JP2012035199A - Method and system for treating alkyl sulfoxide-containing waste liquid - Google Patents

Method and system for treating alkyl sulfoxide-containing waste liquid Download PDF

Info

Publication number
JP2012035199A
JP2012035199A JP2010177822A JP2010177822A JP2012035199A JP 2012035199 A JP2012035199 A JP 2012035199A JP 2010177822 A JP2010177822 A JP 2010177822A JP 2010177822 A JP2010177822 A JP 2010177822A JP 2012035199 A JP2012035199 A JP 2012035199A
Authority
JP
Japan
Prior art keywords
waste liquid
containing waste
alkyl sulfoxide
treatment
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010177822A
Other languages
Japanese (ja)
Inventor
Taisuke Nose
泰祐 能勢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2010177822A priority Critical patent/JP2012035199A/en
Publication of JP2012035199A publication Critical patent/JP2012035199A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a system for treating an alkyl sulfoxide-containing waste liquid, which is capable of treating the waste liquid in a reduced space and reduced steps without requiring a large amount of chemicals.SOLUTION: In a method for treating the alkyl sulfoxide-containing waste liquid, the alkyl sulfoxide-containing waste liquid is allowed to pass through a high-voltage discharge space in the presence of a gaseous component containing nitrogen and oxygen and then subjected to biological treatment.

Description

本発明は、有機溶剤であるアルキルスルホキシドを含有する廃液を、簡易に処理する方法及びそのシステムに関するものである。   The present invention relates to a method and a system for easily treating a waste liquid containing an alkyl sulfoxide as an organic solvent.

従来、アルキルスルホキシド、例えば一般に広く使用されているジメチルスルホキシド(以下、DMSOと記す)を含有する廃液の処理方法として、好気性条件下で生物分解する方法が行われていた。
しかしながらこの方法では、生物処理槽内の一部嫌気条件となった箇所でDMSOの還元が進行し、悪臭物質であるジメチルスルフィド、メチルメルカプタン、硫化水素が発生するという問題があった。
この問題の対策として、予めDMSOを酸化し、ジメチルスルホンやメタンスルホン酸などとした後に生物分解する方法が一般的に行われている。
DMSOの酸化方法として、以下の特許文献1〜特許文献3の従来発明が知られている。
Conventionally, as a method for treating a waste liquid containing alkyl sulfoxide, for example, dimethyl sulfoxide (hereinafter referred to as DMSO), which is widely used, a method of biodegrading under aerobic conditions has been performed.
However, this method has a problem in that the reduction of DMSO proceeds in a part of the biological treatment tank where anaerobic conditions are obtained, and odorous substances such as dimethyl sulfide, methyl mercaptan, and hydrogen sulfide are generated.
As a countermeasure against this problem, a method of biodegrading after oxidizing DMSO in advance to dimethylsulfone, methanesulfonic acid or the like is generally performed.
Conventional methods of Patent Documents 1 to 3 below are known as DMSO oxidation methods.

特開平6−23376号公報JP-A-6-23376 特開2000−263069号公報JP 2000-263069 A 特開2000−279973号公報JP 2000-279773 A

しかしながら、これら従来発明についてはそれぞれ以下のような問題点がある。
特許文献1に記載された発明は、過酸化水素存在下でFeSO・7HOなどの鉄触媒で酸化分解を行うフェントン酸化法によるものであり、大量の過酸化水素と2価鉄イオンが必要で且つ大量の鉄スラッジ(鉄水酸化物汚泥)が発生する問題がある。
However, these conventional inventions have the following problems.
The invention described in Patent Document 1 is based on the Fenton oxidation method in which oxidative decomposition is performed with an iron catalyst such as FeSO 4 · 7H 2 O in the presence of hydrogen peroxide, and a large amount of hydrogen peroxide and divalent iron ions are contained. There is a problem that a large amount of iron sludge (iron hydroxide sludge) is required.

特許文献2に記載された発明は、硫酸でpH5以下の酸性状態に調整後、オゾンと過酸化水素による酸化処理でDMSOを選択的にジメチルスルホンまで酸化処理するものであり、非特許文献1に記載の通り、残留過酸化水素が後段の生物処理を阻害してしまうものである。
これを防ぐために、酸化処理と生物処理の間にチオ硫酸ナトリウムなどを添加する過酸化水素還元槽が必要となるといった処理プロセスが3段階になる問題や、硫酸、オゾン、過酸化水素、チオ硫酸ナトリウムなど多数の薬品が大量に必要となる問題がある。
The invention described in Patent Document 2 is one in which DMSO is selectively oxidized to dimethylsulfone by oxidation treatment with ozone and hydrogen peroxide after adjusting to an acidic state of pH 5 or lower with sulfuric acid. As described, residual hydrogen peroxide inhibits subsequent biological treatment.
In order to prevent this, there is a problem that the treatment process has three stages, such as a hydrogen peroxide reduction tank to which sodium thiosulfate is added between the oxidation treatment and the biological treatment, sulfuric acid, ozone, hydrogen peroxide, thiosulfuric acid. There is a problem that many chemicals such as sodium are required.

「廃水中に含まれるジメチルスルホキシドの微生物分解」 村上貴子 早稲田大学大学院理工学研究科 博士論文 (2003) 第1章 p.10“Microbial degradation of dimethyl sulfoxide contained in wastewater” Takako Murakami Ph.D. dissertation, Graduate School of Science and Engineering, Waseda University (2003) Chapter 1 p. 10

特許文献3に記載された発明は、特許文献2とは逆に、pH10以上のアルカリ性を維持した状態で、オゾンと過酸化水素による酸化処理を行うものであり、これもpH維持のために大量のアルカリが必要であり、酸化処理後に更に中和用の酸が大量に必要となる問題がある。 In contrast to Patent Document 2, the invention described in Patent Document 3 performs oxidation treatment with ozone and hydrogen peroxide while maintaining alkalinity of pH 10 or higher, and this is also a large amount for maintaining pH. There is a problem that a large amount of neutralizing acid is required after the oxidation treatment.

