle curve. It consists of a form.
That is, as shown in the enlarged view of FIG. 3, the suction pipe 10 and the heat exchange pipe 30 are located on the same line, and the liquid pipe 20 is inserted into the connecting block 40 in parallel with the suction pipe 10. Since the refrigerant flows into the suction pipe 10 and the heat exchange pipe 30, the passage 41 is formed in a gently curved shape, and the flow direction of the refrigerant can be prevented from changing suddenly by the conventional “T” -shaped coupling, Pressure loss due to refrigerant entering can be minimized.

リキッドパイプ20は、図3のようにサクションパイプ10と平行した状態で連結ブロック40に挿入されるてもよく、従来のように「T」字形態で挿入されてもよい。但し、「T」字形態で挿入される場合には、サクションパイプ10に直接連結されるのではなく、連結ブロック40に形成された通路41がサクションパイプ10を囲む形態に形成され、冷媒の流路が急激に変化することを防止するようになっている。   The liquid pipe 20 may be inserted into the connection block 40 in a state parallel to the suction pipe 10 as shown in FIG. 3, or may be inserted in a “T” shape as in the prior art. However, when it is inserted in a “T” shape, it is not directly connected to the suction pipe 10 but a passage 41 formed in the connection block 40 is formed to surround the suction pipe 10, and the refrigerant flow The road is prevented from changing suddenly.

連結ブロック40の内部には、リキッドパイプ20から伝達される冷媒が通過できる通路41、およびサクションパイプ10と熱交換パイプ30が結合できる内部空間42が予め形成され、より容易に製造できるようにすることが好ましい。
内部空間42にはサクションパイプ10および熱交換パイプ30が連結されるが、リキッドパイプ20から伝達される冷媒が自然に回転しながら溝に流入するようにするために、内部空間42中の一部直径が相対的により大きく形成され、冷媒がサクションパイプ10を囲んで流入し渦巻き(Vortex)現象を最小にしている。
Inside the connection block 40, a passage 41 through which the refrigerant transmitted from the liquid pipe 20 can pass and an internal space 42 in which the suction pipe 10 and the heat exchange pipe 30 can be coupled are formed in advance so that the connection block 40 can be manufactured more easily. It is preferable.
The suction pipe 10 and the heat exchange pipe 30 are connected to the internal space 42. In order to allow the refrigerant transmitted from the liquid pipe 20 to flow into the groove while rotating naturally, a part of the internal space 42 is provided. The diameter is relatively larger and refrigerant flows around the suction pipe 10 to minimize the vortex phenomenon.

図4は従来使われた過冷システムを製造する工程を示すフローチャートであり、図5は本発明に係る液体過冷システム100を製造する工程を示すフローチャートである。
従来の過冷システムを製造するためには、サクションパイプ10の外側を螺旋加工し、熱交換パイプ30にリキッドパイプ20が連結されるように拡管、縮官および「T」字抜き加工をした後に各々のパイプを連結する。この場合、サクションパイプ10と熱交換パイプ30を連結して固定するために所定間隔を離隔させて溶接しなければならず、リキッドパイプ20を熱交換パイプ30に固定させるために再び溶接をするなど、複雑ないくつかの過程を経なければならなかった。
FIG. 4 is a flowchart showing a process for manufacturing a conventional supercooling system, and FIG. 5 is a flowchart showing a process for manufacturing the liquid supercooling system 100 according to the present invention.
In order to manufacture a conventional supercooling system, the outside of the suction pipe 10 is spirally processed, and after the liquid pipe 20 is connected to the heat exchange pipe 30, expansion, contraction, and “T” -letting processing are performed. Connect each pipe. In this case, in order to connect and fix the suction pipe 10 and the heat exchange pipe 30, welding must be performed at a predetermined interval, and welding is performed again to fix the liquid pipe 20 to the heat exchange pipe 30. Had to go through several complicated processes.

