JP2012032134A - Heat exchange type ventilation device - Google Patents

Heat exchange type ventilation device Download PDF

Info

Publication number
JP2012032134A
JP2012032134A JP2010275327A JP2010275327A JP2012032134A JP 2012032134 A JP2012032134 A JP 2012032134A JP 2010275327 A JP2010275327 A JP 2010275327A JP 2010275327 A JP2010275327 A JP 2010275327A JP 2012032134 A JP2012032134 A JP 2012032134A
Authority
JP
Japan
Prior art keywords
path
exhaust
heat exchange
air
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010275327A
Other languages
Japanese (ja)
Other versions
JP5617585B2 (en
Inventor
Yosuke Hamada
洋祐 浜田
Yoshimasa Katsumi
佳正 勝見
Takuya Murayama
拓也 村山
Shunji Miyake
俊司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010275327A priority Critical patent/JP5617585B2/en
Priority to PCT/JP2011/003825 priority patent/WO2012004978A1/en
Publication of JP2012032134A publication Critical patent/JP2012032134A/en
Application granted granted Critical
Publication of JP5617585B2 publication Critical patent/JP5617585B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F2012/007Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using a by-pass for bypassing the heat-exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchange type ventilation device for use in a cold region or the like that can ensure a necessary ventilation volume in a room.SOLUTION: The heat exchange type ventilation device includes: a total heat exchange element 13 in which a plurality of partition plates 24 having heat-transfer property, moisture permeability and water resistant property are overlapped with one another at a predetermined interval; and a supply airflow switching unit 8 and an exhaust airflow switching unit 9 for reversing respectively the direction of the exhaust airflow and the direction of the supply airflow flowing in the total heat exchange element 13. The reversing of the exhaust airflow can help evaporate and dissolve dew condensing and freezing in the exhaust path 7 in the total heat exchange element 13. The promotion of a water transfer to a supply air path 6 from an exhaust air path 7 reduces the amount of dew condensing and freezing in the heat exchange type ventilation device. The device operates continuously while preventing the pressure loss in the exhaust air path 7 from extremely increasing. Thus, the heat exchange type ventilation device ensuring a necessary ventilation volume in the room can be obtained.

Description

本発明は、寒冷地等で使用され、室内の空気を室外へ排気する排気流と、室外の空気を室内へ給気する給気流との間で熱交換する熱交換形換気装置に関するものである。   The present invention relates to a heat exchange type ventilator that is used in cold districts or the like and exchanges heat between an exhaust flow for exhausting indoor air to the outside and a supply air flow for supplying outdoor air to the interior. .

この種の熱交換形換気装置は、冬季に室外が、例えば−10℃以下のような低い温度になると、室内から通風された温かい排気流が流れる熱交換素子の流路内において、隣接する室外から通風された冷たい給気によって排気流が冷やされることで、排気流の流路が結露・結氷し目詰まりしていくが、従来の熱交換形換気装置では、この結露・結氷による目詰まりを運転停止によって防止する構成をとっていた(例えば、特許文献1参照)。   This type of heat exchange type ventilator has an adjacent outdoor unit in the flow path of the heat exchange element in which a warm exhaust flow ventilated from the room flows when the outdoor temperature becomes low, for example, −10 ° C. or lower in winter. The exhaust flow is cooled by the cold air supplied from the air, causing the flow path of the exhaust flow to clog due to condensation and icing, but clogging due to condensation and icing is clogged with conventional heat exchange ventilators. The structure which prevents by the operation stop was taken (for example, refer patent document 1).

また、室外の温度が−25℃のようなきわめて低い温度となる地域では、実用に供する熱交換形換気装置がないのが実状であった。   Moreover, in an area where the outdoor temperature is extremely low such as −25 ° C., there is actually no heat exchange type ventilator for practical use.

以下、特許文献1に示す熱交換形換気装置について、図5を参照しながら説明する。   Hereinafter, the heat exchange type ventilator disclosed in Patent Document 1 will be described with reference to FIG.

熱交換器ユニット101は室内の空気と室外の空気の間で熱交換気を行う。図5に示すように、熱交換器ユニット101は、熱交換器102と、室内の空気を室外へ排気し、熱交換器102を経由する排気経路103と、室外の空気を室内へ給気し、熱交換器102を経由する給気経路104と、排気経路103に組み込まれる排気ファン105と、給気経路104に組み込まれる給気ファン106と、室外の空気の外気温度を検出する温度センサー107と、温度センサー107で検出した外気温度によって排気ファン105と給気ファン106の運転制御を行う制御部を備えている。   The heat exchanger unit 101 exchanges heat between indoor air and outdoor air. As shown in FIG. 5, the heat exchanger unit 101 exhausts heat from the heat exchanger 102, indoor air to the outside, and supplies the exhaust air passage 103 that passes through the heat exchanger 102 and the outdoor air to the room. An air supply path 104 that passes through the heat exchanger 102, an exhaust fan 105 that is incorporated in the exhaust path 103, an air supply fan 106 that is incorporated in the air supply path 104, and a temperature sensor 107 that detects the outside air temperature of the outdoor air. And a control unit that controls the operation of the exhaust fan 105 and the supply fan 106 according to the outside air temperature detected by the temperature sensor 107.

そして、熱交換器ユニット101の制御部は、外気温度が−10℃を下回った時に、熱交換器102が凍結することを抑えるため、外気温度に応じて2つの凍結抑制制御を行う。この2つの凍結抑制制御は第1凍結抑制制御及び第2凍結抑制制御である。   And the control part of the heat exchanger unit 101 performs two freezing suppression controls according to outside air temperature, in order to suppress that the heat exchanger 102 freezes, when outside temperature falls below -10 degreeC. These two freeze suppression controls are a first freeze suppression control and a second freeze suppression control.

第1凍結抑制制御は、外気温度が−10℃を下回った場合に、熱交換器102の凍結を抑制する制御であり、排気ファン105を常時作動させ、給気ファン106の動作を60分のうち最初の15分だけ休止させる運転を繰り返す。   The first freezing suppression control is a control for suppressing freezing of the heat exchanger 102 when the outside air temperature falls below −10 ° C., and the exhaust fan 105 is always operated and the operation of the air supply fan 106 is performed for 60 minutes. Repeat the operation to pause for the first 15 minutes.

第2凍結抑制制御は、外気温度が−15℃を下回った場合に、第1凍結抑制制御よりも強力に熱交換器102の凍結を抑制する制御であり、排気ファン105及び給気ファン106の間欠運転を行う。第2凍結抑制制御は、排気ファン105及び給気ファン106を60分休止させた後に5分だけ作動を再開させる運転を繰り返す。   The second freezing suppression control is a control that suppresses freezing of the heat exchanger 102 more strongly than the first freezing suppression control when the outside air temperature falls below −15 ° C., and the exhaust fan 105 and the supply fan 106 are controlled. Perform intermittent operation. In the second freezing suppression control, the exhaust fan 105 and the air supply fan 106 are paused for 60 minutes and then restarted for 5 minutes.

また、この種の熱交換形換気装置には、結露・結氷による目詰まりを、室内の空気を給気流路に導入することで防止しているものもある(例えば、特許文献2参照)。   Some heat exchange type ventilators of this type prevent clogging due to condensation and icing by introducing indoor air into an air supply passage (see, for example, Patent Document 2).

以下、その熱交換形換気装置について図6を参照しながら説明する。   Hereinafter, the heat exchange type ventilator will be described with reference to FIG.

図6に示すように、特許文献2に記載された熱交換形換気装置は、熱交換室108内部に全熱交換素子109を備えた換気装置であり、室外側給気路111によって室外の空気を取り込み、室内側排気路112によって室内の空気を取り込む。   As shown in FIG. 6, the heat exchange ventilator described in Patent Document 2 is a ventilator having a total heat exchange element 109 inside the heat exchange chamber 108, and outdoor air is supplied by an outdoor air supply path 111. And indoor air is taken in by the indoor exhaust passage 112.

取り込まれた室外および室内の空気は全熱交換素子109によって熱交換され、室外の空気は室内側給気路110によって室内へ給気され、室内の空気は室外側排気路113によって室外へ排出される。   The taken-out outdoor and indoor air is heat-exchanged by the total heat exchange element 109, the outdoor air is supplied into the room through the indoor air supply path 110, and the indoor air is discharged outside through the outdoor exhaust path 113. The

さらに室内側排気路112と室外側給気路111とを連通するバイパス路114と、室内側給気路110に取り付けられた温度検出器118とを備え、バイパス路114の入口部分には制御路116と開閉機構117を備えた流体素子115を備えている。   Furthermore, a bypass passage 114 that communicates the indoor exhaust passage 112 and the outdoor air supply passage 111 and a temperature detector 118 attached to the indoor air supply passage 110 are provided, and a control passage is provided at the inlet of the bypass passage 114. 116 and a fluid element 115 having an opening / closing mechanism 117.

温度検出器118において所定温度以下の低温が検知された場合、開閉機構117が制御路116の開口部を閉塞させ、所定値を超える場合、前記開口部を開放するように構成されている。従って、給気流の温度が所定値以下の場合は室内排気の少なくとも一部がバイパス路114を介して室外側給気路111へと導入されるが、所定値を超えるときには室内側排気路112の室内排気流はバイパス路114に導入されること無く全熱交換素子109へと供給されるようになっている。   The opening / closing mechanism 117 closes the opening of the control path 116 when the temperature detector 118 detects a low temperature equal to or lower than the predetermined temperature, and opens the opening when the temperature exceeds a predetermined value. Therefore, when the temperature of the air supply airflow is equal to or lower than the predetermined value, at least a part of the indoor exhaust is introduced into the outdoor air supply passage 111 via the bypass passage 114. The indoor exhaust flow is supplied to the total heat exchange element 109 without being introduced into the bypass passage 114.

さらに、この種の熱交換形換気装置には、結露・結氷による目詰まりを、熱交換エレメントに当たる給気流および排気流の流れを反転させることで防止しているものもある(例えば、特許文献3参照)。   Furthermore, some heat exchange type ventilators of this type prevent clogging due to condensation and icing by reversing the flow of the supply air flow and exhaust flow that hit the heat exchange element (for example, Patent Document 3). reference).

以下、その熱交換形換気装置について図7を参照しながら説明する。   Hereinafter, the heat exchange type ventilator will be described with reference to FIG.

図7に示すように、特許文献3に記載された換気装置119は、支持具120とキャップ121、中板122、中間筒123、ファン124、エレメント部125、仕切板126、給排気口129を備え、屋内と屋外を仕切る壁130に設置されている。円筒状のエレメント部125には、フィン127を備えたヒートパイプ128が軸方向にそって複数個並列に設けられている。この換気装置119は左右対称形に形成されており、壁130に取り付けられた状態で、換気装置119の軸方向に沿ってその中心部に壁が位置し、換気装置119は壁130によって左右に2分され、一方の半分が屋外に露出し、他方の半分が屋内に露出した状態となる。   As shown in FIG. 7, the ventilation device 119 described in Patent Document 3 includes a support 120 and a cap 121, an intermediate plate 122, an intermediate cylinder 123, a fan 124, an element portion 125, a partition plate 126, and an air supply / exhaust port 129. It is installed on the wall 130 that separates indoor and outdoor. A plurality of heat pipes 128 including fins 127 are provided in parallel in the axial direction in the cylindrical element portion 125. The ventilator 119 is formed in a bilaterally symmetric shape, and when attached to the wall 130, a wall is located at the center along the axial direction of the ventilator 119, and the ventilator 119 is left and right by the wall 130. Divided into two, one half is exposed outdoors and the other half is exposed indoors.

図7(a)に示す状態で使用する場合、ファン124の回転により、屋外(S)からの冷気が矢印のように支持具120の右側の開口部とキャップ121の給排気口129から吸入され、中板122の開口部および中間筒123、エレメント部125の各仕切板126の上側の空間を通過し、中間筒123の給排気口129から屋内(R)へ放出される。また、屋内の暖気は矢印のように、支持具120の左側の開口部とキャップ121の給排気口129から吸入され、中板122の開口部および中間筒123、エレメント部125の各仕切板126の下側の空間を通過し、中間筒123の給排気口129から屋外(S)へ放出される。   When used in the state shown in FIG. 7A, cold air from the outside (S) is sucked in from the opening on the right side of the support tool 120 and the air supply / exhaust port 129 of the cap 121 as shown by the arrow by the rotation of the fan 124. Then, it passes through the opening of the intermediate plate 122 and the intermediate cylinder 123 and the space above each partition plate 126 of the element part 125, and is discharged indoors (R) from the air supply / exhaust port 129 of the intermediate cylinder 123. Further, indoor warm air is sucked in from the opening on the left side of the support 120 and the air supply / exhaust port 129 of the cap 121 as shown by the arrows, and the partition plate 126 of the opening of the intermediate plate 122 and the intermediate cylinder 123 and the element portion 125. It passes through the lower space and is discharged from the air supply / exhaust port 129 of the intermediate cylinder 123 to the outside (S).

外気の気温が0℃以下になる場合は、一定時間この状態で運転したら、次に図7(b)に示すように、キャップ121、中板122、中間筒123を一体化した部材を180°回転させてやる。すると、ファン124の回転方向はそのままで、ヒートパイプ128に当たる風の流れがそれぞれ逆になり、凍結の可能性の高いヒートパイプ128に屋内暖気が最初に当たることになる。   When the temperature of the outside air is 0 ° C. or lower, after operating in this state for a certain period of time, as shown in FIG. 7B, a member in which the cap 121, the intermediate plate 122, and the intermediate cylinder 123 are integrated is 180 °. I'll rotate it. Then, while the rotation direction of the fan 124 remains the same, the flow of the wind hitting the heat pipe 128 is reversed, and the indoor warm air hits the heat pipe 128 having a high possibility of freezing first.

特開2003−148780号公報JP 2003-148780 A 特開昭60−64146号公報JP 60-64146 A 特開昭60−155841号公報JP-A-60-155841

このような従来の熱交換形換気装置においては、特許文献1に例示したように、冬季に室外が低い温度になると、温かい排気流が、熱交換素子内部の排気経路において隣接する低温の給気流に冷却されて結露・結氷し、排気経路が目詰まりしていく課題に対し、運転を所定の時間停止する構成となっていた。そのため、例えば給気のみを停止させると室内が負圧となって建物の隙間から室外の空気が流入し、室内空間にコールドドラフトや結露を生じさせるという課題を有し、給気と排気の両方を停止させると、室内の必要換気量を確保することが困難となるという課題を有していた。   In such a conventional heat exchange type ventilator, as exemplified in Patent Document 1, when the outdoor temperature becomes low in winter, the warm exhaust air flow becomes a low-temperature air supply air adjacent to the exhaust passage inside the heat exchange element. In response to the problem that the exhaust path is clogged due to cooling and condensation, the operation is stopped for a predetermined time. Therefore, for example, if only the supply air is stopped, the room becomes negative pressure, and the outdoor air flows from the gaps in the building, causing a cold draft and condensation in the indoor space. When the system is stopped, there is a problem that it is difficult to secure the necessary ventilation volume in the room.