本発明は、このような事情の下、大量の薬品を必要とせず、省スペース且つ省段階で処理可能なアルキルスルホキシド含有廃液の処理システムを提供することを目的とするものである。 Under such circumstances, an object of the present invention is to provide an alkyl sulfoxide-containing waste liquid treatment system that does not require a large amount of chemicals and that can be treated in a space-saving and stage-saving manner.

本発明者らは、上記課題を解決すべく鋭意検討した結果、アルキルスルホキシド含有廃液を、窒素を含む気体成分下、高圧放電空間中に通過させた後、生物処理を行うことにより、上記課題が達成されることを見出し、この知見に基づいて本発明を成すに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have passed the alkyl sulfoxide-containing waste liquid into a high-pressure discharge space under a gaseous component containing nitrogen, and then the biological treatment is performed. It has been found that this has been achieved, and the present invention has been made based on this finding.

すなわち、本発明の第1の発明によれば、アルキルスルホキシド含有廃液を、窒素と酸素を含む気体成分下、高圧放電空間中に通過させた後、生物処理を行うことで、雰囲気気体中の窒素成分が酸化を受けて硝酸イオンを形成し、対象廃液をpH4程度の酸性状態とすることが可能となり、薬品によるpH調整が不要となる。
併せて酸性状態となった下で高圧放電処理を行うことにより、オゾンや過酸化水素、ヒドロキシラジカルなどの様々な活性種が放電空間中に発生し、対象廃液を同放電空間中に循環通過させることで、DMSOの場合には有効にジメチルスルホンにまで酸化処理を行うことが可能となる。
That is, according to the first aspect of the present invention, the alkyl sulfoxide-containing waste liquid is passed through a high-pressure discharge space under a gas component containing nitrogen and oxygen, and then biological treatment is performed, whereby nitrogen in the atmospheric gas is obtained. The components are oxidized to form nitrate ions, and the target waste liquid can be brought into an acidic state of about pH 4, and pH adjustment with chemicals is not necessary.
In addition, by performing high-pressure discharge treatment in an acidic state, various active species such as ozone, hydrogen peroxide, and hydroxy radicals are generated in the discharge space, and the target waste liquid is circulated through the discharge space. Thus, in the case of DMSO, the oxidation treatment can be effectively performed to dimethyl sulfone.

本発明において、アルキルスルホキシド含有廃液はアルキルスルホキシド成分を含有するものであれば特に限定されず、対象廃液中の有機物成分種や総有機物成分量には特に制約を受けない。
ここで示すアルキルスルホキシドとは、下化1の構造式で示されるものであり、ジメチルスルホキシド、ジエチルスルホキシド、エチルメチルスルホキシドなどが挙げられ、通常は式中のRxが、Hもしくは炭素数3以下のアルキル基であり、Ryが炭素数3以下のアルキル基で構成されるスルホキシドである。
In the present invention, the alkyl sulfoxide-containing waste liquid is not particularly limited as long as it contains an alkyl sulfoxide component, and is not particularly limited by the organic component species and the total organic component amount in the target waste liquid.
The alkyl sulfoxide shown here is represented by the structural formula of Formula 1 and includes dimethyl sulfoxide, diethyl sulfoxide, ethyl methyl sulfoxide, etc., and usually Rx in the formula is H or having 3 or less carbon atoms. It is an sulfoxide which is an alkyl group and Ry is composed of an alkyl group having 3 or less carbon atoms.

アルキルスルホキシドがDMSOの場合、DMSO成分をモニタリングしてジメチルスルホンに変換されてしまうまで、対象廃液を放電空間内に循環通過させ繰り返し処理するのが好ましい。   When the alkyl sulfoxide is DMSO, it is preferable to repeat the treatment by circulating the target waste liquid through the discharge space until the DMSO component is monitored and converted to dimethyl sulfone.

ここで示す窒素と酸素を含む気体成分下とは、廃液処理を行う空間の気体成分が窒素と酸素を含有した状態であることを意味するものである。
本発明において、反応場における気体成分中の窒素成分量は硝酸イオンを発生させるために必須である。
本発明の効果発現には窒素成分量は含まれておれば特に制約を受けるものではないが、第2の発明で示すように、窒素成分比が20〜80体積%且つ酸素成分比が80〜20体積%の気体成分比であれば、高圧放電処理を行うことで薬品を用いる事無く、対象廃液を硝酸酸性にし、且つ酸化処理を良好に進めるために必要な酸素源が確保でき、好ましい。
窒素成分が少なく酸素成分が多すぎると、充分に対象廃液を酸性化するに至らず、逆に窒素成分が多く酸素成分が少なすぎると酸化反応に非常に時間が掛かってしまう。
Here, under the gas component containing nitrogen and oxygen means that the gas component in the space where the waste liquid treatment is performed contains nitrogen and oxygen.
In the present invention, the amount of nitrogen component in the gas component in the reaction field is essential for generating nitrate ions.
The effect expression of the present invention is not particularly limited as long as the nitrogen component amount is included, but as shown in the second invention, the nitrogen component ratio is 20 to 80% by volume and the oxygen component ratio is 80 to 80%. A gas component ratio of 20% by volume is preferable because a high-pressure discharge treatment can be used to make the target waste solution acidic with nitric acid without using chemicals, and to secure an oxygen source necessary for the favorable oxidation treatment.
If the nitrogen component is low and the oxygen component is too high, the target waste liquid will not be sufficiently acidified. Conversely, if the nitrogen component is high and the oxygen component is too low, the oxidation reaction will take a very long time.