しかし、本発明に係る液体過冷システム100は、サクションパイプ10の外側を螺旋加工し、連結ブロック40の内部に通路41および内部空間42を予め形成した後、各々のパイプを連結ブロック40と結合させればよいため、従来の製造工程に比べ、拡管、縮官、「T」字抜き加工、パイプ溶接などの工程を省略することができ、製造時間を短縮し、生産費用を節減することができる(1個当たり約100ウォンの原価節減効果)。   However, in the liquid supercooling system 100 according to the present invention, the outside of the suction pipe 10 is spirally processed, the passage 41 and the internal space 42 are formed in the connection block 40 in advance, and then each pipe is connected to the connection block 40. Compared to the conventional manufacturing process, it is possible to omit processes such as pipe expansion, contraction, “T” -shaped punching, and pipe welding, shortening manufacturing time and reducing production costs. Yes (cost saving effect of about 100 won per unit).

図6は従来使われた過冷システムにおける騒音を測定したグラフであり、図7は本発明に係る液体過冷システム100における騒音を測定したグラフである。
従来の過冷システムにおいては約5〜7kHzの範囲で急激な騒音の増加現象が発生し、これは、エアコンの使用時、冷媒の急激な経路変化による渦流音によるものとされた。
しかし、本発明に係る液体過冷システム100は、緩やかな曲線形態にして冷媒が流入されるようにし、連結ブロック40の内部において自然な回転を通じて冷媒が流入されるようにすることによって逆流および渦巻きを防止することができるため、約5〜7kHzの範囲で騒音発生が顕著に減少した。したがって、冷媒の流動改善を通じて車両のNVH性能を向上させることができた。
FIG. 6 is a graph for measuring noise in a conventional supercooling system, and FIG. 7 is a graph for measuring noise in a liquid supercooling system 100 according to the present invention.
In the conventional supercooling system, a sudden increase in noise occurs in the range of about 5 to 7 kHz, which is attributed to eddy current noise caused by a sudden change in the refrigerant path when the air conditioner is used.
However, the liquid supercooling system 100 according to the present invention allows the refrigerant to flow in a gentle curvilinear form, and allows the refrigerant to flow through the natural rotation inside the connection block 40, thereby causing the backflow and swirl. Therefore, the generation of noise was remarkably reduced in the range of about 5 to 7 kHz. Therefore, the NVH performance of the vehicle can be improved through the improvement of the refrigerant flow.

すなわち、冷媒が全体配管に沿って流れながら各種パイプとの摩擦が発生し、また、パイプの連結される形状によって圧力損失が発生する。そのため、従来の過冷システムでは約48kPaの圧力損失が発生したが、本発明に係る過冷システムでは約38kPaの圧力損失に低下し圧力損失が約10kPa改善された。これにより、エアコンシステムの性能も約1%程度向上し、パイプの連結構造の改善だけで全体的に車両の燃費が約0.5%程度向上する結果を得ることができる。   That is, friction with various pipes occurs as the refrigerant flows along the entire pipe, and pressure loss occurs due to the shape of the pipes connected. Therefore, a pressure loss of about 48 kPa was generated in the conventional supercooling system, but the pressure loss was reduced to about 38 kPa and improved by about 10 kPa in the supercooling system according to the present invention. As a result, the performance of the air conditioner system is also improved by about 1%, and the overall fuel efficiency of the vehicle is improved by about 0.5% only by improving the pipe connection structure.

以上、本発明に関する好ましい実施例を説明したが、本発明は前記実施例に限定されず、本発明の属する技術範囲を逸脱しない範囲での全ての変更が含まれる。   As mentioned above, although the preferable Example regarding this invention was described, this invention is not limited to the said Example, All the changes in the range which does not deviate from the technical scope to which this invention belongs are included.

1、10 ・・・サクションパイプ(Suction Pipe)
2、20 ・・・リキッドパイプ(Liquid Pipe)
3、30 ・・・熱交換パイプ
40 ・・・連結ブロック
41 ・・・通路
42 ・・・内部空間
100 ・・・液体過冷システム
1, 10 ... Suction pipe
2, 20 ... Liquid pipe
3, 30 ... heat exchange pipe 40 ... connection block 41 ... passage 42 ... internal space 100 ... liquid supercooling system

Claims (4)

