JP2012032258A - Droplet moving device and droplet moving method - Google Patents

Droplet moving device and droplet moving method Download PDF

Info

Publication number
JP2012032258A
JP2012032258A JP2010171456A JP2010171456A JP2012032258A JP 2012032258 A JP2012032258 A JP 2012032258A JP 2010171456 A JP2010171456 A JP 2010171456A JP 2010171456 A JP2010171456 A JP 2010171456A JP 2012032258 A JP2012032258 A JP 2012032258A
Authority
JP
Japan
Prior art keywords
droplet
solid surface
contact angle
contact
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010171456A
Other languages
Japanese (ja)
Inventor
Kenji Kato
健司 加藤
Tatsuro Wakimoto
辰郎 脇本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Osaka City University
Original Assignee
Osaka University NUC
Osaka City University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Osaka City University filed Critical Osaka University NUC
Priority to JP2010171456A priority Critical patent/JP2012032258A/en
Publication of JP2012032258A publication Critical patent/JP2012032258A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a droplet moving device for easily moving a droplet to an arbitrary direction in a non-contact state without being restricted by a micro-heater or the like without making it necessary to embed any micro-heater or electrode pattern or the like in a wall surface in advance.SOLUTION: A droplet moving device 100 is provided with: a fixed surface with which a droplet A is brought into contact; and laser irradiating means for locally irradiating one end of the droplet with a laser 103 to increase the wettability of the droplet and the fixed surface. Since the contact angle of the irradiation end of the laser is decreased according to heating, the resultant force of a surface tension acting on the droplet appears so that it is possible to move the droplet to the direction of the laser irradiation end.

Description

本発明は、固体表面上の液滴を移動させる液滴移動装置およびその方法に関するものである。   The present invention relates to a droplet moving apparatus and method for moving a droplet on a solid surface.

化学・光学機器や医薬関連の分野において、マイクロ流路における伝熱や反応、あるいはマイクロ流体素子など、微小スケールの液体運動を制御する必要性が高まっている。
例えば、DNA解析装置等の医療機器では、希少かつ高価な試薬を微量の液滴で反応・混合させる必要があり、平板状の液滴を移動させる技術の研究開発が進められている。
In the fields of chemical and optical equipment and medicine, there is a growing need to control the movement of microscale liquids such as heat transfer and reaction in microchannels or microfluidic devices.
For example, in a medical device such as a DNA analyzer, it is necessary to react and mix a rare and expensive reagent with a small amount of droplets, and research and development of a technique for moving a plate-like droplet is underway.

このような問題では、表面張力やぬれ性といった界面現象の影響が重要となる。最近では、温度差、電場、光化学反応あるいはマランゴニ効果などを利用して、局所的に表面張力やぬれ性を変化させ、液滴の運動や分離、あるいは微小流路内の液柱の位置制御や分岐を行う手法について検討が行われている In such problems, the influence of interface phenomena such as surface tension and wettability is important. Recently, by using temperature difference, electric field, photochemical reaction, Marangoni effect, etc., surface tension and wettability are locally changed to control the movement and separation of droplets or the position of liquid columns in microchannels. A method for branching is being studied.

例えば下記非特許文献1には、平板上に電極を配置し、壁面のぬれ性を電気的に変化させて液滴を駆動させる手法が開示されている。また下記非特許文献2には、壁面にマイクロヒーターを埋め込み、熱による表面張力の変化を利用して駆動する手法が開示されている。 For example, the following Non-Patent Document 1 discloses a method in which an electrode is disposed on a flat plate and a droplet is driven by electrically changing the wettability of a wall surface. Non-Patent Document 2 below discloses a technique in which a microheater is embedded in a wall surface and driven using a change in surface tension caused by heat.

Dahuber、 A. A. and Troian、S.M.、 Principlesof Microfluidic Actuation by Modulation of Surface Stresses、 Annual Review of FluidMechanics、 37(2005)、 425−455Dahuber, A.D. A. and Troian, S .; M.M. , Principles of Microfluidic Actuation by Modulation of Surface Stresses, Annual Review of FluidMechanics, 37 (2005), 425-455. Shukla、 R。and Kallam、 K.A. Effect of liquid transparency laser-inducedmotion of drops、 Transactions of ASME、 Journal of Fluids Engineering、 131(2009)、081301、 1-7Shukla, R. and Kalllam, K.K. A. Effect of liquid transparency laser-inducedmotion of drops, Transactions of ASME, Journal of Fluids Engineering, 131 (2009), 081301, 1-7

しかし、上述の非特許文献1、2に開示されている手法では、壁面に予め電極パターンなどの加工が必要であり、液滴の移動方向にもパターンに応じた運動しか得られないという制限を受けることなどの欠点がある。本発明は、壁面の加工を必要としない新たな液滴の移動方法を提供することを課題とする。 However, the methods disclosed in the above-mentioned Non-Patent Documents 1 and 2 require processing of an electrode pattern or the like on the wall surface in advance, and the limitation that only movement according to the pattern can be obtained in the moving direction of the droplet. There are drawbacks such as receiving. An object of the present invention is to provide a new droplet moving method that does not require wall surface processing.

本発明の液滴移動装置は、液滴が接触する固体表面と、液滴と固体表面のぬれ性を向上させる、液滴の一部を非接触で局所的に加熱する加熱手段を備える。本発明によれば、加熱手段により加熱された一端の接触角が減少する結果、液滴に作用する表面張力の合力が現れ、液滴は加熱された一端の方向に移動することとなる。 The droplet moving device of the present invention includes a solid surface that comes into contact with the droplet, and heating means that locally heats a part of the droplet in a non-contact manner, which improves the wettability between the droplet and the solid surface. According to the present invention, as a result of the contact angle of one end heated by the heating means being reduced, a resultant surface tension acting on the droplet appears, and the droplet moves in the direction of the heated one end.