放電空間内に液体と気体が混在した状態で存在している時に高圧放電を起こすと、発生したラジカルにより過酸化水素やオゾンが生じ、これらが液体内部にまで浸透拡散する。
より高い酸化分解性を発現させるためには、過酸化水素とオゾンの両方が存在する条件で処理を行うのが好ましい。
気体成分中の酸素成分比が低すぎると、過酸化水素は発生するがオゾンの発生が不充分となり、逆に酸素成分だけだとオゾンの発生は高まるが、高圧放電エネルギーの殆どが酸素をオゾンにすることに費やされ、相対的に過酸化水素の発生が不充分になってしまう。
図6で示すように、窒素成分比が20〜80体積%且つ酸素成分比が80〜20体積%の気体成分比であれば過酸化水素とオゾンの発生比率が安定して好ましい。
窒素成分と酸素成分は、それぞれ独立したガスボンベからレギュレータに取り付けた精密流量計で調整しながら、成分比を調整しながら供給するのが好ましいが、窒素:酸素の成分比が凡そ78:21である大気を導入しながらでも、更に大気導入に併せて酸素成分だけを所望の成分比となるよう追加導入しても構わない。
また、期待する気体成分比で放電空間を満たすことが可能であれば、気体の導入場所や導入方法は、放電空間の上部から導入させても下部空間から充満させても、どこから導入しても構わないし、シャワーノズル部分で被処理水と共に導入噴射するものでも、被処理水タンク内にバブリングさせながら導入するなど、どのような導入方法で行っても構わない。
When high-pressure discharge occurs when a liquid and a gas are mixed in the discharge space, hydrogen peroxide and ozone are generated by the generated radicals, and these penetrate and diffuse into the liquid.
In order to develop higher oxidative decomposability, it is preferable to perform the treatment under conditions where both hydrogen peroxide and ozone are present.
If the oxygen component ratio in the gas component is too low, hydrogen peroxide will be generated but ozone will be insufficiently generated. Conversely, if only the oxygen component is used, ozone will increase, but most of the high-pressure discharge energy will convert oxygen into ozone. The generation of hydrogen peroxide is relatively insufficient.
As shown in FIG. 6, when the nitrogen component ratio is 20 to 80% by volume and the oxygen component ratio is 80 to 20% by volume, the generation ratio of hydrogen peroxide and ozone is preferably stable.
The nitrogen component and the oxygen component are preferably supplied from independent gas cylinders while adjusting the component ratio while adjusting with a precision flow meter attached to the regulator, but the nitrogen: oxygen component ratio is approximately 78:21. Even while the atmosphere is introduced, only the oxygen component may be additionally introduced so as to have a desired component ratio in accordance with the introduction of the atmosphere.
In addition, if it is possible to fill the discharge space with the expected gas component ratio, the place and method of introducing the gas can be introduced from the upper part of the discharge space, filled from the lower space, or introduced from anywhere. It does not matter whether it is introduced and jetted together with the water to be treated at the shower nozzle portion or may be introduced by any introduction method such as bubbling into the water to be treated tank.

ここで示す高圧放電とは、ストリーマ放電、バリア放電、グロー放電、コロナ放電などに例示される放電が起きる状態で、針状-平板型電極,ワイヤ状-平板型電極,同軸円筒型電極などに例示される、電圧印加電極と接地電極の間に非常に短時間のパルスや高周波の交流波形などの形で高電圧を掛けることで放電を起こさせる放電方式を意味するものである。
高圧放電は、電圧印加電極の長さや接地電極との間の距離などにより放電が起こる電圧条件が異なるため、放電が起こる電圧であれば特に限定されないが、例えば電極間の距離が19mmで長さが300mmのワイヤー−円筒型電極を用いた場合には、およそ20kV程度の印加電圧が必要であるように、通常は1kV以上の電圧を印加して放電を起こさせるものである。
The high-pressure discharge shown here is a state in which discharge exemplified by streamer discharge, barrier discharge, glow discharge, corona discharge, etc. occurs, and is applied to a needle-plate electrode, wire-plate electrode, coaxial cylindrical electrode, etc. This means a discharge method in which discharge is caused by applying a high voltage in the form of a very short pulse or a high-frequency AC waveform between the voltage application electrode and the ground electrode.
The high-voltage discharge is not particularly limited as long as the voltage at which the discharge occurs because the voltage conditions under which the discharge occurs depends on the length of the voltage application electrode and the distance to the ground electrode. However, for example, the distance between the electrodes is 19 mm and the length is high. When a 300 mm wire-cylindrical electrode is used, a voltage of about 1 kV or higher is usually applied to cause discharge so that an applied voltage of about 20 kV is required.

放電空間とは、電圧印加電極と接地電極の間の空間を意味するものであり、針状(剣山状を含む)もしくはワイヤ状(ネジ状、ワイヤーブラシ状を含む)−平板(メッシュ状、円筒状を含む)型電極や平行平板型電極や同軸円筒型(板状、メッシュ状を含む)電極など、電圧印加電極と接地電極で形成されて高圧放電が可能であれば、特に形状に制約を受けない。
電圧印加電極と接地電極は、処理空間に1対だけでなく複数対設けるものでも構わない。
高圧放電を起こさせるには、電圧印加電極と接地電極の間に非常に短時間のパルスや高周波の交流波形などの形で高電圧を掛けることが必要であるが、消費電力の観点から電圧印加時間をナノ秒レベルに短く、且つ電圧を印加する速度を印加時間内に完了させるのが好ましい。好ましくは印加速度が0.2kV/nsec以上、周波数が10Hz以上、パルス幅が500nsec以下である高周波パルスで印加するのが好ましい。(図1)
この時、電圧印加電極と接地電極の材質は特に制約を受けないが、耐蝕性の面からチタンやステンレス鋼であることが好ましい。
The discharge space means a space between the voltage application electrode and the ground electrode, and is needle-like (including sword mountain) or wire-like (including screw-like, wire-brush-like) -flat plate (mesh-like, cylindrical) Shape) electrode, parallel plate electrode, coaxial cylindrical electrode (including plate and mesh) electrodes, etc. If the voltage application electrode and the ground electrode are capable of high-voltage discharge, the shape is particularly limited. I do not receive it.
A plurality of voltage application electrodes and ground electrodes may be provided in the processing space instead of only one pair.
In order to cause a high-voltage discharge, it is necessary to apply a high voltage in the form of a very short pulse or a high-frequency AC waveform between the voltage application electrode and the ground electrode. It is preferable to shorten the time to the nanosecond level and complete the voltage application rate within the application time. Preferably, application is performed with a high-frequency pulse having an application rate of 0.2 kV / nsec or more, a frequency of 10 Hz or more, and a pulse width of 500 nsec or less. (Figure 1)
At this time, the material for the voltage application electrode and the ground electrode is not particularly limited, but titanium or stainless steel is preferable from the viewpoint of corrosion resistance.