また、特許文献2に例示したように、運転を停止せず、暖かい排気流をバイパスさせ、冷たい給気流に混入した後に熱交換を行う構成の熱交換形換気装置も考案されている。この構成では、バイパスによって導かれた高温多湿の室内の空気が、室外より取り込まれた低温低湿の空気と混合するため、混合部位において結露や結氷が生じるという課題を有する上、室内の空気を給気流へ混入するため、換気装置としての換気効率が低下し、同様に室内の必要換気量を確保することが困難となるという課題を有していた。   Further, as exemplified in Patent Document 2, a heat exchange type ventilator has been devised in which the operation is not stopped, the warm exhaust flow is bypassed, and heat is exchanged after mixing in the cold supply air flow. In this configuration, the hot and humid indoor air guided by the bypass mixes with the low-temperature and low-humidity air taken in from the outside, so that there is a problem that condensation or icing occurs at the mixing site, and the indoor air is supplied. Since it is mixed in the airflow, the ventilation efficiency as a ventilation device is lowered, and similarly, there is a problem that it is difficult to secure the necessary ventilation amount in the room.

さらに、特許文献3に例示したように、熱交換素子に当たる給気流および排気流の流れを反転させるという構成の熱交換形換気装置も考案されている。この構成では、給気流および排気流が反転し、熱交換素子内部に結氷した氷を融解させることで発生する水および結露をすべて蒸発させることが難しく、水が低温の排気経路内に蓄積する。そのため、特に積層型の熱交換素子を用いた場合、素子内部および排気経路の圧力損失が大きく増大し、室内の必要換気量を確保することが困難となるという課題を有している。さらに、熱交換前の高温多湿の室内の空気と熱交換前の極低温の空気や、熱交換後の低温の空気と熱交換前の極低温の空気が反転により混合されるため、反転部位において結露や結氷が発生し、反転部位が機能不全になる可能性があるという課題を有している。   Furthermore, as exemplified in Patent Document 3, a heat exchange type ventilator configured to reverse the flow of the supply airflow and the exhaust airflow hitting the heat exchange element has been devised. In this configuration, the supply air flow and the exhaust flow are reversed, and it is difficult to evaporate all the water and condensation generated by melting the ice formed in the heat exchange element, and water accumulates in the low temperature exhaust path. For this reason, particularly when a laminated heat exchange element is used, the pressure loss inside the element and the exhaust path is greatly increased, which makes it difficult to secure the necessary ventilation volume in the room. In addition, the high-temperature and humid indoor air before heat exchange and the cryogenic air before heat exchange, and the low-temperature air after heat exchange and the cryogenic air before heat exchange are mixed by inversion. There is a problem that condensation or icing occurs, and the inversion site may malfunction.

そこで本発明は、上記従来の課題を解決するものであり、寒冷地など、熱交換素子内部に結露・結氷が生じる条件下において、室内の必要換気量を確保し、連続運転することができる熱交換形換気装置を提供することを目的とする。   Therefore, the present invention solves the above-described conventional problems, and in a cold district or the like, a heat exchange element that secures a necessary ventilation amount in a room and can continuously operate under conditions where condensation or icing occurs inside the heat exchange element. An object is to provide a replaceable ventilation device.

そして、この目的を達成するために、本発明は、伝熱性と透湿性、耐水性を有する仕切板を所定間隔で複数層に重ね合わせ、室外の空気を室内へ取り込む給気経路と室内の空気を室外へ排出する排気経路が前記仕切板によって構成された各層間を交互に通るように形成した全熱交換素子を備え、前記給気経路と前記排気経路にそれぞれ通風するための第1送風手段と第2送風手段を備え、前記給気経路と前記排気経路をそれぞれ流れる気体の向きを反転させる反転手段を備え、前記排気経路を流れる気体の向きが反転することで、前記排気経路へ発生した結露が前記排気経路内へ蒸発し、排気経路内の湿度を高めることを特徴とする熱交換形換気装置としたものであり、これにより所期の目的を達成するものである。   In order to achieve this object, the present invention provides a heat supply path, moisture permeability, and water-resistant partition plates that are stacked on a plurality of layers at predetermined intervals, and an air supply path for taking outdoor air into the room and indoor air. The first air blowing means is provided with a total heat exchange element formed so that the exhaust path for discharging the air to the outside alternately passes through each of the layers formed by the partition plate, and ventilates the air supply path and the exhaust path, respectively. And second air blowing means, and reversing means for reversing the direction of the gas flowing through the air supply path and the exhaust path, respectively, and the direction of the gas flowing through the exhaust path is reversed to generate the exhaust path. The heat exchange type ventilator is characterized in that condensation evaporates into the exhaust path and the humidity in the exhaust path is increased, thereby achieving the intended purpose.

また本発明は、伝熱性と透湿性、耐水性を有する仕切板を所定間隔で複数層に重ね合わせ、室外の空気を室内へ取り込む給気経路と室内の空気を室外へ排出する排気経路が前記仕切板によって構成された各層間を交互に通るように形成した全熱交換素子を備え、前記給気経路と前記排気経路にそれぞれ通風するための第1送風手段と第2送風手段を備え、前記給気経路と前記排気経路をそれぞれ流れる気体の向きを反転させる反転手段を備え、前記排気経路を流れる気体の向きが反転することで、前記排気経路へ発生した氷が、前記排気経路内へ融解して前記排気経路内を移動することを特徴とする熱交換形換気装置としたものであり、これにより所期の目的を達成するものである。   In the present invention, the partition plate having heat conductivity, moisture permeability, and water resistance is stacked on a plurality of layers at predetermined intervals, and an air supply path for taking outdoor air into the room and an exhaust path for discharging indoor air to the outside are A total heat exchange element formed so as to alternately pass through the respective layers constituted by the partition plate, and a first air blowing means and a second air blowing means for ventilating the air supply path and the exhaust path, respectively, Reversing means for reversing the direction of the gas flowing through the air supply path and the exhaust path is provided, and the ice generated in the exhaust path is melted into the exhaust path by reversing the direction of the gas flowing through the exhaust path. Thus, the heat exchanging ventilator is characterized in that it moves in the exhaust path, thereby achieving the intended purpose.

本発明によれば、伝熱性と透湿性、耐水性を有する仕切板を所定間隔で複数層に重ね合わせ、室外の空気を室内へ取り込む給気経路と室内の空気を室外へ排出する排気経路が前記仕切板によって構成された各層間を交互に通るように形成した全熱交換素子を備え、前記給気経路と前記排気経路にそれぞれ通風するための第1送風手段と第2送風手段を備え、前記給気経路と前記排気経路をそれぞれ流れる気体の向きを反転させる反転手段を備え、前記排気経路を流れる気体の向きが反転することで、前記排気経路へ発生した結露が前記排気経路内へ蒸発し、排気経路内の湿度を高めることを特徴とする構成とした。   According to the present invention, the heat transfer, moisture permeability, and water-resistant partition plates are stacked on a plurality of layers at predetermined intervals, and the air supply path for taking outdoor air into the room and the exhaust path for discharging indoor air to the outside are provided. A total heat exchange element formed so as to alternately pass through each of the layers constituted by the partition plate, and a first air blowing unit and a second air blowing unit for ventilating the air supply path and the exhaust path, respectively. Reversing means for reversing the direction of the gas flowing through the air supply path and the exhaust path is provided, and the dew generated in the exhaust path evaporates into the exhaust path by reversing the direction of the gas flowing through the exhaust path. And it was set as the structure characterized by raising the humidity in an exhaust path.

この構成により、全熱交換素子内部の排気経路に結露・結氷が生じた場合、排気流路を流れる空気を反転させることで、暖かい排気流でこの結露・結氷を蒸発させることができる。   With this configuration, when condensation or icing occurs in the exhaust path inside the total heat exchange element, the condensation and icing can be evaporated with a warm exhaust flow by inverting the air flowing through the exhaust passage.

その上、熱交換素子の仕切板に透湿性を持つ素材を使用したことで、排気経路から給気経路へ水分を移動させることができる。   In addition, by using a moisture-permeable material for the partition plate of the heat exchange element, moisture can be moved from the exhaust path to the air supply path.

この時、冷たい給気流と暖かい排気流との熱交換によって発生した結露・結氷は、仕切板が相対的に低温となっている部位、即ち、熱交換後の冷却された排気流が熱交換素子より流れ出す出口近傍に主に生じる。そのため、熱交換素子内部の排気流の向きを反転させると、熱交換前の暖かい排気流が、反転前の出口近傍、即ち反転後の入口近傍に当たる部位の結露・結氷を蒸発・融解させ、熱交換素子内部を通過して熱交換を行う。   At this time, dew condensation and icing generated by heat exchange between the cold supply air flow and the warm exhaust flow is a part where the partition plate is at a relatively low temperature, that is, the cooled exhaust flow after the heat exchange is a heat exchange element. It occurs mainly in the vicinity of the outlet from which it flows more. Therefore, when the direction of the exhaust flow inside the heat exchange element is reversed, the warm exhaust flow before heat exchange evaporates and melts condensation and ice on the area near the outlet before reversal, that is, near the inlet after reversal. Heat exchange is performed through the inside of the exchange element.

上記の仕組みによって、反転後は排気経路入口近傍の排気流の湿度を上昇させることができるため、給気経路と排気経路のそれぞれの熱交換素子入口における絶対湿度差が増加し、排気経路から給気経路への水分の移動を促進することができる。   With the above mechanism, the humidity of the exhaust flow in the vicinity of the exhaust path inlet can be increased after inversion, so the absolute humidity difference at the heat exchange element inlet of each of the air supply path and the exhaust path increases, and the air is supplied from the exhaust path. It is possible to promote the movement of moisture into the air path.

この結果、排気流が素子内部の排気経路内を移動する際に、仕切板を介して水分を給気経路へ移動させることができ、さらにその移動を促進することができるため、熱交換素子の排気経路に発生する結露・結氷量を減少させることができる。   As a result, when the exhaust flow moves in the exhaust path inside the element, moisture can be moved to the supply path via the partition plate, and the movement can be further promoted. It is possible to reduce the amount of condensation and icing that occurs in the exhaust path.

排気流は、熱交換後の温度が低いために保持できる水分量には限界があり、反転によって蒸発した水分を排気流だけで回収することは難しい。一方で、熱交換後の給気流は温度が高く、保持できる水分量も多い。このため、上記の構成を用いることで給気径路へ水分を移動させ、移動を促進することで、より多くの熱交換素子内部の結露・結氷を蒸発させ取り除くことが可能となる。   The exhaust stream has a limit in the amount of water that can be held because the temperature after heat exchange is low, and it is difficult to recover the water evaporated by reversal only by the exhaust stream. On the other hand, the air supply after heat exchange has a high temperature and a large amount of water that can be retained. For this reason, it becomes possible to evaporate and remove more dew condensation and icing in the heat exchange element by moving moisture to the air supply path by using the above-described configuration and accelerating the movement.

その上、熱交換素子を通過した後の排気経路を流れる排気流の湿度が減少するため、排気経路において熱交換前後の空気が混合する部位を備えたとしても発生する結露・結氷量を低減することができ、動作不全となる可能性を抑制できる。   In addition, since the humidity of the exhaust stream flowing through the exhaust path after passing through the heat exchange element is reduced, the amount of dew condensation / freezing that occurs even if the exhaust path has a portion where air before and after heat exchange mixes is reduced. The possibility of malfunctioning can be suppressed.

以上の作用により、熱交換形換気装置内部で発生する結露・結氷量を低減し、排気経路の圧力損失が大きく増加することを抑制しつつ連続運転を行うことで、寒冷地において室内の必要換気量を確保することができるという効果を得ることができる。   The above operation reduces the amount of condensation and icing generated inside the heat exchange type ventilator and performs continuous operation while suppressing a significant increase in pressure loss in the exhaust path, so that necessary indoor ventilation is possible in cold regions. The effect that the amount can be secured can be obtained.

また、本発明によれば、伝熱性と透湿性、耐水性を有する仕切板を所定間隔で複数層に重ね合わせ、室外の空気を室内へ取り込む給気経路と室内の空気を室外へ排出する排気経路が前記仕切板によって構成された各層間を交互に通るように形成した全熱交換素子を備え、前記給気経路と前記排気経路にそれぞれ通風するための第1送風手段と第2送風手段を備え、前記給気経路と前記排気経路をそれぞれ流れる気体の向きを反転させる反転手段を備え、前記排気経路を流れる気体の向きが反転することで、前記排気経路へ発生した氷が、前記排気経路内へ融解して前記排気経路内を移動することを特徴とする構成にした。   Further, according to the present invention, the partition plates having heat conductivity, moisture permeability, and water resistance are stacked on a plurality of layers at predetermined intervals, and the air supply path for taking outdoor air into the room and the exhaust for discharging the indoor air to the outside A total heat exchange element formed so that a path alternately passes between each layer constituted by the partition plate, and a first blowing unit and a second blowing unit for ventilating the supply path and the exhaust path, respectively. Provided with reversing means for reversing the directions of the gas flowing through the air supply path and the exhaust path, respectively, so that the ice generated in the exhaust path is reversed by reversing the direction of the gas flowing through the exhaust path. It melted inward and moved in the exhaust path.

この構成により、全熱交換素子内部の排気経路に結氷が生じた場合、全熱交換素子内部の排気流の向きを反転させることで、暖かい排気流でこの結氷を融解させることができる。   With this configuration, when icing occurs in the exhaust path inside the total heat exchange element, the icing can be melted with a warm exhaust flow by reversing the direction of the exhaust flow inside the total heat exchange element.

その上、熱交換素子の仕切板に透湿性を持つ素材を使用したことで、排気経路から給気経路へ水分を移動させることができる。   In addition, by using a moisture-permeable material for the partition plate of the heat exchange element, moisture can be moved from the exhaust path to the air supply path.

この時、冷たい給気流と暖かい排気流との熱交換によって発生した結露・結氷は、仕切板が相対的に低温となっている部位、即ち、熱交換後の冷却された排気流が熱交換素子より流れ出す出口近傍に主に生じる。そのため、熱交換素子内部の排気流の向きを反転させると、熱交換前の暖かい排気流が、反転前の出口近傍、即ち反転後の入口近傍に当たる部位の結露・結氷を蒸発・融解させ、熱交換素子内部を通過して熱交換を行う。   At this time, dew condensation and icing generated by heat exchange between the cold supply air flow and the warm exhaust flow is a part where the partition plate is at a relatively low temperature, that is, the cooled exhaust flow after the heat exchange is a heat exchange element. It occurs mainly in the vicinity of the outlet from which it flows more. Therefore, when the direction of the exhaust flow inside the heat exchange element is reversed, the warm exhaust flow before heat exchange evaporates and melts condensation and ice on the area near the outlet before reversal, that is, near the inlet after reversal. Heat exchange is performed through the inside of the exchange element.

上記の仕組みによって、反転後は、排気経路入口近傍の結氷を融解させたことによる液体の水と結露を、排気流と共に全熱交換素子内部の排気経路内を移動させることができる。仕切板上を排気経路の水分が液体の形で移動することで、排気経路内の空気中の水分が仕切板上へ凝縮するという過程を省いて、水が仕切板へ吸収される。このことにより、排気経路内に含まれる水分が仕切板へ移動することを促進することができるため、排気経路から仕切板への水移動抵抗が排気経路から給気経路への水移動に対し支配的である部位において、排気経路から給気経路への水分の移動を促進することができる。   By the above mechanism, after the reversal, the liquid water and dew condensation caused by melting the ice near the exhaust path inlet can be moved in the exhaust path inside the total heat exchange element together with the exhaust flow. By moving the moisture in the exhaust path in the form of a liquid on the partition plate, the process of the moisture in the air in the exhaust path condensing on the partition plate is omitted, and the water is absorbed by the partition plate. As a result, it is possible to promote the movement of moisture contained in the exhaust path to the partition plate, so that the water movement resistance from the exhaust path to the partition plate dominates the water movement from the exhaust path to the air supply path. It is possible to promote the movement of moisture from the exhaust path to the air supply path at the target site.