これにより、従来のように壁面に予めマイクロヒーターや電極パターン等を埋め込む必要はなく、容易にかつ非接触に、液滴を移動させることが可能となる。またマイクロヒーター等に制限されることはないため、任意の方向に液滴を移動させることができる Thereby, it is not necessary to embed a micro heater, an electrode pattern, or the like in advance on the wall surface as in the prior art, and it is possible to move the droplets easily and non-contact. In addition, it is not limited to micro heaters, so it can move droplets in any direction.

また本発明は、固体表面を振動、好ましくは超音波振動させる振動手段を備えるようにしてもよい。超音波振動を加えることで、液滴と固体表面との接触角履歴の大きさを低減することができ、液滴が移動するときの抵抗を小さくすることができる。 The present invention may also be provided with a vibration means for vibrating the solid surface, preferably ultrasonic vibration. By applying ultrasonic vibration, the size of the contact angle history between the droplet and the solid surface can be reduced, and the resistance when the droplet moves can be reduced.

さらに、本発明の固体表面を自己組織化単分子膜(Self Assembled Monolayers)で形成してもよい。この自己組織化単分子膜は表面の凹凸は非常に滑らかであることから、接触角履歴が小さくなり、液滴を移動させるのに必要な外力を小さくするこができる。 Furthermore, you may form the solid surface of this invention with a self-assembled monolayer (Self Assembled Monolayers). Since this self-assembled monomolecular film has very smooth surface irregularities, the contact angle history is reduced and the external force required to move the droplet can be reduced.

また本発明は、別の態様として、液滴が所望の方向に移動するように、液滴の一部を非接触で加熱して、液滴と該液滴が接触する固体表面との接触角を局所的に減少させ、加熱した液滴の一部のぬれ性を増大させる液滴移動方法であってもよい。この方法において、上記固体表面を超音波振動させるようにしてもよい。 According to another aspect of the present invention, a contact angle between a liquid droplet and a solid surface with which the liquid droplet contacts is heated in a non-contact manner so that the liquid droplet moves in a desired direction. It may be a droplet moving method that locally reduces the wettability and increases the wettability of a part of the heated droplet. In this method, the solid surface may be ultrasonically vibrated.

本発明の液滴移動装置によれば、壁面に予めマイクロヒーターや電極パターンを埋め込む等の加工が不要であり、またマイクロヒーター等に制限されることなく任意の方向に液滴を移動させることができる。 According to the droplet moving device of the present invention, processing such as embedding a micro heater or an electrode pattern in advance on the wall surface is unnecessary, and the droplet can be moved in any direction without being limited to the micro heater or the like. it can.

本実施形態に係る液滴移動装置の概略構成図Schematic configuration diagram of a droplet moving device according to the present embodiment 液滴が固体表面上を移動する際の概念図Conceptual diagram when a droplet moves on a solid surface 固体面上の欠陥を通過する液滴の接触線の挙動を示す模式図Schematic diagram showing the behavior of the contact line of a droplet passing through a defect on a solid surface 実験で用いた装置の模式図Schematic diagram of the equipment used in the experiment 振動振幅に対する接触角の変化を示す図Diagram showing change in contact angle with respect to vibration amplitude 実験における接触角履歴を示す図The figure which shows the contact angle history in experiment 液滴の転落角度を振動振幅ごとに測定した結果を示す図The figure which shows the result which measured the drop angle of the droplet for every vibration amplitude 時間により変化する液滴の様子を撮影した写真A photograph of a droplet that changes over time レーザー照射による接触角の変化を示す図Diagram showing change in contact angle by laser irradiation 臨界条件において液滴が移動する瞬間の写真Photograph of the moment when a droplet moves under critical conditions 液滴の移動速度の測定結果を示す図The figure which shows the measurement result of the movement speed of the droplet

以下、本発明の実施形態における液滴移動装置を、図面を参照して説明する。図1は、本実施形態に係る液滴移動装置100の概略構成図である。本実施形態の液滴移動装置100は、液滴Aを設置する試料平板101と、上記試料平板101に超音波振動を与える超音波振動子102と、液滴Aにレーザー光線を照射するレーザー103を備えている。 Hereinafter, a droplet moving device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a droplet moving device 100 according to the present embodiment. The droplet moving device 100 of this embodiment includes a sample flat plate 101 on which the droplet A is placed, an ultrasonic vibrator 102 that applies ultrasonic vibration to the sample flat plate 101, and a laser 103 that irradiates the droplet A with a laser beam. I have.

液滴Aが接触する試料平板101の表面は、自己組織化単分子膜101A(Self Assembled Monolayers、 以下SAMSと記す)によって覆われている。このSAMS膜101Aは、有機分子が自発的に集合して形成される、分子の配向性のそろった有機単分子膜である。既に市販の自己組織化単分子膜を用いることができ、本実施形態では、日本曹達(株)が開発した浸漬法によりSiウェハー表面に自己組織化単分子膜を施した試料平板を用いている。 The surface of the sample flat plate 101 in contact with the droplet A is covered with a self-assembled monolayer 101A (Self Assembled Monolayers, hereinafter referred to as SAMS). The SAMS film 101A is an organic monomolecular film having a uniform molecular orientation formed by spontaneously gathering organic molecules. Already commercially available self-assembled monolayers can be used, and in this embodiment, a sample plate in which a self-assembled monolayer is applied to the Si wafer surface by a dipping method developed by Nippon Soda Co., Ltd. is used. .

SAMS膜101Aは表面の凹凸が1nm程度と非常に滑らかであり、分子レベルで秩序的な配向を有するため、接触角履歴が数度と通常の表面よりもかなり小さい。ここで、接触角履歴とは、液滴の両端に現れる接触角(すなわち、前進接触角と後退接触角)の差をいう。 The surface roughness of the SAMS film 101A is as smooth as about 1 nm and has an orderly orientation at the molecular level. Therefore, the contact angle history is several degrees, which is considerably smaller than a normal surface. Here, the contact angle history refers to a difference between contact angles appearing at both ends of the droplet (that is, an advancing contact angle and a receding contact angle).

