WO2019156170A1 - Shaping apparatus, droplet movement device, target object production method, droplet movement method, and program - Google Patents

Shaping apparatus, droplet movement device, target object production method, droplet movement method, and program Download PDF

Info

Publication number
WO2019156170A1
WO2019156170A1 PCT/JP2019/004425 JP2019004425W WO2019156170A1 WO 2019156170 A1 WO2019156170 A1 WO 2019156170A1 JP 2019004425 W JP2019004425 W JP 2019004425W WO 2019156170 A1 WO2019156170 A1 WO 2019156170A1
Authority
WO
WIPO (PCT)
Prior art keywords
droplet
modeling
processing unit
solid
droplets
Prior art date
Application number
PCT/JP2019/004425
Other languages
French (fr)
Japanese (ja)
Inventor
昭二 丸尾
将 久保田
太一 古川
Original Assignee
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学 filed Critical 国立大学法人横浜国立大学
Priority to JP2019571146A priority Critical patent/JP7039057B2/en
Publication of WO2019156170A1 publication Critical patent/WO2019156170A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention relates to a modeling apparatus, a droplet moving device, an object production method, a droplet moving method, and a program.
  • Stereolithography is one of the methods that can form a three-dimensional object.
  • a target object is modeled by applying light such as ultraviolet laser light to a liquid material to partially change the material into a solid.
  • Non-Patent Document 1 discloses a method of modeling a silver microstructure by photoreduction. In the method described in Non-Patent Document 1, the aqueous solution containing silver ions is irradiated with laser light to condense silver into a target shape, and then the aqueous solution is removed.
  • Non-Patent Document 2 shows an experimental example in which stereolithography is performed by combining a plurality of materials.
  • an acrylic resin and a methacrylic resin are formed by photopolymerization, and then the magnetic material is electrolessly plated.
  • the magnetic material is electrolessly plated.
  • only acrylic resin is selectively plated out of acrylic resin and methacrylic resin. In this way, an object having various characteristics can be modeled by performing optical modeling using a plurality of types of materials.
  • the present invention relates to a modeling apparatus, a droplet moving device, a target object production method, and a droplet moving method that can reduce the burden of installing a liquid material when modeling a target object by changing the liquid material into a solid. Methods and programs are provided.
  • the modeling apparatus includes a movement processing unit that moves a droplet, a modeling unit that performs modeling by partially changing the droplet into a solid within a predetermined modeling region, Is provided.
  • the movement processing unit may move the droplets by generating a temperature gradient in the droplets using a point heater using electromagnetic waves.
  • the movement processing unit may move the droplet on a surface on which a water-repellent material is partially arranged.
  • the movement processing unit may increase the amount of heating by the point heater as the distance to which the droplet is to be moved is larger.
  • the movement processing unit may increase the heating amount by the point heater as the wettability of the droplet is smaller.
  • the movement processing unit may increase the amount of heating by the point heater as the viscosity of the droplet increases.
  • the movement processing unit moves each of a plurality of droplets made of different types of materials at different timings, and the modeling unit partially changes each of the plurality of droplets into a solid within the modeling region. You may make it perform the said modeling.
  • the movement processing unit moves each of a droplet that is a material of the target object and a droplet of the cleaning liquid at different timings, and the modeling unit is a droplet that is a material of the target object in the modeling region
  • the object may be shaped by partially changing to a solid.
  • the modeling unit may irradiate the laser beam from below the substrate so that the droplet placed on the substrate through which the laser beam is transmitted is focused in the droplet.
  • the modeling apparatus moves each of a plurality of droplets made of different types of materials as the material of the object at different timings, and moves the plurality of droplets
  • a movement processing unit that moves the droplets of the cleaning liquid at a timing different from the timing of the modeling, and a modeling unit that models the object by partially changing the plurality of droplets into a solid within a predetermined modeling region, Is provided.
  • the droplet moving device includes a movement processing unit that moves the droplet by generating a temperature gradient in the droplet using a point heater using electromagnetic waves.
  • the object production method includes a step of performing modeling by partially changing a droplet into a solid within a predetermined modeling region, and a step of performing the modeling after application. Moving the droplets out of the modeling area.
  • the droplet moving method includes a step of moving the droplet by generating a temperature gradient in the droplet using a point heater using electromagnetic waves.
  • the program causes the computer to perform modeling by changing the droplet partially into a solid within a predetermined modeling area, and after applying the modeling. And a step of moving a droplet out of the modeling area.
  • the program is a program for causing a computer to execute a step of moving the droplet by generating a temperature gradient in the droplet using a point heater by electromagnetic waves.
  • the burden of installing the liquid material can be reduced.
  • FIG. 1 is a schematic block diagram illustrating a functional configuration of a modeling system according to the embodiment.
  • the modeling system 1 includes a modeling device 100 and a control device 200.
  • the modeling apparatus 100 includes a modeling unit 110, a movement processing unit 120, and an observation unit 150.
  • the control device 200 includes a display unit 210, an operation input unit 220, a storage unit 280, and a processing unit 290.
  • the modeling system 1 generates a target object by partially changing the liquid material into an individual.
  • the modeling apparatus 100 is an apparatus that executes generation of a target object.
  • the modeling apparatus 100 models an object by partially changing the droplets of each of the one or more materials into a solid.
  • a droplet here is a lump of liquid that is gathered by surface tension. Modeling here is to make a shape.
  • the modeling unit 110 performs modeling by partially changing the droplets of the material into a solid within the modeling region. Specifically, the liquid material is changed to a solid at the focal position by irradiating the droplet with laser light and focusing the laser beam in the droplet.
  • region here is an area
  • the modeling unit 110 cures the photocurable resin from a liquid to a solid by optical modeling
  • the method by which the modeling unit 110 performs modeling is not limited to a specific method as long as it is a method capable of partially changing the material droplets to solid.
  • the modeling unit 110 may model the photopolymerization, photocrosslink, photoreduction, or a combination thereof.
  • the laser beam used for modeling by the modeling unit 110 may be any laser beam that can cure the material, and is not limited to a laser beam having a specific wavelength.
  • the modeling unit 110 may use ultraviolet laser light or blue laser light.
  • the modeling unit 110 may perform modeling by a two-photon modeling method using two-photon absorption using near-infrared femtosecond-pulse laser light.
  • FIG. 2 shows an example of a position where the modeling unit 110 can focus the laser beam.
  • the modeling apparatus 100 includes a support base 130 and a dropping port 140.
  • a glass plate substrate 810 used as a substrate for object modeling is placed on the support base 130.
  • the support base 130 supports the substrate 810.
  • a droplet 820 is placed on the substrate 810.
  • the laser beam irradiated by the modeling unit 110 is also referred to as a modeling beam B11.
  • FIG. 2 shows an example in which the laser beam emitting portion, the support base 130, the substrate 810, and the droplet 820 of the modeling unit 110 and the movement processing unit 120 are viewed from the side (horizontal direction).
  • the 2 is a droplet of material.
  • the droplet 820 is placed on the substrate 810.
  • the modeling unit 110 irradiates the modeling beam B11 from below the substrate 810 so that the droplet 820 that transmits the modeling beam B11 is focused in the droplet 820.
  • the modeling beam B11 irradiated by the modeling unit 110 is focused at a point P11. For this reason, the part of point P11 among the droplets 820 changes from a liquid to a solid.
  • the laser beam emitting portion of the modeling unit 110 can move back and forth and left and right in FIG. Further, the modeling unit 110 can move the focus position of the modeling beam B11 up and down in FIG. Therefore, the modeling unit 110 can three-dimensionally move the focus position of the modeling beam B11 in the vertical and horizontal directions and the front and rear in FIG. The modeling unit 110 moves the focal position of the modeling beam B11 in the droplet 820 along the shape of the target object, so that the material can be processed into the target shape.
  • the modeling unit 110 irradiates the modeling beam B11 from the lower side of the substrate 810, so that the modeling beam B11 reaches the upper surface of the droplet 820 after focusing. Therefore, the position where the modeling beam B11 is focused is not affected by refraction according to the shape of the droplet 820 due to the surface tension. In this respect, the modeling system 1 can perform the positioning of the focal point of the modeling beam B11 with high accuracy. However, the modeling unit 110 may irradiate the modeling beam B11 from above the droplet 820.
  • the material is partially irradiated by irradiating the modeling beam B11 to the droplet 820. Can be changed to solid.
  • the dropping port 140 drops the cleaning liquid.
  • This cleaning liquid is a liquid for removing the liquid material adhering to the solid material after processing the liquid material.
  • the dropping port 140 cleans the solid material located in the modeling area by dropping the cleaning liquid toward the modeling area. That is, the dripping port 140 removes the liquid material adhering to the solid material located in the modeling area.
  • the method by which the modeling system 1 cleans the solid material is not limited to the method in which the cleaning liquid is dropped from the dropping port 140.
  • the modeling system 1 may move the cleaning liquid prepared in the form of the droplet 820 in advance to immerse the solid material in the cleaning liquid, thereby cleaning the solid material.
  • FIG. 3 shows an example of the positional relationship between the laser beam emitting portion of the modeling unit 110 and the droplet 820.
  • FIG. 3 shows an example in which the laser beam emitting portion of the modeling unit 110 is viewed from above.
  • the substrate 810 supported by the support base 130 is positioned on the laser beam emitting portion of the modeling unit 110, and two droplets 820 of different materials are placed on the substrate 810.
  • the two droplets 820 are a first material droplet 821-11 and a second material droplet 821-12.
  • reference numeral 821 is attached to the material droplet.
  • the first material droplet 821-11 is positioned on the laser beam emitting portion of the modeling unit 110.
  • the modeling unit 110 irradiates the modeling beam B11 to focus on the droplet 821-11 of the first material, the focal portion of the droplet 821-11 changes from liquid to solid.
  • the modeling system 1 performs processing of the second material using the second material droplet 821-12 after processing the first material using the first material droplet 821-11, whereby the first material is processed.
  • An object can be produced that includes both the second material and the second material.
  • the movement processing unit 120 moves the droplet 820.
  • the movement processing unit 120 moves the droplet 820. Specifically, the movement processing unit 120 moves the droplet 820 by generating a temperature gradient in the droplet 820 using a point heater using electromagnetic waves.
  • the modeling apparatus 100 including the movement processing unit 120 corresponds to an example of a droplet moving apparatus.
  • the movement processing unit 120 irradiates the droplet 820 by partially heating the point heater electromagnetic wave (for example, infrared laser light) by irradiating the edge of the droplet 820 or the substrate 810 in the vicinity of the droplet 820 or both. Create a temperature gradient.
  • the electromagnetic wave used for the point heater by the movement processing unit 120 may be an electromagnetic wave other than that which changes the liquid material to a solid, and is not limited to an electromagnetic wave having a specific frequency and an electromagnetic wave having a specific method.
  • FIG. 4 shows an arrangement example of the droplets 820.
  • FIG. 4 shows an example when the substrate 810 is viewed obliquely from above.
  • a third material droplet 821-21, a fourth material droplet 821-22, a fifth material droplet 821-23, and a cleaning liquid droplet are positioned on the substrate 810. ing.
  • the liquid droplets of the cleaning liquid are denoted by reference numeral 822.
  • the modeling system 1 positions each of the third material droplet 821-21, the fourth material droplet 821-22, and the fifth material droplet 821-23 in the modeling region and partially changes them into a solid.
  • an object including the first material, the second material, and the third material can be generated.
  • the modeling system 1 performs cleaning liquid every time the third material droplet 821-21, the fourth material droplet 821-22, and the fifth material droplet 821-23 are partially changed to solid.
  • the solid material is washed by moving the droplet 822 to the modeling area.
  • a method of cleaning the solid material a method of dropping the cleaning liquid from the dropping port 140 may be used instead of the method of moving the liquid droplet 822 of the cleaning liquid.
  • the modeling unit 110 irradiates the modeling beam B11 from below the substrate 810.
  • the movement processing unit 120 irradiates the point heater electromagnetic wave from above the substrate 810.
  • the electromagnetic wave irradiated by the movement processing unit 120 is also referred to as a heating beam B12.
  • the movement processing unit 120 may irradiate infrared laser light as the heating beam B12.
  • the electromagnetic wave irradiated by the movement processing unit 120 is not limited to an electromagnetic wave having a specific frequency as long as it can add a temperature gradient to the droplet.
  • the heating beam B12 is not limited to laser light.
  • FIG. 4 shows both the modeling beam B11 and the heating beam B12 for explanation.
  • the movement processing unit 120 does not irradiate the heating beam B12 to the droplet 820 located in the modeling region.
  • the movement processing unit 120 irradiates the material positioned in the modeling region with the heating beam B12 and applies the material that remains liquid to the modeling region. Move outside.
  • FIG. 5 shows an example of a position where the movement processing unit 120 irradiates the heating beam B12.
  • the laser beam emitting portions of the modeling unit 110 and the movement processing unit 120, the support base 130 and the dropping port 140, the substrate 810 placed on the support base 130, and the substrate 810 A drop 820 is shown on the top.
  • FIG. 5 shows an example in which the laser beam emitting portions of the modeling unit 110 and the movement processing unit 120, the support base 130, the substrate 810, and the droplet 820 are viewed from the side (horizontal direction). .
  • FIG. 2 shows an example in which the modeling unit 110 irradiates the modeling beam B11
  • FIG. 5 shows an example in which the movement processing unit 120 irradiates the heating beam B12. Show.
  • the movement processing unit 120 irradiates the substrate 810 near the droplet 820 with the heating beam B12.
  • the movement processing unit 120 heats the heating beam B12 side of the droplet 820 to cause a temperature gradient in the droplet 820.
  • FIG. 6 shows an example of the force relationship in the droplet 820 when no temperature gradient has occurred.
  • ⁇ L indicates the surface tension in the droplet 820.
  • ⁇ S indicates the surface tension of the solid (surface tension in the substrate 810).
  • ⁇ LS indicates the solid-liquid interfacial tension.
  • represents the contact angle of the droplet 820 with respect to the substrate 810.
  • Young's formula is shown as formula (1).
  • FIG. 7 shows an example of the force relationship in the droplet 820 when a temperature gradient is occurring.
  • the force on the non-heated side is indicated by a variable name with “′” added to the variable name used in FIG.
  • ⁇ ′ L indicates the surface tension in the droplet 820.
  • ⁇ ′ S indicates the surface tension of the solid (surface tension in the substrate 810).
  • ⁇ ′ LS indicates the solid-liquid interfacial tension.
  • ⁇ ′ represents a contact angle of the droplet 820 with respect to the substrate 810.
  • the force on the heated side is indicated by adding “′′” to the variable name.
  • ⁇ ′′ L indicates the surface tension in the droplet 820.
  • ⁇ ′′ S indicates the surface tension of the solid (surface tension in the substrate 810).
  • ⁇ ′′ LS indicates the solid-liquid interfacial tension.
  • ⁇ ′′ represents the contact angle of the droplet 820 with respect to the substrate 810.
  • a temperature difference occurs between the high temperature side temperature T H and the low temperature side temperature T L (T H > T L ), and a temperature gradient is generated in the substrate 810 and the droplet 820. Due to this temperature gradient, the contact angle and the surface tension change from the case of FIG.
  • the force F ′ acting on the low temperature side interface is represented by the formula (2) with the direction of the surface tension ⁇ ′ s of the solid being positive.
  • FIG. 8 shows an example of the direction of the force generated in the droplet.
  • the direction of the force F ′ and the direction of the force F ′′ are both from the higher gradient temperature to the lower gradient temperature.
  • a force F Total obtained by combining the force F ′ and the force F ′′ is expressed as in Expression (4).
  • the direction of the force F Total is also lower from the higher temperature gradient as shown in FIG. It becomes the direction.
  • the droplet 820 moves from a higher temperature gradient to a lower temperature gradient using the force FTotal as a driving force. Accordingly, the droplet 820 moves in a direction away from the position where the movement processing unit 120 is heated.
  • FIG. 9 shows an example of the positional relationship between the laser beam emitting portion of the movement processing unit 120 and the droplet 820.
  • FIG. 9 shows an example in which the laser beam irradiated portion of the movement processing unit 120 and the substrate 810 are viewed obliquely from above.
  • a droplet 821-31 of the sixth material is placed on the substrate 810.
  • a region A11 indicates a portion where the movement processing unit 120 irradiates the heating beam B12.
  • the movement processing unit 120 irradiates the substrate 810 in the vicinity of the sixth material droplet 821-31 with the heating beam B12 and heats it, thereby generating a temperature gradient in the sixth material droplet 821-31.
  • the observation unit 150 captures an image of the target object.
  • FIG. 10 is a diagram illustrating a configuration example of the observation unit 150.
  • the observation unit 150 includes an observation light source 151, a beam splitter 152, an observation lens 153, a CCD camera 154, and a display device 155.
  • the observation light source 151 emits illumination light B13 for photographing a target object.
  • the target object here may be a thing in the middle of modeling.
  • the illumination light B13 is applied to the object. After a part of the illumination light B13 is reflected or absorbed, the remaining light is incident on the beam splitter 152 via the laser light emitting portion of the modeling unit 110.
  • the observation light source 151 is located above the modeling area, like the dropping port 140 in FIG. While the observation light source 151 irradiates the illumination light B13, the arrangement position of the dropping port 140 and the arrangement position of the observation light light source 151 may be switched. Alternatively, the dripping port 140 may be arranged so that the position of the dripping port 140 and the position of the observation light source 151 do not overlap each other, for example, a cleaning liquid or a liquid material is dropped from an obliquely upper side of the modeling region to the modeling region.
  • the beam splitter 152 includes a half mirror and reflects the illumination light B13.
  • the beam splitter 152 receives not only the illumination light B13 but also the modeling beam B11.
  • the beam splitter 152 passes the modeling beam B11 and advances it toward the laser beam emitting portion of the modeling unit 110. Due to the reflection of the illumination light B13, the beam splitter 152 turns the illumination light B13 that has passed through the same path as the modeling beam B11 in the direction opposite to the modeling beam B11 in a direction different from the direction of the path of the modeling beam B11. .
  • the observation lens 153 refracts the illumination light B13 so that the illumination light B13 forms an image at the position of the imaging element of the CCD camera 154.
  • the CCD camera 154 receives the illumination light B13 and performs photoelectric conversion to generate image data of the target object.
  • the display device 155 has a display screen such as a liquid crystal panel or an LED panel, and displays an image of the object. Specifically, the display device 155 receives input of image data of the object generated by the CCD camera and displays an image indicated by the image data.
  • the configuration and arrangement of the observation unit 150 are not limited to those shown in FIG.
  • the observation unit 150 may take an image of the object from above, or may take an image from obliquely upward or obliquely downward.
  • the control device 200 controls the modeling device 100 to generate a target object. For example, the control device 200 controls the timing at which the modeling unit 110 irradiates the modeling beam B11 and the focal position of the modeling beam B11. In addition, the control device 200 controls the timing at which the movement processing unit 120 irradiates the heating beam B12, the irradiation position, and the intensity of the heating beam B12. Further, the control device 200 controls the timing at which the dropping port 140 drops the cleaning liquid.
  • the control device 200 functions as a user interface of the modeling system 1.
  • the control device 200 is configured using a computer such as a personal computer or a workstation.
  • the display unit 210 has a display screen such as a liquid crystal panel or an LED panel, and displays various images. In particular, the display unit 210 presents information regarding the modeling system 1 to the user.
  • the display unit 210 may be configured using the display device 155, or may be configured separately from the display device 155.
  • the operation input unit 220 includes input devices such as a keyboard and a mouse and receives user operations. In particular, the operation input unit 220 receives a user operation for performing settings related to the modeling system 1.
  • the storage unit 280 stores various data.
  • the storage unit 280 is configured using a storage device provided in the control device 200.
  • the processing unit 290 controls each unit of the control device 200 and executes various processes.
  • the processing unit 290 is configured by a CPU (Central Processing Unit) provided in the control device 200 reading out a program from the storage unit 280 and executing it.
  • the control device 200 may automatically control the modeling device 100 based on a preset program or the like. Alternatively, the user may input an instruction to the control apparatus 200 online, and the control apparatus 200 may control the modeling apparatus 100 according to the user's instruction.
  • FIG. 11 shows a first example of material arrangement.
  • FIG. 11 shows an example of material arrangement at the start of processing in which the modeling system 1 generates a target object.
  • droplets 821-41 of the seventh material and droplets 821-42 of the eighth material different from the seventh material are placed on the substrate 810.
  • region A21 has shown the modeling area
  • the modeling unit 110 irradiates the modeling material beam B11 on the seventh material droplet 821-41 located in the modeling region (region A21) to form one of the seventh material droplets 821-41. Change the part from liquid to solid.
  • FIG. 12 is a diagram illustrating a second example of the arrangement of materials.
  • the positions of the substrate 810, the seventh material droplet 821-41, the eighth material droplet 821-42, and the region A21 are the same as those in FIG.
  • the example of FIG. 12 is different from the case of FIG. 11 in that the solid material 840 is present in the droplet 821-41 of the seventh material.
  • a solid material 840 in FIG. 12 is a seventh material solid material 840-41, which corresponds to an example of a target object being generated. Specifically, from the state of FIG.
  • the modeling unit 110 irradiates the modeling material beam B11 to the seventh material droplet 821-41, and a part of the seventh material droplet 821-41 is solidified from the liquid. What is changed to is the solid material 840-41 of the seventh material in FIG.
  • FIG. 13 shows a third example of material arrangement.
  • the positions of the substrate 810, the eighth material droplet 821-42, the seventh material solid 840-41, and the region A21 are the same as in FIG.
  • the example of FIG. 13 is different from the case of FIG. 12 in that the droplet 821-41 of the seventh material moves from the inside to the outside of the region A21.
  • FIG. 12 shows an example of a state in which the processing of the seventh material droplet 821-41 by the modeling unit 110 is completed.