この結果、排気流が素子内部の排気経路内を移動する際に、水分を給気経路へ移動させ、さらに移動を促進させることができるため、素子内部の排気経路に発生する結露・結氷量を減少させることができる。   As a result, when the exhaust flow moves in the exhaust path inside the element, moisture can be moved to the air supply path, and the movement can be further promoted. Therefore, the amount of condensation and icing generated in the exhaust path inside the element can be reduced. Can be reduced.

排気流は、熱交換後の温度が低いために保持できる水分量には限界があり、反転によって蒸発した水分を排気流だけで回収することは難しい。一方で、熱交換後の給気流は温度が高く、保持できる水分量も多い。このため、上記の構成を用いることで給気径路へ水分を移動させ、移動を促進することで、より多くの熱交換素子内部の結露・結氷を蒸発させ取り除くことが可能となる。   The exhaust stream has a limit in the amount of water that can be held because the temperature after heat exchange is low, and it is difficult to recover the water evaporated by reversal only by the exhaust stream. On the other hand, the air supply after heat exchange has a high temperature and a large amount of water that can be retained. For this reason, it becomes possible to evaporate and remove more dew condensation and icing in the heat exchange element by moving moisture to the air supply path by using the above-described configuration and accelerating the movement.

さらに、熱交換素子を通過した後の排気経路を流れる空気の湿度が減少するため、排気経路中において熱交換前後の空気が混合する部位を備えたとしても発生する結露・結氷量を低減することができ、動作不全となる可能性を抑制できる。   Furthermore, since the humidity of the air flowing through the exhaust path after passing through the heat exchange element is reduced, the amount of condensation and icing that occurs even if there is a part in the exhaust path where the air before and after heat exchange mixes is reduced. Can suppress the possibility of malfunction.

以上の作用により、熱交換形換気装置内部で発生する結露・結氷量を低減し、排気経路の圧力損失が大きく増加することを抑制しつつ連続運転を行うことで、寒冷地においても室内の必要換気量を確保することができるという効果を得ることができる。   The above operation reduces the amount of condensation and icing that occurs inside the heat exchange type ventilator and reduces the pressure loss in the exhaust path while suppressing the increase in pressure. The effect that the amount of ventilation can be secured can be obtained.

本発明の実施の形態1の熱交換形換気装置を示す概略断面図Schematic sectional view showing a heat exchange type ventilator according to Embodiment 1 of the present invention. 本発明の実施の形態1における給気流および排気流反転後の熱交換形換気装置を示す概略断面図Schematic sectional view showing a heat exchange type ventilator after inversion of supply air flow and exhaust air flow in Embodiment 1 of the present invention 本発明の実施の形態1の熱交換素子と給気切替部とを結ぶ経路を示す概略断面図Schematic sectional view showing a path connecting the heat exchange element and the air supply switching unit according to the first embodiment of the present invention. 本発明の実施の形態1の熱交換素子を示す概略図Schematic which shows the heat exchange element of Embodiment 1 of this invention 従来の熱交換器ユニットを示す概略断面図Schematic sectional view showing a conventional heat exchanger unit 従来の熱交換器ユニットを示す概略断面図Schematic sectional view showing a conventional heat exchanger unit 従来の熱交換器ユニットを示す概略断面図Schematic sectional view showing a conventional heat exchanger unit

本発明の請求項1記載の熱交換形換気装置は、伝熱性と透湿性、耐水性を有する仕切板を所定間隔で複数層に重ね合わせ、室外の空気を室内へ取り込む給気経路と室内の空気を室外へ排出する排気経路が、前記仕切板によって構成された各層間を交互に通るように形成した全熱交換素子を備え、前記給気経路と前記排気経路にそれぞれ通風するための第1送風手段と第2送風手段を備え、前記給気経路と前記排気経路をそれぞれ流れる気体の向きを反転させる反転手段を備え、前記排気経路を流れる気体の向きが反転することで、前記排気経路へ発生した結露が前記排気経路内へ蒸発し、前記排気経路内の湿度を高めるという構成を有する。   The heat exchange type ventilator according to claim 1 of the present invention includes a heat supply path, a moisture permeability, and a water-resistant partition plate stacked on a plurality of layers at predetermined intervals, and an air supply path for taking outdoor air into the room and an indoor The exhaust path for exhausting air to the outside includes a total heat exchange element formed so as to alternately pass through each of the layers formed by the partition plate, and a first for ventilating the air supply path and the exhaust path, respectively. A reversing unit including a blowing unit and a second blowing unit, reversing directions of the gas flowing through the air supply path and the exhaust path, respectively, and by reversing the direction of the gas flowing through the exhaust path, to the exhaust path; The generated condensation evaporates into the exhaust path, and the humidity in the exhaust path is increased.

この構成により、全熱交換素子内部の排気経路に結露・結氷が生じた場合、排気流路を流れる空気を反転させることで、暖かい排気流でこの結露・結氷を蒸発させることができる。   With this configuration, when condensation or icing occurs in the exhaust path inside the total heat exchange element, the condensation and icing can be evaporated with a warm exhaust flow by inverting the air flowing through the exhaust passage.

その上、熱交換素子の仕切板に透湿性を持つ素材を使用したことで、排気経路から給気経路へ水分を移動させることができる。   In addition, by using a moisture-permeable material for the partition plate of the heat exchange element, moisture can be moved from the exhaust path to the air supply path.

この時、冷たい給気流と暖かい排気流との熱交換によって発生した結露・結氷は、仕切板が相対的に低温となっている部位、即ち、熱交換後の冷却された排気流が熱交換素子より流れ出す出口近傍に主に生じる。そのため、熱交換素子内部の排気流の向きを反転させると、熱交換前の暖かい排気流が、反転前の出口近傍、即ち反転後の入口近傍に当たる部位の結露・結氷を蒸発・融解させ、熱交換素子内部を通過して熱交換を行う。   At this time, dew condensation and icing generated by heat exchange between the cold supply air flow and the warm exhaust flow is a part where the partition plate is at a relatively low temperature, that is, the cooled exhaust flow after the heat exchange is a heat exchange element. It occurs mainly in the vicinity of the outlet from which it flows more. Therefore, when the direction of the exhaust flow inside the heat exchange element is reversed, the warm exhaust flow before heat exchange evaporates and melts condensation and ice on the area near the outlet before reversal, that is, near the inlet after reversal. Heat exchange is performed through the inside of the exchange element.

上記の仕組みによって、反転後は排気経路入口近傍の排気流の湿度を上昇させることができるため、給気経路と排気経路のそれぞれの熱交換素子入口における絶対湿度差が増加し、排気経路から給気経路への水分の移動を促進することができる。   With the above mechanism, the humidity of the exhaust flow in the vicinity of the exhaust path inlet can be increased after inversion, so the absolute humidity difference at the heat exchange element inlet of each of the air supply path and the exhaust path increases, and the air is supplied from the exhaust path. It is possible to promote the movement of moisture into the air path.

この結果、排気流が素子内部の排気経路内を移動する際に、仕切板を介して水分を給気経路へ移動させることができ、さらにその移動を促進することができるため、熱交換素子の排気経路に発生する結露・結氷量を減少させることができる。   As a result, when the exhaust flow moves in the exhaust path inside the element, moisture can be moved to the supply path via the partition plate, and the movement can be further promoted. It is possible to reduce the amount of condensation and icing that occurs in the exhaust path.

排気流は、熱交換後の温度が低いために保持できる水分量には限界があり、反転によって蒸発した水分を排気流だけで回収することは難しい。一方で、熱交換後の給気流は温度が高く、保持できる水分量も多い。このため、上記の構成を用いることで給気径路へ水分を移動させ、移動を促進することで、より多くの熱交換素子内部の結露・結氷を蒸発させ取り除くことが可能となる。   The exhaust stream has a limit in the amount of water that can be held because the temperature after heat exchange is low, and it is difficult to recover the water evaporated by reversal only by the exhaust stream. On the other hand, the air supply after heat exchange has a high temperature and a large amount of water that can be retained. For this reason, it becomes possible to evaporate and remove more dew condensation and icing in the heat exchange element by moving moisture to the air supply path by using the above-described configuration and accelerating the movement.

その上、熱交換素子を通過した後の排気経路を流れる空気の湿度が減少するため、排気経路中において熱交換前後の空気が混合する部位で発生する結露・結氷量を低減することができ、動作不全となる可能性を抑制できる。   In addition, since the humidity of the air flowing through the exhaust path after passing through the heat exchange element is reduced, it is possible to reduce the amount of condensation and icing that occurs at the site where the air before and after heat exchange mixes in the exhaust path, The possibility of malfunctioning can be suppressed.

以上の作用により、熱交換形換気装置内部で発生する結露・結氷量を低減し、排気経路の圧力損失が大きく増加することを抑制しつつ連続運転を行うことで、寒冷地においても室内の必要換気量を確保することができるという効果を奏する。   The above operation reduces the amount of condensation and icing that occurs inside the heat exchange type ventilator and reduces the pressure loss in the exhaust path while suppressing the increase in pressure. There is an effect that the amount of ventilation can be secured.

また、伝熱性と透湿性、耐水性を有する仕切板を所定間隔で複数層に重ね合わせ、室外の空気を室内へ取り込む給気経路と室内の空気を室外へ排出する排気経路が前記仕切板によって構成された各層間を交互に通るように形成した全熱交換素子を備え、前記給気経路と前記排気経路にそれぞれ通風するための第1送風手段と第2送風手段を備え、前記給気経路と前記排気経路をそれぞれ流れる気体の向きを反転させる反転手段を備え、前記排気経路を流れる気体の向きが反転することで、前記排気経路へ発生した氷が融解して、前記排気経路内を移動することを特徴とする構成としてもよい。   In addition, a partition plate having heat conductivity, moisture permeability, and water resistance is stacked on a plurality of layers at predetermined intervals, and an air supply path for taking outdoor air into the room and an exhaust path for discharging indoor air to the outside are provided by the partition board. A total heat exchange element formed so as to alternately pass between each configured layer, and a first blower and a second blower for ventilating the supply passage and the exhaust passage, respectively, and the supply passage And reversing means for reversing the direction of the gas flowing through the exhaust path, and by reversing the direction of the gas flowing through the exhaust path, the ice generated in the exhaust path melts and moves in the exhaust path It is good also as a structure characterized by doing.

この構成により、全熱交換素子内部の排気経路に結氷が生じた場合、全熱交換素子内部の排気流の向きを反転させることで、暖かい排気流でこの結氷を融解させることができる。   With this configuration, when icing occurs in the exhaust path inside the total heat exchange element, the icing can be melted with a warm exhaust flow by reversing the direction of the exhaust flow inside the total heat exchange element.

その上、熱交換素子の仕切板に透湿性を持つ素材を使用したことで、排気経路から給気経路へ水分を移動させることができる。   In addition, by using a moisture-permeable material for the partition plate of the heat exchange element, moisture can be moved from the exhaust path to the air supply path.

この時、冷たい給気流と暖かい排気流との熱交換によって発生した結露・結氷は、仕切板が相対的に低温となっている部位、即ち、熱交換後の冷却された排気流が熱交換素子より流れ出す出口近傍に主に生じる。そのため、熱交換素子内部の排気流の向きを反転させると、熱交換前の暖かい排気流が、反転前の出口近傍、即ち反転後の入口近傍に当たる部位の結露・結氷を蒸発・融解させ、熱交換素子内部を通過して熱交換を行う。   At this time, dew condensation and icing generated by heat exchange between the cold supply air flow and the warm exhaust flow is a part where the partition plate is at a relatively low temperature, that is, the cooled exhaust flow after the heat exchange is a heat exchange element. It occurs mainly in the vicinity of the outlet from which it flows more. Therefore, when the direction of the exhaust flow inside the heat exchange element is reversed, the warm exhaust flow before heat exchange evaporates and melts condensation and ice on the area near the outlet before reversal, that is, near the inlet after reversal. Heat exchange is performed through the inside of the exchange element.

上記の仕組みによって、反転後は、排気経路入口近傍の結氷を融解させたことによる液体の水と結露を、排気流と共に全熱交換素子内部の排気経路内を移動させることができる。仕切板上を排気経路の水分が液体の形で移動することで、排気経路内の空気中の水分が仕切板上へ凝縮するという過程を省いて、水が仕切板へ吸収される。このことにより、排気経路内に含まれる水分が仕切板へ移動することを促進することができるため、排気経路から仕切板への水移動抵抗が排気経路から給気経路への水移動に対し支配的である部位において、排気経路から給気経路への水分の移動を促進することができる。   By the above mechanism, after the reversal, the liquid water and dew condensation caused by melting the ice near the exhaust path inlet can be moved in the exhaust path inside the total heat exchange element together with the exhaust flow. By moving the moisture in the exhaust path in the form of a liquid on the partition plate, the process of the moisture in the air in the exhaust path condensing on the partition plate is omitted, and the water is absorbed by the partition plate. As a result, it is possible to promote the movement of moisture contained in the exhaust path to the partition plate, so that the water movement resistance from the exhaust path to the partition plate dominates the water movement from the exhaust path to the air supply path. It is possible to promote the movement of moisture from the exhaust path to the air supply path at the target site.

この結果、排気流が素子内部の排気経路内を移動する際に、水分を給気経路へ移動させ、さらに移動を促進させることができるため、素子内部の排気経路に発生する結露・結氷量を減少させることができる。   As a result, when the exhaust flow moves in the exhaust path inside the element, moisture can be moved to the air supply path, and the movement can be further promoted. Therefore, the amount of condensation and icing generated in the exhaust path inside the element can be reduced. Can be reduced.

排気流は、熱交換後の温度が低いために保持できる水分量には限界があり、反転によって蒸発した水分を排気流だけで回収することは難しい。一方で、熱交換後の給気流は温度が高く、保持できる水分量も多い。このため、上記の構成を用いることで給気径路へ水分を移動させ、移動を促進することで、より多くの熱交換素子内部の結露・結氷を蒸発させ取り除くことが可能となる。   The exhaust stream has a limit in the amount of water that can be held because the temperature after heat exchange is low, and it is difficult to recover the water evaporated by reversal only by the exhaust stream. On the other hand, the air supply after heat exchange has a high temperature and a large amount of water that can be retained. For this reason, it becomes possible to evaporate and remove more dew condensation and icing in the heat exchange element by moving moisture to the air supply path by using the above-described configuration and accelerating the movement.

さらに、熱交換素子を通過した後の排気経路を流れる空気の湿度が減少するため、排気経路中において熱交換前後の空気が混合する部位で発生する結露・結氷量を低減することができ、動作不全となる可能性を抑制できる。   In addition, since the humidity of the air flowing through the exhaust path after passing through the heat exchange element decreases, the amount of condensation and icing that occurs at the part where the air before and after heat exchange in the exhaust path mixes can be reduced, and operation The possibility of failure can be suppressed.