SAMS膜101Aの種類は特に制限せず、表面が非常に滑らかであり、分子レベルで秩序的な配向を有するものであれば、どのような単分子膜を用いても良い。 The type of the SAMS film 101A is not particularly limited, and any monomolecular film may be used as long as the surface is very smooth and has a regular orientation at the molecular level.

超音波振動子102は、SAMS膜101Aに高周波かつ微小振幅による振動を与えるものである。本実施形態では数10kHzで数マイクロメートルの振幅をもつ振動子を用いている。 The ultrasonic transducer 102 applies vibration with high frequency and minute amplitude to the SAMS film 101A. In this embodiment, a vibrator having an amplitude of several micrometers at several tens of kHz is used.

レーザー103は、超音波振動させた状態でレーザー光線を液滴端部に照射することによって、液滴を局所的に加熱する。本実施形態では、試料平板に対して約60度の角度から、液滴周端より内側にスポット径約0.1mmのレーザー光線を照射する。レーザー103の出力は、特に制限はしないが、例えば10mWから200mWの範囲で変化させることができる。 The laser 103 locally heats the droplet by irradiating the end of the droplet with a laser beam in a state of ultrasonic vibration. In this embodiment, a laser beam having a spot diameter of about 0.1 mm is irradiated on the inner side of the peripheral edge of the droplet from an angle of about 60 degrees with respect to the sample plate. The output of the laser 103 is not particularly limited, but can be changed, for example, in the range of 10 mW to 200 mW.

液滴の接触角の温度依存性が顕著な場合、高温下でのぬれ性の変化により、表面張力差とは異なるメカニズムによる液滴移動が可能となる。 When the temperature dependence of the contact angle of the droplet is significant, the droplet movement by a mechanism different from the surface tension difference becomes possible due to the change in wettability at a high temperature.

以下、本実施形態の装置を用いた場合の液滴移動の原理について説明する。図2は、液滴が固体面上を移動する際の概念図である。 Hereinafter, the principle of droplet movement when the apparatus of this embodiment is used will be described. FIG. 2 is a conceptual diagram when a droplet moves on a solid surface.

まず、水平な固体面に付着した液滴が外力を受け、図2のx方向に移動する場合を考える。液滴が移動する瞬間における固気液3相の接触線(図2のC)のぬれ挙動の考察から、液体の表面張力σの液滴周囲に作用する合力Dは、下記式(1)により与えられる First, let us consider a case where a droplet attached to a horizontal solid surface receives an external force and moves in the x direction of FIG. From the consideration of the wetting behavior of the solid-gas-liquid three-phase contact line (C in FIG. 2) at the moment when the droplet moves, the resultant force D acting on the periphery of the droplet with the liquid surface tension σ is given by the following equation (1). Given

ここで、θRおよびθAは、接触線上に現れる後退および前進接触角である。また、bは液滴付着面の最大幅である。式(1)は、任意の付着面形状の液滴について成立する。重力や遠心力などの外力が式(1)のDよりも大きくなると、液滴は移動を開始する。上式(1)より、接触角履歴 (θA−θR)を小さくすることにより、抵抗を低減できることがわかる。 Here, θR and θA are the receding and advancing contact angles appearing on the contact line. Moreover, b is the maximum width of the droplet adhesion surface. Equation (1) holds for droplets having an arbitrary attachment surface shape. When an external force such as gravity or centrifugal force becomes larger than D in Expression (1), the droplet starts to move. From the above equation (1), it can be seen that the resistance can be reduced by reducing the contact angle history (θA−θR).

接触角履歴は、固体面上に存在するあらさや化学的な不均質部分などの欠陥の存在により現れるとされている。接触角履歴が現れるメカニズムについて、表面上の欠陥部を接触線が通過する際に必要な仕事量との関連が指摘されている The contact angle history is said to appear due to the presence of defects such as roughness and chemical inhomogeneities existing on the solid surface. Regarding the mechanism of contact angle history, it has been pointed out that it is related to the amount of work required when contact lines pass through defects on the surface.

図3は、巨視的な接触角θRをもち、固体面上の欠陥を通過する接触線の挙動を模式的に表わしたものである。局所的に存在する欠陥部に接触線の一部がトラップされる結果、その歪み形成に応じたエネルギーの分だけ抵抗が増加する。 FIG. 3 schematically shows the behavior of a contact line having a macroscopic contact angle θR and passing through a defect on a solid surface. As a result of trapping part of the contact line in the locally existing defect portion, the resistance increases by the amount of energy corresponding to the strain formation.

巨視的に観察される接触角は、そのエネルギー増加の影響を受け、いわゆる平衡接触角とは異なる角度が接触線の移動方向に依存して現れる。接触角履歴そのものを具体的に求める手法は未だ構築されていないが、図3のモデルにより、そのメカニズムは定性的に説明できると考えられる。 The contact angle observed macroscopically is affected by the increase in energy, and an angle different from the so-called equilibrium contact angle appears depending on the moving direction of the contact line. Although a method for specifically obtaining the contact angle history itself has not yet been established, it is considered that the mechanism can be qualitatively explained by the model of FIG.

固体面上に振動などの外乱を与えると、接触角はエネルギー最小条件を満足する平衡接触角に近づくことが知れている。図3のモデルに従えば、振動を付加すると、欠陥部を乗り越える際の抵抗が小さくなる。 It is known that when a disturbance such as vibration is applied to a solid surface, the contact angle approaches an equilibrium contact angle that satisfies the minimum energy condition. According to the model shown in FIG. 3, when vibration is applied, the resistance when overcoming the defect is reduced.

その結果、エネルギー増加量が抑制され、接触角履歴の低減が期待できる。本実施形態では、液滴が置かれる平板に垂直方向の微小振動を与え、式(1)の抵抗を低減する方法について検討している。図3のモデルより、接触角履歴に影響を与えるのは微小スケールの欠陥であり、振動としてはできる限り高周波のものが望まれる。 As a result, an increase in energy is suppressed, and a reduction in contact angle history can be expected. In the present embodiment, a method for reducing the resistance of Equation (1) by applying a minute vertical vibration to a flat plate on which a droplet is placed is studied. According to the model of FIG. 3, it is a microscale defect that affects the contact angle history, and a vibration having a high frequency as much as possible is desired.