ここで示す生物処理とは、一般に下水処理場で広く用いられている活性汚泥法や、生物の膜を付着させたろ材を対象廃液中に漬けて対象廃液中の有機物を処理する生物膜法などに例示される、微生物の力により対象廃液中に含まれる有機物質やプランクトン類からの悪臭物質、あるいはアンモニア性窒素等を除去する処理する方法を意味するものである。   The biological treatment shown here is the activated sludge method that is widely used in sewage treatment plants in general, and the biological membrane method that treats organic matter in the target waste liquid by immersing the filter medium with the biological membrane attached in the target waste liquid. Means a method of removing organic substances contained in the target waste liquid, malodorous substances from planktons, ammoniacal nitrogen, and the like by the power of microorganisms.

また、本発明の第2の発明によれば、
請求項1における窒素と酸素を含む気体成分が、窒素:酸素の体積成分比が20:80〜80:20であることで、高圧放電処理を行うことで薬品を用いる事無く、対象廃液を硝酸酸性にし、且つ対象廃液中のアルキルスルホキシドの酸化分解処理を良好に進めるために必要な酸素源が確保できる。
According to the second invention of the present invention,
The gaseous component containing nitrogen and oxygen in claim 1 has a nitrogen: oxygen volume component ratio of 20:80 to 80:20, so that the target waste liquid is treated with nitric acid without using chemicals by performing high-pressure discharge treatment. It is possible to secure an oxygen source necessary for acidification and good progress of the oxidative decomposition treatment of alkyl sulfoxide in the target waste liquid.

また、本発明の第3の発明によれば、
請求項1における高圧放電が、電圧印加電極と接地電極間で発生させるストリーマ放電であることで、放電先端が払子状に拡がる放電方式であるため、過酸化水素やオゾンやヒドロキシルラジカルのような活性種が放電空間内に奥行きをもって広く発生するので、対象廃液中のアルキルスルホキシドとの接触が良好となり上記活性種による分解が効率良く進行する。
According to the third aspect of the present invention,
Since the high-pressure discharge according to claim 1 is a streamer discharge generated between the voltage application electrode and the ground electrode, the discharge tip spreads in a dew-like manner. Since the seeds are widely generated with a depth in the discharge space, the contact with the alkyl sulfoxide in the target waste liquid becomes good, and the decomposition by the active species proceeds efficiently.

また、本発明の第4の発明によれば、
請求項1におけるアルキルスルホキシド含有廃液を、高圧放電空間中へ通過させるにあたり、ミスト状に噴霧して通過させることで、放電空間内に発生した過酸化水素やオゾンやヒドロキシルラジカルのような活性種と、対象廃液中のアルキルスルホキシドとの接触機会を増大させることができる。
この時、ミスト化する手段についてはノズルからの噴射や超音波によるミスト化などがあり、特に制約を受けないが、処理できる量を考慮して噴射ノズルによるミスト化が好ましい。
According to the fourth aspect of the present invention,
When passing the alkylsulfoxide-containing waste liquid in claim 1 into the high-pressure discharge space by spraying it in the form of a mist, the active species such as hydrogen peroxide, ozone, and hydroxyl radical generated in the discharge space The chance of contact with the alkyl sulfoxide in the target waste liquid can be increased.
At this time, the means for mist formation includes injection from a nozzle and mist formation by ultrasonic waves, and is not particularly limited, but mist formation by an injection nozzle is preferable in consideration of the amount that can be processed.

更に、本発明は、対象廃液中の固形分を予めメッシュフィルターなどを用いて除去しておく工程や対象廃液を一時貯留して循環処理を行う貯留水槽構造や、対象廃液を放電空間へ供給するためのポンプ構造などには制約を受けるものではない。   Furthermore, the present invention provides a process for removing solids in the target waste liquid in advance using a mesh filter or the like, a storage tank structure for temporarily storing the target waste liquid and performing circulation processing, and supplying the target waste liquid to the discharge space. There are no restrictions on the pump structure.

本発明によれば、アルキルスルホキシド含有廃液を、窒素と酸素を含む気体成分下、高圧放電を行うことで、雰囲気気体中の窒素成分が酸化を受けて硝酸イオンが形成され、対象廃液をpH4程度の酸性状態となるので、薬品によるpH調整が不要となる。
併せて酸性状態となった下で高圧放電処理を行うことによりオゾンや過酸化水素、ヒドロキシラジカルなどの様々な活性種が放電空間中に発生し、対象廃液を同放電空間中に循環通過させることで、DMSOの場合には有効にジメチルスルホンにまで酸化処理を行うことが可能となる。
加えて、高圧放電ではオゾンと過酸化水素が両方発生するが、放電処理時間経過と共に発生オゾンによる発生過酸化水素の失活が進行し、対象廃液中に過酸化水素の残留が殆ど無い状態となるため、チオ硫酸ナトリウムなどによる過酸化水素の還元処理工程は不要となり、同高圧放電処理の後、生物処理を行うことが可能となる省工程化が図れる。
つまり、大量の薬品を必要とせず、省スペース且つ省段階でアルキルスルホキシド含有廃液の処理が可能となる、という顕著な効果が奏される。
According to the present invention, the alkyl sulfoxide-containing waste liquid is subjected to high-pressure discharge under a gas component containing nitrogen and oxygen, whereby the nitrogen component in the atmospheric gas is oxidized to form nitrate ions, and the target waste liquid is about pH 4 Therefore, it is not necessary to adjust the pH with chemicals.
In addition, various active species such as ozone, hydrogen peroxide, and hydroxy radicals are generated in the discharge space by performing high-pressure discharge treatment in an acidic state, and the target waste liquid is circulated through the discharge space. Thus, in the case of DMSO, it is possible to effectively oxidize to dimethyl sulfone.
In addition, both ozone and hydrogen peroxide are generated in the high-pressure discharge, but as the discharge treatment time elapses, the generated hydrogen peroxide has been deactivated, and there is almost no residual hydrogen peroxide in the target waste liquid. Therefore, the reduction process of hydrogen peroxide with sodium thiosulfate or the like is not required, and the process can be saved because the biological treatment can be performed after the high-pressure discharge treatment.
That is, there is a remarkable effect that it is possible to process the alkylsulfoxide-containing waste liquid in a space-saving manner without requiring a large amount of chemicals.