以上の作用により、熱交換形換気装置内部で発生する結露・結氷量を低減し、排気経路の圧力損失が大きく増加することを抑制しつつ連続運転を行うことで、寒冷地においても室内の必要換気量を確保することができるという効果を奏する。   The above operation reduces the amount of condensation and icing that occurs inside the heat exchange type ventilator and reduces the pressure loss in the exhaust path while suppressing the increase in pressure. There is an effect that the amount of ventilation can be secured.

また、全熱交換素子の排気経路を構成する仕切板表面が撥水性を備えることを特徴とする構成としてもよい。   Moreover, it is good also as a structure characterized by the partition plate surface which comprises the exhaust path of a total heat exchange element having water repellency.

この構成により、排気経路において発生した結露や結氷の液滴径や結晶径が小さくなり、結露や結氷の表面積が増加するため、風路反転後の蒸発を促進することができる。   With this configuration, the condensation and ice droplet diameters and crystal diameters generated in the exhaust path are reduced, and the surface area of the condensation and ice is increased. Therefore, evaporation after the air path inversion can be promoted.

また、排気経路上に付着した水分の移動抵抗を減少することで、排気流によって熱交換素子内部の水滴を素子外部へ排出しやすくなる。   In addition, by reducing the movement resistance of moisture adhering to the exhaust path, water droplets inside the heat exchange element can be easily discharged to the outside by the exhaust flow.

さらに、排気経路内を液体の水が移動して仕切板への水分の吸着が促進されるため、給気経路への湿度の移動を促進することができる。   Further, since liquid water moves in the exhaust path and moisture adsorption to the partition plate is promoted, the movement of humidity to the air supply path can be promoted.

また、気体の向きを反転させる給気切替部および排気切替部を備え、給気経路において、室外と全熱交換素子とを接続する経路に環境条件を検知する第1環境検知手段を備え、前記第1環境検知手段を用いて検知された環境が所定の設定範囲を外れた場合に、前記給気切替部および前記排気切替部が前記給気経路および排気経路の切り替えを行うことを特徴とする構成としてもよい。   Further, the air supply switching unit and the exhaust gas switching unit for reversing the direction of the gas, including a first environment detection means for detecting an environmental condition in a path connecting the outdoor and the total heat exchange element in the air supply path, The air supply switching unit and the exhaust gas switching unit perform switching between the air supply route and the exhaust route when the environment detected using the first environment detection means is out of a predetermined setting range. It is good also as a structure.

この構成により、室外から流れ込む空気の環境条件を検知することができ、検知した環境条件が熱交換素子内に結露・結氷が生じる環境条件であった場合に、給気経路および排気経路の切り替えを行って、結露・結氷を取り除くことができる。   With this configuration, it is possible to detect the environmental conditions of the air that flows from the outside, and when the detected environmental conditions are those that cause condensation or icing in the heat exchange element, the supply path and the exhaust path are switched. Go and get rid of condensation and icing.

また、気体の向きを反転させる給気切替部および排気切替部を備え、排気経路において、室外と全熱交換素子とを接続する経路に環境条件を検知する第2環境検知手段を備え、前記第2環境検知手段を用いて検出された環境が所定の設定範囲を外れた場合に、前記給気切替部および前記排気切替部が給気経路および前記排気経路の切り替えを行うことを特徴とする構成としてもよい。   And an air supply switching unit that reverses the direction of the gas, and an exhaust switching unit. The exhaust path includes a second environment detection unit that detects an environmental condition in a path connecting the outdoor unit and the total heat exchange element. (2) The configuration in which the air supply switching unit and the exhaust gas switching unit switch between the air supply route and the exhaust route when the environment detected by using the environment detection means is out of a predetermined setting range. It is good.

この構成により、室外へ排出される空気の環境条件を検知することができ、検知した環境条件が熱交換素子内に結露・結氷が生じる環境条件であった場合に、給気経路および排気経路の切り替えを行って、結露・結氷を取り除くことができる。   With this configuration, it is possible to detect the environmental conditions of the air exhausted to the outside, and when the detected environmental conditions are those that cause condensation or icing in the heat exchange element, the air supply path and the exhaust path Switching can be done to remove condensation and icing.

また、気体の向きを反転させる給気切替部および排気切替部を備え、排気経路に圧力を検知する圧力検知手段を備え、前記圧力検知手段によって検出された圧力が所定の圧力範囲を外れた場合に、給気切替部および排気切替部が給気経路および前記排気経路の切り替えを行うことを特徴とする構成としてもよい。   In addition, when an air supply switching unit and an exhaust switching unit for reversing the direction of gas are provided, pressure detection means for detecting pressure in the exhaust path is provided, and the pressure detected by the pressure detection means is out of a predetermined pressure range In addition, the air supply switching unit and the exhaust gas switching unit may switch between the air supply route and the exhaust route.

この構成により、熱交換素子内部に生じた結露・結氷による熱交換素子の圧力損失の増加を検知することができ、圧力損失が所定の値を越えた時点で、給気経路および排気経路の切り替えを行って、結露・結氷を取り除くことができる。   With this configuration, it is possible to detect an increase in the pressure loss of the heat exchange element due to condensation or icing that occurs inside the heat exchange element, and when the pressure loss exceeds a predetermined value, the supply path and the exhaust path are switched. To remove condensation and icing.

また、気体の向きを反転させる給気切替部および排気切替部を備え、前記給気切替部および前記排気切替部が給気経路および排気経路の切り替えを開始した場合、所定の時間、前記給気切替部および前記排気切替部による切り替えを所定の間隔で継続することを特徴とする構成としてもよい。   In addition, an air supply switching unit and an exhaust gas switching unit that reverse the direction of the gas are provided, and when the air supply switching unit and the exhaust gas switching unit start switching the air supply path and the exhaust path, the air supply is switched for a predetermined time. The switching by the switching unit and the exhaust switching unit may be continued at a predetermined interval.

この構成により、熱交換素子内部に生じた結露・結氷による影響が検知できなくなった後も一定の間、継続して給気経路および排気経路の切り替えを行うことができ、熱交換素子を含む排気経路に生じた結露・結氷の融解・蒸発による除去を促進することができる。   With this configuration, it is possible to continue switching between the air supply path and the exhaust path for a certain period even after the influence of condensation or icing that has occurred inside the heat exchange element can no longer be detected. It is possible to promote the removal of condensation and ice formed on the route by melting and evaporation.

また、気体の向きを反転させる給気切替部および排気切替部を備えた熱交換形換気装置であって、前記給気切替部および前記排気切替部にて前記給気経路および前記排気経路を切り替える間、第1送風手段および第2送風手段が停止することを特徴とする構成としてもよい。   Moreover, it is a heat exchange type ventilator provided with an air supply switching unit and an exhaust gas switching unit that reverse the direction of gas, and switches the air supply path and the exhaust path at the air supply switching unit and the exhaust gas switching unit. During this time, the first air blowing means and the second air blowing means may be stopped.

この構成により、給気経路および排気経路を切り替えている間に、通風によって給気切替部および排気切替部にてそれぞれ熱交換前後の気体が混合され、結露・結氷が発生することを抑制することができる。   With this configuration, while switching between the air supply path and the exhaust path, the air before and after heat exchange is mixed in the air supply switching section and the exhaust switching section due to ventilation, thereby suppressing the occurrence of condensation and icing. Can do.

また、給気切替部および排気切替部にて経路を切り替える間、第1送風手段および第2送風手段が停止し、切り替え終了後、所定の時間、前記第1送風手段および前記第2送風手段の搬送動力を増加させることを特徴とする構成としてもよい。   Further, the first air blowing unit and the second air blowing unit are stopped while the air supply switching unit and the exhaust air switching unit are switching the routes. After the switching is completed, the first air blowing unit and the second air blowing unit are stopped for a predetermined time. It is good also as a structure characterized by increasing conveyance power.

この構成により、経路切り替え時に一時的に第2送風手段の動力を増加させることで、切り替え後の排気流の全圧を高め、結露・結氷によって部分的に圧力損失の上昇した素子内部の排気経路の各層へ空気を流すことができるため、素子内部の排気経路の結露・結氷の融解・蒸発を促進することができる。   With this configuration, the power of the second air blowing means is temporarily increased at the time of path switching to increase the total pressure of the exhaust flow after switching, and the exhaust path inside the element in which the pressure loss has partially increased due to condensation or icing Therefore, it is possible to promote dew condensation / melting / evaporation in the exhaust path inside the element.

さらに、第1送風手段の動力を増加させることで、素子内部の排気経路と素子内部の給気経路の圧力差を低減し、熱交換素子内部における空気の漏れを抑制することができる。   Furthermore, by increasing the power of the first air blowing means, the pressure difference between the exhaust path inside the element and the air supply path inside the element can be reduced, and air leakage inside the heat exchange element can be suppressed.

また、給気経路および排気経路が断熱性を持った材料からなることを特徴とする構成としてもよい。   Further, the air supply path and the exhaust path may be made of a heat-insulating material.

この構成により、給気経路および排気経路からの熱の逃げを抑えられ、熱の逃げがある箇所の表面において、気体が冷やされ、結露・結氷することを抑制することができる。   With this configuration, it is possible to suppress the escape of heat from the air supply path and the exhaust path, and it is possible to prevent the gas from being cooled and dew condensation / freezing on the surface where heat escapes.

また、給気経路が蓄える熱量を抑えることができるため、給気経路を切り替えた場合に、熱交換を行う前の冷たい給気流によって蓄冷した給気経路へ、熱交換を行った後の暖かい給気流が流れ込むことによる結露・結氷の発生を抑制することができる。   In addition, since the amount of heat stored in the air supply path can be suppressed, when the air supply path is switched, the warm air supply after the heat exchange is performed to the air supply path that has been stored by the cold airflow before the heat exchange. It is possible to suppress the formation of condensation and icing due to the flow of air.

同様に、排気経路が蓄える熱量を抑えることができるため、排気経路を切り替えた場合にも、熱交換を行った後の冷たい排気流によって蓄冷した排気経路へ、熱交換を行う前の暖かい排気流が流れ込むことによる結露・結氷の発生を抑制することができる。   Similarly, since the amount of heat stored in the exhaust path can be suppressed, even when the exhaust path is switched, the warm exhaust stream before heat exchange is performed to the exhaust path that has been stored cold by the cold exhaust stream after heat exchange. It is possible to suppress the formation of condensation and icing due to the flow of water.

また、給気経路および/または排気経路に含まれている、給気切替部および/または排気切替部と全熱交換素子とを接続する経路の一部分を2本の経路に分割し、前記全熱交換素子通過前の空気を分割した前記経路の片方に、前記全熱交換素子通過後の空気を分割した前記経路のもう一方に流すことを特徴とする構成としてもよい。   Further, a part of the path connecting the supply air switching unit and / or the exhaust gas switching unit and the total heat exchange element included in the supply air path and / or the exhaust path is divided into two paths, and the total heat The configuration may be such that the air after passing through the total heat exchange element is caused to flow to the other side of the divided path through one side of the path through which the air before passing through the exchange element is divided.

この構成により、給気切替部または排気切替部から全熱交換素子を繋ぐ経路を流れる、全熱交換素子通過前の空気と全熱交換素子通過後の空気を流す経路を一部分割することができる。   With this configuration, it is possible to partially divide the path through which the air before passing through the total heat exchange element and the air after passing through the total heat exchange element flowing through the path connecting the total heat exchange element from the supply air switching unit or the exhaust gas switching unit. .

そのため、給気経路を切り替えた場合に、熱交換を行う前の冷たい給気流によって蓄冷した給気経路へ、熱交換を行った後の暖かい給気流が流れ込むことによる結露・結氷の発生を抑制することができる。   For this reason, when the air supply path is switched, the occurrence of condensation and icing due to the warm air supply air flowing after heat exchange flows into the air supply path that has been stored cold by the cold airflow before heat exchange is performed. be able to.

また、前記分割した2本の経路に、互いの経路に流れる風の向きを一方向に規定する風向調整板が備えられている構成を特徴とする構成としてもよい。   Moreover, it is good also as a structure characterized by the structure provided with the wind direction adjustment board which prescribes | regulates the direction of the wind which flows into a mutual path | route to the said two path | routes to one direction.

この構成により、給気切替部または排気切替部から全熱交換素子を繋ぐ経路を流れる、全熱交換素子通過前の空気と全熱交換素子通過後の空気を流す経路を一部分割することができ、風向調整板によって、各々の経路を流れる空気の方向を規定することができる。   With this configuration, it is possible to partially divide the path through which the air before passing through the total heat exchange element and the air after passing through the total heat exchange element flowing through the path connecting the total heat exchange element from the supply air switching unit or the exhaust gas switching unit. The direction of the air flowing through each path can be defined by the wind direction adjusting plate.

そのため、給気経路を切り替えた場合に、熱交換を行う前の冷たい給気流によって蓄冷した給気経路へ、熱交換を行った後の暖かい給気流が流れ込むことによる結露・結氷の発生を抑制することができる。   For this reason, when the air supply path is switched, the occurrence of condensation and icing due to the warm air supply air flowing after heat exchange flows into the air supply path that has been stored cold by the cold airflow before heat exchange is performed. be able to.

また、気体の向きを反転させる給気切替部および排気切替部を備え、前記給気切替部および/または前記排気切替部に発生する結露・結氷を給気経路および/または排気経路を切り替える時に蒸発・融解させる構成としてもよい。   In addition, an air supply switching unit and an exhaust gas switching unit that reverse the direction of the gas are provided, and condensation or icing generated in the air supply switching unit and / or the exhaust gas switching unit is evaporated when the air supply route and / or the exhaust route is switched. -It is good also as the structure made to melt | dissolve.

この構成により、給気経路や排気経路を切り替えるときに、熱交換前後の空気が混合されることによって発生する結露や結氷を、経路を切り替えることで融解させ、給気経路や排気経路の圧力損失の上昇や、氷の詰まりによる切替部の動作不全の発生を抑制することができる。   With this configuration, when switching between the air supply path and the exhaust path, dew condensation and icing generated by mixing the air before and after heat exchange are melted by switching the path, and the pressure loss in the air supply path and exhaust path And the occurrence of malfunction of the switching unit due to ice clogging can be suppressed.

また、給気切替部に発生する結露・結氷を給気経路切り替え時に、室内へ給気される空気の熱を用いて蒸発・融解させる構成としてもよい。   Moreover, it is good also as a structure which evaporates and melts the dew condensation / icing generate | occur | produced in an air supply switching part using the heat of the air supplied indoors at the time of an air supply path | route switch.

この構成により、排気流との熱交換によって暖められた給気流の熱を利用して、給気切替部に発生した結露・結氷を蒸発・融解させることができる。そのため、電力を消費せずに、給気経路の圧力損失の上昇や氷の詰まりによる給気切替部の動作不全の発生を抑制することができる。   With this configuration, it is possible to evaporate / melt the dew condensation / ice formation generated in the air supply switching unit using the heat of the air supply air heated by heat exchange with the exhaust flow. Therefore, it is possible to suppress the occurrence of malfunction of the air supply switching unit due to an increase in pressure loss in the air supply path or clogging of ice without consuming electric power.