例えば、表面張力に伴う液体振動周波数の代表値f(1/s)として、上記式(2)を考える。ρは密度を、lは長さスケールを示している。液滴のスケールとして、l〜1mmを考えてもf>100Hzとなる。欠陥部のスケールを考えた場合には、より高い周波数の振動が効果的と予想される。 For example, the above equation (2) is considered as a representative value f (1 / s) of the liquid vibration frequency accompanying the surface tension. ρ represents density, and l represents length scale. Even if l to 1 mm is considered as a droplet scale, f> 100 Hz. When considering the scale of the defect, higher frequency vibration is expected to be effective.

本発明は、上記固体表面振動とレーザー照射を組み合わせた手法により、固体面上の液滴を移動させるものである。レーザーによればスポット的な加熱が可能となるため、表面張力差を利用した移動方法とは異なるメカニズムによる液滴駆動も可能になる。 The present invention moves droplets on a solid surface by a method combining the above-described solid surface vibration and laser irradiation. Since spot-like heating can be performed with a laser, droplet driving by a mechanism different from the moving method using the difference in surface tension is also possible.

すなわち、固液の接触角の温度依存性が顕著な場合、高温下でのぬれ性の変化により液滴が駆動される場合が考えられる。式(1)より、レーザー照射位置の接触角が常温の後退接触角よりも小さくなると、液滴は加熱端の方向に向かって運動する。 That is, when the temperature dependence of the contact angle of the solid liquid is significant, it may be considered that the droplet is driven by a change in wettability at a high temperature. From equation (1), when the contact angle at the laser irradiation position is smaller than the receding contact angle at room temperature, the droplet moves toward the heating end.

なお、本実施形態では、SAMS膜を施した表面を用いているため、加熱の影響を受けやすくなっている。すなわち、SAMS膜は表面の凹凸が1nm程度と非常に滑らかであり、分子レベルで秩序的な配向を有するため、接触角履歴が数度と通常の表面よりもかなり小さい。 In this embodiment, since the surface provided with the SAMS film is used, it is easily affected by heating. That is, the surface roughness of the SAMS film is as smooth as about 1 nm and has an orderly orientation at the molecular level, so the contact angle history is several degrees, which is considerably smaller than that of a normal surface.

このため、式(1)からわかるように、液滴を駆動するのに必要な外力を小さくすることが期待できる。また、表面が秩序的な構造をもつため、レーザー光によるランダムな熱振動の分子配列に与える影響が大きく、ぬれ性が顕著に変化することが期待できる。 For this reason, as can be seen from the equation (1), it can be expected that the external force required to drive the droplet is reduced. In addition, since the surface has an ordered structure, the influence of random thermal vibration caused by laser light on the molecular arrangement is great, and wetting can be expected to change significantly.

次に、本実施形態の液滴移動装置を用いて液滴を移動させた実験について説明する。図4に、本実験で用いた装置の模式図を示す。共振周波数28kHzの超音波振動子102(フジセラミック、FBL 28452HS)の振動面上に試料板101を載せ、所定の体積の軸対称液滴をマイクロシリンジで設置する。 Next, an experiment in which a droplet is moved using the droplet moving device of this embodiment will be described. FIG. 4 shows a schematic diagram of the apparatus used in this experiment. A sample plate 101 is placed on the vibration surface of an ultrasonic vibrator 102 (Fuji Ceramic, FBL 28452HS) having a resonance frequency of 28 kHz, and an axisymmetric droplet having a predetermined volume is placed with a microsyringe.

超音波振動子102の共振周波数に合わせながら電圧および電流を変化させ、数種類の振動振幅を設定した。振動させた状態で試料平板101を傾け、液滴Aが転落する瞬間での画像をデジタルカメラにより撮影し、液滴先端(後端)の前進(後退)接触角を測定した。 Several types of vibration amplitudes were set by changing the voltage and current while matching the resonance frequency of the ultrasonic vibrator 102. The sample flat plate 101 was tilted while being oscillated, and an image at the moment when the droplet A fell was taken with a digital camera, and the advancing (retreating) contact angle of the droplet leading end (rear end) was measured.

上述の液滴画像をPCに取り込み、その壁面近傍での形状を多項式近似し、その勾配より接触角を求めた。接触角は、同じ実験条件下で6回以上測定し、その平均値を採用した。本実験における接触角の測定精度は、プラスマイナス1°程度である。 The above-mentioned droplet image was taken into a PC, the shape near the wall surface was approximated by a polynomial, and the contact angle was obtained from the gradient. The contact angle was measured 6 times or more under the same experimental conditions, and the average value was adopted. The measurement accuracy of the contact angle in this experiment is about plus or minus 1 °.

式(1)の液滴移動に対する表面張力による抵抗の、超音波振動の付加による変化を見るため、転落が生じるときの傾き角度の測定も合わせて行った。転落角度の測定誤差はプラスマイナス0。3度である。 In order to see the change of the resistance due to surface tension against the droplet movement of Equation (1) due to the addition of ultrasonic vibration, the tilt angle when the drop occurred was also measured. The measurement error of the falling angle is plus or minus 0. 3 degrees.

壁面を超音波振動させた状態で、試料平板に対して約60°の角度から、液滴周端より内側にスポット径約0.1mmのレーザー光線(Mellesgriot、Model 85-GHS-305)を照射した。レーザーの出力Wを10mWから200mWの範囲で変化させ、接触角ならびに液滴運動の観察を行った   A laser beam (Mellesgriot, Model 85-GHS-305) with a spot diameter of about 0.1 mm was irradiated inside the peripheral edge of the droplet from an angle of about 60 ° with respect to the sample plate while the wall surface was ultrasonically vibrated. The laser output W was varied from 10mW to 200mW, and the contact angle and droplet motion were observed.