本発明を実施するための第1の形態として、図2のモデルを元に説明する。
放電処理部1は、容器2と、円筒状電極3と線状電極4とからなる高圧放電空間と、被処理水タンク5と、ポンプ6と、噴射ノズルであるシャワーノズル7と、被処理水供給ホース71と、放電空間内の気体成分を調整して供給する気体供給手段8と、高圧電源であるパルスパワー発生装置9と、被処理水タンク収容ボックス10とを備えている。
容器2は、例えば、アクリル樹脂等の絶縁材料で形成され、円筒状をした容器本体21と、容器本体21の下端を、通水孔22a部分を除いて閉鎖するように設けられた下部蓋部22と、容器本体21の上端を、シャワーノズル設置孔23a部分を除いて閉鎖するように設けられた上部蓋部23とを備え、下部蓋部22が被処理水タンク収容ボックス10の開口部10aを塞いだ状態で被処理水タンク収容ボックス10の開口部10a周縁に受けられている。
A first embodiment for carrying out the present invention will be described based on the model shown in FIG.
The discharge treatment unit 1 includes a container 2, a high-pressure discharge space composed of a cylindrical electrode 3 and a linear electrode 4, a treated water tank 5, a pump 6, a shower nozzle 7 serving as an injection nozzle, and treated water. A supply hose 71, gas supply means 8 that adjusts and supplies a gas component in the discharge space, a pulse power generator 9 that is a high-voltage power source, and a water tank storage box 10 are provided.
The container 2 is formed of, for example, an insulating material such as an acrylic resin, and has a cylindrical container body 21 and a lower lid portion that is provided so as to close the lower end of the container body 21 except for the water passage hole 22a. 22 and an upper lid portion 23 provided so as to close the upper end of the container body 21 except for the shower nozzle installation hole 23a portion, and the lower lid portion 22 is an opening portion 10a of the water tank storage box 10 to be treated. Is received at the periphery of the opening 10a of the water tank storage box 10 to be treated.

高圧放電空間を形成する円筒状電極3は、例えば、ステンレス鋼製の2.5メッシュ、線径1.1mmの金網を円筒状に加工することによって得られ、円筒状をした容器本体21内に収容されるように外径が容器本体21の内径より若干小さく形成されている。
同じく線状電極4は、例えば、直径1mmのチタン鋼線で形成され、円筒状電極3の中心軸に沿うように設けられている。
The cylindrical electrode 3 forming the high-pressure discharge space is obtained by, for example, processing a stainless steel 2.5 mesh, wire mesh with a wire diameter of 1.1 mm into a cylindrical shape. The outer diameter is formed slightly smaller than the inner diameter of the container body 21 so as to be accommodated.
Similarly, the linear electrode 4 is formed of, for example, a titanium steel wire having a diameter of 1 mm, and is provided along the central axis of the cylindrical electrode 3.

被処理水タンク5は、下部蓋部22の通水孔22aを下方から臨むように処理水タンク収容ボックス10内に収容されている。
ポンプ6は、処理水タンク収容ボックス10内で被処理水タンク5に隣接して設けられ、被処理水タンク5内の被処理水Wを、被処理水供給ホース71を介してシャワーノズル7に送るようになっている。
The treated water tank 5 is accommodated in the treated water tank accommodation box 10 so that the water passage hole 22a of the lower lid portion 22 faces from below.
The pump 6 is provided adjacent to the treated water tank 5 in the treated water tank storage box 10, and the treated water W in the treated water tank 5 is supplied to the shower nozzle 7 via the treated water supply hose 71. To send.

シャワーノズル7は、被処理水供給ホース71を介して送られてきた被処理水を粒径が1500μm以下の水滴からなるミスト状態にして円筒状電極3の上部開口に向かって噴射するようになっている。
また、シャワーノズル7の噴角は、噴射される被処理水ミストMの最大広がり部で放電空間の最外縁である円筒状電極3の内壁面に沿うような角度に調整されている。
The shower nozzle 7 sprays the water to be treated, which has been sent through the water to be treated supply hose 71, into a mist state composed of water droplets having a particle diameter of 1500 μm or less toward the upper opening of the cylindrical electrode 3. ing.
Moreover, the spray angle of the shower nozzle 7 is adjusted to an angle along the inner wall surface of the cylindrical electrode 3 that is the outermost edge of the discharge space at the maximum spread portion of the sprayed water mist M to be sprayed.

気体供給手段8は、気体供給部81と気体供給量調節器82と気体供給管83とからなり、酸素ボンベと窒素ボンベからなる気体供給部81から、気体供給量調節器82を介して気体供給管83が容器本体21壁を貫通し、放電空間に向けて気体成分を供給するように接続されている。   The gas supply means 8 includes a gas supply unit 81, a gas supply amount regulator 82, and a gas supply pipe 83, and gas supply from the gas supply unit 81 including an oxygen cylinder and a nitrogen cylinder via the gas supply amount regulator 82. A tube 83 penetrates the wall of the container body 21 and is connected so as to supply a gas component toward the discharge space.

パルスパワー発生装置9は、円筒状電極3が接地電極、線状電極4が電圧印加電極となるように円筒状電極3及び線状電極4に接続され、円筒状電極3と線状電極4との間にパルス状に高電圧を印加して円筒状電極3と線状電極4との間で放電を起こすようになっている。   The pulse power generator 9 is connected to the cylindrical electrode 3 and the linear electrode 4 so that the cylindrical electrode 3 serves as a ground electrode and the linear electrode 4 serves as a voltage application electrode. During this time, a high voltage is applied in a pulsed manner to cause a discharge between the cylindrical electrode 3 and the linear electrode 4.