また、排気切替部に発生する結露・結氷を排気経路の切り替え時に室内から吸い込まれた空気の熱を用いて蒸発・融解させる構成としてもよい。   Moreover, it is good also as a structure which evaporates and melts the dew condensation / icing generate | occur | produced in an exhaust_gas | exhaustion switching part using the heat | fever of the air suck | inhaled from the room | chamber interior at the time of switching an exhaust path.

この構成により、排気流の熱を利用して、排気切替部に発生した結露・結氷を蒸発・融解させることで、電力を消費せずに、排気経路の圧力損失の上昇や氷の詰まりによる排気切替部の動作不全の発生を抑制することができる。   With this configuration, the heat from the exhaust flow is used to evaporate and melt the condensation and ice generated in the exhaust switching unit, thereby eliminating exhaust due to increased pressure loss in the exhaust path and clogging of ice without consuming electricity. Occurrence of malfunction of the switching unit can be suppressed.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1および図2に本実施の形態における熱交換形換気装置の断面図を示す。後述するように、図1および図2はそれぞれお互いの図に対し、風路が反転した状態を示す。
(Embodiment 1)
1 and 2 are sectional views of the heat exchange type ventilator according to the present embodiment. As will be described later, FIGS. 1 and 2 each show a state in which the air path is reversed with respect to each other.

本実施の形態における熱交換形換気装置は、本体箱5に、室外より室外の空気を取り込む室外吸込口1と、室内より室内の空気を取り込む室内吸込口2、室外へ室内の空気を排出する室外排出口3、室内へ室外の空気を給気する室内給気口4を備えた形状である。   The heat exchange type ventilator according to the present embodiment discharges indoor air into the main body box 5, an outdoor air inlet 1 for taking in outdoor air from the outside, an indoor air inlet 2 for taking in indoor air from the indoor, and the outdoor. It has a shape including an outdoor discharge port 3 and an indoor air supply port 4 for supplying outdoor air into the room.

また、室外吸込口1と室内給気口4とを連通させた給気経路6と、室内吸込口2と室外排出口3とを連通させた排気経路7を備え、給気経路6を流れる給気流を送風するための第1送風手段として、第1送風ファン14および第1原動機16を備え、排気経路7を流れる排気流を送風するための第2送風手段として、第2送風ファン15および第2原動機17を備えている。そして、排気流と給気流との間で熱交換および湿度交換を行う全熱交換素子13を備えている。   In addition, an air supply path 6 in which the outdoor suction port 1 and the indoor air supply port 4 communicate with each other and an exhaust path 7 in which the indoor suction port 2 and the outdoor discharge port 3 communicate with each other are provided. The first blower 14 and the first prime mover 16 are provided as the first blower for blowing the airflow, and the second blower 15 and the second blower are provided as the second blower for blowing the exhaust flow flowing through the exhaust passage 7. Two prime movers 17 are provided. And the total heat exchange element 13 which performs heat exchange and humidity exchange between an exhaust flow and a supply airflow is provided.

全熱交換素子13を流れる給気流および排気流の向きを反転させる反転手段として、給気切替部8および排気切替部9を備え、給気経路6は給気切替部8によって、排気経路7は排気切替部9によってその経路を切り替えることができ、その結果、全熱交換素子13内部を流れる排気流と給気流の向きを反転させることができる。切り替えによって全熱交換素子13内部を流れる排気流と給気流が反転した状態を図1および図2に示した。   As reversing means for reversing the directions of the supply air flow and the exhaust flow flowing through the total heat exchange element 13, a supply air switching unit 8 and an exhaust gas switching unit 9 are provided. The path can be switched by the exhaust gas switching unit 9, and as a result, the direction of the exhaust gas flow and the supply air flow flowing through the total heat exchange element 13 can be reversed. FIGS. 1 and 2 show a state in which the exhaust flow and the supply air flow flowing through the total heat exchange element 13 are reversed by switching.

この構成により、全熱交換素子13の仕切板24に透湿性を持つ素材を使用したことで、排気経路7から給気経路6へ水分を移動させることができる。   With this configuration, moisture can be transferred from the exhaust path 7 to the air supply path 6 by using a moisture-permeable material for the partition plate 24 of the total heat exchange element 13.

その上、全熱交換素子13内部の排気経路7に結露・結氷が生じた場合、排気経路7を流れる排気流を反転させることで、暖かい排気流でこの結露・結氷を蒸発・融解させることができる。   In addition, when condensation or icing occurs in the exhaust path 7 inside the total heat exchange element 13, the condensation or icing can be evaporated and melted with a warm exhaust flow by reversing the exhaust flow through the exhaust path 7. it can.

この時、冷たい給気流と暖かい排気流との熱交換によって発生した結露・結氷は、仕切板24が相対的に低温となっている部位、即ち、熱交換後の冷却された排気流が全熱交換素子13より流れ出す出口近傍に主に生じる。そのため、全熱交換素子13内部の排気流の向きを反転させると、熱交換前の暖かい排気流が、反転前の出口近傍、即ち反転後の入口近傍に当たる部位の結露・結氷を蒸発・融解させ、全熱交換素子13内部を通過して熱交換を行う。   At this time, the dew condensation / freezing generated by heat exchange between the cold supply air flow and the warm exhaust flow is caused by the portion where the partition plate 24 is at a relatively low temperature, that is, the cooled exhaust flow after the heat exchange is totally heated. It occurs mainly in the vicinity of the outlet that flows out of the exchange element 13. Therefore, when the direction of the exhaust flow inside the total heat exchange element 13 is reversed, the warm exhaust flow before the heat exchange evaporates and melts the condensation / ice formation in the vicinity of the outlet before the reverse, that is, the vicinity of the inlet after the reverse. Then, heat exchange is performed through the total heat exchange element 13.

上記の仕組みによって、反転後は排気経路7入口近傍の排気流の湿度を上昇させることができるため、給気経路6と排気経路7のそれぞれの全熱交換素子13入口における絶対湿度差が増加し、排気経路7から給気経路6への水分の移動を促進することができる。   By the above mechanism, the humidity of the exhaust flow near the inlet of the exhaust path 7 can be increased after inversion, so that the absolute humidity difference at the inlet of the total heat exchange element 13 in each of the air supply path 6 and the exhaust path 7 increases. The movement of moisture from the exhaust path 7 to the air supply path 6 can be promoted.

さらに上記の仕組みによって、反転後は、排気経路7入口近傍の結氷を融解させたことによる液体の水と結露を、排気流と共に全熱交換素子13内部の排気経路7内を移動させることができる。仕切板24上を排気経路7の水分が液体の形で移動することで、排気経路7内の空気中の水分が仕切板24上へ凝縮するという過程を省いて、水が仕切板24へ吸収される。このことにより、排気経路7内に含まれる水分が仕切板24へ移動することを促進することができるため、排気経路7から仕切板24への水移動抵抗が排気経路7から給気経路6への水移動に対し支配的である部位において、排気経路7から給気経路6への水分の移動を促進することができる。   Furthermore, by the above mechanism, after the reversal, the liquid water and dew condensation caused by melting the ice near the inlet of the exhaust path 7 can be moved in the exhaust path 7 inside the total heat exchange element 13 together with the exhaust flow. . The moisture in the exhaust path 7 moves in the form of a liquid on the partition plate 24, so that the process of the moisture in the air in the exhaust path 7 condensing on the partition plate 24 is omitted, and the water is absorbed by the partition plate 24. Is done. As a result, it is possible to promote the movement of moisture contained in the exhaust path 7 to the partition plate 24, so that the resistance to water movement from the exhaust path 7 to the partition plate 24 is from the exhaust path 7 to the air supply path 6. It is possible to promote the movement of moisture from the exhaust path 7 to the air supply path 6 at a site that is dominant with respect to the water movement.

この結果、排気流が全熱交換素子13内部の排気経路7内を移動する際に、仕切板24を介して水分を給気経路6へ移動させることができ、さらにその移動を促進することができるため、全熱交換素子13の排気経路7に発生する結露・結氷量を減少させることができる。   As a result, when the exhaust flow moves in the exhaust path 7 inside the total heat exchange element 13, moisture can be moved to the air supply path 6 via the partition plate 24, and the movement can be further promoted. Therefore, the amount of dew condensation and icing generated in the exhaust path 7 of the total heat exchange element 13 can be reduced.

その上、全熱交換素子13を通過した後の排気経路7を流れる排気流の湿度が減少するため、排気経路7において熱交換前後の空気が混合する部位で発生する結露・結氷量を低減することができる。   In addition, since the humidity of the exhaust stream flowing through the exhaust path 7 after passing through the total heat exchange element 13 is reduced, the amount of dew condensation / freezing generated at the part where the air before and after heat exchange in the exhaust path 7 is mixed is reduced. be able to.

以上の作用により、熱交換形換気装置内部で発生する結露・結氷量を低減し、排気経路7の圧力損失が極端に増加することを抑制しつつ連続運転を行うことで、寒冷地においても室内の必要換気量を確保することができる。   The above operation reduces the amount of condensation and icing generated inside the heat exchange ventilator, and performs continuous operation while suppressing the pressure loss of the exhaust path 7 from increasing extremely, so that it can be used indoors even in cold regions. The necessary ventilation volume can be secured.

続いて、風路反転機構について図1および図2を用いて説明する。   Subsequently, the air path reversing mechanism will be described with reference to FIGS. 1 and 2.

給気切替部8は、給気経路6を切り替える手段として、第1風路調整板19および第2風路調整板20を備え、第1風路調整板19および第2風路調整板20を駆動するための第3原動機18を備えている。第3原動機18によって第1風路調整板19と第2風路調整板20が駆動され、それぞれ給気切替部8内部を摺動する構造となっている。   The air supply switching unit 8 includes a first air path adjustment plate 19 and a second air path adjustment plate 20 as means for switching the air supply path 6, and the first air path adjustment plate 19 and the second air path adjustment plate 20 are provided. A third prime mover 18 for driving is provided. The first air path adjusting plate 19 and the second air path adjusting plate 20 are driven by the third prime mover 18 and are configured to slide inside the air supply switching unit 8.

給気切替部8では、室外吸込口1から導入された給気流が2本の経路に分割され、分割された経路の中間に室内給気口4へ接続された経路が位置している。そして、それら3本の経路は、それぞれ第1風路調整板19と第2風路調整板20が摺動する空間へと接続されており、さらに第1風路調整板19と第2風路調整板20が摺動する空間は、全熱交換素子13の給気経路6へと接続されている2本の経路と連通している。   In the air supply switching unit 8, the air supply air introduced from the outdoor suction port 1 is divided into two routes, and a route connected to the indoor air supply port 4 is located in the middle of the divided route. These three paths are connected to spaces in which the first air path adjustment plate 19 and the second air path adjustment plate 20 slide, respectively, and further, the first air path adjustment plate 19 and the second air path. The space in which the adjustment plate 20 slides communicates with two paths connected to the air supply path 6 of the total heat exchange element 13.

排気切替部9は、気体の向きを反転させる手段として、第3風路調整板21および第4風路調整板22を備え、第3風路調整板21および第4風路調整板22を駆動するための第3原動機18を備えている。第3原動機18によって第3風路調整板21と第4風路調整板22が駆動され、それぞれ排気切替部9内部を摺動する構造となっている。   The exhaust gas switching unit 9 includes a third air path adjustment plate 21 and a fourth air path adjustment plate 22 as means for reversing the direction of gas, and drives the third air path adjustment plate 21 and the fourth air path adjustment plate 22. A third prime mover 18 is provided. The third prime mover 18 drives the third air path adjustment plate 21 and the fourth air path adjustment plate 22 to slide inside the exhaust gas switching unit 9.

排気切替部9では、室外排出口3へ排気される排気流が2本の経路に分割され、分割された経路の中間に室内吸込口2へ接続された経路が位置している。そして、それら3本の経路は、それぞれ第3風路調整板21と第4風路調整板22が摺動する空間へと接続されており、さらに第3風路調整板21と第4風路調整板22が摺動する空間は、全熱交換素子13の排気経路7へと接続されている2本の経路と連通している。   In the exhaust switching unit 9, the exhaust flow exhausted to the outdoor discharge port 3 is divided into two routes, and a route connected to the indoor suction port 2 is located in the middle of the divided route. These three paths are connected to spaces where the third air path adjustment plate 21 and the fourth air path adjustment plate 22 slide, respectively, and further, the third air path adjustment plate 21 and the fourth air path. The space in which the adjustment plate 22 slides communicates with two paths connected to the exhaust path 7 of the total heat exchange element 13.

給気切替部8および排気切替部9による給気流と排気流の反転機構を説明するにあたり、まず、図1を説明する。   In explaining the reversal mechanism of the air supply flow and the exhaust flow by the air supply switching unit 8 and the exhaust gas switching unit 9, first, FIG. 1 will be described.

給気切替部8において、室外吸込口1から導入された2本の給気流の経路のうち、第1風路調整板19が図面中で左側の経路を塞ぐと共に、給気切替部8と全熱交換素子13を接続する2本の経路のうち、図面中で左側の経路と室内給気口4を接続する。第2風路調整板20は室外吸込口1から導入された給気流が給気切替部8内部を通じて直接、室内給気口4へ流れこむことを防ぐと共に、給気切替部8と全熱交換素子13を接続する2本の経路のうち、図面中で右側の経路と室外吸込口1を接続し、左側の経路と室内給気口4を接続する。   In the air supply switching unit 8, among the two air supply paths introduced from the outdoor suction port 1, the first air path adjustment plate 19 closes the left path in the drawing, and the air supply switching unit 8 and all the air supply switching units 8. Of the two paths connecting the heat exchange element 13, the left path in the drawing and the indoor air inlet 4 are connected. The second air path adjustment plate 20 prevents the air supply air introduced from the outdoor air inlet 1 from flowing directly into the indoor air inlet 4 through the air supply switching unit 8 and also performs total heat exchange with the air supply switching unit 8. Of the two paths connecting the elements 13, the right path in the drawing is connected to the outdoor inlet 1, and the left path is connected to the indoor air inlet 4.

この結果、室外吸込口1から第1送風ファン14によって吸い込まれた給気流は、給気切替部8の図中右側の経路を通過し、全熱交換素子13内部にて熱交換して、給気切替部8中央の経路を通過して室内給気口4から室内へ給気される。   As a result, the air supply air sucked by the first blower fan 14 from the outdoor air inlet 1 passes through the path on the right side of the air supply switching unit 8 in the drawing, exchanges heat inside the total heat exchange element 13, and is supplied The air is supplied into the room through the indoor air supply port 4 through the route in the center of the air switching unit 8.