試料平板として、日本曹達(株)が開発した浸漬法によりSiウェハー表面にSAMS膜を施した固体表面を用いた。供試液体として、ここではブチルカルビトールアセテート(以下BCA)、αメチルシランダイマー(以下αMSD)、およびグリセリンを用いた。 As a sample flat plate, a solid surface obtained by applying a SAMS film to the surface of a Si wafer by a dipping method developed by Nippon Soda Co., Ltd. was used. Here, butyl carbitol acetate (hereinafter BCA), α-methylsilane dimer (hereinafter αMSD), and glycerin were used as test liquids.

本実験では、液滴にレーザーのエネルギーを効率的に吸収させるため、液滴の移動実験を行ったαMSDおよびBCAについては、染料としてズダンIIIを2500ppm加えた。なお、レーザーの波長を変えれば、無色の液体についても熱を吸収させることは可能である。基準温度(20℃)における各供試液体の物性値を表1に示す。 In this experiment, 2500 ppm of Zudan III was added as a dye for αMSD and BCA for which the droplet movement experiment was performed in order to efficiently absorb the laser energy in the droplet. If the wavelength of the laser is changed, it is possible to absorb heat even for a colorless liquid. Table 1 shows the physical property values of the test liquids at the reference temperature (20 ° C.).

ここで、密度はボーメの比重計、表面張力は電子天秤を用いたWilhelmyの吊り板法により測定した。表中には、温度Tによる表面張力の変化率(dσ/dT)の測定結果も示してある Here, the density was measured by Baume's hydrometer, and the surface tension was measured by Wilhelmy's suspension plate method using an electronic balance. The table also shows the measurement results of the rate of change in surface tension with temperature T (dσ / dT).

図5に、各供試液体のSAMs試料板に対する接触角の、振動振幅Aに対する変化を示す。液滴の体積は、1μL(≡1mm3)である。図5(a)〜(c)より、各供試液体とも、振動振幅の増加とともに前進接触角θAは減少し、後退接触角θRはわずかに減少する傾向を示した。その結果、両者の差である接触角履歴は、振動振幅とともに減少した。 FIG. 5 shows the change of the contact angle of each test liquid with respect to the SAMs sample plate with respect to the vibration amplitude A. The volume of the droplet is 1 μL (≡1 mm 3 ). 5 (a) to 5 (c), each test liquid showed a tendency that the advancing contact angle θ A decreased and the receding contact angle θ R slightly decreased as the vibration amplitude increased. As a result, the contact angle history, which is the difference between the two, decreased with the vibration amplitude.

本実験よりも大振幅で低周波数の振動を与えた場合、前進接触角は減少し、後退接触角が増加して両者の差が小さくなる傾向が示されている。 When a vibration with a large amplitude and a lower frequency is applied than in this experiment, the advancing contact angle decreases, the receding contact angle increases, and the difference between the two tends to decrease.

前進・後退接触角の差である接触角履歴の値を図6に示す。接触角履歴(θA−θR)は振幅とともに減少し、しだいに一定の値に漸近する傾向が認められた。超音波振動を与えることで、静止状態における3~4°の接触角履歴は1°程度にまで低減され、結果として式(1)の抵抗を小さくすることができる。 FIG. 6 shows the value of the contact angle history that is the difference between the forward and backward contact angles. The contact angle history (θ A −θ R ) decreased with amplitude, and gradually tended to approach a constant value. By applying ultrasonic vibration, the contact angle history of 3 to 4 ° in the stationary state is reduced to about 1 °, and as a result, the resistance of the equation (1) can be reduced.

表2は、振幅A=3.2μmにおいて、αMSDおよびBCAに対し、液滴体積Vlを変化させたときの接触角の測定結果を示している。体積によらず、ほぼ同程度の接触角履歴の低減効果が認められた。 Table 2 is the amplitude A = 3.2 .mu.m, contrast αMSD and BCA, show the measurement results of the contact angle when varying the droplet volume V l. Regardless of the volume, almost the same effect of reducing the contact angle history was recognized.

1μLの液滴の転落角度を振動振幅ごとに測定した結果を図7に示す。図中には、軸対称液滴を対象とした理論値が比較のため示されている。転落角度の理論値は、次式(3)より算出を行った。 FIG. 7 shows the result of measuring the drop angle of a 1 μL droplet for each vibration amplitude. In the figure, theoretical values for axisymmetric droplets are shown for comparison. The theoretical value of the falling angle was calculated from the following equation (3).

ここで、φは壁面の傾斜角度である。軸対称液滴を水平板上に設置後、板を傾けた場合、液滴幅は一定に保たれる。上式において、左辺の液滴幅bに、水平板上の液滴径の測定値を代入してφを算出した。 Here, φ is the inclination angle of the wall surface. When the plate is tilted after the axisymmetric droplet is placed on the horizontal plate, the droplet width is kept constant. In the above equation, φ was calculated by substituting the measured value of the droplet diameter on the horizontal plate for the droplet width b on the left side.

図7より、測定結果は式(3)によりほぼ整理できることがわかる。接触角履歴が小さい結果、接触角の測定誤差に対して式(3)左辺の値が敏感に変化する。理論値と実験値の差は、主に接触角の測定誤差に起因する。 From FIG. 7, it can be seen that the measurement result can be roughly arranged by the equation (3). As a result of the small contact angle history, the value on the left side of Equation (3) changes sensitively to the contact angle measurement error. The difference between the theoretical value and the experimental value is mainly due to the measurement error of the contact angle.

図7より、転落角度φは、振動振幅の増加とともに減少する傾向を示す。本実験における最大の振幅を与えた場合、転落角度は静止状態から約15°低減した。本実験で用いた振動子により、1μLの液滴を移動させるのに要する力を約80%低減することができた From FIG. 7, the falling angle φ shows a tendency to decrease as the vibration amplitude increases. When the maximum amplitude in this experiment was given, the fall angle was reduced by about 15 ° from the stationary state. The vibrator used in this experiment reduced the force required to move a 1 μL droplet by about 80%.