この放電処理部1は、上記のようになっており、被処理水タンク5にDMSOを含む被処理水Wを仕込むとともに、放電空間内の気体成分を調整して供給する手段8により処理空間の気体成分が調整された状態の下で、パルスパワー発生装置9によって、円筒状電極3と線状電極4との間に、高電圧をパルス状に連続印加し、円筒状電極3内に上下方向に円柱状となった放電空間を形成する。
そして、ポンプ6を駆動させて、被処理水タンク5内の被処理水Wを、ホース71を介してシャワーノズル7に送り、円筒状電極3の上方から円筒状電極3の中心軸方向に噴射することによって被処理水Wを循環通過させながら繰り返し処理するようになっている。
The discharge treatment unit 1 is configured as described above. The treatment water W containing DMSO is charged into the treatment water tank 5 and the gas component in the discharge space is adjusted and supplied by means 8 for supplying the treatment water. Under a state in which the gas component is adjusted, a high voltage is continuously applied in a pulsed manner between the cylindrical electrode 3 and the linear electrode 4 by the pulse power generator 9, and the cylindrical electrode 3 is vertically moved. A discharge space having a cylindrical shape is formed.
And the pump 6 is driven, the to-be-processed water W in the to-be-processed water tank 5 is sent to the shower nozzle 7 via the hose 71, and is injected from the upper direction of the cylindrical electrode 3 to the central-axis direction of the cylindrical electrode 3. By doing so, the water to be treated W is repeatedly treated while being circulated.

すなわち、放電によって、オゾン、OHラジカル、Oラジカル等の活性種が放電空間内に発生し、シャワーノズル7から噴射された被処理水ミストM中の水滴が円筒状をした放電空間内を落下していく間にこれら活性種に接触し、各水滴中のDMSOが効率よく酸化分解処理される。   That is, active species such as ozone, OH radicals, and O radicals are generated in the discharge space by the discharge, and water droplets in the water mist M to be treated sprayed from the shower nozzle 7 fall in the cylindrical discharge space. In the meantime, these active species are contacted, and DMSO in each water droplet is efficiently oxidatively decomposed.

上記放電処理を行い、GC−MAS測定でDMSOがジメチルスルホンまで分解されたのを確認し、pH調整を行うことなく、活性汚泥法により生物分解処理を行う。   The above discharge treatment is performed, and it is confirmed by GC-MAS measurement that DMSO is decomposed to dimethyl sulfone, and the biodegradation treatment is performed by the activated sludge method without adjusting the pH.

なお、本発明は、上記の実施の形態に限定されない。例えば、上記の実施の形態では、パルスパワー発生装置を備えていたが、パルスパワー発生装置は市販のものを別途容易するようにしても構わない。   The present invention is not limited to the above embodiment. For example, in the above-described embodiment, the pulse power generator is provided. However, a commercially available pulse power generator may be separately provided.

以下に、本発明の具体的な実施例を比較例と対比させて説明する。
(実施例1)
図2に示す放電処理部1を用い、以下の実験条件でDMSO水溶液の処理を行った。
〔処理条件〕
被処理水初期濃度: 300ppm(DMSOを蒸留水に溶解させ調整した)
被処理水量: 7リットル
被処理水の噴射速度(循環速度): 14L/分
充電電圧: 20kV
印加速度: 0.7kV/nsec
パルス幅: 50nsec
周波数: 200Hz
円筒状電極の性状: 2.5メッシュ、線径1.1mm、開孔率79.5%、溶接金網
円筒状電極の外径: 39.5mm
円筒状電極の長さ(中心軸方向の長さ): 200mm×6本
被処理水ミストの粒径: 750〜970μm
シャワーノズルの噴射角: 30°
シャワーノズルから円筒状電極までの距離: 被処理水ミストの最外縁が最外部に位置する円筒状電極外縁の上端になるように調整した。
気体供給条件: 酸素:窒素=10:90
気体流量: 4L/分
Specific examples of the present invention will be described below in comparison with comparative examples.
Example 1
Using the discharge treatment unit 1 shown in FIG. 2, a DMSO aqueous solution was treated under the following experimental conditions.
[Processing conditions]
Initial concentration of water to be treated: 300 ppm (adjusted by dissolving DMSO in distilled water)
Amount of water to be treated: 7 liters of water to be treated (circulation speed): 14 L / min Charging voltage: 20 kV
Application speed: 0.7 kV / nsec
Pulse width: 50nsec
Frequency: 200Hz
Properties of cylindrical electrode: 2.5 mesh, wire diameter 1.1 mm, hole area ratio 79.5%, outer diameter of welded wire mesh cylindrical electrode: 39.5 mm
Length of cylindrical electrode (length in central axis direction): 200 mm × 6 particle diameter of water mist to be treated: 750 to 970 μm
Shower nozzle spray angle: 30 °
Distance from shower nozzle to cylindrical electrode: The outermost edge of the water mist to be treated was adjusted to be the upper end of the outer edge of the cylindrical electrode located at the outermost part.
Gas supply conditions: Oxygen: Nitrogen = 10: 90
Gas flow rate: 4L / min

(実施例2)
気体供給条件を、酸素:窒素=20:80で行った以外は実施例1と同様に行った。
(Example 2)
The gas supply conditions were the same as in Example 1 except that oxygen: nitrogen = 20: 80.

(実施例3)
気体供給条件を、酸素:窒素=50:50で行った以外は実施例1と同様に行った。
(Example 3)
The gas supply conditions were the same as in Example 1 except that oxygen: nitrogen = 50: 50.

(実施例4)
気体供給条件を、酸素:窒素=80:20で行った以外は実施例1と同様に行った。
Example 4
The gas supply conditions were the same as in Example 1 except that oxygen: nitrogen = 80: 20.

(比較例1)
放電空間内の気体成分を調整して供給する手段8から窒素100%で気体成分を供給した以外は、実施例1と同様にしてDMSO水溶液の処理を行った。
(Comparative Example 1)
The DMSO aqueous solution was treated in the same manner as in Example 1 except that the gas component was supplied with 100% nitrogen from the means 8 for adjusting and supplying the gas component in the discharge space.

(比較例2)
放電空間内の気体成分を調整して供給する手段8から酸素100%で気体成分を供給した以外は、実施例1と同様にしてDMSO水溶液の処理を行った。
(Comparative Example 2)
The DMSO aqueous solution was treated in the same manner as in Example 1 except that the gas component was supplied with 100% oxygen from the means 8 for adjusting and supplying the gas component in the discharge space.