同様に、排気切替部9において、第3風路調整板21は、室内吸込口2から導入された排気流が排気切替部9内部を通じて直接、室外排出口3へ流れこむことを防ぐと共に、排気切替部9と全熱交換素子13を接続する2本の経路のうち、図面中で右側の経路と室内吸込口2を接続し、左側の経路と室外排出口3を接続する。第4風路調整板22は、室外排出口3へ排気される排気流の流れる2本の経路のうち、図面中で右側の経路を塞ぐと共に、排気切替部9と全熱交換素子13を接続する2本の経路のうち、図面中で右側の経路と室内吸込口2を接続する。この結果、室内吸込口2から吸い込まれた排気流は、排気切替部9の図中中央の経路を通過し、全熱交換素子13内部にて熱交換して、排気切替部9左側の経路を通過して、第2送風ファン15によって、室外排出口3から室外へ排気される。   Similarly, in the exhaust switching unit 9, the third air path adjusting plate 21 prevents the exhaust flow introduced from the indoor suction port 2 from flowing directly into the outdoor exhaust port 3 through the exhaust switching unit 9 and Of the two paths connecting the switching unit 9 and the total heat exchange element 13, the right path and the indoor suction port 2 are connected in the drawing, and the left path and the outdoor discharge port 3 are connected. The fourth air path adjusting plate 22 closes the right path in the drawing among the two paths through which the exhaust flow exhausted to the outdoor outlet 3 flows, and connects the exhaust switching unit 9 and the total heat exchange element 13. Of the two paths to be performed, the right path in the drawing and the indoor suction port 2 are connected. As a result, the exhaust flow sucked from the indoor suction port 2 passes through the central path in the drawing of the exhaust gas switching unit 9 and exchanges heat inside the total heat exchange element 13, and passes through the path on the left side of the exhaust gas switching unit 9. Then, the air is exhausted from the outdoor outlet 3 to the outside by the second blower fan 15.

続いて、図2を説明する。図2では、図1の状態から第1風路調整板19と第2風路調整板20が図中右側へ移動し、第3風路調整板21と第4風路調整板22が図中左側へ移動している。   Next, FIG. 2 will be described. In FIG. 2, the first air path adjusting plate 19 and the second air path adjusting plate 20 are moved to the right side in the figure from the state of FIG. 1, and the third air path adjusting plate 21 and the fourth air path adjusting plate 22 are shown in the figure. Move to the left.

この構成により、給気切替部8において、第1風路調整板19が室外吸込口1から導入された給気流が給気切替部8内部を通じて直接、室内給気口4へ流れこむことを防ぐと共に、給気切替部8と全熱交換素子13を接続する2本の経路のうち、図面中で左側の経路と室外吸込口1を接続し、右側の経路と室内給気口4を接続する。第2風路調整板20は、室外吸込口1から導入された給気流の流れる2本の経路のうち、図面中で右側の経路を塞ぐと共に、給気切替部8と全熱交換素子13を接続する2本の経路のうち、図面中で右側の経路と室内給気口4を接続する。   With this configuration, in the air supply switching unit 8, the first air path adjustment plate 19 prevents the air supply air introduced from the outdoor suction port 1 from flowing directly into the indoor air supply port 4 through the inside of the air supply switching unit 8. At the same time, of the two paths connecting the air supply switching unit 8 and the total heat exchange element 13, the left path and the outdoor suction port 1 are connected in the drawing, and the right path and the indoor air supply port 4 are connected. . The second air path adjustment plate 20 closes the right path in the drawing among the two paths through which the air supply flow introduced from the outdoor suction port 1 flows, and connects the air supply switching unit 8 and the total heat exchange element 13. Of the two paths to be connected, the path on the right side in the drawing is connected to the indoor air inlet 4.

この結果、室外吸込口1から第1送風ファン14によって吸い込まれた給気流は、給気切替部8の図中左側の経路を通過し、全熱交換素子13内部にて熱交換して、給気切替部8中央の経路を通過して室内給気口4から室内へ給気されることとなり、全熱交換素子13内部を流れる給気流の向きを反転させることができる。   As a result, the air supply air sucked by the first blower fan 14 from the outdoor air inlet 1 passes through the path on the left side of the air supply switching unit 8 in the drawing, exchanges heat inside the total heat exchange element 13, and is supplied The air is supplied to the room through the indoor air supply port 4 through the route at the center of the air switching unit 8, and the direction of the air supply flowing through the total heat exchange element 13 can be reversed.

同様に、排気切替部9において、第3風路調整板21が室外排出口3へ排気される排気流の流れる2本の経路のうち、図面中で左側の経路を塞ぐと共に、排気切替部9と全熱交換素子13を接続する2本の経路のうち、図面中で左側の経路と室内吸込口2を接続する。第4風路調整板22は室内吸込口2から導入された排気流が排気切替部9内部を通じて直接、室外排出口3へ流れこむことを防ぐと共に、排気切替部9と全熱交換素子13を接続する2本の経路のうち、図面中で左側の経路と室内吸込口2を接続し、右側の経路と室外排出口3を接続する。   Similarly, in the exhaust gas switching unit 9, the two air paths through which the third air path adjusting plate 21 is exhausted to the outdoor discharge port 3 flow in the left side in the drawing, and the exhaust gas switching unit 9. Of the two paths connecting the total heat exchange element 13, the path on the left side in the drawing and the indoor suction port 2 are connected. The fourth air path adjusting plate 22 prevents the exhaust flow introduced from the indoor suction port 2 from flowing directly into the outdoor discharge port 3 through the exhaust switching unit 9 and also connects the exhaust switching unit 9 and the total heat exchange element 13. Of the two paths to be connected, the left path and the indoor suction port 2 are connected in the drawing, and the right path and the outdoor discharge port 3 are connected.

この結果、室内吸込口2から吸い込まれた排気流は、排気切替部9の図中中央の経路を通過し、全熱交換素子13内部にて熱交換して、排気切替部9右側の経路を通過して、第2送風ファン15によって、室外排出口3から室外へ排気されることとなり、全熱交換素子13内部を流れる排気流の向きを反転させることができる。   As a result, the exhaust flow sucked from the indoor suction port 2 passes through the central path in the figure of the exhaust gas switching unit 9, exchanges heat inside the total heat exchange element 13, and passes the path on the right side of the exhaust gas switching unit 9. Then, the air is exhausted from the outdoor discharge port 3 to the outside by the second blower fan 15, and the direction of the exhaust flow flowing inside the total heat exchange element 13 can be reversed.

さらに、この構成を用いることで、給気経路6および排気経路7を切り替えるときに、熱交換前後の空気が混合されることによって発生する結露や結氷を経路切り替えによって融解させることができ、給気経路6や排気経路7の圧力損失の上昇や、氷の詰まりによる給気切替部8および排気切替部9の動作不全の発生を抑制することができる。   Furthermore, by using this configuration, when switching between the air supply path 6 and the exhaust path 7, dew condensation or icing generated by mixing the air before and after heat exchange can be melted by path switching. It is possible to suppress an increase in pressure loss in the path 6 and the exhaust path 7 and occurrence of malfunction of the air supply switching unit 8 and the exhaust switching unit 9 due to ice clogging.

以下その機構を詳細に説明する。   The mechanism will be described in detail below.

まず図1の状態の場合、給気切替部8内部を、第2風路調整板20を隔てて、熱交換前の冷たい給気流と熱交換後の暖かい給気流が流れる。このため、熱交換前の冷たい給気流が第2風路調整板20を冷却し、熱交換後の暖かい給気流と第2風路調整板20との接触面において、結露・結氷が生じる可能性がある。   First, in the state of FIG. 1, a cold air supply air before heat exchange and a warm air supply air after heat exchange flow through the air supply switching unit 8 across the second air path adjustment plate 20. For this reason, the cold air supply before heat exchange cools the second air path adjustment plate 20, and there is a possibility that condensation and icing may occur on the contact surface between the warm air supply after heat exchange and the second air path adjustment plate 20. There is.

ここで、図2の状態へ切り替える。すると、第1風路調整板19を隔てて、熱交換前の冷たい給気流と熱交換後の暖かい給気流が流れるようになり、第2風路調整板20は熱交換後の暖かい給気流のみと接触することになる。そのため、第2風路調整板20表面に付着した結露・結氷を熱交換後の暖かい給気流によって融解・蒸発させることができる。   Here, the state is switched to the state shown in FIG. Then, the cold air supply before heat exchange and the warm air supply after heat exchange flow through the first air path adjustment plate 19, and the second air path adjustment plate 20 has only the warm air supply after heat exchange. Will be in contact with. Therefore, the dew condensation / freezing adhering to the surface of the second air path adjustment plate 20 can be melted / evaporated by the warm air flow after heat exchange.

この時、第1風路調整板19には、結露・結氷が発生する可能性があるが、図1の状態へ切り替えることで、同様の機構により融解・蒸発させることができる。   At this time, there is a possibility that dew condensation or icing may occur on the first air path adjustment plate 19, but it can be melted and evaporated by the same mechanism by switching to the state of FIG.

このため、図1の状態と図2の状態を交互に切り替えることにより、第1風路調整板19と第2風路調整板20に結露・結氷が付着し、成長していくことを抑制することができる。   Therefore, by alternately switching the state of FIG. 1 and the state of FIG. 2, it is possible to suppress the dew condensation and icing from adhering to the first air passage adjustment plate 19 and the second air passage adjustment plate 20 and growing. be able to.

排気切替部9も同様である。図1の状態の場合、第4風路調整板22を隔てて、熱交換後の冷たい排気流と熱交換前の暖かい排気流が流れる。このため、熱交換後の冷たい排気流が第4風路調整板22を冷却し、熱交換前の暖かい排気流と第4風路調整板22との接触面において、結露・結氷が生じる可能性がある。   The same applies to the exhaust gas switching unit 9. In the state of FIG. 1, a cold exhaust flow after heat exchange and a warm exhaust flow before heat exchange flow through the fourth air path adjustment plate 22. For this reason, the cool exhaust flow after heat exchange cools the fourth air path adjustment plate 22, and there is a possibility that condensation and icing may occur on the contact surface between the warm exhaust flow before heat exchange and the fourth air path adjustment plate 22. There is.

ここで、図2の状態へ切り替える。すると、第3風路調整板21を隔てて、熱交換後の冷たい排気流と熱交換前の暖かい排気流が流れるようになり、第4風路調整板22は熱交換前の暖かい排気流のみと接触することになる。そのため、第4風路調整板22表面に付着した結露・結氷を熱交換前の暖かい排気流によって融解・蒸発させることができる。   Here, the state is switched to the state shown in FIG. Then, the cold exhaust flow after the heat exchange and the warm exhaust flow before the heat exchange flow through the third air passage adjustment plate 21, and the fourth air passage adjustment plate 22 only has the warm exhaust flow before the heat exchange. Will be in contact with. Therefore, the dew condensation / icing adhered to the surface of the fourth air path adjustment plate 22 can be melted / evaporated by the warm exhaust flow before heat exchange.

この時、第3風路調整板21には、結露・結氷が発生する可能性があるが、図1の状態へ切り替えることで、同様の機構により融解・蒸発させることができる。   At this time, there is a possibility that dew condensation or icing may occur on the third air path adjusting plate 21, but by switching to the state of FIG. 1, it can be melted and evaporated by the same mechanism.

このため、図1の状態と図2の状態を交互に切り替えることにより、第3風路調整板21と第4風路調整板22に結露・結氷が付着し、成長していくことを抑制することができる。   Therefore, by alternately switching the state of FIG. 1 and the state of FIG. 2, it is possible to prevent the condensation and icing from adhering and growing on the third air path adjustment plate 21 and the fourth air path adjustment plate 22. be able to.

続いて、給気切替部8と排気切替部9の切り替えメカニズムについて説明する。   Next, a switching mechanism between the air supply switching unit 8 and the exhaust gas switching unit 9 will be described.

給気経路6内部に第1環境検知手段として、例えば熱電対等を利用した、第1温度センサー10を備え、排気経路7内部に第2環境検知手段として、例えば熱電対等を利用した、第2温度センサー11を備えており、第1温度センサー10が所定の温度、例えば0℃、以下の温度を検知した場合や、あるいは、第2温度センサー11が所定の温度、例えば0℃、以下の温度を検知した場合等に、給気切替部8および排気切替部9を用いて給気経路6および排気経路7を切り替える構成である。   A first temperature sensor 10 that uses, for example, a thermocouple as a first environment detection means is provided inside the air supply path 6, and a second temperature that uses, for example, a thermocouple as a second environment detection means in the exhaust path 7. The sensor 11 is provided, and when the first temperature sensor 10 detects a predetermined temperature, for example, 0 ° C. or less, or the second temperature sensor 11 detects a predetermined temperature, for example, 0 ° C. or less. When detected, the air supply path 6 and the exhaust path 7 are switched using the air supply switching unit 8 and the exhaust gas switching unit 9.

排気経路7内部には、圧力検知手段12として、例えば半導体歪みゲージを利用したゲージ圧測定型圧力センサーが備えられており、所定の圧力、例えば熱交換形換気装置を強ノッチで通常運転させた場合に検出されるゲージ圧力をあらかじめ測定しておき、その圧力に風量が10%低下する圧力損失に相当するようなゲージ圧力の変動等、が検出された場合に、給気切替部8および排気切替部9を用いて給気経路6および排気経路7を切り替える構成である。   Inside the exhaust path 7, a gauge pressure measurement type pressure sensor using, for example, a semiconductor strain gauge is provided as the pressure detection means 12, and a predetermined pressure, for example, a heat exchange type ventilator is normally operated with a strong notch. When the gauge pressure detected in this case is measured in advance and a change in gauge pressure corresponding to a pressure loss at which the air volume is reduced by 10% is detected, the supply air switching unit 8 and the exhaust gas are detected. The air supply path 6 and the exhaust path 7 are switched using the switching unit 9.

このような構成によれば、例えば、外気温を第1温度センサー10で検知することで、全熱交換素子13内部で結露または結氷が生じると考えられる外気温を予め測定しておき、その外気温を下回った時点で、風路反転運転を開始して結露・結氷を取り除くことができる。   According to such a configuration, for example, by detecting the outside air temperature with the first temperature sensor 10, the outside air temperature considered to cause condensation or icing inside the total heat exchange element 13 is measured in advance, When the temperature falls below the air temperature, the air path reversal operation can be started to remove condensation and icing.

また、第2温度センサー11についても同様であり、全熱交換素子13内部で結露や結氷が生じると考えられる温度を下回った時点で、風路反転運転を開始して結露・結氷を取り除くことができる。   The same applies to the second temperature sensor 11, and when the temperature is less than the temperature at which condensation or icing is considered to occur within the total heat exchange element 13, the air path inversion operation is started to remove the condensation or icing. it can.

さらに、圧力検知手段12によって、排気経路7の圧力損失の増加を計測することができ、圧力損失の増加によって、例示したような換気風量の低下が生じると予測された場合に、結露・結氷を取り除くための風路反転運転を開始することができ、換気風量の低下を抑制することができる。   Further, the pressure detection means 12 can measure an increase in the pressure loss of the exhaust path 7, and if it is predicted that the increase in the pressure loss will cause a decrease in the ventilation air volume as illustrated, condensation or icing will occur. The air path reversal operation for removing can be started, and the fall of ventilation air volume can be suppressed.

本実施の形態において、風路反転運転とは、所定の時間間隔、例えば20分ごとに、給気切替部8および排気切替部9を用いて全熱交換素子13の給気経路6および排気経路7を流れる給気流および排気流の向きを反転させることを示す。   In the present embodiment, the air path reversal operation is an air supply path 6 and an exhaust path of the total heat exchange element 13 using a supply air switching unit 8 and an exhaust gas switching unit 9 at a predetermined time interval, for example, every 20 minutes. 7 shows that the direction of the supply airflow and the exhaust airflow flowing through 7 is reversed.

続いて、この風路反転運転に付随する制御機構について説明する。   Subsequently, a control mechanism accompanying the air path reversal operation will be described.