  • the movement processing unit 120 moves the seventh material droplet 821-41 after use to the outside of the region A21, and the state shown in FIG. 13 is obtained.
  • the movement processing unit 120 moves the droplet, but does not move the solid material.
  • the seventh material droplet 821-41 moves from the inside of the region A21 to the outside, while the seventh material solid matter 840-41 remains in the region A21.
  • FIG. 14 shows a fourth example of material arrangement.
  • the positions of the substrate 810, the seventh material droplet 821-41, the eighth material droplet 821-42, the seventh material solid 840-41, and the region A21 are the same as in FIG. It is.
  • FIG. 14 is different from the case of FIG. 13 in that there is a cleaning liquid droplet 822 in the region A21.
  • the dropping port 140 drops the cleaning liquid into the modeling region (region A ⁇ b> 21), so that the state of FIG. 14 is reached. In the state shown in FIG.
  • the dropping port 140 drops the cleaning liquid into the region A21 and immerses the solid material 840-41 of the seventh material in the cleaning liquid.
  • the modeling system 1 cleans the surface of the solid material 840-41 of the seventh material. Specifically, the modeling system 1 removes the liquid seventh material attached to the surface of the solid material 840-41 of the seventh material.
  • FIG. 15 shows a fifth example of material arrangement.
  • the positions of the substrate 810, the seventh material droplet 821-41, the eighth material droplet 821-42, the seventh material solid 840-41, and the region A21 are the same as in FIG. It is.
  • FIG. 15 is different from FIG. 14 in that the cleaning liquid droplets 822 are removed from the substrate 810. 14, the movement processing unit 120 moves the cleaning liquid droplets 822 from the inside of the region A21 to the outside of the upper surface of the substrate 810, whereby the cleaning liquid droplets 822 are removed from the substrate 810, and FIG. It becomes the state of.
  • FIG. 16 shows a sixth example of material arrangement.
  • the positions of the substrate 810, the seventh material droplet 821-41, the seventh material solid 840-41, and the region A21 are the same as those in FIG.
  • FIG. 16 is different from the case of FIG. 15 in that the droplet 821-42 of the eighth material moves from the outside to the inside of the region A21.
  • the movement processing unit 120 moves the droplets 821-42 of the eighth material into the region A21 from the state of FIG.
  • FIG. 17 shows a seventh example of material arrangement.
  • the positions of the substrate 810, the seventh material droplet 821-41, the eighth material droplet 821-42, the seventh material solid 840-41, and the region A21 are the same as in FIG. It is.
  • FIG. 17 differs from the case of FIG. 16 in that the eighth material solid material 840-42 is present in the eighth material droplet 821-42 in addition to the seventh material solid material 840-41.
  • the solid material 840-41 of the seventh material and the solid material 840-42 of the eighth material constitute the solid material 840.
  • the modeling unit 110 irradiates the modeling material B11 to the droplet 821-42 of the eighth material to change a part of the droplet 821-42 of the eighth material from liquid to solid.
  • FIG. 18 shows an eighth example of material arrangement.
  • the positions of the substrate 810, the seventh material droplet 821-41, the seventh material solid 840-41, the eighth material solid 840-42, and the region A21 are the same as in FIG. It is.
  • FIG. 18 differs from the case of FIG. 17 in that the droplet 821-42 of the eighth material moves from the inside of the region A21 to the outside.
  • FIG. 17 shows an example of a state in which the processing of the eighth material droplet 821-42 by the modeling unit 110 is completed.
  • the movement processing unit 120 moves the droplets 821-42 of the eighth material after use from the inside to the outside of the region A21, so that the state shown in FIG. 18 is obtained.
  • the movement processing unit 120 moves the droplet, but does not move the solid material. Also in the example of FIG. 18, the eighth material droplet 821-42 moves from the inside of the region A21 to the outside, while the solid material 840-42 of the eighth material remains in the region A21.
  • FIG. 19 shows a ninth example of material arrangement.
  • the substrate 810 the seventh material droplet 821-41, the eighth material droplet 821-42, the seventh material solid 840-41, the eighth material solid 840-42, and the region A21.
  • the position of is the same as in the case of FIG.
  • FIG. 19 is different from the case of FIG. 18 in that there is a cleaning liquid droplet 822 in the region A21.
  • the dropping port 140 drops the cleaning liquid into the modeling region (region A ⁇ b> 21), so that the state of FIG. 19 is reached.
  • FIG. 19 shows a ninth example of material arrangement.
  • the eighth material droplet 821-42 has moved out of the region A 21, but the liquid eighth material remains on the surface of the solid material 840. Therefore, the dropping port 140 drops the cleaning liquid into the region A21 and immerses the solid material 840 in the cleaning liquid. Thereby, the modeling system 1 cleans the surface of the solid object 840. Specifically, the modeling system 1 removes the liquid eighth material adhering to the surface of the seventh material solid 840-41 and the surface of the eighth material solid 840-42.
  • FIG. 20 shows a tenth example of material arrangement.
  • the substrate 810 the seventh material droplet 821-41, the eighth material droplet 821-42, the seventh material solid 840-41, the eighth material solid 840-42, and the region A21.
  • the position of is the same as in the case of FIG.
  • FIG. 20 is different from FIG. 19 in that the cleaning liquid droplets 822 are removed from the substrate 810.
  • the movement processing unit 120 moves the cleaning liquid droplet 822 from the inside of the region A21 to the outside of the upper surface of the substrate 810, whereby the cleaning liquid droplet 822 is removed from the substrate 810, and
  • FIG. It becomes the state of. 20 corresponds to an example of a completed target object.
  • the modeling system 1 generates a multi-material object using a plurality of materials such as the seventh material and the eighth material.
  • the movement processing unit 120 may move the laser light emitting portion while emitting the heating beam B12 from the laser light emitting portion.
  • the movement processing unit 120 moves the laser light irradiation portion so as to follow the moving droplet 820, so that the droplet 820 can be continuously moved, and thereby the moving distance of the droplet 820 can be adjusted.
  • the movement processing unit 120 may irradiate a laser beam having an intensity corresponding to the distance to which the droplet 820 is moved.
  • the moving distance of the droplet 820 can be adjusted by the intensity of the laser beam (heating beam B12) irradiated by the movement processing unit 120.
  • FIG. 21 is a graph showing an example of the relationship between the heating temperature of the droplet 820 and the movement distance of the droplet 820 by the movement processing unit 120.
  • FIG. 21 shows the heating temperature and the movement distance of the droplet 820 when the heating temperature of the droplet 820 is adjusted by adjusting the intensity of the heating beam B12 without moving the laser beam emitting portion of the movement processing unit 120.
  • the heating temperature here is the temperature of the region of the substrate 810 where the heating beam B12 is most condensed and heated.
  • FIG. 21 shows an example in which acrylate resin droplets are used as the droplets 820.
  • the horizontal axis represents time
  • the vertical axis represents the movement distance of the droplet 820.
  • Lines L11, L12, L13, and L14 show examples of the relationship between the elapsed time and the droplet movement distance when the heating temperature is 75 ° C., 95 ° C., 130 ° C., and 160 ° C., respectively.
  • the droplet moves a certain distance according to the heating temperature, and after that, does not move and stays in place.
  • the moving distance of the droplet 820 increases as the heating temperature increases.
  • the amount of heating by the point heater may be increased as the required moving distance increases according to the required moving distance that the movement processing unit 120 should move the droplet 820.
  • the magnitude of the heating temperature can be adjusted by the magnitude of the voltage applied to the point heater of the movement processing unit 120. As the voltage applied to the point heater of the movement processing unit 120 increases, the moving distance of the droplet 820 increases.
  • FIG. 22 is a graph showing an example of the relationship between the wettability of the droplet 820 and the moving distance of the droplet 820.
  • FIG. 22 shows the wettability of the droplet 820 according to the surface characteristics of the substrate 810 and the droplet 820 when the laser beam emission portion of the movement processing unit 120 is not moved and the intensity of the heating beam B12 is the same. The example of the relationship with a movement distance is shown.
  • acrylate resin droplets are used as the droplets 820, and the heating temperature is 130 ° C.
  • the horizontal axis represents time
  • the vertical axis represents the movement distance of the droplet 820.
  • Lines L21, L22, and L23 are obtained when the surface of the substrate 810 is coated with fluorine, when the surface treatment of the substrate 810 is not performed, or when the surface of the substrate 810 is subjected to a silane coupling treatment of an organic functional group.
  • the example of the relationship between time and the movement distance of a droplet is shown.
  • the wettability of the droplet 820 was the smallest in the case of fluorine coating (line L21), and the contact angle of the droplet 820 was 66 °.
  • the droplet moves a certain distance according to the wettability, and after that, does not move and stays in place.
  • the moving distance of the droplet 820 may be adjusted by processing the surface of the substrate 810.
  • the intensity of the laser beam (heating beam B12) output from the movement processing unit 120 by applying a process for increasing the wettability of the droplet 820 to the surface of the substrate 810, such as a silane coupling process of an organic functional group. Can be made relatively small, and the moving distance of the droplet 820 can be secured.
  • the movement processing unit 120 may increase the amount of heating by the point heater as the wettability decreases according to the wettability of the droplet 820. Thereby, the influence of the wettability on the moving distance of the droplet 820 can be reduced, and in this respect, the moving distance of the droplet 820 can be made constant regardless of the wettability.
  • the property that the droplet 820 does not substantially move when the water repellency process is performed on the moving surface of the droplet 820 may be positively utilized.
  • a path along which the droplet 820 moves may be patterned by applying a fluorine coat pattern on the surface of the substrate 810. Since the droplet 820 moves while avoiding the fluorine-coated portion, the droplet 820 can be moved along a specific path (path not fluorine-coated) by the fluorine-coated pattern.
  • the movement processing unit 120 may move the droplet 820 on the surface where the water-repellent material is partially disposed.
  • FIG. 23 is a graph showing an example of the relationship between the viscosity of the droplet 820 and the moving distance of the droplet 820.
  • FIG. 23 shows the relationship between the viscosity of the droplet 820 (material viscosity) and the movement distance of the droplet 820 when the laser beam emission portion of the movement processing unit 120 is not moved and the intensity of the heating beam B12 is the same. An example of the relationship is shown.
  • the heating temperature is 130.degree.
  • the wettability condition is made the same by performing silane coupling treatment of an organic functional group on the surface of the substrate 810.
  • the horizontal axis indicates time
  • the vertical axis indicates the moving distance of the droplet 820.
  • Lines L31, L32, and L33 show examples of the relationship between the elapsed time and the moving distance of the droplets of the methacrylate resin droplets, the acrylate resin droplets, and the cleaning liquid droplets, respectively.
  • the methacrylate resin (line L31) was the largest.
  • the viscosity of the methacrylate resin droplets was 1802 cps.
  • the acrylate resin (line L32) the viscosity was large, and the viscosity was 95 cps.
  • the cleaning liquid line L33
  • the viscosity was the smallest, and the viscosity was 7.4 cps.
  • the droplet moves a certain distance according to the viscosity, and after that, it does not move approximately and remains in place.
  • the greater the viscosity of the droplet 820 the shorter the moving distance of the droplet 820 (the moving distance until the droplet 820 is not substantially moved). Therefore, the movement processing unit 120 may increase the amount of heating by the point heater as the viscosity increases according to the viscosity of the droplet 820. Thereby, the influence of the viscosity on the moving distance of the droplet 820 can be reduced, and in this respect, the moving distance of the droplet 820 can be made constant regardless of the viscosity.
  • FIG. 24 is a flowchart illustrating an example of a processing procedure in which the control device 200 controls the modeling device 100 to generate an object.
  • the control device 200 controls the modeling unit 110 to perform the modeling process (step S101).
  • the modeling unit 110 irradiates the modeling beam B11 on the material droplet 821 in the modeling region according to the control of the control device 200, and focuses the modeling beam B11 in the material droplet 821. At the focal point, the material changes from liquid to solid.
  • control device 200 controls the movement processing unit 120 to retract the material droplet 821 out of the modeling region (step S102).
  • the movement processing unit 120 moves the material droplet 821 in the modeling area to the outside of the modeling area according to the control of the control device 200.
  • control device 200 controls the dropping port 140 to drop the cleaning liquid (Step S103).
  • the dropping port 140 drops the cleaning liquid into the modeling area according to the control of the control device 200. This dripping cleans the solid material in the modeling area.
  • control device 200 controls the movement processing unit 120 to remove the cleaning liquid droplets 822 (step S104).
  • the movement processing unit 120 moves the liquid droplet 822 of the cleaning liquid in the modeling area to the outside of the substrate 810 according to the control of the control device 200. By this movement, the movement processing unit 120 removes the cleaning liquid droplet 822 from the substrate 810.
  • the control device 200 determines whether or not the object is completed (step S105). When it determines with the target object having been completed (step S105: YES), the control apparatus 200 complete
  • step S105 when it is determined that the target object is not completed (step S105: NO), the control device 200 controls the movement processing unit 120 to move the material droplet 821 to be used next to the modeling region ( Step S106).
  • the movement processing unit 120 moves a droplet 821 of the material to be used next from the outside of the modeling area into the modeling area under the control of the control device 200.
  • step S106 the process returns to step S101.
  • FIG. 25 shows a first example of an object obtained using the modeling apparatus 100.
  • the first solid 840a shown in FIG. 25 includes a methacrylate solid 840-51 and an acrylate solid 840-52.
  • the first solid object 840a corresponds to an example of an object obtained using the modeling apparatus 100.
  • the movement processing unit 120 moves each of the methacrylate droplets and the acrylate droplets to the modeling region, and the modeling unit 110 performs processing using each of these droplets.
  • the multi-material target object containing a methacrylate and an acrylate like the 1st solid substance 840a can be produced
  • a minute object can be generated using the modeling apparatus 100.
  • FIG. 26 shows a first example in which a target obtained using the modeling apparatus 100 is plated with copper.
  • the second solid material 840b shown in FIG. 26 is obtained by performing electroless copper plating on the first solid material 840a shown in FIG. Of the methacrylate solid 840-51 and the acrylate solid 840-52 in FIG. 25, the acrylate solid 840-52 is copper plated, but the methacrylate solid 840-51 is copper plated. Is not given.
  • the second solid material 840b shown in FIG. 26 includes methacrylate solid material 840-51 and copper plating 840-53. Thus, by producing a multi-material object containing methacrylate and acrylate, the obtained object can be selectively plated.
  • FIG. 27 shows a second example of an object obtained using the modeling apparatus 100.
  • the third solid material 840c shown in FIG. 27 includes methacrylate solid material 840-51 and acrylate solid material 840-52.
  • the third solid object 840c corresponds to an example of an object obtained using the modeling apparatus 100.
  • the movement processing unit 120 moves each of the methacrylate droplets and the acrylate droplets to the modeling region, and the modeling unit 110 performs processing using each of these droplets. Thereby, the target object of the multimaterial containing a methacrylate and an acrylate like the 3rd solid substance 840c can be generated.
  • the third solid material 840c is a pyramid-shaped solid material in which square plate-shaped solid materials are stacked. In this manner, a three-dimensional object can be generated using the modeling apparatus 100.
  • FIG. 28 shows a second example in which a target obtained using the modeling apparatus 100 is plated with copper.
  • the fourth solid material 840d shown in FIG. 28 is obtained by performing electroless copper plating on the third solid material 840c shown in FIG. Of the methacrylate solid 840-51 and the acrylate solid 840-52 in FIG. 27, the acrylate solid 840-52 is copper plated, but the methacrylate solid 840-51 is copper plated. Is not given.
  • the fourth solid material 840d in FIG. 28 includes methacrylate solid material 840-51 and copper plating 840-53. Thus, by producing a multi-material object containing methacrylate and acrylate, the obtained object can be selectively plated.
  • FIG. 29 shows a third example of an object obtained using the modeling apparatus 100.
  • the fifth solid 840e shown in FIG. 29 includes methacrylate solid 840-51 and acrylate solid 840-52.
  • the fifth solid object 840e corresponds to an example of an object obtained using the modeling apparatus 100.
  • the movement processing unit 120 moves each of the methacrylate droplets and the acrylate droplets to the modeling region, and the modeling unit 110 performs processing using each of these droplets. Thereby, the target object of the multimaterial containing a methacrylate and an acrylate like the 3rd solid substance 840c can be generated.
  • FIG. 30 is a diagram of a part of the fifth solid material 840e as viewed from obliquely above. As shown in FIGS. 29 and 30, the fifth solid material 840e has a cavity inside. In this way, a three-dimensional object having a cavity inside can be generated using the modeling apparatus 100. In addition, as shown in FIG. 30 with a scale of 6.66 ⁇ m, a minute object can be generated using the modeling apparatus 100.
  • FIG. 31 shows a third example in which a target obtained using the modeling apparatus 100 is plated with copper.
  • 31 is obtained by performing electroless copper plating on the fifth solid material 840e shown in FIGS. 29 and 30.
  • the sixth solid material 840f in FIG. 31 includes methacrylate solid material 840-51 and copper plating 840-53.
  • the movement processing unit 120 moves the droplet 820.
  • the modeling unit 110 performs modeling by partially changing the droplet 820 to a solid within a predetermined modeling area.
  • the user since the movement processing unit 120 moves the droplet 820, the user does not need to manually dispose the droplet in the modeling region, for example, by dropping the material liquid onto the substrate 810 with a dropper.
  • the burden of installing the liquid material can be reduced when the target material is modeled by changing the liquid material into a solid.
  • the movement processing unit 120 moves the droplet 820 by generating a temperature gradient in the droplet 820 using a point heater using electromagnetic waves. Accordingly, the droplet 820 can be moved with a relatively simple configuration in which the modeling apparatus 100 includes a point heater using electromagnetic waves.
  • the movement processing unit 120 moves the droplet 820 on the surface where the water-repellent material is partially disposed. By showing a path along which the droplet 820 moves using a water repellent material, the droplet 820 can be moved along a specific path.
  • the movement processing unit 120 increases the amount of heating by the point heater as the required moving distance increases, according to the required moving distance to which the droplet 820 should be moved. Since the movement distance of the droplet 820 increases as the heating amount by the point heater increases, the modeling apparatus 100 adjusts the movement amount of the droplet 820 according to the necessary movement amount by adjusting the heating amount by the point heater. be able to.
  • the movement processing unit 120 increases the amount of heating by the point heater as the wettability is smaller according to the wettability of the droplet 820. Thereby, the influence of the wettability on the moving distance of the droplet 820 can be reduced, and in this respect, the moving distance of the droplet 820 can be made constant regardless of the wettability.
  • the movement processing unit 120 increases the amount of heating by the point heater as the viscosity increases according to the viscosity of the droplet 820. Thereby, the influence of the viscosity on the moving distance of the droplet 820 can be reduced, and in this respect, the moving distance of the droplet 820 can be made constant regardless of the viscosity.
  • the movement processing unit 120 moves each of the plurality of types of material droplets 821 at different timings.
  • the plurality of types of material droplets 821 are independent of each other.
  • the modeling unit 110 performs modeling using each of a plurality of types of material droplets 821 in the modeling region. Thereby, the modeling apparatus 100 can produce
  • the movement processing unit 120 moves the material droplet 821 and the cleaning liquid droplet 822 at different timings.
  • the modeling unit 110 models the material droplet 821 in the modeling area. This eliminates the need for the user to manually move not only the material droplet 821 but also the cleaning liquid droplet 822. According to the modeling apparatus 100, the burden on the user can be reduced in this respect.
  • the modeling unit 110 irradiates the droplet 820 placed on the substrate 810 that transmits the laser beam (modeling beam B11) with laser light from below the substrate 810 so as to focus on the droplet 820.
  • the modeling unit 110 irradiates the laser beam from the lower side of the substrate 810, the laser beam reaches the upper surface of the droplet 820 after focusing. Therefore, the position where the laser beam is focused is not affected by refraction according to the shape of the droplet 820 due to surface tension. In this respect, the modeling system 1 can perform the alignment of the focus of the laser light with high accuracy.
  • the method of changing the position where the modeling beam B11 is focused is not limited to the method of changing the position of the laser beam emitting portion of the modeling unit 110.
  • the support base 130 may be moved.
  • the angle at which the laser beam emitting portion of the modeling unit 110 emits the modeling beam B11 may be changed.
  • FIG. 32 shows an example of the relationship between the angle of the modeling beam B11 and the position of the focal point.
  • the laser beam emitting portion of the modeling unit 110 functions as an objective lens, and the modeling beam incident from the side opposite to the droplet 820 (the lower side of FIG. 32) is refracted to the side of the droplet 820 ( Irradiate to the upper side of FIG.
  • the incident angle of the shaped beam B11 to the laser beam emitted portion of the shaping part 110 indicated by theta I.
  • the exit angle of the shaped beam B11 from the laser beam emitted portion of the shaping part 110 indicated by theta O.
  • the outgoing angle ⁇ O varies depending on the incident angle ⁇ I.
  • the position of the point P11 where the modeling beam B11 is focused also changes. Accordingly, the shaped portion 110, by changing the incident angle theta I to the laser beam emitted portion of a shaped beam B11, the position of the laser beam emitted portion, without the need to any position of the substrate 810 is changed, for molding The position where the beam B11 is focused can be changed.
  • a method for changing the incident angle theta I for example, it is possible to use a method of the mirror is provided, to change the orientation of the mirror between the light source and the laser beam emitted portion of the shaped portion 110 of the shaped beam B11.
  • the dripping port 140 may drop the liquid material into the modeling region in addition to the cleaning liquid or instead of the cleaning liquid.
  • the modeling unit 110 irradiates the modeling beam B11 on the material droplet 820 dropped by the dropping port 140 into the modeling region, and solidifies a part of the material droplet 820.
  • the movement processing unit 120 irradiates the heating beam B12 to move the material droplet 820 to the outside of the modeling region.
  • modeling can be performed as in the case where the movement processing unit 120 moves the material droplet 820 into the modeling region as described above.
  • a program for realizing all or part of the functions performed by the control device 200 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed. Thus, the processing of each unit may be performed.
  • the “computer system” includes an OS and hardware such as peripheral devices. Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the present invention may be applied to a modeling apparatus, a droplet moving device, an object production method, a droplet moving method, and a program.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)