振動を与えた状態で、レーザー光を液滴の一端に照射した。その結果、あるレーザーの出力以上で液滴はレーザー照射端の方向に移動することが観察された。 A laser beam was irradiated to one end of the droplet in a state where vibration was applied. As a result, it was observed that the liquid droplet moved in the direction of the laser irradiation end above the output of a certain laser.

図8は、時間t(s)により変化する液滴の様子を撮影した連続写真の一例である。レーザーは軸対称液滴の右端に照射されている。初期の図8(a)の状態で、液滴は図5中の各振幅に対する前進接触角θAで接している。図8(a)の照射開始から時間が経過すると、レーザー照射端の接触角が徐々に減少していく。これは、レーザーによる温度上昇により、固液の親和性が変化し、ぬれ性が向上したことによると考えられる。 FIG. 8 is an example of a continuous photograph in which the state of droplets changing with time t (s) is photographed. The laser is applied to the right end of the axisymmetric droplet. In the initial state shown in FIG. 8A, the droplet is in contact with the advancing contact angle θ A for each amplitude in FIG. As time elapses from the start of irradiation in FIG. 8A, the contact angle at the laser irradiation end gradually decreases. This is considered to be because the affinity of the solid-liquid was changed by the temperature rise by the laser, and the wettability was improved.

図8(d)の状態になると、照射端の接触角θ1が他端の接触角θ2よりもかなり小さくなり、表面張力の作用によって液滴は右方向へ移動を開始する。すなわち、高温側の表面張力は小さくなるが、接触角の減少が顕著なため、表面張力の壁面接線方向の合力が右方向に作用する結果、液滴は高温側に向かって移動すると考えられる。 In the state shown in FIG. 8D, the contact angle θ 1 at the irradiation end becomes considerably smaller than the contact angle θ 2 at the other end, and the droplet starts to move in the right direction by the action of the surface tension. That is, although the surface tension on the high temperature side is reduced, the contact angle is remarkably reduced. Therefore, the resultant force of the surface tension in the tangential direction of the wall surface acts on the right side, so that the droplet is considered to move toward the high temperature side.

図8のように液滴が移動する条件において、レーザー照射後の接触角の時間変化を測定した。αMSDに対する測定例を図9に示す。図中の点線は、液滴が移動を開始した時刻を表す。図9(a)、(b)などの異なる条件下においても、接触角は類似な挙動を示した。 Under the conditions in which the droplets moved as shown in FIG. 8, the time change of the contact angle after laser irradiation was measured. A measurement example for αMSD is shown in FIG. The dotted line in the figure represents the time when the droplet started to move. Even under different conditions such as FIGS. 9 (a) and 9 (b), the contact angle behaved similarly.

すなわち、照射位置の接触角θ1は、レーザー照射後急激に減少する。その後、減少の度合いは緩やかになり、一定値に落ち着く傾向を示す。 1秒程度の時間が経過したのち、液滴は移動を開始する。レーザー出力の大きい図9(a)の方が、移動までに要する時間は短い。照射初期の接触線近傍の急加熱により、θ1は急激に減少する。 That is, the contact angle θ 1 at the irradiation position decreases rapidly after laser irradiation. Thereafter, the degree of decrease becomes gradual and shows a tendency to settle to a constant value. After a time of about 1 second has elapsed, the droplet starts to move. The time required for movement is shorter in FIG. 9A where the laser output is large. Due to the rapid heating in the vicinity of the contact line at the initial stage of irradiation, θ 1 decreases rapidly.

液滴は、最初20℃における前進接触角θAで設置されているため、液滴がθ1の減少により右方向に引っ張られる結果、他端のθ2はθAより減少して、後退接触角θRに近づく。接触角がθRに達するまでの変形のため、液滴が移動を開始するまでに、やや時間を要すると考えられる。 Since the droplet is initially placed at an advancing contact angle θ A at 20 ° C., the droplet is pulled to the right as θ 1 decreases, resulting in θ 2 at the other end decreasing from θ A , and back contact closer to the corner θ R. Because of the deformation until the contact angle reaches θ R , it is considered that it takes some time before the liquid droplet starts to move.

液滴が移動できる臨界条件について検討を行った。ここでは、レーザーを1分間照射して、液滴が0.05mm/minの速度以上で移動することが確認できたときを臨界条件と見なした。 The critical condition that the droplet can move was investigated. Here, when the laser was irradiated for 1 minute and it was confirmed that the droplet moved at a speed of 0.05 mm / min or more, the critical condition was considered.

表3は、種々の振動振幅に対し、1μLの液滴が移動を開始する臨界のレーザー出力を測定した結果を示したものである。振幅の増加により臨界出力の値は減少し、一定値に落ち着く傾向を示した。これは接触角履歴(図6)や液滴が転落する平板の傾斜角度(図7)と同じ傾向であり、振動による移動抵抗の低減効果の結果と考えられる。 Table 3 shows the results of measuring the critical laser power at which a 1 μL droplet starts moving for various vibration amplitudes. The critical output value decreased with increasing amplitude, and showed a tendency to settle to a constant value. This is the same tendency as the contact angle history (FIG. 6) and the inclination angle (FIG. 7) of the flat plate on which the droplet falls, which is considered as a result of the effect of reducing the movement resistance due to vibration.

図10は、臨界条件において、液滴が移動する瞬間での写真例である。このとき、両端に作用する表面張力は、近似的に次式を満足していると考えられる。 FIG. 10 is an example of a photograph at the moment when a droplet moves under a critical condition. At this time, it is considered that the surface tension acting on both ends approximately satisfies the following equation.

ここで、σ1、σ2は、それぞれレーザー照射側ならびに他端の表面張力を示している。図10の移動開始時において、θ1=48.4°、θ2=52.6°である。式(4)が成立するときの表面張力を見積もると、液滴の両端で約40℃の温度差が存在すると見積もられる。 Here, σ 1 and σ 2 indicate the surface tension on the laser irradiation side and the other end, respectively. At the start of movement in FIG. 10, θ 1 = 48.4 ° and θ 2 = 52.6 °. When the surface tension when the formula (4) is established is estimated, it is estimated that there is a temperature difference of about 40 ° C. at both ends of the droplet.