蒸発機と圧縮機を連結し、外周に沿って螺旋状の溝が形成されているサクションパイプ、
凝縮機と膨張バルブを連結するリキッドパイプ、
内部には前記サクションパイプが貫通し、一側末端は前記リキッドパイプと連結され、前記サクションパイプとリキッドパイプとの間の熱交換を可能にする熱交換パイプ、および
一側は前記リキッドパイプに連結され、他側は前記サクションパイプおよび熱交換パイプに連結される連結ブロック、
を含んでなることを特徴とする液体過冷システム。
A suction pipe that connects the evaporator and the compressor and has a spiral groove formed along the outer periphery.
A liquid pipe connecting the condenser and expansion valve,
Inside, the suction pipe penetrates, one end is connected to the liquid pipe, a heat exchange pipe that enables heat exchange between the suction pipe and the liquid pipe, and one side is connected to the liquid pipe A connecting block connected to the suction pipe and the heat exchange pipe on the other side,
A liquid supercooling system comprising:
前記連結ブロックの内部には、前記リキッドパイプから伝達される冷媒が通過できる通路、および前記サクションパイプと熱交換パイプが結合できる内部空間が予め形成されていることを特徴とする請求項1に記載の液体過冷システム。   2. The passage according to claim 1, wherein a passage through which the refrigerant transmitted from the liquid pipe can pass and an internal space in which the suction pipe and the heat exchange pipe can be coupled are formed in the connection block. Liquid supercooling system. 前記通路は緩やかな曲線形態からなることを特徴とする請求項2に記載の液体過冷システム。   The liquid supercooling system according to claim 2, wherein the passage has a gently curved shape. 前記内部空間中の一部直径が相対的により大きく形成され、冷媒が前記サクションパイプを回転して囲んで流入されることを特徴とする請求項3に記載の液体過冷システム。   4. The liquid supercooling system according to claim 3, wherein a part of the inner space is formed to have a relatively larger diameter, and the refrigerant flows around the suction pipe.
JP2010041758A 2009-11-30 2010-02-26 Liquid supercooling system Pending JP2011117710A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090116824A KR101128531B1 (en) 2009-11-30 2009-11-30 Liquid supercooling system
KR10-2009-0116824 2009-11-30

Publications (1)

Publication Number Publication Date
JP2011117710A true JP2011117710A (en) 2011-06-16

Family

ID=43972485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010041758A Pending JP2011117710A (en) 2009-11-30 2010-02-26 Liquid supercooling system

Country Status (5)

Country Link
US (1) US20110126580A1 (en)
JP (1) JP2011117710A (en)
KR (1) KR101128531B1 (en)
CN (1) CN102080908A (en)
DE (1) DE102010017640A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101317377B1 (en) * 2011-11-21 2013-10-22 현대자동차주식회사 Condenser for vehicle
CN209910459U (en) * 2016-05-20 2020-01-07 康蒂泰克管件韩国有限公司 Heat exchange double-layer sleeve
CN106225273A (en) * 2016-07-29 2016-12-14 青岛海尔特种电冰柜有限公司 Cooling cycle system and refrigeration plant
KR101759110B1 (en) 2016-08-10 2017-07-19 주식회사 화승알앤에이 Double pipe heat exchanger and method for manufacturing the same
KR102621904B1 (en) * 2018-07-24 2024-01-05 현대자동차주식회사 Water-cooled battery cooling system and cooling method using the same
CN112136011B (en) * 2019-01-25 2022-11-01 安美(北京)汽车工程技术有限公司 Refrigerant liquefying element, refrigerant liquefier using same, heat exchanger and refrigeration cycle
CN114811985B (en) * 2022-06-08 2023-01-10 广州市凌静制冷设备有限公司 Energy-saving environment-friendly flooded screw machine water chilling unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610181U (en) * 1979-06-28 1981-01-28
JPS63306398A (en) * 1987-06-05 1988-12-14 Mitsubishi Electric Corp Heat exchanger
JPH094779A (en) * 1995-06-20 1997-01-07 Kurita Kogyo:Kk Coupling
JP2007155247A (en) * 2005-12-06 2007-06-21 Denso Corp Double pipe and its manufacturing method
JP2007285693A (en) * 2006-04-13 2007-11-01 Eaton Fluid Power Gmbh Internal refrigerating machine heat exchanger
JP2009222313A (en) * 2008-03-17 2009-10-01 Denso Corp Refrigerating cycle device, expansion valve for refrigerating cycle, connection block and internal heat exchanger