Abstract

This shaping apparatus is provided with: a movement processing part for moving a droplet; and a shaping part for performing shaping by partially changing the droplet into a solid body in a predetermined shaping area.

Description

造形装置、液滴移動装置、目的物生産方法、液滴移動方法及びプログラムModeling device, droplet moving device, object production method, droplet moving method and program
 本発明は、造形装置、液滴移動装置、目的物生産方法、液滴移動方法及びプログラムに関する。
 この出願は、2018年2月7日に出願された日本国特願2018-20556を基礎とする優先権を主張し、その開示の全てをここに取り込む。
The present invention relates to a modeling apparatus, a droplet moving device, an object production method, a droplet moving method, and a program.
This application claims priority based on Japanese Patent Application No. 2018-20556 filed on Feb. 7, 2018, the entire disclosure of which is incorporated herein.
 3次元の目的物を造形可能な方法の1つに光造形(Stereolithography)がある。光造形では、液体の材料に紫外線レーザ光等の光を当てて材料を部分的に固体に変化させることで目的物を造形する。
 光造形に関連して、非特許文献1には、光還元(Photoreduction)にて銀の微細構造を造形する方法が示されている。非特許文献1に記載の方法では、銀イオンを含む水溶液にレーザ光を照射して銀を目的の形状に凝縮させたのち、水溶液を除去する。
Stereolithography is one of the methods that can form a three-dimensional object. In optical modeling, a target object is modeled by applying light such as ultraviolet laser light to a liquid material to partially change the material into a solid.
In relation to stereolithography, Non-Patent Document 1 discloses a method of modeling a silver microstructure by photoreduction. In the method described in Non-Patent Document 1, the aqueous solution containing silver ions is irradiated with laser light to condense silver into a target shape, and then the aqueous solution is removed.
 また、非特許文献2には、複数の材料を組み合わせた光造形を行う実験例が示されている。非特許文献2に記載の実験例では、アクリル樹脂とメタクリル樹脂とをそれぞれ光重合(Photopolymerization)にて造形した後、磁性材料を無電解めっきしている。その結果、アクリル樹脂およびメタクリル樹脂のうち、アクリル樹脂のみが選択的にめっきされている。
 このように、複数種類の材料を用いて光造形を行うことで、多様な特性を有する目的物を造形することができる。
Non-Patent Document 2 shows an experimental example in which stereolithography is performed by combining a plurality of materials. In the experimental example described in Non-Patent Document 2, an acrylic resin and a methacrylic resin are formed by photopolymerization, and then the magnetic material is electrolessly plated. As a result, only acrylic resin is selectively plated out of acrylic resin and methacrylic resin.
In this way, an object having various characteristics can be modeled by performing optical modeling using a plurality of types of materials.
 光造形または光還元のように液体の材料を固体に変化させて目的物を造形する場合、レーザ光の照射可能範囲など造形が行われる領域に液体の材料を設置する必要がある。このような方法は、設置を行うユーザにとって負担となる。特に、複数の材料を用いて造形を行う場合、材料を取り換える毎に、造形途中の目的物を洗浄し、洗浄された目的物と次の材料とを、造形が行われる領域に設置する必要がある。このため、作業を行うユーザの負担が大きい。さらに、目的物が小さい場合など精密加工を行う場合、洗浄された目的物を設置する際に設置位置および向きの精度が要求され、作業を行うユーザの負担がさらに大きい。 When forming a target object by changing the liquid material to solid as in optical modeling or photoreduction, it is necessary to install the liquid material in an area where modeling is performed, such as a laser light irradiation range. Such a method is a burden on the user who performs the installation. In particular, when modeling is performed using a plurality of materials, it is necessary to clean the target object during modeling each time the material is replaced, and to place the cleaned target object and the next material in an area where modeling is performed. is there. For this reason, the burden of the user who performs work is large. Further, when performing precision machining such as when the target is small, the installation position and orientation accuracy are required when installing the cleaned target, and the burden on the user who performs the work is further increased.
 本発明は、液体の材料を固体に変化させて目的物を造形する場合に、液体の材料を設置する負担を軽減することができる造形装置、液滴移動装置、目的物生産方法、液滴移動方法およびプログラムを提供する。 The present invention relates to a modeling apparatus, a droplet moving device, a target object production method, and a droplet moving method that can reduce the burden of installing a liquid material when modeling a target object by changing the liquid material into a solid. Methods and programs are provided.
 本発明の第1の態様によれば造形装置は、液滴を移動させる移動処理部と、所定の造形領域内で前記液滴を部分的に固体に変化させることで造形を行う造形部と、を備える。 According to the first aspect of the present invention, the modeling apparatus includes a movement processing unit that moves a droplet, a modeling unit that performs modeling by partially changing the droplet into a solid within a predetermined modeling region, Is provided.
 前記移動処理部は、電磁波によるポイントヒータを用いて前記液滴に温度勾配を生じさせることで前記液滴を移動させるようにしてもよい。 The movement processing unit may move the droplets by generating a temperature gradient in the droplets using a point heater using electromagnetic waves.
 前記移動処理部は、撥水性の素材が部分的に配置されている面上にて前記液滴を移動させるようにしてもよい。 The movement processing unit may move the droplet on a surface on which a water-repellent material is partially arranged.
 前記移動処理部は、前記液滴を移動させるべき距離が大きいほど前記ポイントヒータによる加熱量を大きくするようにしてもよい。 The movement processing unit may increase the amount of heating by the point heater as the distance to which the droplet is to be moved is larger.
 前記移動処理部は、前記液滴の濡れ性が小さいほど前記ポイントヒータによる加熱量を大きくするようにしてもよい。 The movement processing unit may increase the heating amount by the point heater as the wettability of the droplet is smaller.
 前記移動処理部は、前記液滴の粘度が大きいほど、前記ポイントヒータによる加熱量を大きくするようにしてもよい。 The movement processing unit may increase the amount of heating by the point heater as the viscosity of the droplet increases.
 前記移動処理部は、互いに異なる種類の材料からなる複数の液滴それぞれを別々のタイミングで移動させ、前記造形部は、前記造形領域内で前記複数の液滴それぞれを部分的に固体に変化させることで前記造形を行うようにしてもよい。 The movement processing unit moves each of a plurality of droplets made of different types of materials at different timings, and the modeling unit partially changes each of the plurality of droplets into a solid within the modeling region. You may make it perform the said modeling.
 前記移動処理部は、目的物の材料となる液滴と、洗浄液の液滴とのそれぞれを別々のタイミングで移動させ、前記造形部は、前記造形領域内で前記目的物の材料となる液滴を部分的に固体に変化させることで前記目的物を造形してもよい。  The movement processing unit moves each of a droplet that is a material of the target object and a droplet of the cleaning liquid at different timings, and the modeling unit is a droplet that is a material of the target object in the modeling region The object may be shaped by partially changing to a solid. *
 前記造形部は、レーザ光を透過させる基板に載っている前記液滴に対し、前記液滴内に焦点を結ぶように前記レーザ光を前記基板の下から照射するようにしてもよい。 The modeling unit may irradiate the laser beam from below the substrate so that the droplet placed on the substrate through which the laser beam is transmitted is focused in the droplet.
 本発明の第2の態様によれば造形装置は、目的物の材料となるとともに互いに異なる種類の材料からなる複数の液滴それぞれを別のタイミングで移動させ、また、前記複数の液滴を移動させるタイミングとは異なるタイミングで洗浄液の液滴を移動させる移動処理部と、所定の造形領域内で前記複数の液滴を部分的に固体に変化させることで前記目的物を造形する造形部と、を備える。 According to the second aspect of the present invention, the modeling apparatus moves each of a plurality of droplets made of different types of materials as the material of the object at different timings, and moves the plurality of droplets A movement processing unit that moves the droplets of the cleaning liquid at a timing different from the timing of the modeling, and a modeling unit that models the object by partially changing the plurality of droplets into a solid within a predetermined modeling region, Is provided.
 本発明の第3の態様によれば、液滴移動装置は、電磁波によるポイントヒータを用いて液滴に温度勾配を生じさせることで前記液滴を移動させる移動処理部を備える。 According to the third aspect of the present invention, the droplet moving device includes a movement processing unit that moves the droplet by generating a temperature gradient in the droplet using a point heater using electromagnetic waves.
 本発明の第4の態様によれば、目的物生産方法は、所定の造形領域内で液滴を部分的に固体に変化させることで造形を行う工程と、前記造形を行う工程を適用後の液滴を前記造形領域外へ移動させる工程と、を含む。 According to the fourth aspect of the present invention, the object production method includes a step of performing modeling by partially changing a droplet into a solid within a predetermined modeling region, and a step of performing the modeling after application. Moving the droplets out of the modeling area.
 本発明の第5の態様によれば、液滴移動方法は、電磁波によるポイントヒータを用いて液滴に温度勾配を生じさせることで前記液滴を移動させる工程を含む。 According to the fifth aspect of the present invention, the droplet moving method includes a step of moving the droplet by generating a temperature gradient in the droplet using a point heater using electromagnetic waves.
 本発明の第6の態様によれば、プログラムは、コンピュータに、所定の造形領域内で液滴を部分的に固体に変化させることで造形を行う工程と、前記造形を行う工程を適用後の液滴を前記造形領域外へ移動させる工程と、を実行させるためのプログラムである。 According to the sixth aspect of the present invention, the program causes the computer to perform modeling by changing the droplet partially into a solid within a predetermined modeling area, and after applying the modeling. And a step of moving a droplet out of the modeling area.
 本発明の第7の態様によれば、プログラムは、コンピュータに、電磁波によるポイントヒータを用いて液滴に温度勾配を生じさせることで前記液滴を移動させる工程を実行させるためのプログラムである。 According to the seventh aspect of the present invention, the program is a program for causing a computer to execute a step of moving the droplet by generating a temperature gradient in the droplet using a point heater by electromagnetic waves.
 本発明の実施形態によれば、液体の材料を固体に変化させて目的物を造形する場合に、液体の材料を設置する負担を軽減することができる。 According to the embodiment of the present invention, when a liquid material is changed to a solid and an object is formed, the burden of installing the liquid material can be reduced.
実施形態に係る造形システムの機能構成を示す概略ブロック図である。It is a schematic block diagram which shows the function structure of the modeling system which concerns on embodiment. 実施形態に係る造形部がレーザ光の焦点を結ばせる位置の例を示す図である。It is a figure which shows the example of the position where the modeling part which concerns on embodiment forms the focus of a laser beam. 実施形態に係る造形部のレーザ光発射部分と液滴との位置関係の例を示す図である。It is a figure which shows the example of the positional relationship of the laser beam emission part of the modeling part which concerns on embodiment, and a droplet. 実施形態に係る液滴の配置例を示す図である。It is a figure which shows the example of arrangement | positioning of the droplet which concerns on embodiment. 実施形態に係る移動処理部が加熱用ビームを照射する位置の例を示す図である。It is a figure which shows the example of the position where the movement process part which concerns on embodiment irradiates the beam for a heating. 温度勾配が生じていない場合の液滴における力の関係の例を示す図である。It is a figure which shows the example of the relationship of the force in the droplet when the temperature gradient has not arisen. 温度勾配が生じている場合の液滴における力の関係の例を示す図である。It is a figure which shows the example of the relationship of the force in the droplet in case the temperature gradient has arisen. 実施形態で液滴に生じる力の向きの例を示す図である。It is a figure which shows the example of direction of the force which arises in a droplet in embodiment. 実施形態に係る移動処理部のレーザ光発射部分と液滴との位置関係の例を示す図である。It is a figure which shows the example of the positional relationship of the laser beam emission part and droplet of the movement process part which concern on embodiment. 実施形態に係る観察部の構成例を示す図である。It is a figure which shows the structural example of the observation part which concerns on embodiment. 実施形態に係る材料の配置の第1例を示す図である。It is a figure which shows the 1st example of arrangement | positioning of the material which concerns on embodiment. 実施形態に係る材料の配置の第2例を示す図である。It is a figure which shows the 2nd example of arrangement | positioning of the material which concerns on embodiment. 実施形態に係る材料の配置の第3例を示す図である。It is a figure which shows the 3rd example of arrangement | positioning of the material which concerns on embodiment. 実施形態に係る材料の配置の第4例を示す図である。It is a figure which shows the 4th example of arrangement | positioning of the material which concerns on embodiment. 実施形態に係る材料の配置の第5例を示す図である。It is a figure which shows the 5th example of arrangement | positioning of the material which concerns on embodiment. 実施形態に係る材料の配置の第6例を示す図である。It is a figure which shows the 6th example of arrangement | positioning of the material which concerns on embodiment. 実施形態に係る材料の配置の第7例を示す図である。It is a figure which shows the 7th example of arrangement | positioning of the material which concerns on embodiment. 実施形態に係る材料の配置の第8例を示す図である。It is a figure which shows the 8th example of arrangement | positioning of the material which concerns on embodiment. 実施形態に係る材料の配置の第9例を示す図である。It is a figure which shows the 9th example of arrangement | positioning of the material which concerns on embodiment. 実施形態に係る材料の配置の第10例を示す図である。It is a figure which shows the 10th example of arrangement | positioning of the material which concerns on embodiment. 実施形態に係る移動処理部による液滴の加熱温度と液滴の移動距離との関係の例を示すグラフである。It is a graph which shows the example of the relationship between the heating temperature of the droplet by the movement process part which concerns on embodiment, and the movement distance of a droplet. 実施形態に係る液滴の濡れ性と液滴の移動距離との関係の例を示すグラフである。It is a graph which shows the example of the relationship between the wettability of the droplet which concerns on embodiment, and the movement distance of a droplet. 実施形態に係る液滴の粘度と液滴の移動距離との関係の例を示すグラフである。It is a graph which shows the example of the relationship between the viscosity of the droplet concerning embodiment, and the movement distance of a droplet. 実施形態に係る制御装置が造形装置を制御して目的物を生成させる処理手順の例を示すフローチャートである。It is a flowchart which shows the example of the process sequence which the control apparatus which concerns on embodiment controls the modeling apparatus and produces | generates the target object. 実施形態に係る造形装置を用いて得られる目的物の第1例を示す図である。It is a figure which shows the 1st example of the target object obtained using the modeling apparatus which concerns on embodiment. 実施形態に係る造形装置を用いて得られる目的物に銅めっきを施した第1例を示す図である。It is a figure which shows the 1st example which gave the copper plating to the target object obtained using the modeling apparatus which concerns on embodiment. 実施形態に係る造形装置を用いて得られる目的物の第2例を示す図である。It is a figure which shows the 2nd example of the target object obtained using the modeling apparatus which concerns on embodiment. 実施形態に係る造形装置を用いて得られる目的物に銅めっきを施した第2例を示す図である。It is a figure which shows the 2nd example which gave the copper plating to the target object obtained using the modeling apparatus which concerns on embodiment. 実施形態に係る造形装置を用いて得られる目的物の第3例を示す図である。It is a figure which shows the 3rd example of the target object obtained using the modeling apparatus which concerns on embodiment. 実施形態に係る第5固形物の一部を横斜め上から見た図である。It is the figure which looked at a part of 5th solid substance which concerns on embodiment from the horizontal slanting upper side. 実施形態に係る造形装置を用いて得られる目的物に銅めっきを施した第3例を示す図である。It is a figure which shows the 3rd example which gave the copper plating to the target object obtained using the modeling apparatus which concerns on embodiment. 実施形態に係る造形用ビームの角度と焦点の位置との関係の例を示す図である。It is a figure which shows the example of the relationship between the angle of the beam for modeling which concerns on embodiment, and the position of a focus.
 以下、本発明の実施形態を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、実施形態に係る造形システムの機能構成を示す概略ブロック図である。図1に示すように、造形システム1は、造形装置100と、制御装置200とを備える。造形装置100は、造形部110と、移動処理部120と観察部150とを備える。制御装置200は、表示部210と、操作入力部220と、記憶部280と、処理部290とを備える。
Hereinafter, although embodiment of this invention is described, the following embodiment does not limit the invention concerning a claim. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
FIG. 1 is a schematic block diagram illustrating a functional configuration of a modeling system according to the embodiment. As shown in FIG. 1, the modeling system 1 includes a modeling device 100 and a control device 200. The modeling apparatus 100 includes a modeling unit 110, a movement processing unit 120, and an observation unit 150. The control device 200 includes a display unit 210, an operation input unit 220, a storage unit 280, and a processing unit 290.
 造形システム1は、液体の材料を部分的に個体に変化させて目的物を生成する。
 造形装置100は、目的物の生成を実行する装置である。特に、造形装置100は、1つ以上の材料それぞれの液滴を部分的に固体に変化させることで目的物を造形する。ここでいう液滴は、表面張力でまとまっている液体のかたまりである。ここでいう造形は、形のあるものを作ることである。
The modeling system 1 generates a target object by partially changing the liquid material into an individual.
The modeling apparatus 100 is an apparatus that executes generation of a target object. In particular, the modeling apparatus 100 models an object by partially changing the droplets of each of the one or more materials into a solid. A droplet here is a lump of liquid that is gathered by surface tension. Modeling here is to make a shape.
 造形部110は、造形領域内で材料の液滴を部分的に固体に変化させることで造形を行う。具体的には、液滴にレーザ光を照射し液滴内にレーザ光の焦点を結ばせることで、焦点の位置で液体の材料を固体に変化させる。ここでいう造形領域は、造形部110が材料を固形に変化可能な領域である。具体的には、造形領域は、造形部110がレーザ光の焦点を結ばせることができる領域である。 The modeling unit 110 performs modeling by partially changing the droplets of the material into a solid within the modeling region. Specifically, the liquid material is changed to a solid at the focal position by irradiating the droplet with laser light and focusing the laser beam in the droplet. A modeling area | region here is an area | region where the modeling part 110 can change material into solid. Specifically, the modeling area is an area where the modeling unit 110 can focus the laser beam.
 以下では、材料が光硬化性樹脂であり、造形部110が、光造形にて光硬化性樹脂を液体から固体に硬化させる場合を例に説明する。
 但し、造形部110が造形を行う方法は、材料の液滴を部分的に固体に変化させることができる方法であればよく、特定の方法に限定されない。例えば、造形部110が造形を行う方法は、光重合(Photopolymerization)、光架橋(Photocrosslink)、光還元(Photoreduction)のいずれか、またはこれらの組み合わせであってもよい。
Hereinafter, a case where the material is a photocurable resin and the modeling unit 110 cures the photocurable resin from a liquid to a solid by optical modeling will be described as an example.
However, the method by which the modeling unit 110 performs modeling is not limited to a specific method as long as it is a method capable of partially changing the material droplets to solid. For example, the modeling unit 110 may model the photopolymerization, photocrosslink, photoreduction, or a combination thereof.
 また、造形部110が造形に用いるレーザ光は、材料を硬化可能なレーザ光であればよく、特定の波長のレーザ光に限定されない。例えば、造形部110が、紫外線レーザ光を用いるようにしてもよいし、青色レーザ光を用いるようにしてもよい。あるいは、造形部110が、近赤外フェムト秒パルスレーザ(Femtosecond-pulse Laser)光を用いて2光子吸収による2光子造形法にて造形を行うようにしてもよい。 Further, the laser beam used for modeling by the modeling unit 110 may be any laser beam that can cure the material, and is not limited to a laser beam having a specific wavelength. For example, the modeling unit 110 may use ultraviolet laser light or blue laser light. Alternatively, the modeling unit 110 may perform modeling by a two-photon modeling method using two-photon absorption using near-infrared femtosecond-pulse laser light.
 図2は、造形部110がレーザ光の焦点を結ばせる位置の例を示す。図2では、造形部110、移動処理部120それぞれのレーザ光発射部分が示されている。また、造形装置100は、移動処理部120および造形部110に加えて、支持台130および滴下口140を備えている。支持台130には、目的物造形用の基板として用いられているガラス板の基板810が載置される。支持台130はこの基板810を支持している。また、基板810の上には液滴820が載っている。造形部110が照射するレーザ光を造形用ビームB11とも称する。
 図2は、造形部110、移動処理部120それぞれのレーザ光発射部分、支持台130、基板810および液滴820を横(水平方向)から見た例を示している。
FIG. 2 shows an example of a position where the modeling unit 110 can focus the laser beam. In FIG. 2, laser light emission portions of the modeling unit 110 and the movement processing unit 120 are shown. In addition to the movement processing unit 120 and the modeling unit 110, the modeling apparatus 100 includes a support base 130 and a dropping port 140. A glass plate substrate 810 used as a substrate for object modeling is placed on the support base 130. The support base 130 supports the substrate 810. A droplet 820 is placed on the substrate 810. The laser beam irradiated by the modeling unit 110 is also referred to as a modeling beam B11.
FIG. 2 shows an example in which the laser beam emitting portion, the support base 130, the substrate 810, and the droplet 820 of the modeling unit 110 and the movement processing unit 120 are viewed from the side (horizontal direction).
 図2に示す液滴820は、材料の液滴である。滴820は基板810に載っている。造形部110は、造形用ビームB11を透過させる液滴820に対し、液滴820内に焦点を結ぶように造形用ビームB11を基板810の下から照射している。造形部110が照射した造形用ビームB11は、点P11で焦点を結んでいる。このため、液滴820のうち点P11の部分が液体から固体に変化する。 2 is a droplet of material. The droplet 820 is placed on the substrate 810. The modeling unit 110 irradiates the modeling beam B11 from below the substrate 810 so that the droplet 820 that transmits the modeling beam B11 is focused in the droplet 820. The modeling beam B11 irradiated by the modeling unit 110 is focused at a point P11. For this reason, the part of point P11 among the droplets 820 changes from a liquid to a solid.
 造形部110のレーザ光発射部分は図2の前後および左右に移動可能である。また、造形部110は、造形用ビームB11の焦点の位置を図2の上下に移動させることができる。したがって、造形部110は、造形用ビームB11の焦点の位置を図2の上下左右および前後へと、三次元的に移動させることができる。
 造形部110が、液滴820内で造形用ビームB11の焦点位置を目的物の形状に沿って移動させることで、材料を目的物の形状に加工することができる。
The laser beam emitting portion of the modeling unit 110 can move back and forth and left and right in FIG. Further, the modeling unit 110 can move the focus position of the modeling beam B11 up and down in FIG. Therefore, the modeling unit 110 can three-dimensionally move the focus position of the modeling beam B11 in the vertical and horizontal directions and the front and rear in FIG.
The modeling unit 110 moves the focal position of the modeling beam B11 in the droplet 820 along the shape of the target object, so that the material can be processed into the target shape.
 また、図2に示すように、造形部110が基板810の下側から造形用ビームB11を照射させることで、造形用ビームB11は、焦点を結んだ後に液滴820の上面に到達する。したがって、造形用ビームB11が焦点を結ぶ位置は、表面張力による液滴820の形状に応じた屈折の影響を受けない。この点で、造形システム1は、造形用ビームB11の焦点の位置合わせを高精度に行うことができる。
 但し、造形部110が液滴820の上側から造形用ビームB11を照射するようにしもよい。これにより、液滴820が不透明な盤の上面に滴下されている場合など、液滴820が不透明な物の上に位置する場合でも、液滴820に造形用ビームB11を照射させて材料を部分的に固体に変化させることができる。
Also, as shown in FIG. 2, the modeling unit 110 irradiates the modeling beam B11 from the lower side of the substrate 810, so that the modeling beam B11 reaches the upper surface of the droplet 820 after focusing. Therefore, the position where the modeling beam B11 is focused is not affected by refraction according to the shape of the droplet 820 due to the surface tension. In this respect, the modeling system 1 can perform the positioning of the focal point of the modeling beam B11 with high accuracy.
However, the modeling unit 110 may irradiate the modeling beam B11 from above the droplet 820. Thereby, even when the droplet 820 is placed on an opaque object such as when the droplet 820 is dropped on the upper surface of the opaque board, the material is partially irradiated by irradiating the modeling beam B11 to the droplet 820. Can be changed to solid.
 滴下口140は、洗浄液を滴下する。この洗浄液は、液体の材料を加工した後、固体になった材料に付着している液体の材料を除去するための液である。滴下口140は、造形領域に向けて洗浄液を滴下することで、造形領域に位置する固体の材料を洗浄する。すなわち、滴下口140は、造形領域に位置する固体になった材料に付着している液体の材料を除去する。
 但し、造形システム1が固体の材料を洗浄する方法は、滴下口140から洗浄液を滴下させる方法に限定されない。造形システム1が、あらかじめ液滴820の形態で用意されている洗浄液を移動させることで固体の材料を洗浄液に浸し、これによって固形の材料を洗浄するようにしてもよい。