実施例1から実施例4及び比較例1と比較例2については、各放電処理後にpH調整を行わずに活性汚泥法を用い、0.2g−TOC/g−MLSS・dayの負荷で処理を行った。各処理における分解反応の進行状況は、島津製作所社製の全有機炭素計を用い、TOC(全有機炭素)を測定して比較を行った。
生物処理後の悪臭の発生の有無に関しては、官能評価にて行い、10人中2人以上が臭気を感じた場合に悪臭発生とした。
試験結果を表1に示す。
For Example 1 to Example 4 and Comparative Example 1 and Comparative Example 2, the activated sludge method was used without adjusting the pH after each discharge treatment, and the treatment was performed at a load of 0.2 g-TOC / g-MLSS · day. went. The progress of the decomposition reaction in each treatment was compared by measuring TOC (total organic carbon) using a total organic carbon meter manufactured by Shimadzu Corporation.
The presence or absence of odor generation after biological treatment was determined by sensory evaluation, and when 2 or more of 10 felt odor, odor generation was determined.
The test results are shown in Table 1.

上記結果の通り、本発明の処理システムを用いることで、大量の薬品を必要とせず、省スペース且つ省段階でアルキルスルホキシド含有廃液の処理が可能となった。
生物処理前にDMSOをジメチルスルホンに酸化分解することで後段の生物処理時に悪臭の発生を抑えることが可能となった。
As described above, by using the treatment system of the present invention, it was possible to treat the alkylsulfoxide-containing waste liquid in a space-saving and stage-saving manner without requiring a large amount of chemicals.
Oxidative decomposition of DMSO to dimethylsulfone before biological treatment makes it possible to suppress the generation of malodor during subsequent biological treatment.

また、本発明の実施例を補足するものとして、以下の参考例を示す。
(参考例1)
実施例1の処理条件において、被処理水に蒸留水を用い、気体供給条件を、以下の条件で10hr後まで処理を行った時の被処理水のpHを測定し、結果を図3に示す。
・酸素:窒素=90:10
・酸素:窒素=50:50
・酸素:窒素=10:90
対象処理水のpHが処理時間と共にpH4程度の酸性状態となる事が確認された。
In addition, the following reference examples will be shown as supplemental examples of the present invention.
(Reference Example 1)
In the treatment conditions of Example 1, distilled water was used as the water to be treated, and the pH of the water to be treated was measured when the gas supply conditions were treated until after 10 hours under the following conditions, and the results are shown in FIG. .
・ Oxygen: Nitrogen = 90: 10
・ Oxygen: Nitrogen = 50: 50
・ Oxygen: Nitrogen = 10: 90
It was confirmed that the pH of the target treated water reached an acidic state of about pH 4 with the treatment time.

(参考例2)
実施例3での処理において、対象水溶液中のDMSO及びジメチルスルホンの濃度変化について、各処理時間で抜き取った対象水溶液に対しGC−MAS測定を行い、結果を図4に示す。
水溶液中のDMSOの分解が進み、ジメチルスルホンが生成していることが確認された。
(Reference Example 2)
In the treatment in Example 3, the concentration change of DMSO and dimethyl sulfone in the target aqueous solution was subjected to GC-MAS measurement on the target aqueous solution extracted at each treatment time, and the results are shown in FIG.
It was confirmed that the decomposition of DMSO in the aqueous solution progressed and dimethyl sulfone was produced.

(参考例3)
上記参考例2処理時に同時にTOC測定の測定を行い、結果を図5示す。
TOC濃度は処理時間による変化はなく、DMSOがジメチルスルホンに酸化されたのみで、ジメチルスルホンがメタンスルホン酸や硫酸などへの酸化までは起こっていないことが確認された。
(Reference Example 3)
The measurement of TOC is performed simultaneously with the processing of Reference Example 2, and the results are shown in FIG.
It was confirmed that the TOC concentration did not change with the treatment time, DMSO was only oxidized to dimethylsulfone, and dimethylsulfone had not been oxidized to methanesulfonic acid or sulfuric acid.

(参考例4)
実施例1の処理条件において、被処理水に蒸留水を用い、気体供給条件を変えて各1hr処理を行った時の被処理水中の水中過酸化水素濃度と水中オゾン濃度の値を測定し、結果を図6に示す。
より高い酸化分解性を発現させるためには、過酸化水素とオゾンの両方が存在する条件で処理を行うのが好ましいが、窒素:酸素の体積成分比が20:80〜80:20であれば過酸化水素とオゾンの発生比率が安定することが確認された。
また、本発明の高圧放電では過酸化水素の発生量は3ppm程度以下と極めて微量であり、後段の生物処理を行う前にチオ硫酸ナトリウムなどによる過酸化水素の還元処理工程が不要であり、省工程で処理が可能であることが確認された。
(Reference Example 4)
In the treatment conditions of Example 1, distilled water was used as the water to be treated, and the values of the hydrogen peroxide concentration in the water to be treated and the ozone concentration in the water were measured when the gas supply conditions were changed for each 1 hr, The results are shown in FIG.
In order to develop higher oxidative decomposability, it is preferable to perform the treatment under conditions where both hydrogen peroxide and ozone are present. However, if the volume component ratio of nitrogen: oxygen is 20:80 to 80:20, It was confirmed that the generation ratio of hydrogen peroxide and ozone was stable.
In addition, in the high-pressure discharge of the present invention, the amount of hydrogen peroxide generated is very small, about 3 ppm or less, and a hydrogen peroxide reduction treatment step using sodium thiosulfate or the like is not required before biological treatment in the subsequent stage. It was confirmed that the process was possible.

本発明の処理方法では、大量の薬品を必要とせず、省スペース且つ省段階で処理可能なアルキルスルホキシド含有廃液の処理システムが提供され、産業上有用である。 The treatment method of the present invention provides an alkyl sulfoxide-containing waste liquid treatment system that does not require a large amount of chemicals and that can be treated in a space-saving manner and is industrially useful.

本発明で使用される高圧放電の一例である印加パルスパターンである。It is an application pulse pattern which is an example of the high voltage | pressure discharge used by this invention. 本発明を実施するための、放電処理を行う部分の第1の形態図であるIt is the 1st form figure of the part which performs discharge processing for carrying out the present invention. 本発明の参考例1の結果を示すグラフである。It is a graph which shows the result of the reference example 1 of this invention. 本発明の参考例2の結果を示すグラフである。It is a graph which shows the result of the reference example 2 of this invention. 本発明の参考例3の結果を示すグラフである。It is a graph which shows the result of the reference example 3 of this invention. 本発明の参考例4の結果を示すグラフである。It is a graph which shows the result of the reference example 4 of this invention.