今回の実験における最大振幅A=4.3μmの振動を与えたとき、各レーザー出力における液滴の移動速度を測定した結果を図11に示す。出力に対し、移動速度は直線的に増加する。本実験条件下では、最大で0.6mm/sの移動速度を得ることができた FIG. 11 shows the result of measuring the moving speed of the droplet at each laser output when a vibration with the maximum amplitude A = 4.3 μm in this experiment was given. The moving speed increases linearly with respect to the output. Under this experimental condition, a maximum moving speed of 0.6 mm / s was obtained.

以上、超音波振動子により壁面に高周波(28kHz)の振動を与え、液滴と固体面との接触角履歴の大きさを低減した上で、液滴をレーザー照射により移動させる手法について実験を行った。 As described above, high-frequency vibration (28 kHz) is applied to the wall surface by an ultrasonic transducer to reduce the size of the contact angle history between the droplet and the solid surface, and then experiments are conducted on the method of moving the droplet by laser irradiation. It was.

本実験によれば、接触角履歴の小さいSAMs板に超音波振動を与えたところ、3種類の液体ともに接触角履歴が数°減少する効果が認められた。本実験における最大振幅4.3μmのとき、1μLの液滴の転落角度は約15°減少し、液滴が移動するときの抵抗を約80%低減できた。 According to this experiment, when ultrasonic vibration was applied to a SAMs plate with a small contact angle history, the effect of reducing the contact angle history by several degrees was recognized for all three liquids. At the maximum amplitude of 4.3 μm in this experiment, the drop angle of a 1 μL droplet decreased by about 15 °, and the resistance when the droplet moved could be reduced by about 80%.

超音波振動を与えた状態でレーザーを照射したところ、照射端の接触角が加熱により顕著に減少する現象が認められた。その結果、液滴に作用する表面張力の合力が現れ、液滴はレーザー照射端の方向に移動することが観察された。本実験範囲では、液滴を最大0.6mm/sの速度で移動させることができた。 When laser irradiation was performed with ultrasonic vibration applied, a phenomenon was observed in which the contact angle at the irradiation end was significantly reduced by heating. As a result, it was observed that the resultant surface tension acting on the droplet appeared and the droplet moved in the direction of the laser irradiation end. In the range of this experiment, the droplet could be moved at a maximum speed of 0.6 mm / s.

100 液滴移動装置
101 試料平板
101A SAMS膜
102 超音波振動子
103 レーザー
A 液滴


DESCRIPTION OF SYMBOLS 100 Droplet moving apparatus 101 Sample flat plate 101A SAMS film | membrane 102 Ultrasonic vibrator 103 Laser A Droplet


Claims (9)

固体面上に付着濡れした液滴を移動させる液滴移動装置であって、
液滴が接触する固体表面と、
液滴と固体表面のぬれ性を向上させる、液滴の一部を非接触で局所的に加熱する加熱手段
を備える液滴移動装置。
A droplet moving apparatus for moving a droplet wetted on a solid surface,
A solid surface in contact with the droplet;
A droplet moving device comprising heating means for locally heating a part of a droplet in a non-contact manner, which improves the wettability between the droplet and the solid surface.
上記加熱手段が、固体表面の一部非接触で局所的に加熱する請求項1に記載の液滴移動装置。 The droplet moving apparatus according to claim 1, wherein the heating means locally heats the solid surface partially in non-contact. 上記加熱手段が、レーザー光を照射するレーザー照射手段である請求項1乃至2に記載の液滴移動装置。 The droplet moving apparatus according to claim 1, wherein the heating unit is a laser irradiation unit that irradiates a laser beam. 上記固体表面を振動させる振動手段を備える請求項1から3の何れかに記載の液滴移動装置。 The droplet moving device according to claim 1, further comprising a vibrating unit that vibrates the solid surface. 上記振動手段が、固体表面を超音波振動させる請求項1から4の何れかに記載の液滴移動装置。 The droplet moving device according to claim 1, wherein the vibration means ultrasonically vibrates the solid surface. 上記固体表面が、自己組織化単分子膜で形成されている請求項1から5の何れかに記載の液滴移動装置。 The droplet moving device according to claim 1, wherein the solid surface is formed of a self-assembled monomolecular film. 固体面上の液滴を移動させる液滴移動方法であって、
液滴が所望の方向に移動するように、液滴の一部を非接触で加熱して、液滴と該液滴が接触する固体表面との接触角を局所的に減少させ、加熱した液滴の一部のぬれ性を増大させる液滴移動方法。
A droplet movement method for moving a droplet on a solid surface,
A part of the liquid droplet is heated in a non-contact manner so that the liquid droplet moves in a desired direction to locally reduce the contact angle between the liquid droplet and the solid surface with which the liquid droplet contacts, A droplet movement method for increasing the wettability of a part of a droplet.
固体表面の一部を非接触で加熱して、液滴と該液滴が接触する固体表面との接触角を局所的に減少させ、固体表面と液滴のぬれ性を増大させる請求項7記載の液滴移動方法。 8. A part of the solid surface is heated in a non-contact manner to locally reduce the contact angle between the droplet and the solid surface with which the droplet contacts, thereby increasing the wettability of the solid surface and the droplet. Droplet movement method. 上記固体表面を超音波振動させることを特徴とする請求項7乃至8記載の液滴移動方法

9. The droplet moving method according to claim 7, wherein the solid surface is vibrated ultrasonically.

JP2010171456A 2010-07-30 2010-07-30 Droplet moving device and droplet moving method Pending JP2012032258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010171456A JP2012032258A (en) 2010-07-30 2010-07-30 Droplet moving device and droplet moving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010171456A JP2012032258A (en) 2010-07-30 2010-07-30 Droplet moving device and droplet moving method

Publications (1)

Publication Number Publication Date
JP2012032258A true JP2012032258A (en) 2012-02-16

Family

ID=45845842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010171456A Pending JP2012032258A (en) 2010-07-30 2010-07-30 Droplet moving device and droplet moving method