まず、給気切替部8および排気切替部9を用いて給気経路6および排気経路7を切り替えるに当たって、切り替え中に第1送風ファン14および第2送風ファン15を停止する機構を備える。   First, when switching the air supply path 6 and the exhaust path 7 using the air supply switching unit 8 and the exhaust gas switching unit 9, a mechanism for stopping the first blower fan 14 and the second blower fan 15 during switching is provided.

このような機構によれば、給気経路6および排気経路7を切り替えている間に、通風によって給気切替部8および排気切替部9にてそれぞれ熱交換前後の気体が混合され、結露・結氷が発生することを抑制することができる。   According to such a mechanism, while switching between the air supply path 6 and the exhaust path 7, the gas before and after heat exchange is mixed in the air supply switching unit 8 and the exhaust switching unit 9 by the ventilation, thereby causing condensation / freezing. Can be prevented from occurring.

さらに、給気切替部8および排気切替部9によって風路切り替えが完了し、第1送風ファン14および第2送風ファン15が始動した時点で、所定の時間、例えば、運転切替時間が20分であれば、5分間、第1原動機16と第2原動機17の出力を増加させる、例えば、原動機としてモータを用い、モータに印加する電圧または周波数を増加させる機構を備える。   Further, when the air path switching is completed by the air supply switching unit 8 and the exhaust switching unit 9 and the first blower fan 14 and the second blower fan 15 are started, the operation switching time is 20 minutes, for example. If there is, a mechanism for increasing the output of the first prime mover 16 and the second prime mover 17 for 5 minutes, for example, using a motor as the prime mover and increasing the voltage or frequency applied to the motor is provided.

このような機構によれば、切り替え時に一時的に第2原動機17の出力を増加させることで、切り替え後の排気経路7を流れる排気流の全圧を高め、仮に結露・結氷によって部分的に圧力損失の上昇した全熱交換素子13内部の排気経路7であっても、仕切板24で構成された各層へ空気を流すことができるため、全熱交換素子13内部の排気経路7の結露・結氷の融解・蒸発を促進することができる。   According to such a mechanism, by temporarily increasing the output of the second prime mover 17 at the time of switching, the total pressure of the exhaust flow flowing through the exhaust path 7 after switching is increased, and the pressure is partially increased due to condensation or icing. Even in the exhaust path 7 inside the total heat exchange element 13 where the loss has increased, since air can flow to each layer constituted by the partition plate 24, dew condensation / freezing of the exhaust path 7 inside the total heat exchange element 13 It is possible to promote melting and evaporation.

さらに、第1原動機16の出力を増加させることで、全熱交換素子13内部の排気経路7と全熱交換素子13内部の給気経路6の圧力差を低減し、全熱交換素子13内部における空気の漏れを抑制することができる。   Further, by increasing the output of the first prime mover 16, the pressure difference between the exhaust path 7 inside the total heat exchange element 13 and the air supply path 6 inside the total heat exchange element 13 is reduced, and the inside of the total heat exchange element 13 Air leakage can be suppressed.

その上で、予め定めた条件によって、例えば、第1温度センサー10の信号や、圧力検知手段12の信号等に基づく制御を行い、上記風路反転運転が開始された場合、その条件が取り除かれた時に、例えば、第1温度センサー10の検出温度が所定の値を上回った時や、圧力検知手段12の検出圧力が所定の値を下回った時等に、さらに所定の時間、例えば運転切替時間が20分であったのであれば40分間、継続して風路反転運転を行う機構を備える。   In addition, when control based on the signal of the first temperature sensor 10 or the signal of the pressure detection means 12 is performed according to a predetermined condition and the air path reversal operation is started, the condition is removed. When, for example, the detected temperature of the first temperature sensor 10 exceeds a predetermined value, or when the detected pressure of the pressure detecting means 12 falls below a predetermined value, the predetermined time, for example, the operation switching time If it is 20 minutes, a mechanism for continuously performing the airway inversion operation for 40 minutes is provided.

このような機構によれば、全熱交換素子13内部に生じた結露・結氷による影響が検知できなくなった後も一定の間、継続して風路反転運転を行うことができ、全熱交換素子13を含む排気経路7に生じた結露・結氷の融解・蒸発による除去を促進することができる。   According to such a mechanism, after the influence of condensation or icing generated in the total heat exchange element 13 can no longer be detected, the air path inversion operation can be continuously performed for a certain period of time. Therefore, it is possible to promote the removal of condensation and / or ice formed in the exhaust path 7 including the melting and evaporation.

さらに、本実施の形態における熱交換形換気装置の構成材料について説明する。   Furthermore, the constituent material of the heat exchange type ventilation apparatus in this Embodiment is demonstrated.

給気経路6および排気経路7は、断熱性の高い材料、例えば発泡スチロールや発泡ウレタン等の材料で構成されている。   The air supply path 6 and the exhaust path 7 are made of a highly heat-insulating material, such as foamed polystyrene or foamed urethane.

本発明における断熱性の高い材料とは、熱伝達率の低い材料、例えば、1W/m・K以下、好ましくは0.1W/m・Kの材料等と、熱容量の大きな材料、例えば比熱が1J/g・K以上の材料等との少なくともどちらか一方の特性を満たすものを示す。両方の特性を満たすものであればなお好ましく、例示した発泡スチロールはこの両方の特性を満たす材料の一つである。   In the present invention, the material having high heat insulation is a material having a low heat transfer coefficient, for example, 1 W / m · K or less, preferably 0.1 W / m · K or the like, and a material having a large heat capacity, for example, a specific heat of 1 J. The material satisfying at least one of the characteristics such as a material of / g · K or more. It is still more preferable if both of the characteristics are satisfied, and the exemplified polystyrene foam is one of materials that satisfy both of these characteristics.

このような構成によれば、給気経路6および排気経路7からの熱の逃げを抑えることができ、熱の逃げがある箇所の表面において、気体が冷やされ、結露・結氷することを抑制することができる。   According to such a configuration, the escape of heat from the air supply path 6 and the exhaust path 7 can be suppressed, and it is possible to prevent the gas from being cooled and causing condensation or icing on the surface where heat escapes. be able to.

また、給気経路6が蓄える熱量を抑えることができるため、給気経路6を切り替えた場合に、熱交換を行う前の冷たい空気によって蓄冷した給気経路6へ、熱交換を行った後の暖かい空気が流れ込むことによる結露・結氷の発生を抑制することができる。   In addition, since the amount of heat stored in the air supply path 6 can be suppressed, when the air supply path 6 is switched, heat exchange is performed on the air supply path 6 that is cold-stored by cold air before heat exchange. It is possible to suppress the formation of condensation and icing due to warm air flowing in.

同様に、排気経路7が蓄える熱量を抑えることができるため、排気経路7を切り替えた場合にも、熱交換を行った後の冷たい空気によって蓄冷した排気経路7へ、熱交換を行う前の暖かい空気が流れ込むことによる結露・結氷の発生を抑制することができる。   Similarly, since the amount of heat stored in the exhaust path 7 can be suppressed, even when the exhaust path 7 is switched, the warm air before the heat exchange is performed to the exhaust path 7 that is cold-stored by the cold air after the heat exchange. It is possible to suppress the formation of condensation and icing due to air flowing in.

さらに、図3に給気経路6における熱交換前の空気と熱交換後の空気の両者が流れる経路の断面図を示した。前記経路とは即ち、給気切替部8と全熱交換素子13とを接続する2本の経路を示している。図3に示したように前記経路は2本に分割されており、各々の経路に風向調整板23を備えており、それぞれの経路が互いに異なる方向へ空気を通過させる構成となっている。風向調整板23としては、例えば、図3に示したように、開閉式のダンパー板と開閉方向を規定する邪魔部材を備えたものが挙げられる。   Furthermore, FIG. 3 shows a cross-sectional view of a path through which both the air before heat exchange and the air after heat exchange flow in the air supply path 6. That is, the paths indicate two paths that connect the air supply switching unit 8 and the total heat exchange element 13. As shown in FIG. 3, the route is divided into two, and each route is provided with a wind direction adjusting plate 23, and each route is configured to allow air to pass in different directions. As the wind direction adjusting plate 23, for example, as shown in FIG. 3, a plate provided with an open / close type damper plate and a baffle member that defines the opening / closing direction can be mentioned.

このような構成によれば、例えば、熱交換前の冷たい空気が図3の右側より左側へ流れる上部の経路を通り、熱交換後の暖かい空気が図4の左側より右側へ流れる下部の経路を通るというように、熱交換前と熱交換後の空気の流れる経路を一部分割することができる。前述のように経路が分割されることで、熱交換を行う前の冷たい空気によって蓄冷した給気経路6へ、熱交換を行った後の暖かい空気が流れ込むことによる結露・結氷の発生を抑制することができる。   According to such a configuration, for example, the cold air before heat exchange passes through the upper path flowing from the right side to the left side in FIG. 3, and the warm air after heat exchange flows through the lower path from the left side to the right side in FIG. It is possible to partially divide the path through which air flows before and after heat exchange. By dividing the path as described above, it is possible to suppress the occurrence of condensation and icing due to the warm air flowing after heat exchange flows into the air supply path 6 that is cold-stored by the cold air before heat exchange. be able to.

なお、図3では全熱交換素子13に近い側に風向調整板23を設けたが、分割された経路内であれば、どこに設けても同様の構成となり、その効果に差異を生じない。   In FIG. 3, the wind direction adjusting plate 23 is provided on the side closer to the total heat exchange element 13. However, the configuration is the same regardless of where the wind direction adjusting plate 23 is provided in the divided path, and the effect is not different.

なお、図3では、給気経路6を上下に分割したが、方向に寄らず、経路を2本へ分割することで同様の構成となり、その効果に差異を生じない。   In FIG. 3, the air supply path 6 is divided into upper and lower parts. However, the structure is the same by dividing the path into two without depending on the direction, and there is no difference in the effect.

なお、図3では、例として給気経路6を取り上げたが、排気経路7であって、排気切替部9と全熱交換素子13とを接続する経路を同様に分割し、風向調整板23を設ける構成とすることで、排気経路7を切り替えた場合にも、熱交換を行った後の冷たい空気によって蓄冷した排気経路7へ、熱交換を行う前の暖かい空気が流れ込むことによる結露・結氷の発生を抑制することができ好適である。   In FIG. 3, the air supply path 6 is taken as an example. However, the exhaust path 7, the path connecting the exhaust switching unit 9 and the total heat exchange element 13, is similarly divided, and the wind direction adjusting plate 23 is arranged. By adopting the configuration, even when the exhaust path 7 is switched, dew condensation and icing due to warm air before the heat exchange flows into the exhaust path 7 that is stored cold by cold air after heat exchange. The generation can be suppressed, which is preferable.

続いて図4に本実施の形態における全熱交換素子13の概略図を示した。全熱交換素子13は、伝熱性と透湿性、耐水性を有する仕切板24を所定間隔、例えば1mm以上10mm以下の間隔、で複数層に重ね合わせ、室外の空気を室内へ取り込む給気経路6と室内の空気を室外へ排出する排気経路7が仕切板24によって構成された各層間を交互に通るように形成されている。   Next, FIG. 4 shows a schematic diagram of the total heat exchange element 13 in the present embodiment. The total heat exchanging element 13 is configured to superimpose a partition plate 24 having heat conductivity, moisture permeability, and water resistance on a plurality of layers at a predetermined interval, for example, an interval of 1 mm or more and 10 mm or less, and an air supply path 6 for taking outdoor air into the room. The exhaust path 7 for discharging indoor air to the outside of the room is formed so as to alternately pass between the layers formed by the partition plate 24.

仕切板24の材料としては、多孔性の高分子膜、具体的にはポリエチレン、ポリカーボネート、ポリエステル、酢酸セルロース、芳香族ポリアミド、ポリビニルアルコール、ポリスルホン、セルロース等が原料となる透湿性を持つものが挙げられる。   Examples of the material of the partition plate 24 include a porous polymer film, specifically, a material having moisture permeability such as polyethylene, polycarbonate, polyester, cellulose acetate, aromatic polyamide, polyvinyl alcohol, polysulfone, and cellulose. It is done.

また、パルプや合成繊維からなる紙や不織布、織布等の細かい孔を有するものも適しており、具体的には、セルロースを主成分とする木材パルプ、レーヨン、綿、麻等が挙げられる。このような構成によれば、上記実施の形態に記した効果を得ることができる。   Also suitable are those having fine pores such as paper, non-woven fabric, and woven fabric made of pulp and synthetic fibers, and specific examples include wood pulp mainly composed of cellulose, rayon, cotton, hemp and the like. According to such a configuration, the effects described in the above embodiments can be obtained.

さらに、仕切板24表面のうち、排気経路7に面している部位は、撥水性、例えば水の接触角が90度以上となるような表面、を備えている。具体的には、例えば上記多孔性の高分子膜であり、高分子材料として疎水性であるポリエチレンやポリプロピレン、ポリエチレンテレフタレートを排気経路7に面する面に備え、例えば、ポリビニルアルコールや、ポリウレタン等の親水性樹脂を給気経路6に面する面側からコーティングすることで、透湿性と撥水性を両立する構成があげられる。   Further, a portion of the surface of the partition plate 24 facing the exhaust path 7 is provided with water repellency, for example, a surface with a water contact angle of 90 degrees or more. Specifically, for example, the porous polymer film is provided with a hydrophobic material such as polyethylene, polypropylene, or polyethylene terephthalate on the surface facing the exhaust path 7, such as polyvinyl alcohol or polyurethane. By coating the hydrophilic resin from the surface side facing the air supply path 6, a configuration that achieves both moisture permeability and water repellency can be given.

このような構成によれば、排気経路7において発生した結露や結氷の液滴径や結晶径が小さくなり、表面積が増加するため、風路反転後の排気流への蒸発を促進することができる。   According to such a configuration, the condensation and ice droplet diameters and crystal diameters generated in the exhaust path 7 are reduced and the surface area is increased, so that evaporation to the exhaust stream after the air path inversion can be promoted. .

また、排気経路7上に付着した水分の移動抵抗を減少することで、排気流によって全熱交換素子13内部の水滴を全熱交換素子13外部へ排出しやすくなる。   In addition, by reducing the movement resistance of moisture adhering to the exhaust path 7, it becomes easy to discharge water droplets inside the total heat exchange element 13 to the outside of the total heat exchange element 13 by the exhaust flow.

さらに、排気経路7内を液体の水が移動して仕切板24への水分の吸着が促進されるため、給気経路6への湿度の移動を促進することができる。   Furthermore, since the liquid water moves in the exhaust path 7 and the adsorption of moisture to the partition plate 24 is promoted, the movement of humidity to the air supply path 6 can be promoted.

なお、本実施の形態において、給気経路6および排気経路7は、断熱性を備えた材料で構成されると例示したが、例えば、給気経路6および排気経路7の一部に断熱性を備えた材料を使用してもよい。その場合、給気切替部8および排気切替部9によって経路が切り替えられることで、熱交換前および熱交換後の気体の両方が流れる可能性のある部位、例えば本実施の形態においては、給気経路6のうち給気切替部8と全熱交換素子13を接続する経路および排気経路7のうち排気切替部9と全熱交換素子13を接続する経路等の部位に用いる構成が好適な構成として挙げられる。   In the present embodiment, the air supply path 6 and the exhaust path 7 are exemplified as being made of a material having heat insulation properties. However, for example, a part of the air supply path 6 and the exhaust path 7 has heat insulation properties. The provided material may be used. In that case, the path is switched by the air supply switching unit 8 and the exhaust gas switching unit 9, so that both the gas before and after the heat exchange may flow, for example, in the present embodiment, the air supply As a preferable configuration, a configuration in which the supply air switching unit 8 and the total heat exchange element 13 in the path 6 are connected, and a configuration in which the exhaust switching unit 9 and the total heat exchange element 13 in the exhaust path 7 are connected. Can be mentioned.