The dropping port 140 drops the cleaning liquid. This cleaning liquid is a liquid for removing the liquid material adhering to the solid material after processing the liquid material. The dropping port 140 cleans the solid material located in the modeling area by dropping the cleaning liquid toward the modeling area. That is, the dripping port 140 removes the liquid material adhering to the solid material located in the modeling area.
However, the method by which the modeling system 1 cleans the solid material is not limited to the method in which the cleaning liquid is dropped from the dropping port 140. The modeling system 1 may move the cleaning liquid prepared in the form of the droplet 820 in advance to immerse the solid material in the cleaning liquid, thereby cleaning the solid material.
 図3は、造形部110のレーザ光発射部分と液滴820との位置関係の例を示す。図3は、造形部110のレーザ光発射部分を上側から見た例を示している。この例では、支持台130に支持された基板810が造形部110のレーザ光発射部分の上に位置し、基板810の上に材料が異なる2つの液滴820が載っている。2つの液滴820は、第1材料の液滴821-11および第2材料の液滴821-12である。材料の液滴と洗浄液の液滴と区別するため、材料の液滴に符号821を付している。 FIG. 3 shows an example of the positional relationship between the laser beam emitting portion of the modeling unit 110 and the droplet 820. FIG. 3 shows an example in which the laser beam emitting portion of the modeling unit 110 is viewed from above. In this example, the substrate 810 supported by the support base 130 is positioned on the laser beam emitting portion of the modeling unit 110, and two droplets 820 of different materials are placed on the substrate 810. The two droplets 820 are a first material droplet 821-11 and a second material droplet 821-12. In order to distinguish the material droplet from the cleaning liquid droplet, reference numeral 821 is attached to the material droplet.
 材料の液滴821のうち第1材料の液滴821-11は、造形部110のレーザ光発射部分の上に位置している。造形部110が造形用ビームB11を照射して第1材料の液滴821-11内に焦点を結ばせることで、液滴821-11のうち焦点の部分が液体から固体に変化する。
 造形システム1は、第1材料の液滴821-11を用いた第1材料の加工の後、第2材料の液滴821-12を用いて第2材料の加工を行うことで、第1材料および第2材料の両方を含む目的物を生成することができる。かかる加工のために、移動処理部120が液滴820を移動させる。
Of the material droplets 821, the first material droplet 821-11 is positioned on the laser beam emitting portion of the modeling unit 110. When the modeling unit 110 irradiates the modeling beam B11 to focus on the droplet 821-11 of the first material, the focal portion of the droplet 821-11 changes from liquid to solid.
The modeling system 1 performs processing of the second material using the second material droplet 821-12 after processing the first material using the first material droplet 821-11, whereby the first material is processed. An object can be produced that includes both the second material and the second material. For such processing, the movement processing unit 120 moves the droplet 820.
 移動処理部120は、液滴820を移動させる。具体的には、移動処理部120は、電磁波によるポイントヒータを用いて液滴820に温度勾配を生じさせることで液滴820を移動させる。
 移動処理部120を備える造形装置100は、液滴移動装置の例に該当する。
 移動処理部120は、ポイントヒータ用の電磁波(例えば赤外線レーザ光)を液滴820の端または液滴820近傍の基板810、あるいはそれら両方に照射して部分的に温めることで、液滴820に温度勾配を生じさせる。但し、移動処理部120がポイントヒータに用いる電磁波は液体の材料を固体に変化させるもの以外の電磁波であればよく、特定の周波数の電磁波、および、特定の方式の電磁波に限定されない。
The movement processing unit 120 moves the droplet 820. Specifically, the movement processing unit 120 moves the droplet 820 by generating a temperature gradient in the droplet 820 using a point heater using electromagnetic waves.
The modeling apparatus 100 including the movement processing unit 120 corresponds to an example of a droplet moving apparatus.
The movement processing unit 120 irradiates the droplet 820 by partially heating the point heater electromagnetic wave (for example, infrared laser light) by irradiating the edge of the droplet 820 or the substrate 810 in the vicinity of the droplet 820 or both. Create a temperature gradient. However, the electromagnetic wave used for the point heater by the movement processing unit 120 may be an electromagnetic wave other than that which changes the liquid material to a solid, and is not limited to an electromagnetic wave having a specific frequency and an electromagnetic wave having a specific method.
 図4は、液滴820の配置例を示す。図4は、基板810を斜め上から見た場合の例を示す。この例では、基板810上には第3材料の液滴821-21と、第4材料の液滴821-22と、第5材料の液滴821-23と、洗浄液の液滴とが位置している。材料の液滴と洗浄液の液滴と区別するため、洗浄液の液滴には、符号822を付している。
 造形システム1は、第3材料の液滴821-21、第4材料の液滴821-22および第5材料の液滴821-23の各々を造形領域に位置させて部分的に固体に変化させることで、第1材料、第2材料および第3材料を含む目的物を生成することができる。
FIG. 4 shows an arrangement example of the droplets 820. FIG. 4 shows an example when the substrate 810 is viewed obliquely from above. In this example, a third material droplet 821-21, a fourth material droplet 821-22, a fifth material droplet 821-23, and a cleaning liquid droplet are positioned on the substrate 810. ing. In order to distinguish between the liquid droplets of the material and the liquid droplets of the cleaning liquid, the liquid droplets of the cleaning liquid are denoted by reference numeral 822.
The modeling system 1 positions each of the third material droplet 821-21, the fourth material droplet 821-22, and the fifth material droplet 821-23 in the modeling region and partially changes them into a solid. Thus, an object including the first material, the second material, and the third material can be generated.
 また、造形システム1は、第3材料の液滴821-21、第4材料の液滴821-22および第5材料の液滴821-23の各々を部分的に固形に変化させる毎に、洗浄液の液滴822を造形領域に移動させて固形の材料を洗浄する。上述したように、固体の材料を洗浄する方法として、洗浄液の液滴822を移動させる方法に代えて、洗浄液を滴下口140から滴下する方法を用いるようにしてもよい。 In addition, the modeling system 1 performs cleaning liquid every time the third material droplet 821-21, the fourth material droplet 821-22, and the fifth material droplet 821-23 are partially changed to solid. The solid material is washed by moving the droplet 822 to the modeling area. As described above, as a method of cleaning the solid material, a method of dropping the cleaning liquid from the dropping port 140 may be used instead of the method of moving the liquid droplet 822 of the cleaning liquid.
 図4の例で、造形部110は、基板810の下から造形用ビームB11を照射する。一方、移動処理部120は、基板810の上からポイントヒータ用の電磁波を照射する。移動処理部120が照射する電磁波を加熱用ビームB12とも称する。移動処理部120が、加熱用ビームB12として赤外線レーザ光を照射するようにしてもよい。但し、移動処理部120が照射する電磁波は、液滴に温度勾配を付けられるものであればよく、特定の周波数の電磁波に限定されない。また、加熱用ビームB12はレーザ光に限定されない。 4, the modeling unit 110 irradiates the modeling beam B11 from below the substrate 810. On the other hand, the movement processing unit 120 irradiates the point heater electromagnetic wave from above the substrate 810. The electromagnetic wave irradiated by the movement processing unit 120 is also referred to as a heating beam B12. The movement processing unit 120 may irradiate infrared laser light as the heating beam B12. However, the electromagnetic wave irradiated by the movement processing unit 120 is not limited to an electromagnetic wave having a specific frequency as long as it can add a temperature gradient to the droplet. The heating beam B12 is not limited to laser light.
 図4では、説明のために造形用ビームB11および加熱用ビームB12の両方を示している。但し、造形部110が造形用ビームB11を照射している間は、移動処理部120は、造形領域に位置する液滴820に対して加熱用ビームB12の照射を行わない。造形部110が造形領域に位置する材料に対する加工を終了したのち、移動処理部120は、この造形領域に位置する材料に対して加熱用ビームB12を照射して、液体のままの材料を造形領域外へ移動させる。 FIG. 4 shows both the modeling beam B11 and the heating beam B12 for explanation. However, while the modeling unit 110 is irradiating the modeling beam B11, the movement processing unit 120 does not irradiate the heating beam B12 to the droplet 820 located in the modeling region. After the modeling unit 110 finishes processing on the material located in the modeling region, the movement processing unit 120 irradiates the material positioned in the modeling region with the heating beam B12 and applies the material that remains liquid to the modeling region. Move outside.
 図5は、移動処理部120が加熱用ビームB12を照射する位置の例を示す。図2の場合と同様、図5では、造形部110、移動処理部120それぞれのレーザ光発射部分、支持台130および滴下口140と、支持台130に載置された基板810、および、基板810の上に載っている液滴820とが示されている。図2の場合と同様、図5は、造形部110、移動処理部120それぞれのレーザ光発射部分、支持台130、基板810および液滴820を横(水平方向)から見た例を示している。 FIG. 5 shows an example of a position where the movement processing unit 120 irradiates the heating beam B12. As in the case of FIG. 2, in FIG. 5, the laser beam emitting portions of the modeling unit 110 and the movement processing unit 120, the support base 130 and the dropping port 140, the substrate 810 placed on the support base 130, and the substrate 810 A drop 820 is shown on the top. As in the case of FIG. 2, FIG. 5 shows an example in which the laser beam emitting portions of the modeling unit 110 and the movement processing unit 120, the support base 130, the substrate 810, and the droplet 820 are viewed from the side (horizontal direction). .
 図2では、造形部110が造形用ビームB11を照射している場合の例を示しているのに対し、図5では、移動処理部120が加熱用ビームB12を照射している場合の例を示している。
 図5の例で、移動処理部120は、液滴820の近傍の基板810に加熱用ビームB12を照射している。これにより、移動処理部120は、液滴820の加熱用ビームB12の側を加熱し、液滴820に温度勾配を生じさせる。
FIG. 2 shows an example in which the modeling unit 110 irradiates the modeling beam B11, whereas FIG. 5 shows an example in which the movement processing unit 120 irradiates the heating beam B12. Show.
In the example of FIG. 5, the movement processing unit 120 irradiates the substrate 810 near the droplet 820 with the heating beam B12. As a result, the movement processing unit 120 heats the heating beam B12 side of the droplet 820 to cause a temperature gradient in the droplet 820.
 図6は、温度勾配が生じていない場合の液滴820における力の関係の例を示す。図6の例で、γは、液滴820における表面張力を示す。γは、固体の表面張力(基板810における表面張力)を示す。γLSは、固液界面張力を示す。θは液滴820の基板810に対する接触角を示す。
 図6の場合、ヤングの式は、式(1)のように示される。
FIG. 6 shows an example of the force relationship in the droplet 820 when no temperature gradient has occurred. In the example of FIG. 6, γ L indicates the surface tension in the droplet 820. γ S indicates the surface tension of the solid (surface tension in the substrate 810). γ LS indicates the solid-liquid interfacial tension. θ represents the contact angle of the droplet 820 with respect to the substrate 810.
In the case of FIG. 6, Young's formula is shown as formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図6では液滴820内の力が釣り合っており、液滴820は移動しない。 In FIG. 6, the forces in the droplet 820 are balanced, and the droplet 820 does not move.
 図7は、温度勾配が生じている場合の液滴820における力の関係の例を示す。図7の例で、加熱されていない側における力を図6で用いた変数名に「’」を付した変数名で示す。具体的には、γ’は、液滴820における表面張力を示す。γ’は、固体の表面張力(基板810における表面張力)を示す。γ’LSは、固液界面張力を示す。θ’は液滴820の基板810に対する接触角を示す。 FIG. 7 shows an example of the force relationship in the droplet 820 when a temperature gradient is occurring. In the example of FIG. 7, the force on the non-heated side is indicated by a variable name with “′” added to the variable name used in FIG. Specifically, γ ′ L indicates the surface tension in the droplet 820. γ ′ S indicates the surface tension of the solid (surface tension in the substrate 810). γ ′ LS indicates the solid-liquid interfacial tension. θ ′ represents a contact angle of the droplet 820 with respect to the substrate 810.
 一方、図7の例で、加熱されている側における力については、変数名に「’’」を付して示す。具体的には、γ’’は、液滴820における表面張力を示す。γ’’は、固体の表面張力(基板810における表面張力)を示す。γ’’LSは、固液界面張力を示す。θ’’は液滴820の基板810に対する接触角を示す。
 図7の例では、高温側の温度Tと低温側の温度T(T>T)との温度差が生じ、基板810および液滴820に温度勾配が生じている。この温度勾配によって、高温側、低温側それぞれで接触角および表面張力が図6の場合から変化している。
 低温側では、接触角θ’が図6の場合の接触角θよりも大きくなっており、液体と気体との間の表面張力γ’の水平方向成分は減少する。低温側の界面に働く力F’は、固体の表面張力γ’の向きを正として、式(2)のように示される。
On the other hand, in the example of FIG. 7, the force on the heated side is indicated by adding “″” to the variable name. Specifically, γ ″ L indicates the surface tension in the droplet 820. γ ″ S indicates the surface tension of the solid (surface tension in the substrate 810). γ ″ LS indicates the solid-liquid interfacial tension. θ ″ represents the contact angle of the droplet 820 with respect to the substrate 810.
In the example of FIG. 7, a temperature difference occurs between the high temperature side temperature T H and the low temperature side temperature T L (T H > T L ), and a temperature gradient is generated in the substrate 810 and the droplet 820. Due to this temperature gradient, the contact angle and the surface tension change from the case of FIG. 6 on the high temperature side and the low temperature side, respectively.
On the low temperature side, the contact angle θ ′ is larger than the contact angle θ in the case of FIG. 6, and the horizontal component of the surface tension γ ′ L between the liquid and the gas decreases. The force F ′ acting on the low temperature side interface is represented by the formula (2) with the direction of the surface tension γ ′ s of the solid being positive.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 「F’>0」であり、力F’の向きは、固体の表面張力γ’の向きと同じく温度勾配が高い方から低い方への向きとなっている。
 一方、高温側では、接触角θ’’が図6の場合の接触角θよりも小さくなっており、液体と気体との間の表面張力γ’’の水平方向成分は増加する。高温側の界面に働く力F’’は、固体の表面張力γ’’の向きを正として、式(3)のように示される。
“F ′> 0”, and the direction of the force F ′ is the direction from the higher temperature gradient to the lower temperature gradient, similar to the direction of the surface tension γ ′ S of the solid.
On the other hand, on the high temperature side, the contact angle θ ″ is smaller than the contact angle θ in the case of FIG. 6, and the horizontal component of the surface tension γ ″ L between the liquid and the gas increases. The force F ″ acting on the interface on the high temperature side is represented by the equation (3), with the direction of the surface tension γ ″ s of the solid being positive.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 「F’’<0」であり、力F’’の向きは、固体の表面張力γ’’の向きと反対に温度勾配が高い方から低い方への向きとなっている。
 図8は、液滴に生じる力の向きの例を示す。上記のように、力F’の向き、力F’’の向きの何れも勾配温度が高い方から低い方への向きとなっている。力F’と力F’’とを合成した力FTotalは、式(4)のように示される。
“F ″ <0”, and the direction of the force F ″ is the direction from the higher temperature gradient to the lower one, contrary to the direction of the surface tension γ ″ S of the solid.
FIG. 8 shows an example of the direction of the force generated in the droplet. As described above, the direction of the force F ′ and the direction of the force F ″ are both from the higher gradient temperature to the lower gradient temperature. A force F Total obtained by combining the force F ′ and the force F ″ is expressed as in Expression (4).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 力F’の向き、力F’’の向き共に温度勾配が高い方から低い方への向きとなっているので、力FTotalの向きも図8に示すように温度勾配が高い方から低い方への向きとなる。液滴820は、力FTotalを駆動力として温度勾配が高い方から低い方へと移動する。したがって、液滴820は、移動処理部120が加熱している位置から遠ざかる方向に移動する。 Since the direction of the force F ′ and the direction of the force F ″ are from the higher temperature gradient to the lower direction, the direction of the force F Total is also lower from the higher temperature gradient as shown in FIG. It becomes the direction. The droplet 820 moves from a higher temperature gradient to a lower temperature gradient using the force FTotal as a driving force. Accordingly, the droplet 820 moves in a direction away from the position where the movement processing unit 120 is heated.
 図9は、移動処理部120のレーザ光発射部分と液滴820との位置関係の例を示す。図9は、移動処理部120のレーザ光照射部分および基板810を斜め上側から見た例を示している。この例では、基板810の上に第6材料の液滴821-31が載っている。また、領域A11は、移動処理部120が加熱用ビームB12を照射している部分を示している。移動処理部120は、第6材料の液滴821-31の近傍の基板810に加熱用ビームB12を照射して加熱することで、第6材料の液滴821-31に温度勾配を生じさせる。 FIG. 9 shows an example of the positional relationship between the laser beam emitting portion of the movement processing unit 120 and the droplet 820. FIG. 9 shows an example in which the laser beam irradiated portion of the movement processing unit 120 and the substrate 810 are viewed obliquely from above. In this example, a droplet 821-31 of the sixth material is placed on the substrate 810. A region A11 indicates a portion where the movement processing unit 120 irradiates the heating beam B12. The movement processing unit 120 irradiates the substrate 810 in the vicinity of the sixth material droplet 821-31 with the heating beam B12 and heats it, thereby generating a temperature gradient in the sixth material droplet 821-31.
 観察部150は、目的物の画像を撮影する。
 図10は、観察部150の構成例を示す図である。図10の例で、観察部150は、観察光光源151と、ビームスプリッタ152と、観察用レンズ153と、CCDカメラ154と、表示装置155とを備える。
 観察光光源151は、目的物を撮影するための照明光B13を照射する。ここでの目的物は、造形途中のものであってもよい。照明光B13は、目的物に照射される。照明光B13の一部が反射または吸収された後、残りの光が造形部110のレーザ光発射部分を経由してビームスプリッタ152へ入射される。
The observation unit 150 captures an image of the target object.
FIG. 10 is a diagram illustrating a configuration example of the observation unit 150. In the example of FIG. 10, the observation unit 150 includes an observation light source 151, a beam splitter 152, an observation lens 153, a CCD camera 154, and a display device 155.
The observation light source 151 emits illumination light B13 for photographing a target object. The target object here may be a thing in the middle of modeling. The illumination light B13 is applied to the object. After a part of the illumination light B13 is reflected or absorbed, the remaining light is incident on the beam splitter 152 via the laser light emitting portion of the modeling unit 110.
 図10の例で、観察光光源151は、図2における滴下口140と同様に、造形領域の上方に位置している。観察光光源151が、照明光B13を照射する間、滴下口140の配置位置と観察光光源151との配置位置を入れ替えるようにしてもよい。あるいは、滴下口140が、造形領域の斜め上方から造形領域へ向けて洗浄液または液体の材料を滴下するなど、滴下口140の位置と観察光光源151の位置とが重ならない配置としてもよい。 In the example of FIG. 10, the observation light source 151 is located above the modeling area, like the dropping port 140 in FIG. While the observation light source 151 irradiates the illumination light B13, the arrangement position of the dropping port 140 and the arrangement position of the observation light light source 151 may be switched. Alternatively, the dripping port 140 may be arranged so that the position of the dripping port 140 and the position of the observation light source 151 do not overlap each other, for example, a cleaning liquid or a liquid material is dropped from an obliquely upper side of the modeling region to the modeling region.
 ビームスプリッタ152は、ハーフミラーを備え、照明光B13を反射させる。ビームスプリッタ152は、照明光B13の入射だけでなく造形用ビームB11の入射も受ける。ビームスプリッタ152は、造形用ビームB11を通過させ、造形部110のレーザ光発射部分へ向けて進ませる。照明光B13の反射により、ビームスプリッタ152は、造形用ビームB11と同じ経路を造形用ビームB11と逆向きに通過してきた照明光B13を、造形用ビームB11の経路の向きと異なる向きに転向させる。 The beam splitter 152 includes a half mirror and reflects the illumination light B13. The beam splitter 152 receives not only the illumination light B13 but also the modeling beam B11. The beam splitter 152 passes the modeling beam B11 and advances it toward the laser beam emitting portion of the modeling unit 110. Due to the reflection of the illumination light B13, the beam splitter 152 turns the illumination light B13 that has passed through the same path as the modeling beam B11 in the direction opposite to the modeling beam B11 in a direction different from the direction of the path of the modeling beam B11. .
 観察用レンズ153は、照明光B13がCCDカメラ154の撮影素子の位置で像を結ぶように照明光B13を屈折させる。
 CCDカメラ154は、照明光B13を受光して光電変換することで、目的物の画像データを生成する。
 表示装置155は、例えば液晶パネルまたはLEDパネル等の表示画面を有し、目的物の画像を表示する。具体的には、表示装置155は、CCDカメラが生成した目的物の画像データの入力を受け、この画像データが示す画像を表示する。
 ただし、観察部150の構成および配置は図10に示すものに限定されない。例えば、観察部150が、目的物を上方向から撮影するようにしてもよいし、斜め上方向または斜め下方向から撮影するようにしてもよい。
The observation lens 153 refracts the illumination light B13 so that the illumination light B13 forms an image at the position of the imaging element of the CCD camera 154.
The CCD camera 154 receives the illumination light B13 and performs photoelectric conversion to generate image data of the target object.
The display device 155 has a display screen such as a liquid crystal panel or an LED panel, and displays an image of the object. Specifically, the display device 155 receives input of image data of the object generated by the CCD camera and displays an image indicated by the image data.
However, the configuration and arrangement of the observation unit 150 are not limited to those shown in FIG. For example, the observation unit 150 may take an image of the object from above, or may take an image from obliquely upward or obliquely downward.
 制御装置200は、造形装置100を制御して目的物を生成させる。例えば、制御装置200は、造形部110が造形用ビームB11を照射するタイミング、および、造形用ビームB11の焦点の位置を制御する。また、制御装置200は、移動処理部120が加熱用ビームB12を照射するタイミング、照射位置及び加熱用ビームB12の強度を制御する。また、制御装置200は、滴下口140が洗浄液を滴下するタイミングを制御する。
 また、制御装置200は、造形システム1のユーザインタフェースとして機能する。
 制御装置200は、例えばパソコン(Personal Computer)またはワークステーション(Workstation)等のコンピュータを用いて構成される。
The control device 200 controls the modeling device 100 to generate a target object. For example, the control device 200 controls the timing at which the modeling unit 110 irradiates the modeling beam B11 and the focal position of the modeling beam B11. In addition, the control device 200 controls the timing at which the movement processing unit 120 irradiates the heating beam B12, the irradiation position, and the intensity of the heating beam B12. Further, the control device 200 controls the timing at which the dropping port 140 drops the cleaning liquid.
The control device 200 functions as a user interface of the modeling system 1.
The control device 200 is configured using a computer such as a personal computer or a workstation.
 表示部210は、例えば液晶パネルまたはLEDパネル等の表示画面を有し、各種画像を表示する。特に、表示部210は、造形システム1に関する情報をユーザに提示する。
 表示部210は、表示装置155を用いて構成されていてもよいし、表示装置155とは別に構成されていてもよい。
 操作入力部220は、例えばキーボードおよびマウス等の入力デバイスを備え、ユーザ操作を受ける。特に、操作入力部220は、造形システム1に関する設定を行うユーザ操作を受ける。
The display unit 210 has a display screen such as a liquid crystal panel or an LED panel, and displays various images. In particular, the display unit 210 presents information regarding the modeling system 1 to the user.
The display unit 210 may be configured using the display device 155, or may be configured separately from the display device 155.
The operation input unit 220 includes input devices such as a keyboard and a mouse and receives user operations. In particular, the operation input unit 220 receives a user operation for performing settings related to the modeling system 1.
 記憶部280は、各種データを記憶する。記憶部280は、制御装置200が備える記憶デバイスを用いて構成される。
 処理部290は、制御装置200の各部を制御して各種処理を実行する。処理部290は、制御装置200が備えるCPU(Central Processing Unit、中央処理装置)が、記憶部280からプログラムを読み出して実行することで構成される。
 制御装置200が、予め設定されたプログラム等に基づいて自動的に造形装置100を制御するようにしてもよい。あるいは、ユーザがオンラインで制御装置200に指示を入力し、制御装置200がユーザの指示に従って造形装置100を制御するようにしてもよい。
The storage unit 280 stores various data. The storage unit 280 is configured using a storage device provided in the control device 200.
The processing unit 290 controls each unit of the control device 200 and executes various processes. The processing unit 290 is configured by a CPU (Central Processing Unit) provided in the control device 200 reading out a program from the storage unit 280 and executing it.
The control device 200 may automatically control the modeling device 100 based on a preset program or the like. Alternatively, the user may input an instruction to the control apparatus 200 online, and the control apparatus 200 may control the modeling apparatus 100 according to the user's instruction.