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132446U (en) * 1991-05-29 1992-12-08 本田技研工業株式会社 automotive gasoline cooling system
EP2068066A3 (en) * 2000-02-24 2009-09-23 Calsonic Kansei Corporation Combination of a joint and a duplex pipe and method of brazing a joint with a duplex pipe
JP3949484B2 (en) * 2002-03-27 2007-07-25 カルソニックカンセイ株式会社 Double pipe joint, Double pipe joint and double pipe brazing method
US7089760B2 (en) * 2003-05-27 2006-08-15 Calsonic Kansei Corporation Air-conditioner
GB2417067B (en) * 2004-08-12 2006-09-06 Senior Uk Ltd Improved gas heat exchanger
DE102005052972A1 (en) * 2004-11-09 2006-06-14 Denso Corp., Kariya Double-walled pipe and this using cooling circuit device
JP4350058B2 (en) * 2004-11-09 2009-10-21 株式会社デンソー Double pipe for refrigerant
US8342542B2 (en) 2007-04-04 2013-01-01 Nissan Motor Co., Ltd. Suspension device and method for supporting a wheel
US20110308270A1 (en) * 2010-06-22 2011-12-22 Maeng Chanjoo Dual air conditioner for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610181U (en) * 1979-06-28 1981-01-28
JPS63306398A (en) * 1987-06-05 1988-12-14 Mitsubishi Electric Corp Heat exchanger
JPH094779A (en) * 1995-06-20 1997-01-07 Kurita Kogyo:Kk Coupling
JP2007155247A (en) * 2005-12-06 2007-06-21 Denso Corp Double pipe and its manufacturing method
JP2007285693A (en) * 2006-04-13 2007-11-01 Eaton Fluid Power Gmbh Internal refrigerating machine heat exchanger
JP2009222313A (en) * 2008-03-17 2009-10-01 Denso Corp Refrigerating cycle device, expansion valve for refrigerating cycle, connection block and internal heat exchanger

Also Published As

Publication number Publication date
US20110126580A1 (en) 2011-06-02
KR20110060281A (en) 2011-06-08
CN102080908A (en) 2011-06-01
KR101128531B1 (en) 2012-03-27
DE102010017640A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP2011117710A (en) Liquid supercooling system
CN105352232A (en) Super-cooler and air conditioner provided with same
CN203375758U (en) Refrigerating cycle system
KR20110104141A (en) Internal heat exchanger of cross spiral
CN204943957U (en) A kind of air injection enthalpy-increasing air-cooled cold (heat) water unit
JP2008025902A (en) Heat exchanger and method of manufacturing heat exchanger
CN204553165U (en) Compressor and air conditioner
CN103743169B (en) A kind of coaxial reservoir drying bottle used for automobile air conditioning
CN103743170B (en) A kind of making of coaxial reservoir drying bottle used for automobile air conditioning, using method
CN104236146A (en) Refrigerating circulation system
CN204555400U (en) Air-conditioner
CN102967084B (en) The compressor of thermal losses and air-conditioning and air energy thermal water machine can be reduced
CN101532758A (en) Super-cooling pipeline
CN104567109A (en) Automobile air-conditioning heat exchanger
CN202562148U (en) Undercooling and overheating type reservoir
CN207842599U (en) A kind of automotive air-conditioning system and its coaxial heat exchanger
CN207778851U (en) A kind of energy-saving refrigerating air conditioning device
CN207132599U (en) Automobile air-conditioning evaporator
CN102897000B (en) A kind of automotive air-conditioning system and automobile
CN205718097U (en) A kind of pipeline structure with backheating function
KR200436233Y1 (en) muffler for vehicle
CN103759480B (en) A kind of coaxial reservoir drying bottle
KR200351613Y1 (en) Heat pump for liquid preheater
KR20120005558U (en) Connecting pipe of multi air conditioner
CN210892243U (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140617