1 放電処理部
2 容器
3 円筒状電極
4 線状電極
5 被処理水タンク
6 ポンプ
7 シャワーノズル
8 気体供給手段
9 パルスパワー発生装置
10 被処理水タンク収容ボックス
DESCRIPTION OF SYMBOLS 1 Discharge process part 2 Container 3 Cylindrical electrode 4 Linear electrode 5 Water tank 6 To be treated Pump 7 Shower nozzle 8 Gas supply means 9 Pulse power generator 10 Water tank to be treated

Claims (5)

アルキルスルホキシド含有廃液を、窒素と酸素を含む気体成分下、高圧放電空間中に通過させた後、生物処理を行うことを特徴とするアルキルスルホキシド含有廃液の処理方法 A method for treating an alkyl sulfoxide-containing waste liquid, characterized in that a biological treatment is performed after passing the alkyl sulfoxide-containing waste liquid into a high-pressure discharge space under a gas component containing nitrogen and oxygen. 上記の窒素と酸素を含む気体成分が、窒素:酸素の体積成分比が20:80〜80:20であることを特徴とする請求項1記載のアルキルスルホキシド含有廃液の処理方法 The method for treating an alkylsulfoxide-containing waste liquid according to claim 1, wherein the gaseous component containing nitrogen and oxygen has a nitrogen: oxygen volume component ratio of 20:80 to 80:20. 上記の高圧放電が、電圧印加電極と接地電極間で発生させるストリーマ放電であることを特徴とする請求項1又は請求項2記載のアルキルスルホキシド含有廃液の処理方法 3. The method for treating an alkylsulfoxide-containing waste liquid according to claim 1 or 2, wherein the high-pressure discharge is a streamer discharge generated between a voltage application electrode and a ground electrode. 上記のアルキルスルホキシド含有廃液を高圧放電空間中へ通過させるにあたり、ミスト状に噴霧して通過させることを特徴とする請求項1〜請求項3記載のアルキルスルホキシド含有廃液の処理方法 4. The method for treating an alkyl sulfoxide-containing waste liquid according to claim 1, wherein the alkyl sulfoxide-containing waste liquid is sprayed in the form of a mist when passing through the high-pressure discharge space. アルキルスルホキシド含有廃液供給手段と、高圧放電発生装置と、窒素を含む気体供給手段と、高圧放電発生装置に接続した放電電極を含む放電空間からなることを特徴とするアルキルスルホキシド含有廃液の処理システム An alkyl sulfoxide-containing waste liquid treatment system comprising an alkyl sulfoxide-containing waste liquid supply means, a high-pressure discharge generator, a gas supply means containing nitrogen, and a discharge space including a discharge electrode connected to the high-pressure discharge generator.
JP2010177822A 2010-08-06 2010-08-06 Method and system for treating alkyl sulfoxide-containing waste liquid Pending JP2012035199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010177822A JP2012035199A (en) 2010-08-06 2010-08-06 Method and system for treating alkyl sulfoxide-containing waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010177822A JP2012035199A (en) 2010-08-06 2010-08-06 Method and system for treating alkyl sulfoxide-containing waste liquid

Publications (1)

Publication Number Publication Date
JP2012035199A true JP2012035199A (en) 2012-02-23

Family

ID=45847812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010177822A Pending JP2012035199A (en) 2010-08-06 2010-08-06 Method and system for treating alkyl sulfoxide-containing waste liquid

Country Status (1)

Country Link
JP (1) JP2012035199A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178356A1 (en) * 2014-05-20 2015-11-26 独立行政法人石油天然ガス・金属鉱物資源機構 Device and method for treating organic-material-containing water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015178356A1 (en) * 2014-05-20 2015-11-26 独立行政法人石油天然ガス・金属鉱物資源機構 Device and method for treating organic-material-containing water
JP2015217358A (en) * 2014-05-20 2015-12-07 国立大学法人 熊本大学 Organic substance-containing water processing unit and method
US10160668B2 (en) 2014-05-20 2018-12-25 Japan Oil, Gas And Metals National Corporation Device and method for treating organic-material-containing water

Similar Documents

Publication Publication Date Title
Vanraes et al. Electrical discharge in water treatment technology for micropollutant decomposition
US8349192B2 (en) Method for collapsing microbubbles
KR20110109111A (en) Apparatus and method for treating water by using plasma gun
US9409800B2 (en) Electric arc for aqueous fluid treatment
JP2010022991A (en) Liquid treatment device and liquid treatment method
JP2005058886A (en) Waste water treatment apparatus using high-voltage pulse and method therefor, and power supply circuit for the apparatus
JP6208968B2 (en) Water treatment method and water treatment apparatus
KR101051454B1 (en) The removal method of toc from waste water
JP2012035199A (en) Method and system for treating alkyl sulfoxide-containing waste liquid
Saeki et al. Generation of hydrogen peroxide in gas bubbles using pulsed plasma for advanced oxidation processes
JP5534846B2 (en) Water treatment equipment
JP2005013858A (en) Method and apparatus for treating wastewater using high voltage pulses
JP2014117639A (en) Method for decomposing dioxane in water to be treated
US10723638B2 (en) Liquid treatment device
JP2010063991A (en) Water treating apparatus
KR101071709B1 (en) Photo-Fenton oxidation reactor to remove 1,4-dioxane and method to remove 1,4-dioxane by Photo-Fenton oxidation
Duan et al. Study on the factors influencing phenol degradation in water by dielectric barrier discharge (DBD)
JP2013215682A (en) Water treatment method and water treatment apparatus used for the water treatment method
US20210002150A1 (en) Water treatment system
Falyk et al. Research of the effects of various gases on cavitation-based removal of organic pollutants from distillery wastewater
US20210179455A1 (en) Hydrogen peroxide water manufacturing device
JP2009142780A (en) Deodorization method and apparatus
Supanarapan et al. Optimal power supply frequency for wastewater treatment by using underwater plasma discharges
Sokolov Pulsed corona discharge for wastewater treatment and modification of organic materials
JP2018187632A (en) Apparatus and method for reducing hazardous substances in sewage and wastewater to eliminate ecotoxicity