 次に、図11から図20を参照して、造形領域に位置する液滴820の入れ替えについて説明する。
 図11は、材料の配置の第1例を示す。図11は、造形システム1が目的物を生成する処理の開始時における材料の配置の例を示している。図11の例では、基板810の上に第7材料の液滴821-41と、第7材料とは異なる第8材料の液滴821-42とが載っている。また、領域A21は造形領域を示している。
 図11の状態から、造形部110が、造形領域(領域A21)内に位置する第7材料の液滴821-41に造形用ビームB11を照射して第7材料の液滴821-41の一部を液体から固体に変化させる。
Next, replacement of the droplet 820 located in the modeling area will be described with reference to FIGS.
FIG. 11 shows a first example of material arrangement. FIG. 11 shows an example of material arrangement at the start of processing in which the modeling system 1 generates a target object. In the example of FIG. 11, droplets 821-41 of the seventh material and droplets 821-42 of the eighth material different from the seventh material are placed on the substrate 810. Moreover, area | region A21 has shown the modeling area | region.
From the state of FIG. 11, the modeling unit 110 irradiates the modeling material beam B11 on the seventh material droplet 821-41 located in the modeling region (region A21) to form one of the seventh material droplets 821-41. Change the part from liquid to solid.
 図12は、材料の配置の第2例を示す図である。図12の例で、基板810、第7材料の液滴821-41、第8材料の液滴821-42および領域A21の位置は、図11の場合と同様である。一方、図12の例では、第7材料の液滴821-41内に固形物840がある点で、図11の場合と異なる。
 図12における固形物840は、第7材料の固形物840-41であり、生成途中の目的物の例に該当する。具体的には、図11の状態から、造形部110が、第7材料の液滴821-41に造形用ビームB11を照射して第7材料の液滴821-41の一部を液体から固体に変化させたものが、図12の第7材料の固形物840-41である。
FIG. 12 is a diagram illustrating a second example of the arrangement of materials. In the example of FIG. 12, the positions of the substrate 810, the seventh material droplet 821-41, the eighth material droplet 821-42, and the region A21 are the same as those in FIG. On the other hand, the example of FIG. 12 is different from the case of FIG. 11 in that the solid material 840 is present in the droplet 821-41 of the seventh material.
A solid material 840 in FIG. 12 is a seventh material solid material 840-41, which corresponds to an example of a target object being generated. Specifically, from the state of FIG. 11, the modeling unit 110 irradiates the modeling material beam B11 to the seventh material droplet 821-41, and a part of the seventh material droplet 821-41 is solidified from the liquid. What is changed to is the solid material 840-41 of the seventh material in FIG.
 図13は、材料の配置の第3例を示す。図13の例で基板810、第8材料の液滴821-42、第7材料の固形物840-41および領域A21の位置は、図12の場合と同様である。一方、図13の例では、第7材料の液滴821-41が領域A21の内から外へ移動している点で、図12の場合と異なる。
 図12は、造形部110による第7材料の液滴821-41に対する加工が終了した状態の例を示している。移動処理部120が、使用終了後の第7材料の液滴821-41を領域A21の内から外へ移動させることで、図13に示す状態になる。移動処理部120は、液滴を移動させるが、固形の材料については移動させない。図13の例でも、第7材料の液滴821-41が領域A21の内から外へ移動している一方、第7材料の固形物840-41は、領域A21内に留まっている。
FIG. 13 shows a third example of material arrangement. In the example of FIG. 13, the positions of the substrate 810, the eighth material droplet 821-42, the seventh material solid 840-41, and the region A21 are the same as in FIG. On the other hand, the example of FIG. 13 is different from the case of FIG. 12 in that the droplet 821-41 of the seventh material moves from the inside to the outside of the region A21.
FIG. 12 shows an example of a state in which the processing of the seventh material droplet 821-41 by the modeling unit 110 is completed. The movement processing unit 120 moves the seventh material droplet 821-41 after use to the outside of the region A21, and the state shown in FIG. 13 is obtained. The movement processing unit 120 moves the droplet, but does not move the solid material. In the example of FIG. 13 as well, the seventh material droplet 821-41 moves from the inside of the region A21 to the outside, while the seventh material solid matter 840-41 remains in the region A21.
 図14は、材料の配置の第4例を示す。図14の例で基板810、第7材料の液滴821-41、第8材料の液滴821-42、第7材料の固形物840-41および領域A21の位置は、図13の場合と同様である。一方、図14では、領域A21内に洗浄液の液滴822がある点で、図13の場合と異なる。
 図13の状態から、滴下口140が洗浄液を造形領域(領域A21)内に滴下することで、図14の状態になる。図13の状態では、第7材料の液滴821-41は領域A21の外へ移動しているが、第7材料の固形物840-41の表面には液体の第7材料が残存している。そこで、滴下口140が、洗浄液を領域A21内に滴下して第7材料の固形物840-41を洗浄液に浸す。これにより、造形システム1は、第7材料の固形物840-41の表面を洗浄する。具体的には、造形システム1は、第7材料の固形物840-41の表面に付着している液体の第7材料を除去する。
FIG. 14 shows a fourth example of material arrangement. In the example of FIG. 14, the positions of the substrate 810, the seventh material droplet 821-41, the eighth material droplet 821-42, the seventh material solid 840-41, and the region A21 are the same as in FIG. It is. On the other hand, FIG. 14 is different from the case of FIG. 13 in that there is a cleaning liquid droplet 822 in the region A21.
From the state of FIG. 13, the dropping port 140 drops the cleaning liquid into the modeling region (region A <b> 21), so that the state of FIG. 14 is reached. In the state shown in FIG. 13, the droplet 821-41 of the seventh material has moved out of the region A21, but the liquid seventh material remains on the surface of the solid material 840-41 of the seventh material. . Therefore, the dropping port 140 drops the cleaning liquid into the region A21 and immerses the solid material 840-41 of the seventh material in the cleaning liquid. Thereby, the modeling system 1 cleans the surface of the solid material 840-41 of the seventh material. Specifically, the modeling system 1 removes the liquid seventh material attached to the surface of the solid material 840-41 of the seventh material.
 図15は、材料の配置の第5例を示す。図15の例で基板810、第7材料の液滴821-41、第8材料の液滴821-42、第7材料の固形物840-41および領域A21の位置は、図14の場合と同様である。一方、図15では、洗浄液の液滴822が基板810上から除去されている点で、図14の場合と異なる。
 図14の状態から、移動処理部120が、洗浄液の液滴822を領域A21内から基板810の上面の外へと移動させることで、洗浄液の液滴822が基板810上から除去され、図15の状態になる。
FIG. 15 shows a fifth example of material arrangement. In the example of FIG. 15, the positions of the substrate 810, the seventh material droplet 821-41, the eighth material droplet 821-42, the seventh material solid 840-41, and the region A21 are the same as in FIG. It is. On the other hand, FIG. 15 is different from FIG. 14 in that the cleaning liquid droplets 822 are removed from the substrate 810.
14, the movement processing unit 120 moves the cleaning liquid droplets 822 from the inside of the region A21 to the outside of the upper surface of the substrate 810, whereby the cleaning liquid droplets 822 are removed from the substrate 810, and FIG. It becomes the state of.
 図16は、材料の配置の第6例を示す。図16の例で基板810、第7材料の液滴821-41、第7材料の固形物840-41および領域A21の位置は、図15の場合と同様である。一方、図16では、第8材料の液滴821-42が領域A21の外から内へ移動している点で、図15の場合と異なる。
 図15の状態から、移動処理部120が第8材料の液滴821-42を領域A21内へ移動させることで、図16の状態になる。
FIG. 16 shows a sixth example of material arrangement. In the example of FIG. 16, the positions of the substrate 810, the seventh material droplet 821-41, the seventh material solid 840-41, and the region A21 are the same as those in FIG. On the other hand, FIG. 16 is different from the case of FIG. 15 in that the droplet 821-42 of the eighth material moves from the outside to the inside of the region A21.
The movement processing unit 120 moves the droplets 821-42 of the eighth material into the region A21 from the state of FIG.
 図17は、材料の配置の第7例を示す。図17の例で基板810、第7材料の液滴821-41、第8材料の液滴821-42、第7材料の固形物840-41および領域A21の位置は、図16の場合と同様である。一方、図17では、第8材料の液滴821-42内に第7材料の固形物840-41に加えて第8材料の固形物840-42がある点で、図16の場合と異なる。図17の例では、第7材料の固形物840-41と第8材料の固形物840-42とが固形物840を構成している。
 図16の状態から、造形部110が第8材料の液滴821-42に造形用ビームB11を照射して第8材料の液滴821-42の一部を液体から固体に変化させたものが、図17の第8材料の固形物840-42である。
FIG. 17 shows a seventh example of material arrangement. In the example of FIG. 17, the positions of the substrate 810, the seventh material droplet 821-41, the eighth material droplet 821-42, the seventh material solid 840-41, and the region A21 are the same as in FIG. It is. On the other hand, FIG. 17 differs from the case of FIG. 16 in that the eighth material solid material 840-42 is present in the eighth material droplet 821-42 in addition to the seventh material solid material 840-41. In the example of FIG. 17, the solid material 840-41 of the seventh material and the solid material 840-42 of the eighth material constitute the solid material 840.
In the state of FIG. 16, the modeling unit 110 irradiates the modeling material B11 to the droplet 821-42 of the eighth material to change a part of the droplet 821-42 of the eighth material from liquid to solid. This is a solid material 840-42 of the eighth material in FIG.
 図18は、材料の配置の第8例を示す。図18の例で基板810、第7材料の液滴821-41、第7材料の固形物840-41、第8材料の固形物840-42および領域A21の位置は、図17の場合と同様である。一方、図18では、第8材料の液滴821-42が領域A21の内から外へ移動している点で、図17の場合と異なる。
 図17は、造形部110による第8材料の液滴821-42に対する加工が終了した状態の例を示している。移動処理部120が、使用終了後の第8材料の液滴821-42を領域A21の内から外へ移動させることで、図18に示す状態になる。上記のように、移動処理部120は、液滴を移動させるが、固形の材料については移動させない。図18の例でも、第8材料の液滴821-42が領域A21の内から外へ移動している一方、第8材料の固形物840-42は、領域A21内に留まっている。
FIG. 18 shows an eighth example of material arrangement. In the example of FIG. 18, the positions of the substrate 810, the seventh material droplet 821-41, the seventh material solid 840-41, the eighth material solid 840-42, and the region A21 are the same as in FIG. It is. On the other hand, FIG. 18 differs from the case of FIG. 17 in that the droplet 821-42 of the eighth material moves from the inside of the region A21 to the outside.
FIG. 17 shows an example of a state in which the processing of the eighth material droplet 821-42 by the modeling unit 110 is completed. The movement processing unit 120 moves the droplets 821-42 of the eighth material after use from the inside to the outside of the region A21, so that the state shown in FIG. 18 is obtained. As described above, the movement processing unit 120 moves the droplet, but does not move the solid material. Also in the example of FIG. 18, the eighth material droplet 821-42 moves from the inside of the region A21 to the outside, while the solid material 840-42 of the eighth material remains in the region A21.
 図19は、材料の配置の第9例を示す。図19の例で基板810、第7材料の液滴821-41、第8材料の液滴821-42、第7材料の固形物840-41、第8材料の固形物840-42および領域A21の位置は、図18の場合と同様である。一方、図19では、領域A21内に洗浄液の液滴822がある点で、図18の場合と異なる。
 図18の状態から、滴下口140が洗浄液を造形領域(領域A21)内に滴下することで、図19の状態になる。図18の状態では、第8材料の液滴821-42は領域A21の外へ移動しているが、固形物840の表面には液体の第8材料が残存している。そこで、滴下口140が、洗浄液を領域A21内に滴下して固形物840を洗浄液に浸す。これにより、造形システム1は、固形物840の表面を洗浄する。具体的には、造形システム1は、第7材料の固形物840-41の表面および第8材料の固形物840-42の表面に付着している液体の第8材料を除去する。
FIG. 19 shows a ninth example of material arrangement. In the example of FIG. 19, the substrate 810, the seventh material droplet 821-41, the eighth material droplet 821-42, the seventh material solid 840-41, the eighth material solid 840-42, and the region A21. The position of is the same as in the case of FIG. On the other hand, FIG. 19 is different from the case of FIG. 18 in that there is a cleaning liquid droplet 822 in the region A21.
From the state of FIG. 18, the dropping port 140 drops the cleaning liquid into the modeling region (region A <b> 21), so that the state of FIG. 19 is reached. In the state of FIG. 18, the eighth material droplet 821-42 has moved out of the region A 21, but the liquid eighth material remains on the surface of the solid material 840. Therefore, the dropping port 140 drops the cleaning liquid into the region A21 and immerses the solid material 840 in the cleaning liquid. Thereby, the modeling system 1 cleans the surface of the solid object 840. Specifically, the modeling system 1 removes the liquid eighth material adhering to the surface of the seventh material solid 840-41 and the surface of the eighth material solid 840-42.
 図20は、材料の配置の第10例を示す。図20の例で基板810、第7材料の液滴821-41、第8材料の液滴821-42、第7材料の固形物840-41、第8材料の固形物840-42および領域A21の位置は、図19の場合と同様である。一方、図20では、洗浄液の液滴822が基板810上から除去されている点で、図19の場合と異なる。
 図19の状態から、移動処理部120が、洗浄液の液滴822を領域A21内から基板810の上面の外へと移動させることで、洗浄液の液滴822が基板810上から除去され、図20の状態になる。
 図20の固形物840は、完成した目的物の例に該当する。このように、図11~図20の例では、造形システム1は、第7材料および第8材料といった複数の材料を用いたマルチマテリアルの目的物を生成している。
FIG. 20 shows a tenth example of material arrangement. In the example of FIG. 20, the substrate 810, the seventh material droplet 821-41, the eighth material droplet 821-42, the seventh material solid 840-41, the eighth material solid 840-42, and the region A21. The position of is the same as in the case of FIG. On the other hand, FIG. 20 is different from FIG. 19 in that the cleaning liquid droplets 822 are removed from the substrate 810.
19, the movement processing unit 120 moves the cleaning liquid droplet 822 from the inside of the region A21 to the outside of the upper surface of the substrate 810, whereby the cleaning liquid droplet 822 is removed from the substrate 810, and FIG. It becomes the state of.
20 corresponds to an example of a completed target object. As described above, in the example of FIGS. 11 to 20, the modeling system 1 generates a multi-material object using a plurality of materials such as the seventh material and the eighth material.
 液滴820を移動させる際、移動処理部120が、レーザ光発射部分から加熱用ビームB12を発射しながらレーザ光発射部分を動かすようにしてもよい。移動処理部120が、移動する液滴820を追いかけるようにレーザ光照射部分を動かすことで、液滴820を動かし続けることができ、これによって液滴820の移動距離を調整することができる。
 あるいは、移動処理部120が、液滴820を移動させる距離に応じた強度のレーザ光を照射するようにしてもよい。移動処理部120が照射するレーザ光(加熱用ビームB12)の強度によって液滴820の移動距離を調整することができる。
When the droplet 820 is moved, the movement processing unit 120 may move the laser light emitting portion while emitting the heating beam B12 from the laser light emitting portion. The movement processing unit 120 moves the laser light irradiation portion so as to follow the moving droplet 820, so that the droplet 820 can be continuously moved, and thereby the moving distance of the droplet 820 can be adjusted.
Alternatively, the movement processing unit 120 may irradiate a laser beam having an intensity corresponding to the distance to which the droplet 820 is moved. The moving distance of the droplet 820 can be adjusted by the intensity of the laser beam (heating beam B12) irradiated by the movement processing unit 120.
 図21は、移動処理部120による液滴820の加熱温度と液滴820の移動距離との関係の例を示すグラフである。図21は、移動処理部120のレーザ光発射部分を移動させず、加熱用ビームB12の強度を調整することで液滴820の加熱温度を調整した場合の、加熱温度と液滴820の移動距離との関係の例を示している。ここでいう加熱温度は、基板810のうち加熱用ビームB12が最も集光されて加熱されている領域の温度である。
 図21では、液滴820としてアクリレート樹脂の液滴を用いた場合の例を示している。
FIG. 21 is a graph showing an example of the relationship between the heating temperature of the droplet 820 and the movement distance of the droplet 820 by the movement processing unit 120. FIG. 21 shows the heating temperature and the movement distance of the droplet 820 when the heating temperature of the droplet 820 is adjusted by adjusting the intensity of the heating beam B12 without moving the laser beam emitting portion of the movement processing unit 120. An example of the relationship is shown. The heating temperature here is the temperature of the region of the substrate 810 where the heating beam B12 is most condensed and heated.
FIG. 21 shows an example in which acrylate resin droplets are used as the droplets 820.
 図21のグラフにおいて、横軸は時間を示し、縦軸は液滴820の移動距離を示す。
 線L11、L12、L13、L14は、それぞれ加熱温度が75℃、95℃、130℃、160℃の場合の、経過時間と液滴の移動距離との関係の例を示している。線L11、L12、L13、L14のいずれの場合も、液滴は、加熱温度に応じたある程度の距離を移動し、その後は、おおよそ動かずその場に留まっている。
 図21の例で、加熱温度が大きいほど液滴820の移動距離(液滴820がおおよそ動かなくなるまでの移動距離)が大きくなっている。
In the graph of FIG. 21, the horizontal axis represents time, and the vertical axis represents the movement distance of the droplet 820.
Lines L11, L12, L13, and L14 show examples of the relationship between the elapsed time and the droplet movement distance when the heating temperature is 75 ° C., 95 ° C., 130 ° C., and 160 ° C., respectively. In any of the lines L11, L12, L13, and L14, the droplet moves a certain distance according to the heating temperature, and after that, does not move and stays in place.
In the example of FIG. 21, the moving distance of the droplet 820 (the moving distance until the droplet 820 almost does not move) increases as the heating temperature increases.
 そこで、移動処理部120が液滴820を移動させるべき必要移動距離に応じて、必要移動距離が大きいほどポイントヒータによる加熱量を大きくするようにしてもよい。加熱温度の大きさは、移動処理部120のポイントヒータに印加する電圧の大きさによって調整することができる。移動処理部120のポイントヒータに印加する電圧を大きくするほど、液滴820の移動距離が大きくなる。 Therefore, the amount of heating by the point heater may be increased as the required moving distance increases according to the required moving distance that the movement processing unit 120 should move the droplet 820. The magnitude of the heating temperature can be adjusted by the magnitude of the voltage applied to the point heater of the movement processing unit 120. As the voltage applied to the point heater of the movement processing unit 120 increases, the moving distance of the droplet 820 increases.
 図22は、液滴820の濡れ性と液滴820の移動距離との関係の例を示すグラフである。図22は、移動処理部120のレーザ光発射部分を移動させず、加熱用ビームB12の強度を同じにした場合の、基板810の表面の特性による液滴820の濡れ性と、液滴820の移動距離との関係の例を示している。図22の例では、液滴820としてアクリレート樹脂の液滴を使用し、加熱温度を130℃にしている。 FIG. 22 is a graph showing an example of the relationship between the wettability of the droplet 820 and the moving distance of the droplet 820. FIG. 22 shows the wettability of the droplet 820 according to the surface characteristics of the substrate 810 and the droplet 820 when the laser beam emission portion of the movement processing unit 120 is not moved and the intensity of the heating beam B12 is the same. The example of the relationship with a movement distance is shown. In the example of FIG. 22, acrylate resin droplets are used as the droplets 820, and the heating temperature is 130 ° C.
 図22のグラフにおいて、横軸は時間を示し、縦軸は液滴820の移動距離を示す。
 線L21、L22、L23は、それぞれ基板810の表面をフッ素コートした場合、基板810の表面処理を行っていない場合、基板810の表面に有機官能基のシランカップリング処理を行った場合の、経過時間と液滴の移動距離との関係の例を示している。
 液滴820の濡れ性は、フッ素コートの場合(線L21)が最も小さく、液滴820の接触角は66°となった。次に、基板810の表面処理を行わない場合(線L22)の場合の濡れ性が小さく、液滴820の接触角は20°となった。有機官能基のシランカップリング処理の場合(線L23)の濡れ性が最も大きく、液滴820の接触角度は12°となった。
In the graph of FIG. 22, the horizontal axis represents time, and the vertical axis represents the movement distance of the droplet 820.
Lines L21, L22, and L23 are obtained when the surface of the substrate 810 is coated with fluorine, when the surface treatment of the substrate 810 is not performed, or when the surface of the substrate 810 is subjected to a silane coupling treatment of an organic functional group. The example of the relationship between time and the movement distance of a droplet is shown.
The wettability of the droplet 820 was the smallest in the case of fluorine coating (line L21), and the contact angle of the droplet 820 was 66 °. Next, when the surface treatment of the substrate 810 was not performed (line L22), the wettability was small, and the contact angle of the droplet 820 was 20 °. In the case of the silane coupling treatment of the organic functional group (line L23), the wettability was the largest, and the contact angle of the droplet 820 was 12 °.
 線L21、L22、L23のいずれの場合も、液滴は、濡れ性に応じたある程度の距離を移動し、その後は、おおよそ動かずその場に留まっている。
 図22の例で、液滴820の濡れ性が大きいほど液滴820の移動距離(液滴820がおおよそ動かなくなるまでの移動距離)が大きくなっている。
 そこで、基板810の表面を処理することで、液滴820の移動距離を調整するようにしてもよい。例えば、基板810の表面に対して有機官能基のシランカップリング処理など液滴820の濡れ性を大きくする処理を施すことで、移動処理部120が出力するレーザ光(加熱用ビームB12)の強度を比較的小さくし、かつ、液滴820の移動距離を確保することができる。
In any of the lines L21, L22, and L23, the droplet moves a certain distance according to the wettability, and after that, does not move and stays in place.
In the example of FIG. 22, as the wettability of the droplet 820 increases, the moving distance of the droplet 820 (the moving distance until the droplet 820 almost does not move) increases.
Therefore, the moving distance of the droplet 820 may be adjusted by processing the surface of the substrate 810. For example, the intensity of the laser beam (heating beam B12) output from the movement processing unit 120 by applying a process for increasing the wettability of the droplet 820 to the surface of the substrate 810, such as a silane coupling process of an organic functional group. Can be made relatively small, and the moving distance of the droplet 820 can be secured.
 あるいは、移動処理部120が、液滴820の濡れ性に応じて、濡れ性が小さいほどポイントヒータによる加熱量を大きくするようにしてもよい。これにより、液滴820の移動距離に対する濡れ性の影響を低減させることができ、この点で、液滴820の移動距離を濡れ性にかかわらず一定に近付けることができる。 Alternatively, the movement processing unit 120 may increase the amount of heating by the point heater as the wettability decreases according to the wettability of the droplet 820. Thereby, the influence of the wettability on the moving distance of the droplet 820 can be reduced, and in this respect, the moving distance of the droplet 820 can be made constant regardless of the wettability.
 また、フッ素コートの場合(線L21)のように液滴820の移動面に撥水加工をすると液滴820がほぼ移動しなくなる性質を積極的に利用するようにしてもよい。
 例えば、基板810の表面にフッ素コートによるパターンを施すことで、液滴820が動く経路をパターニングするようにしてもよい。液滴820はフッ素コートされた部分を避けて移動するので、フッ素コートのパターンにより、液滴820を特定の経路(フッ素コートされていない経路)に沿って移動させることができる。このように、移動処理部120が、撥水性の素材が部分的に配置されている面上にて液滴820を移動させるようにしてもよい。
Further, as in the case of fluorine coating (line L21), the property that the droplet 820 does not substantially move when the water repellency process is performed on the moving surface of the droplet 820 may be positively utilized.
For example, a path along which the droplet 820 moves may be patterned by applying a fluorine coat pattern on the surface of the substrate 810. Since the droplet 820 moves while avoiding the fluorine-coated portion, the droplet 820 can be moved along a specific path (path not fluorine-coated) by the fluorine-coated pattern. As described above, the movement processing unit 120 may move the droplet 820 on the surface where the water-repellent material is partially disposed.
 図23は、液滴820の粘度と液滴820の移動距離との関係の例を示すグラフである。図23は、移動処理部120のレーザ光発射部分を移動させず、加熱用ビームB12の強度を同じにした場合の、液滴820の粘度(材料の粘度)と液滴820の移動距離との関係の例を示している。図23の例では、加熱温度を130℃にしている。また、基板810の表面に有機官能基のシランカップリング処理を行うことで、濡れ性の条件を同じにしている。 FIG. 23 is a graph showing an example of the relationship between the viscosity of the droplet 820 and the moving distance of the droplet 820. FIG. 23 shows the relationship between the viscosity of the droplet 820 (material viscosity) and the movement distance of the droplet 820 when the laser beam emission portion of the movement processing unit 120 is not moved and the intensity of the heating beam B12 is the same. An example of the relationship is shown. In the example of FIG. 23, the heating temperature is 130.degree. In addition, the wettability condition is made the same by performing silane coupling treatment of an organic functional group on the surface of the substrate 810.
 図23のグラフにおいて、横軸は時間を示し、縦軸は液滴820の移動距離を示す。
 線L31、L32、L33は、それぞれメタクリレート樹脂の液滴、アクリレート樹脂の液滴、洗浄液の液滴の、経過時間と液滴の移動距離との関係の例を示している。
 液滴820の粘度に関して、メタクリレート樹脂の場合(線L31)が最も大きかった。メタクリレート樹脂の液滴の粘度は1802cpsであった。次に、アクリレート樹脂の場合(線L32)の粘度が大きく、その粘度は95cpsであった。洗浄液の場合(線L33)の粘度が最も小さく、その粘度は7.4cpsであった。
In the graph of FIG. 23, the horizontal axis indicates time, and the vertical axis indicates the moving distance of the droplet 820.