Country Status (1)

Country Link
JP (1) JP2012032258A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156170A1 (en) * 2018-02-07 2019-08-15 国立大学法人横浜国立大学 Shaping apparatus, droplet movement device, target object production method, droplet movement method, and program
CN110220825A (en) * 2019-07-04 2019-09-10 兰州理工大学 A kind of wetting system safety testing device under the compound field action of ultrasound thermoelectricity
JP2019158471A (en) * 2018-03-09 2019-09-19 公立大学法人大阪市立大学 Droplet motion control method
CN111545265A (en) * 2020-04-16 2020-08-18 湘潭大学 Hydraulic control system with ultrahigh precision and capability of improving reaction conversion rate
US10768085B2 (en) 2017-07-18 2020-09-08 Cornell University Resonantly-driven drop contact-line mobility measurement
WO2020179904A1 (en) * 2019-03-07 2020-09-10 国立大学法人横浜国立大学 Shaping apparatus, droplet moving device, object production method, shaping method, droplet moving method, shaping program, and droplet moving program
CN113436776A (en) * 2021-05-24 2021-09-24 广东工业大学 Directional moving method for droplet carrier type micro object
CN114383979A (en) * 2022-01-21 2022-04-22 四川大学 Method for measuring surface tension coefficient of liquid by liquid drop method
CN115583054A (en) * 2022-09-18 2023-01-10 西北工业大学 Viscosity regulation-based liquid drop movement speed regulation and control device and testing method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10768085B2 (en) 2017-07-18 2020-09-08 Cornell University Resonantly-driven drop contact-line mobility measurement
JP7039057B2 (en) 2018-02-07 2022-03-22 国立大学法人横浜国立大学 Modeling device, droplet transfer device, object production method, droplet transfer method and program
JPWO2019156170A1 (en) * 2018-02-07 2021-01-28 国立大学法人横浜国立大学 Modeling equipment, droplet movement equipment, object production method, droplet movement method and program
WO2019156170A1 (en) * 2018-02-07 2019-08-15 国立大学法人横浜国立大学 Shaping apparatus, droplet movement device, target object production method, droplet movement method, and program
JP2019158471A (en) * 2018-03-09 2019-09-19 公立大学法人大阪市立大学 Droplet motion control method
JP7048086B2 (en) 2018-03-09 2022-04-05 公立大学法人大阪 Droplet motion control method
JP7313078B2 (en) 2019-03-07 2023-07-24 国立大学法人横浜国立大学 Modeling device, droplet moving device, object production method, modeling method, droplet moving method, molding program, and droplet moving program
WO2020179904A1 (en) * 2019-03-07 2020-09-10 国立大学法人横浜国立大学 Shaping apparatus, droplet moving device, object production method, shaping method, droplet moving method, shaping program, and droplet moving program
CN110220825B (en) * 2019-07-04 2022-03-18 兰州理工大学 Wettability testing device under action of ultrasonic thermoelectric composite field
CN110220825A (en) * 2019-07-04 2019-09-10 兰州理工大学 A kind of wetting system safety testing device under the compound field action of ultrasound thermoelectricity
CN111545265A (en) * 2020-04-16 2020-08-18 湘潭大学 Hydraulic control system with ultrahigh precision and capability of improving reaction conversion rate
CN113436776A (en) * 2021-05-24 2021-09-24 广东工业大学 Directional moving method for droplet carrier type micro object
CN114383979A (en) * 2022-01-21 2022-04-22 四川大学 Method for measuring surface tension coefficient of liquid by liquid drop method
CN115583054A (en) * 2022-09-18 2023-01-10 西北工业大学 Viscosity regulation-based liquid drop movement speed regulation and control device and testing method
CN115583054B (en) * 2022-09-18 2024-04-19 西北工业大学 Viscosity-adjustment-based droplet movement speed regulating and controlling device and testing method

Similar Documents

Publication Publication Date Title
JP2012032258A (en) Droplet moving device and droplet moving method
Ke et al. Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates
Daniel et al. Vibration-actuated drop motion on surfaces for batch microfluidic processes
McHale et al. Levitation-free vibrated droplets: resonant oscillations of liquid marbles
Narhe et al. Contact line dynamics in drop coalescence and spreading
Xie et al. Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles
Glynne-Jones et al. Mode-switching: A new technique for electronically varying the agglomeration position in an acoustic particle manipulator
Morales et al. Surfactant-mediated control of colloid pattern assembly and attachment strength in evaporating droplets
Udofia et al. A guiding framework for microextrusion additive manufacturing
Zhang et al. Thermophoresis-controlled size-dependent DNA translocation through an array of nanopores
Xi et al. Study on the bubble transport mechanism in an acoustic standing wave field
Lapierre et al. Electro-(de) wetting on superhydrophobic surfaces
JP4015021B2 (en) Method and apparatus for manipulating a small amount of liquid
KR20130002784A (en) Microfluidic channel for removing bubble in fluid
Arcamone et al. Evaporation of femtoliter sessile droplets monitored with nanomechanical mass sensors
Singha et al. Capillarity: revisiting the fundamentals of liquid marbles
Zhang et al. Probing boundary conditions at hydrophobic solid–water interfaces by dynamic film drainage measurement
Singha et al. Surfactant-mediated collapse of liquid marbles and directed assembly of particles at the liquid surface
KR101337131B1 (en) Manipulation technique of multiple bubbles using an EWOD principle and micro-object manipulation method
Jiang et al. A laser microwelding method for assembly of polymer based microfluidic devices
Pinchasik et al. From beetles in nature to the laboratory: actuating underwater locomotion on hydrophobic surfaces
Gu et al. Surface tension driven self-assembly of bundles and networks of 200 nm diameter rods using a polymerizable adhesive
Chen et al. Liquid optothermoelectrics: fundamentals and applications
Cui et al. Thermal considerations for microswimmer trap-and-release using standing surface acoustic waves
Park et al. Air-stable aerophobic polydimethylsiloxane tube with efficient self-removal of air bubbles