Lines L31, L32, and L33 show examples of the relationship between the elapsed time and the moving distance of the droplets of the methacrylate resin droplets, the acrylate resin droplets, and the cleaning liquid droplets, respectively.
Regarding the viscosity of the droplet 820, the methacrylate resin (line L31) was the largest. The viscosity of the methacrylate resin droplets was 1802 cps. Next, in the case of the acrylate resin (line L32), the viscosity was large, and the viscosity was 95 cps. In the case of the cleaning liquid (line L33), the viscosity was the smallest, and the viscosity was 7.4 cps.
 線L31、L32、L33のいずれの場合も、液滴は、粘度に応じたある程度の距離を移動し、その後は、おおよそ動かずその場に留まっている。
 図23の例で、液滴820の粘度が大きいほど液滴820の移動距離(液滴820がおおよそ動かなくなるまでの移動距離)が小さくなっている。
 そこで、移動処理部120が、液滴820の粘度に応じて、粘度が大きいほど、前記ポイントヒータによる加熱量を大きくするようにしてもよい。これにより、液滴820の移動距離に対する粘度の影響を低減させることができ、この点で、液滴820の移動距離を粘度にかかわらず一定に近付けることができる。
In any of the lines L31, L32, and L33, the droplet moves a certain distance according to the viscosity, and after that, it does not move approximately and remains in place.
In the example of FIG. 23, the greater the viscosity of the droplet 820, the shorter the moving distance of the droplet 820 (the moving distance until the droplet 820 is not substantially moved).
Therefore, the movement processing unit 120 may increase the amount of heating by the point heater as the viscosity increases according to the viscosity of the droplet 820. Thereby, the influence of the viscosity on the moving distance of the droplet 820 can be reduced, and in this respect, the moving distance of the droplet 820 can be made constant regardless of the viscosity.
 次に図24を参照して造形システム1の動作について説明する。
 図24は、制御装置200が造形装置100を制御して目的物を生成させる処理手順の例を示すフローチャートである。
 図24の処理で、制御装置200は、造形部110を制御して造形処理を行わせる(ステップS101)。造形部110は、制御装置200の制御に従って造形領域内の材料の液滴821に造形用ビームB11を照射して材料の液滴821内で造形用ビームB11の焦点を結ばせる。焦点の位置で材料が液体から個体に変化する。
Next, the operation of the modeling system 1 will be described with reference to FIG.
FIG. 24 is a flowchart illustrating an example of a processing procedure in which the control device 200 controls the modeling device 100 to generate an object.
In the process of FIG. 24, the control device 200 controls the modeling unit 110 to perform the modeling process (step S101). The modeling unit 110 irradiates the modeling beam B11 on the material droplet 821 in the modeling region according to the control of the control device 200, and focuses the modeling beam B11 in the material droplet 821. At the focal point, the material changes from liquid to solid.
 次に、制御装置200は、移動処理部120を制御して材料の液滴821を造形領域外へ退避させる(ステップS102)。移動処理部120は、制御装置200の制御に従って造形領域内の材料の液滴821を造形領域外へ移動させる。
 次に、制御装置200は、滴下口140を制御して洗浄液を滴下させる(ステップS103)。滴下口140は、制御装置200の制御に従って洗浄液を造形領域内へ滴下する。この滴下により、造形領域内にある固体の材料を洗浄ずる。
Next, the control device 200 controls the movement processing unit 120 to retract the material droplet 821 out of the modeling region (step S102). The movement processing unit 120 moves the material droplet 821 in the modeling area to the outside of the modeling area according to the control of the control device 200.
Next, the control device 200 controls the dropping port 140 to drop the cleaning liquid (Step S103). The dropping port 140 drops the cleaning liquid into the modeling area according to the control of the control device 200. This dripping cleans the solid material in the modeling area.
 次に、制御装置200は、移動処理部120を制御して洗浄液の液滴822を除去させる(ステップS104)。移動処理部120は、制御装置200の制御に従って造形領域内の洗浄液の液滴822を基板810の外へ移動させる。この移動により、移動処理部120は洗浄液の液滴822を基板810の上から除去する。
 次に制御装置200は、目的物が完成したか否かを判定する(ステップS105)。目的物が完成したと判定した場合(ステップS105:YES)、制御装置200は、図24の処理を終了する。
Next, the control device 200 controls the movement processing unit 120 to remove the cleaning liquid droplets 822 (step S104). The movement processing unit 120 moves the liquid droplet 822 of the cleaning liquid in the modeling area to the outside of the substrate 810 according to the control of the control device 200. By this movement, the movement processing unit 120 removes the cleaning liquid droplet 822 from the substrate 810.
Next, the control device 200 determines whether or not the object is completed (step S105). When it determines with the target object having been completed (step S105: YES), the control apparatus 200 complete | finishes the process of FIG.
 一方、目的物が完成していないと判定した場合(ステップS105:NO)、制御装置200は、移動処理部120を制御して、次に用いられる材料の液滴821を造形領域へ移動させる(ステップS106)。移動処理部120は、制御装置200の制御に従って次に用いられる材料の液滴821を造形領域外から造形領域内へ移動させる。
 ステップS106の後、処理がステップS101へ戻る。
On the other hand, when it is determined that the target object is not completed (step S105: NO), the control device 200 controls the movement processing unit 120 to move the material droplet 821 to be used next to the modeling region ( Step S106). The movement processing unit 120 moves a droplet 821 of the material to be used next from the outside of the modeling area into the modeling area under the control of the control device 200.
After step S106, the process returns to step S101.
 次に、図25~図31を参照して、造形装置100を用いて得られる目的物の例について説明する。
 図25は、造形装置100を用いて得られる目的物の第1例を示す。図25に示す第1固形物840aは、メタクリレートの固形物840-51とアクリレートの固形物840-52とを含んでいる。第1固形物840aは、造形装置100を用いて得られる目的物の例に該当する。
Next, an example of an object obtained using the modeling apparatus 100 will be described with reference to FIGS.
FIG. 25 shows a first example of an object obtained using the modeling apparatus 100. The first solid 840a shown in FIG. 25 includes a methacrylate solid 840-51 and an acrylate solid 840-52. The first solid object 840a corresponds to an example of an object obtained using the modeling apparatus 100.
 移動処理部120がメタクリレートの液滴、アクリレートの液滴それぞれを造形領域に移動させ、造形部110が、これらの液滴それぞれを用いて加工を行う。これにより、第1固形物840aのようにメタクリレートとアクリレートとを含むマルチマテリアルの目的物を生成することができる。
 また、図25に50μm(マイクロメートル)のスケールを示しているように、造形装置100を用いて微小な目的物を生成することができる。
The movement processing unit 120 moves each of the methacrylate droplets and the acrylate droplets to the modeling region, and the modeling unit 110 performs processing using each of these droplets. Thereby, the multi-material target object containing a methacrylate and an acrylate like the 1st solid substance 840a can be produced | generated.
In addition, as shown in FIG. 25 with a scale of 50 μm (micrometer), a minute object can be generated using the modeling apparatus 100.
 図26は、造形装置100を用いて得られる目的物に銅めっきを施した第1例を示す。図26に示す第2固形物840bは、図25に示す第1固形物840aに無電解銅めっきを施して得られる。
 図25のメタクリレートの固形物840-51とアクリレートの固形物840-52とのうち、アクリレートの固形物840-52には銅めっきが施されるが、メタクリレートの固形物840-51には銅めっきが施されない。図26の第2固形物840bは、メタクリレートの固形物840-51と銅めっき840-53とを含んでいる。このように、メタクリレートとアクリレートとを含むマルチマテリアルの目的物を生成することで、得られた目的物に対して選択的にめっきを施すことができる。
FIG. 26 shows a first example in which a target obtained using the modeling apparatus 100 is plated with copper. The second solid material 840b shown in FIG. 26 is obtained by performing electroless copper plating on the first solid material 840a shown in FIG.
Of the methacrylate solid 840-51 and the acrylate solid 840-52 in FIG. 25, the acrylate solid 840-52 is copper plated, but the methacrylate solid 840-51 is copper plated. Is not given. The second solid material 840b shown in FIG. 26 includes methacrylate solid material 840-51 and copper plating 840-53. Thus, by producing a multi-material object containing methacrylate and acrylate, the obtained object can be selectively plated.
 図27は、造形装置100を用いて得られる目的物の第2例を示す。図27に示す第3固形物840cは、メタクリレートの固形物840-51とアクリレートの固形物840-52とを含んでいる。第3固形物840cは、造形装置100を用いて得られる目的物の例に該当する。
 移動処理部120がメタクリレートの液滴、アクリレートの液滴それぞれを造形領域に移動させ、造形部110が、これらの液滴それぞれを用いて加工を行う。これにより、第3固形物840cのようにメタクリレートとアクリレートとを含むマルチマテリアルの目的物を生成することができる。
FIG. 27 shows a second example of an object obtained using the modeling apparatus 100. The third solid material 840c shown in FIG. 27 includes methacrylate solid material 840-51 and acrylate solid material 840-52. The third solid object 840c corresponds to an example of an object obtained using the modeling apparatus 100.
The movement processing unit 120 moves each of the methacrylate droplets and the acrylate droplets to the modeling region, and the modeling unit 110 performs processing using each of these droplets. Thereby, the target object of the multimaterial containing a methacrylate and an acrylate like the 3rd solid substance 840c can be generated.
 また、図27に50μmのスケールを示しているように、造形装置100を用いて微小な目的物を生成することができる。
 また、第3固形物840cは、正方形の板状の固形物を積み重ねたピラミッド形状の固形物となっている。このように、造形装置100を用いて立体形状の目的物を生成することができる。
In addition, as shown in FIG. 27 with a scale of 50 μm, a minute object can be generated using the modeling apparatus 100.
Further, the third solid material 840c is a pyramid-shaped solid material in which square plate-shaped solid materials are stacked. In this manner, a three-dimensional object can be generated using the modeling apparatus 100.
 図28は、造形装置100を用いて得られる目的物に銅めっきを施した第2例を示す。図28に示す第4固形物840dは、図27に示す第3固形物840cに無電解銅めっきを施して得られる。
 図27のメタクリレートの固形物840-51とアクリレートの固形物840-52とのうち、アクリレートの固形物840-52には銅めっきが施されるが、メタクリレートの固形物840-51には銅めっきが施されない。図28の第4固形物840dは、メタクリレートの固形物840-51と銅めっき840-53とを含んでいる。このように、メタクリレートとアクリレートとを含むマルチマテリアルの目的物を生成することで、得られた目的物に対して選択的にめっきを施すことができる。
FIG. 28 shows a second example in which a target obtained using the modeling apparatus 100 is plated with copper. The fourth solid material 840d shown in FIG. 28 is obtained by performing electroless copper plating on the third solid material 840c shown in FIG.
Of the methacrylate solid 840-51 and the acrylate solid 840-52 in FIG. 27, the acrylate solid 840-52 is copper plated, but the methacrylate solid 840-51 is copper plated. Is not given. The fourth solid material 840d in FIG. 28 includes methacrylate solid material 840-51 and copper plating 840-53. Thus, by producing a multi-material object containing methacrylate and acrylate, the obtained object can be selectively plated.
 図29は、造形装置100を用いて得られる目的物の第3例を示す。図29に示す第5固形物840eは、メタクリレートの固形物840-51とアクリレートの固形物840-52とを含んでいる。第5固形物840eは、造形装置100を用いて得られる目的物の例に該当する。
 移動処理部120がメタクリレートの液滴、アクリレートの液滴それぞれを造形領域に移動させ、造形部110が、これらの液滴それぞれを用いて加工を行う。これにより、第3固形物840cのようにメタクリレートとアクリレートとを含むマルチマテリアルの目的物を生成することができる。
FIG. 29 shows a third example of an object obtained using the modeling apparatus 100. The fifth solid 840e shown in FIG. 29 includes methacrylate solid 840-51 and acrylate solid 840-52. The fifth solid object 840e corresponds to an example of an object obtained using the modeling apparatus 100.
The movement processing unit 120 moves each of the methacrylate droplets and the acrylate droplets to the modeling region, and the modeling unit 110 performs processing using each of these droplets. Thereby, the target object of the multimaterial containing a methacrylate and an acrylate like the 3rd solid substance 840c can be generated.
 図30は、第5固形物840eの一部を横斜め上から見た図である。図29および図30に示すように、第5固形物840eは内部に空洞を有している。このように、造形装置100を用いて内部に空洞を有する立体形状の目的物を生成することができる。
 また、図30に6.66μmのスケールを示しているように、造形装置100を用いて微小な目的物を生成することができる。
FIG. 30 is a diagram of a part of the fifth solid material 840e as viewed from obliquely above. As shown in FIGS. 29 and 30, the fifth solid material 840e has a cavity inside. In this way, a three-dimensional object having a cavity inside can be generated using the modeling apparatus 100.
In addition, as shown in FIG. 30 with a scale of 6.66 μm, a minute object can be generated using the modeling apparatus 100.
 図31は、造形装置100を用いて得られる目的物に銅めっきを施した第3例を示す。図31に示す第6固形物840fは、図29および図30に示す第5固形物840eに無電解銅めっきを施して得られる。
 図29および図30のメタクリレートの固形物840-51とアクリレートの固形物840-52とのうち、アクリレートの固形物840-52には銅めっきが施されるが、メタクリレートの固形物840-51には銅めっきが施されない。図31の第6固形物840fは、メタクリレートの固形物840-51と銅めっき840-53とを含んでいる。このように、メタクリレートとアクリレートとを含むマルチマテリアルの目的物を生成することで、得られた目的物に対して選択的にめっきを施すことができる。
FIG. 31 shows a third example in which a target obtained using the modeling apparatus 100 is plated with copper. 31 is obtained by performing electroless copper plating on the fifth solid material 840e shown in FIGS. 29 and 30. The sixth solid material 840f shown in FIG.
Of the methacrylate solids 840-51 and acrylate solids 840-52 of FIGS. 29 and 30, copper plating is applied to the acrylate solids 840-52. Is not copper plated. The sixth solid material 840f in FIG. 31 includes methacrylate solid material 840-51 and copper plating 840-53. Thus, by producing a multi-material object containing methacrylate and acrylate, the obtained object can be selectively plated.
 以上のように、移動処理部120は、液滴820を移動させる。造形部110は、所定の造形領域内で液滴820を部分的に固体に変化させることで造形を行う。
 このように、移動処理部120が液滴820を移動させるので、ユーザは、例えば基板810上に材料の液体をスポイトで滴下するなど、手動で液滴を造形領域内に配置する必要がない。造形装置100によればこの点で、液体の材料を固体に変化させて目的物を造形する場合に、液体の材料を設置する負担を軽減することができる。
As described above, the movement processing unit 120 moves the droplet 820. The modeling unit 110 performs modeling by partially changing the droplet 820 to a solid within a predetermined modeling area.
As described above, since the movement processing unit 120 moves the droplet 820, the user does not need to manually dispose the droplet in the modeling region, for example, by dropping the material liquid onto the substrate 810 with a dropper. According to the modeling apparatus 100, the burden of installing the liquid material can be reduced when the target material is modeled by changing the liquid material into a solid.
 また、移動処理部120は、電磁波によるポイントヒータを用いて液滴820に温度勾配を生じさせることで液滴820を移動させる。
 これにより、造形装置100が電磁波によるポイントヒータを備えるという比較的簡単な構成で液滴820を移動させることができる。
The movement processing unit 120 moves the droplet 820 by generating a temperature gradient in the droplet 820 using a point heater using electromagnetic waves.
Accordingly, the droplet 820 can be moved with a relatively simple configuration in which the modeling apparatus 100 includes a point heater using electromagnetic waves.
 また、移動処理部120は、撥水性の素材が部分的に配置されている面上にて液滴820を移動させる。
 撥水性の素材を用いて液滴820が動く経路を示すことで、液滴820を特定の経路に沿って移動させることができる。
In addition, the movement processing unit 120 moves the droplet 820 on the surface where the water-repellent material is partially disposed.
By showing a path along which the droplet 820 moves using a water repellent material, the droplet 820 can be moved along a specific path.
 また、移動処理部120は、液滴820を移動させるべき必要移動距離に応じて、必要移動距離が大きいほどポイントヒータによる加熱量を大きくする。
 ポイントヒータによる加熱量が大きいほど液滴820の移動距離が大きくなるので、造形装置100は、ポイントヒータによる加熱量を調整することで、必要移動量に応じて液滴820の移動量を調整することができる。
Further, the movement processing unit 120 increases the amount of heating by the point heater as the required moving distance increases, according to the required moving distance to which the droplet 820 should be moved.
Since the movement distance of the droplet 820 increases as the heating amount by the point heater increases, the modeling apparatus 100 adjusts the movement amount of the droplet 820 according to the necessary movement amount by adjusting the heating amount by the point heater. be able to.
 また、移動処理部120は、液滴820の濡れ性に応じて、濡れ性が小さいほどポイントヒータによる加熱量を大きくする。
 これにより、液滴820の移動距離に対する濡れ性の影響を低減させることができ、この点で、液滴820の移動距離を濡れ性にかかわらず一定に近付けることができる。
Further, the movement processing unit 120 increases the amount of heating by the point heater as the wettability is smaller according to the wettability of the droplet 820.
Thereby, the influence of the wettability on the moving distance of the droplet 820 can be reduced, and in this respect, the moving distance of the droplet 820 can be made constant regardless of the wettability.
 また、移動処理部120は、液滴820の粘度に応じて、粘度が大きいほど、ポイントヒータによる加熱量を大きくする。
 これにより、液滴820の移動距離に対する粘度の影響を低減させることができ、この点で、液滴820の移動距離を粘度にかかわらず一定に近付けることができる。
In addition, the movement processing unit 120 increases the amount of heating by the point heater as the viscosity increases according to the viscosity of the droplet 820.
Thereby, the influence of the viscosity on the moving distance of the droplet 820 can be reduced, and in this respect, the moving distance of the droplet 820 can be made constant regardless of the viscosity.
 また、移動処理部120は、複数種類の材料の液滴821それぞれを別々のタイミングで移動させる。複数種類の材料の液滴821は、互いに独立している。造形部110は、造形領域内で複数種類の材料の液滴821それぞれを用いて造形を行う。
 これにより、造形装置100は、複数種類の材料を含む目的物を生成することができる。
Further, the movement processing unit 120 moves each of the plurality of types of material droplets 821 at different timings. The plurality of types of material droplets 821 are independent of each other. The modeling unit 110 performs modeling using each of a plurality of types of material droplets 821 in the modeling region.
Thereby, the modeling apparatus 100 can produce | generate the target object containing multiple types of material.
 また、移動処理部120は、材料の液滴821、洗浄液の液滴822それぞれを別々のタイミングで移動させる。造形部110は、造形領域内で材料の液滴821に対して造形を行う。
 これにより、ユーザは、材料の液滴821の移動だけでなく洗浄液の液滴822の移動も人手で行う必要がない。造形装置100によればこの点で、ユーザ負担が軽くて済む。
In addition, the movement processing unit 120 moves the material droplet 821 and the cleaning liquid droplet 822 at different timings. The modeling unit 110 models the material droplet 821 in the modeling area.
This eliminates the need for the user to manually move not only the material droplet 821 but also the cleaning liquid droplet 822. According to the modeling apparatus 100, the burden on the user can be reduced in this respect.
 また、造形部110は、レーザ光(造形用ビームB11)を透過させる基板810に載っている液滴820に対し、液滴820内に焦点を結ぶようにレーザ光を基板810の下から照射する。
 造形部110が基板810の下側からレーザ光を照射させることで、レーザ光は、焦点を結んだ後に液滴820の上面に到達する。したがって、レーザ光が焦点を結ぶ位置は、表面張力による液滴820の形状に応じた屈折の影響を受けない。この点で、造形システム1は、レーザ光の焦点の位置合わせを高精度に行うことができる。
In addition, the modeling unit 110 irradiates the droplet 820 placed on the substrate 810 that transmits the laser beam (modeling beam B11) with laser light from below the substrate 810 so as to focus on the droplet 820. .
When the modeling unit 110 irradiates the laser beam from the lower side of the substrate 810, the laser beam reaches the upper surface of the droplet 820 after focusing. Therefore, the position where the laser beam is focused is not affected by refraction according to the shape of the droplet 820 due to surface tension. In this respect, the modeling system 1 can perform the alignment of the focus of the laser light with high accuracy.
 なお、造形用ビームB11が焦点を結ぶ位置を変化させる方法は、造形部110のレーザ光発射部分の位置を変化させる方法に限定されない。造形部110のレーザ光発射部分に代えて支持台130を移動させるようにしてもよい。
 あるいは、造形部110のレーザ光発射部分が造形用ビームB11を発射する角度を変化させるようにしてもよい。
Note that the method of changing the position where the modeling beam B11 is focused is not limited to the method of changing the position of the laser beam emitting portion of the modeling unit 110. Instead of the laser beam emitting portion of the modeling unit 110, the support base 130 may be moved.
Alternatively, the angle at which the laser beam emitting portion of the modeling unit 110 emits the modeling beam B11 may be changed.
 図32は、造形用ビームB11の角度と焦点の位置との関係の例を示す。
 図32の例で、造形部110のレーザ光発射部分は対物レンズとして機能し、液滴820と反対側(図32の下側)から入射した造形用ビームを屈折させて液滴820の側(図32の上側)へ照射する。
 造形部110のレーザ光発射部分への造形用ビームB11の入射角をθで示す。造形部110のレーザ光発射部分からの造形用ビームB11の出射角をθで示す。出射角θは入射角θに応じて変化する。出射角θの変化に伴って造形用ビームB11が焦点を結ぶ点P11の位置も変化する。したがって、造形部110は、造形用ビームB11のレーザ光発射部分への入射角θを変化させることで、レーザ光発射部分の位置、基板810の位置の何れも変化させる必要なしに、造形用ビームB11が焦点を結ぶ位置を変化させることができる。
 入射角θを変化させる方法として、例えば、造形用ビームB11の光源と造形部110のレーザ光発射部分との間にミラーを設け、ミラーの向きを変化させる方法を用いることができる。
FIG. 32 shows an example of the relationship between the angle of the modeling beam B11 and the position of the focal point.
In the example of FIG. 32, the laser beam emitting portion of the modeling unit 110 functions as an objective lens, and the modeling beam incident from the side opposite to the droplet 820 (the lower side of FIG. 32) is refracted to the side of the droplet 820 ( Irradiate to the upper side of FIG.
The incident angle of the shaped beam B11 to the laser beam emitted portion of the shaping part 110 indicated by theta I. The exit angle of the shaped beam B11 from the laser beam emitted portion of the shaping part 110 indicated by theta O. The outgoing angle θ O varies depending on the incident angle θ I. As the emission angle θ O changes, the position of the point P11 where the modeling beam B11 is focused also changes. Accordingly, the shaped portion 110, by changing the incident angle theta I to the laser beam emitted portion of a shaped beam B11, the position of the laser beam emitted portion, without the need to any position of the substrate 810 is changed, for molding The position where the beam B11 is focused can be changed.
As a method for changing the incident angle theta I, for example, it is possible to use a method of the mirror is provided, to change the orientation of the mirror between the light source and the laser beam emitted portion of the shaped portion 110 of the shaped beam B11.
 なお、滴下口140が、洗浄液に加えて、あるいは洗浄液に代えて、液体の材料を造形領域内に滴下するようにしてもよい。この場合、滴下口140が造形領域内に滴下した材料の液滴820に対し、造形部110が造形用ビームB11を照射して材料の液滴820の一部を固化させる。その後、移動処理部120が加熱用ビームB12を照射して材料の液滴820を造形領域外へ移動させる。これにより、上記のように移動処理部120が材料の液滴820を造形領域内へ移動させる場合と同様、造形を行うことができる。 Note that the dripping port 140 may drop the liquid material into the modeling region in addition to the cleaning liquid or instead of the cleaning liquid. In this case, the modeling unit 110 irradiates the modeling beam B11 on the material droplet 820 dropped by the dropping port 140 into the modeling region, and solidifies a part of the material droplet 820. Thereafter, the movement processing unit 120 irradiates the heating beam B12 to move the material droplet 820 to the outside of the modeling region. Thus, modeling can be performed as in the case where the movement processing unit 120 moves the material droplet 820 into the modeling region as described above.
 なお、制御装置200が行う処理の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することで各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
Note that a program for realizing all or part of the functions performed by the control device 200 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed. Thus, the processing of each unit may be performed. Here, the “computer system” includes an OS and hardware such as peripheral devices.
Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. The program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
 以上、本発明の実施形態を図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and design changes and the like within the scope of the present invention are included.
 本発明は、造形装置、液滴移動装置、目的物生産方法、液滴移動方法及びプログラムに適用してもよい。 The present invention may be applied to a modeling apparatus, a droplet moving device, an object production method, a droplet moving method, and a program.
 1 造形システム
 100 造形装置
 110 造形部
 120 移動処理部
 130 支持台
 140 滴下口
 200 制御装置
 210 表示部
 220 操作入力部
 280 記憶部
 290 処理部
DESCRIPTION OF SYMBOLS 1 Modeling system 100 Modeling apparatus 110 Modeling part 120 Movement processing part 130 Support stand 140 Drip port 200 Control apparatus 210 Display part 220 Operation input part 280 Storage part 290 Processing part

Claims (15)

  1.  液滴を移動させる移動処理部と、
     所定の造形領域内で前記液滴を部分的に固体に変化させることで造形を行う造形部と、
     を備える造形装置。
    A movement processing unit for moving droplets;
    A modeling part that performs modeling by partially changing the droplet into a solid within a predetermined modeling area; and
    A modeling apparatus comprising:
  2.  前記移動処理部は、電磁波によるポイントヒータを用いて前記液滴に温度勾配を生じさせることで前記液滴を移動させる、請求項1に記載の造形装置。 The modeling apparatus according to claim 1, wherein the movement processing unit moves the droplets by generating a temperature gradient in the droplets using a point heater using electromagnetic waves.
  3.  前記移動処理部は、撥水性の素材が部分的に配置されている面上にて前記液滴を移動させる、請求項2に記載の造形装置。 The modeling apparatus according to claim 2, wherein the movement processing unit moves the droplets on a surface on which a water-repellent material is partially disposed.
  4.  前記移動処理部は、前記液滴を移動させるべき距離が大きいほど前記ポイントヒータによる加熱量を大きくする、請求項2または請求項3に記載の造形装置。 The modeling apparatus according to claim 2 or 3, wherein the movement processing unit increases the amount of heating by the point heater as the distance to which the droplet should be moved is larger.
  5.  前記移動処理部は、前記液滴の濡れ性が小さいほど前記ポイントヒータによる加熱量を大きくする、請求項2から4の何れか一項に記載の造形装置。 The modeling apparatus according to any one of claims 2 to 4, wherein the movement processing unit increases a heating amount by the point heater as the wettability of the droplet is smaller.
  6.  前記移動処理部は、前記液滴の粘度が大きいほど、前記ポイントヒータによる加熱量を大きくする、請求項2から5の何れか一項に記載の造形装置。 The modeling apparatus according to any one of claims 2 to 5, wherein the movement processing unit increases the amount of heating by the point heater as the viscosity of the droplet increases.
  7.  前記移動処理部は、互いに異なる種類の材料からなる複数の液滴それぞれを別々のタイミングで移動させ、
     前記造形部は、前記造形領域内で前記複数の液滴それぞれを部分的に固体に変化させることで前記造形を行う、
     請求項1から6の何れか一項に記載の造形装置。
    The movement processing unit moves each of a plurality of droplets made of different types of materials at different timings,
    The modeling unit performs the modeling by partially changing each of the plurality of droplets into a solid in the modeling region.
    The modeling apparatus as described in any one of Claim 1 to 6.
  8.  前記移動処理部は、目的物の材料となる液滴と、洗浄液の液滴とのそれぞれを別々のタイミングで移動させ、
     前記造形部は、前記造形領域内で前記目的物の材料となる液滴を部分的に固体に変化させることで前記目的物を造形する、
     請求項1から7の何れか一項に記載の造形装置。
    The movement processing unit moves each of the droplets as the target material and the droplets of the cleaning liquid at different timings,
    The modeling unit models the object by partially changing a droplet that is a material of the object in the modeling region into a solid,
    The modeling apparatus as described in any one of Claim 1 to 7.
  9.  前記造形部は、レーザ光を透過させる基板に載っている前記液滴に対し、前記液滴内に焦点を結ぶように前記レーザ光を前記基板の下から照射する、請求項1から8の何れか一項に記載の造形装置。 The said modeling part irradiates the said laser beam from the bottom of the said board | substrate so that the said droplet placed on the board | substrate which permeate | transmits a laser beam may be focused in the said droplet. The modeling apparatus according to claim 1.
  10.  目的物の材料となるとともに互いに異なる種類の材料からなる複数の液滴それぞれを別のタイミングで移動させ、また、前記複数の液滴を移動させるタイミングとは異なるタイミングで洗浄液の液滴を移動させる移動処理部と、
     所定の造形領域内で前記複数の液滴を部分的に固体に変化させることで前記目的物を造形する造形部と、
     を備える造形装置。
    A plurality of droplets made of different types of materials as the target material are moved at different timings, and the cleaning liquid droplets are moved at a timing different from the timing at which the plurality of droplets are moved. A movement processing unit;
    A modeling unit that models the object by partially changing the plurality of droplets into a solid within a predetermined modeling region;
    A modeling apparatus comprising:
  11.  電磁波によるポイントヒータを用いて液滴に温度勾配を生じさせることで前記液滴を移動させる移動処理部を備える液滴移動装置。 A droplet moving apparatus comprising a movement processing unit that moves a droplet by generating a temperature gradient in the droplet using a point heater using electromagnetic waves.
  12.  所定の造形領域内で液滴を部分的に固体に変化させることで造形を行う工程と、
     前記造形を行う工程を適用後の液滴を前記造形領域外へ移動させる工程と、
     を含む目的物生産方法。
    A step of performing modeling by partially changing a droplet into a solid within a predetermined modeling region;
    Moving the droplet after application of the step of performing the modeling out of the modeling region;
    Including object production method.
  13.  電磁波によるポイントヒータを用いて液滴に温度勾配を生じさせることで前記液滴を移動させる工程を含む液滴移動方法。 A droplet moving method including a step of moving the droplet by generating a temperature gradient in the droplet using a point heater using electromagnetic waves.
  14.  コンピュータに、
     所定の造形領域内で液滴を部分的に固体に変化させることで造形を行う工程と、
     前記造形を行う工程を適用後の液滴を前記造形領域外へ移動させる工程と、
     を実行させるためのプログラム。
    On the computer,
    A step of performing modeling by partially changing a droplet into a solid within a predetermined modeling region;
    Moving the droplet after application of the step of performing the modeling out of the modeling region;
    A program for running
  15.  コンピュータに、
     電磁波によるポイントヒータを用いて液滴に温度勾配を生じさせることで前記液滴を移動させる工程を実行させるためのプログラム。
    On the computer,
    A program for executing a step of moving the droplet by causing a temperature gradient to the droplet using a point heater by electromagnetic waves.
PCT/JP2019/004425 2018-02-07 2019-02-07 Shaping apparatus, droplet movement device, target object production method, droplet movement method, and program WO2019156170A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019571146A JP7039057B2 (en) 2018-02-07 2019-02-07 Modeling device, droplet transfer device, object production method, droplet transfer method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-020556 2018-02-07
JP2018020556 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019156170A1 true WO2019156170A1 (en) 2019-08-15

Family

ID=67548315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004425 WO2019156170A1 (en) 2018-02-07 2019-02-07 Shaping apparatus, droplet movement device, target object production method, droplet movement method, and program

Country Status (2)

Country Link
JP (1) JP7039057B2 (en)
WO (1) WO2019156170A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179904A1 (en) * 2019-03-07 2020-09-10 国立大学法人横浜国立大学 Shaping apparatus, droplet moving device, object production method, shaping method, droplet moving method, shaping program, and droplet moving program
WO2021100755A1 (en) * 2019-11-18 2021-05-27 国立大学法人横浜国立大学 Molding device, liquid column moving device, molding method, liquid column moving method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032258A (en) * 2010-07-30 2012-02-16 Osaka City Univ Droplet moving device and droplet moving method
JP2014502931A (en) * 2011-01-06 2014-02-06 ルクスエクセル ホールディング ビーヴィ Print head for printing optical structure, upgrade kit for conventional ink jet printer, printer, and printing method
JP2017200762A (en) * 2016-05-03 2017-11-09 ゼロックス コーポレイションXerox Corporation System and method for forming integrated interfaces within three-dimensionally printed object with different build materials
JP2017533851A (en) * 2014-11-06 2017-11-16 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Method for producing silicone elastomer parts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032258A (en) * 2010-07-30 2012-02-16 Osaka City Univ Droplet moving device and droplet moving method
JP2014502931A (en) * 2011-01-06 2014-02-06 ルクスエクセル ホールディング ビーヴィ Print head for printing optical structure, upgrade kit for conventional ink jet printer, printer, and printing method
JP2017533851A (en) * 2014-11-06 2017-11-16 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG Method for producing silicone elastomer parts
JP2017200762A (en) * 2016-05-03 2017-11-09 ゼロックス コーポレイションXerox Corporation System and method for forming integrated interfaces within three-dimensionally printed object with different build materials

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020179904A1 (en) * 2019-03-07 2020-09-10 国立大学法人横浜国立大学 Shaping apparatus, droplet moving device, object production method, shaping method, droplet moving method, shaping program, and droplet moving program
JPWO2020179904A1 (en) * 2019-03-07 2020-09-10
JP7313078B2 (en) 2019-03-07 2023-07-24 国立大学法人横浜国立大学 Modeling device, droplet moving device, object production method, modeling method, droplet moving method, molding program, and droplet moving program
US12036725B2 (en) 2019-03-07 2024-07-16 National University Corporation Yokohama National University Shaping apparatus, droplet moving device, object production method, shaping method, droplet moving method, shaping program, and droplet moving program
WO2021100755A1 (en) * 2019-11-18 2021-05-27 国立大学法人横浜国立大学 Molding device, liquid column moving device, molding method, liquid column moving method, and program
JP7504479B2 (en) 2019-11-18 2024-06-24 国立大学法人横浜国立大学 Modeling apparatus, liquid column moving apparatus, modeling method, liquid column moving method, and program
US12076914B2 (en) 2019-11-18 2024-09-03 National University Corporation Yokohama National University Molding device, liquid column moving device, molding method, liquid column moving method, and program

Also Published As

Publication number Publication date
JP7039057B2 (en) 2022-03-22
JPWO2019156170A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
WO2019156170A1 (en) Shaping apparatus, droplet movement device, target object production method, droplet movement method, and program
Li et al. Micro-scale feature fabrication using immersed surface accumulation
US20160247291A1 (en) Particle control device
JP2005128493A5 (en)
CN105510615A (en) Micro-liquid-drop transportation method based on y-shaped cut lithium niobate wafer
JP2006068762A (en) Method and apparatus of laser beam machining
CN103495805A (en) Laser point printing device
CN112764320A (en) Photoetching exposure system and method for multi-focus laser parallel direct-writing close-packed nano structure
Vidler et al. Ultra-resolution scalable microprinting
JP2011098381A (en) Glass fiber reinforced resin film and cutting method thereof, and glass fiber reinforced resin panel and manufacturing method thereof
Ali et al. 3D‐Printed Holographic Fresnel Lenses
JP3815652B2 (en) Two-photon micro-stereolithography method and apparatus thereof, parts formed by two-photon micro-stereolithography and movable mechanism
JP2013519909A5 (en)
Pan et al. Dynamic resolution control in a laser projection-based stereolithography system
WO2020179904A1 (en) Shaping apparatus, droplet moving device, object production method, shaping method, droplet moving method, shaping program, and droplet moving program
WO2021100755A1 (en) Molding device, liquid column moving device, molding method, liquid column moving method, and program
CN108051985A (en) Composite micro-nano structure bacteriostatic film preparation system and preparation method based on soft lithographic
JP4626446B2 (en) Stereolithography apparatus and stereolithography method
WO2016090153A1 (en) Direct laser writing of 3-d gratings and diffraction optics
Neff et al. Late-Stage Zebrafish Embryo Manipulation and Imaging with Acoustic Tweezers Based on Bessel Beam Trapping
CN107390475B (en) A kind of exposure sources and its exposure method
Jamil et al. Design and Fabrication of Multi-Functional Optical Microbots
JP2004223792A (en) Optical micro-shaping apparatus equipped with focal position confirming function
WO2024024529A1 (en) Shaping device, shaped article production method, and program
Hohnholz et al. Model-based curing depth control of aerosol jet stereolithography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750769

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019571146

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19750769

Country of ref document: EP

Kind code of ref document: A1