なお、給気切替部8および排気切替部9は、本実施の形態に限らず、全熱交換素子13内部を流れる排気流および給気流の向きを反転できる構成であればよい。例えば、円形の全熱交換素子13を備え、給気切替部8および排気切替部9として、全熱交換素子13を回転させる駆動部、例えばモータを備え、駆動部によって全熱交換素子13が熱交換形換気装置内部で180°回転することにより、排気流および給気流の向きを反転する構成が挙げられる。   Note that the air supply switching unit 8 and the exhaust gas switching unit 9 are not limited to the present embodiment, and may be any configuration that can reverse the direction of the exhaust flow and the supply air flow flowing through the total heat exchange element 13. For example, a circular total heat exchange element 13 is provided, and as the supply air switching unit 8 and the exhaust gas switching unit 9, a drive unit that rotates the total heat exchange element 13, for example, a motor, is provided, and the total heat exchange element 13 is heated by the drive unit. The structure which reverses the direction of exhaust flow and supply airflow by rotating 180 degree | times inside an exchange type ventilation apparatus is mentioned.

なお、給気切替部8および排気切替部9は、図1および図2で、それぞれ2枚の風路調整板を備えていたが、例えばそれぞれ1枚または3枚で構成してもよい。   The air supply switching unit 8 and the exhaust switching unit 9 are each provided with two air path adjustment plates in FIGS. 1 and 2, but may be configured with one or three, respectively.

なお、全熱交換素子13として、対向流型の素子を示したが、例えば直交流型や斜交流型など、伝熱性と透湿性、耐水性を有する仕切板24を所定間隔で複数層に重ね合わせて構成した熱交換素子であればよい。   Although the counter-flow type element is shown as the total heat exchange element 13, for example, a cross-flow type or a diagonal alternating current type or the like, and partition plates 24 having heat conductivity, moisture permeability, and water resistance are stacked in a plurality of layers at predetermined intervals. What is necessary is just the heat exchange element comprised combining.

なお、第1送風手段および第2送風手段の構成要素の一つとして、それぞれ第1原動機16および第2原動機17を示したが、一つの原動機を用いて、第1送風ファン14および第2送風ファン15を駆動する構成でもよい。   Although the first prime mover 16 and the second prime mover 17 are shown as one of the constituent elements of the first blower means and the second blower means, respectively, the first blower fan 14 and the second blower are used by using one prime mover. The structure which drives the fan 15 may be sufficient.

なお、給気切替部8および排気切替部9について、ともに第3原動機18で駆動したが、別々の原動機を用いて駆動しても良い。   Note that the air supply switching unit 8 and the exhaust switching unit 9 are both driven by the third prime mover 18, but may be driven using separate prime movers.

なお、第1環境検知手段として第1温度センサー10を、第2環境検知手段として第2温度センサー11を用いたが、結露・結氷にかかわる環境条件としては、例えば、温度や湿度が上げられる。そのため、温度センサーの代わりに、例えば、湿度センサーや、温湿度センサー、露点センサー等を用いてもよい。その場合、例えば湿度センサーを用いた場合、所定の環境条件としては、排気経路が相対湿度100%になるような条件等が挙げられる。   Although the first temperature sensor 10 is used as the first environment detection unit and the second temperature sensor 11 is used as the second environment detection unit, examples of environmental conditions related to condensation and icing include temperature and humidity. Therefore, for example, a humidity sensor, a temperature / humidity sensor, a dew point sensor, or the like may be used instead of the temperature sensor. In this case, for example, when a humidity sensor is used, examples of the predetermined environmental condition include a condition such that the exhaust path has a relative humidity of 100%.

なお、図1および図2において、第1温度センサー10を第1送風ファン14近傍に図示したが、給気経路6において、室外と全熱交換素子13との間であれば、どの部位に設置してもよい。   1 and FIG. 2, the first temperature sensor 10 is illustrated in the vicinity of the first blower fan 14. However, in the air supply path 6, the first temperature sensor 10 may be installed anywhere between the outdoor and the total heat exchange element 13. May be.

なお、図1および図2において、第2温度センサー11を第2送風ファン15近傍に図示したが、排気経路7において、室外と全熱交換素子13との間であれば、どの部位に設置してもよい。   1 and 2, the second temperature sensor 11 is illustrated in the vicinity of the second blower fan 15. However, in the exhaust path 7, the second temperature sensor 11 may be installed anywhere between the outdoor and the total heat exchange element 13. May be.

なお、圧力検知手段12として、実施の形態1に示したゲージ圧を測定する圧力センサーのほかに、相対圧を測定する圧力センサーを用いても良い。例えば相対圧を測定する圧力センサーを用いた場合、例えば給気経路6と排気経路7との差圧を測定することによって、排気経路7における結露・結氷の影響を評価することができるため好適である。   In addition to the pressure sensor that measures the gauge pressure shown in the first embodiment, a pressure sensor that measures the relative pressure may be used as the pressure detection unit 12. For example, when a pressure sensor that measures relative pressure is used, it is preferable because the influence of condensation or icing in the exhaust path 7 can be evaluated by measuring the differential pressure between the supply path 6 and the exhaust path 7, for example. is there.

なお、圧力検知手段12として、第2原動機17のトルク変化を検知する手段、例えば、第2原動機17に流れる電流値を計測する電流計等を用いても良い。   As the pressure detection means 12, a means for detecting a torque change of the second prime mover 17, for example, an ammeter for measuring a current value flowing through the second prime mover 17 may be used.

なお、風路切替運転後に所定の時間、第1原動機16および第2原動機17の出力を増加させるとしたが、例えば第2原動機17の出力を増加させるだけでも、仕切板24で構成された各層へ空気を流すことができるため、全熱交換素子13内部の排気経路7の結露・結氷の融解・蒸発を促進することができる。この場合、さらに、仕切板24の引き裂き強度特性を増す等の処理により、給気経路6と排気経路7にかかる圧力差によって空気が排気経路7から給気経路6へ漏れにくい素子を合わせて用いることで、空気の漏れを抑制することができ、作用効果に差異を生じなくなる。   Although the outputs of the first prime mover 16 and the second prime mover 17 are increased for a predetermined time after the air path switching operation, for example, each layer formed of the partition plate 24 can be increased only by increasing the output of the second prime mover 17. Since air can be allowed to flow through, it is possible to promote dew condensation / melting / evaporation of the condensed ice in the exhaust path 7 inside the total heat exchange element 13. In this case, an element that prevents air from leaking from the exhaust path 7 to the air supply path 6 due to a pressure difference between the air supply path 6 and the exhaust path 7 is further used by processing such as increasing the tear strength characteristics of the partition plate 24. As a result, air leakage can be suppressed, and there is no difference in function and effect.

なお、全熱交換素子13の積層間隔として、1mm以上10mm以下の間隔と例示したが、この積層間隔は排気経路7と給気経路6で異なっていてもよい。例えば、排気経路7側の積層間隔を給気経路6側よりも広く取ることで、排気経路7に発生した結露・結氷による、全熱交換素子13の圧力損失の増大を抑制することができるという効果を奏する。   The stacking interval of the total heat exchange elements 13 is exemplified as an interval of 1 mm or more and 10 mm or less, but the stacking interval may be different between the exhaust path 7 and the air supply path 6. For example, by setting the stacking interval on the exhaust path 7 side wider than the air supply path 6 side, it is possible to suppress an increase in pressure loss of the total heat exchange element 13 due to condensation or icing generated in the exhaust path 7. There is an effect.

なお、排気経路を構成する仕切板表面が撥水性を備えるとしたが、全熱交換素子の排気経路のうち、入口近傍および出口近傍のみに撥水性を備えてもよい。   Although the partition plate surface constituting the exhaust path is provided with water repellency, only the vicinity of the inlet and the vicinity of the outlet may be provided with water repellency in the exhaust path of the total heat exchange element.

本発明にかかる熱交換形換気装置は、熱交換形換気装置内部で発生する結露・結氷量を低減し、排気経路の圧力損失が極端に増加することを抑制しつつ連続運転を行うことで、寒冷地においても室内の必要換気量を確保することを可能とするものであるので、寒冷地等熱交換素子内部において結露が発生する条件下においてに使用される、室内の空気を室外へ排気する排気流と、室外の空気を室内へ給気する給気流との間で熱交換する熱交換形換気装置等として有用である。   The heat exchange ventilator according to the present invention reduces the amount of condensation and ice generated inside the heat exchange ventilator, and performs continuous operation while suppressing the pressure loss of the exhaust path from increasing extremely. Since it is possible to secure the necessary ventilation volume even in cold regions, indoor air used under conditions where condensation occurs inside heat exchange elements such as cold regions is exhausted to the outside. The present invention is useful as a heat exchange type ventilator that exchanges heat between an exhaust flow and an air flow that supplies outdoor air into the room.

1 室外吸込口
2 室内吸込口
3 室外排出口
4 室内給気口
5 本体箱
6 給気経路
7 排気経路
8 給気切替部
9 排気切替部
10 第1温度センサー
11 第2温度センサー
12 圧力検知手段
13 全熱交換素子
14 第1送風ファン
15 第2送風ファン
16 第1原動機
17 第2原動機
18 第3原動機
19 第1風路調整板
20 第2風路調整板
21 第3風路調整板
22 第4風路調整板
23 風向調整板
24 仕切板
DESCRIPTION OF SYMBOLS 1 Outdoor suction port 2 Indoor suction port 3 Outdoor discharge port 4 Indoor supply port 5 Main body box 6 Air supply path 7 Exhaust path 8 Supply air switching part 9 Exhaust gas switching part 10 1st temperature sensor 11 2nd temperature sensor 12 Pressure detection means DESCRIPTION OF SYMBOLS 13 Total heat exchange element 14 1st ventilation fan 15 2nd ventilation fan 16 1st prime mover 17 2nd prime mover 18 3rd prime mover 19 1st air path adjustment board 20 2nd air path adjustment board 21 3rd air path adjustment board 22 2nd 4 Airflow adjustment plate 23 Airflow direction adjustment plate 24 Partition plate

Claims (15)

伝熱性と透湿性、耐水性を有する仕切板を所定間隔で複数層に重ね合わせ、室外の空気を室内へ取り込む給気経路と室内の空気を室外へ排出する排気経路が前記仕切板によって構成された各層間を交互に通るように形成した全熱交換素子を備え、前記給気経路と前記排気経路にそれぞれ通風するための第1送風手段と第2送風手段を備え、前記給気経路と前記排気経路をそれぞれ流れる気体の向きを反転させる反転手段を備え、前記排気経路を流れる気体の向きが反転することで、前記排気経路へ発生した結露が前記排気経路内へ蒸発し、排気経路内の湿度を高めることを特徴とする熱交換形換気装置。   A partition plate having heat conductivity, moisture permeability, and water resistance is stacked on a plurality of layers at predetermined intervals, and an air supply path for taking outdoor air into the room and an exhaust path for discharging indoor air to the outside are constituted by the partition plate. A total heat exchange element formed so as to alternately pass through each of the layers, and includes a first air blowing unit and a second air blowing unit for ventilating the air supply path and the exhaust path, respectively. Reversing means for reversing the direction of the gas flowing through the exhaust path is provided, and the direction of the gas flowing through the exhaust path is reversed, so that the dew condensation generated in the exhaust path evaporates into the exhaust path, Heat exchange type ventilator characterized by increasing humidity. 伝熱性と透湿性、耐水性を有する仕切板を所定間隔で複数層に重ね合わせ、室外の空気を室内へ取り込む給気経路と室内の空気を室外へ排出する排気経路が前記仕切板によって構成された各層間を交互に通るように形成した全熱交換素子を備え、前記給気経路と前記排気経路にそれぞれ通風するための第1送風手段と第2送風手段を備え、前記給気経路と前記排気経路をそれぞれ流れる気体の向きを反転させる反転手段を備え、前記排気経路を流れる気体の向きが反転することで、前記排気経路へ発生した氷が、前記排気経路内へ融解して前記排気経路内を移動することを特徴とする熱交換形換気装置。   A partition plate having heat conductivity, moisture permeability, and water resistance is stacked on a plurality of layers at predetermined intervals, and an air supply path for taking outdoor air into the room and an exhaust path for discharging indoor air to the outside are constituted by the partition plate. A total heat exchange element formed so as to alternately pass through each of the layers, and includes a first air blowing unit and a second air blowing unit for ventilating the air supply path and the exhaust path, respectively. Reversing means for reversing the direction of the gas flowing through each exhaust path is provided, and by reversing the direction of the gas flowing through the exhaust path, ice generated in the exhaust path is melted into the exhaust path and the exhaust path A heat exchange type ventilator characterized by moving inside. 全熱交換素子の排気経路を構成する仕切板表面が撥水性を備えることを特徴とする請求項1または2に記載の熱交換形換気装置。   The heat exchange ventilator according to claim 1 or 2, wherein the partition plate surface constituting the exhaust path of the total heat exchange element has water repellency. 気体の向きを反転させる給気切替部および排気切替部を備え、給気経路において、室外と全熱交換素子とを接続する経路に環境条件を検知する第1環境検知手段を備え、前記第1環境検知手段を用いて検知された環境が所定の設定範囲を外れた場合に、前記給気切替部および前記排気切替部が前記給気経路および排気経路の切り替えを行うことを特徴とする請求項1から3のいずれか一項に記載の熱交換形換気装置。   An air supply switching unit that reverses the direction of the gas and an exhaust gas switching unit; and a first environment detection unit that detects an environmental condition in a path connecting the outdoor and the total heat exchange element in the air supply path, The air supply switching unit and the exhaust gas switching unit perform switching between the air supply route and the exhaust route when an environment detected using an environment detection unit is out of a predetermined setting range. The heat exchange type ventilator as described in any one of 1-3. 気体の向きを反転させる給気切替部および排気切替部を備え、排気経路において、室外と全熱交換素子とを接続する経路に環境条件を検知する第2環境検知手段を備え、前記第2環境検知手段を用いて検出された環境が所定の設定範囲を外れた場合に、給気切替部および排気切替部が給気経路および前記排気経路の切り替えを行うことを特徴とする請求項1から4のいずれか一項に記載の熱交換形換気装置。   An air supply switching unit and an exhaust switching unit for reversing the direction of the gas; and a second environment detection unit configured to detect an environmental condition in a path connecting the outdoor unit and the total heat exchange element in the exhaust path. 5. The air supply switching unit and the exhaust gas switching unit perform switching between the air supply route and the exhaust route when the environment detected using the detection unit is out of a predetermined setting range. The heat exchange ventilator according to any one of the above. 気体の向きを反転させる給気切替部および排気切替部を備え、排気経路に圧力を検知する圧力検知手段を備え、前記圧力検知手段によって検出された圧力が所定の圧力範囲を外れた場合に、給気切替部および排気切替部が給気経路および排気経路の切り替えを行うことを特徴とする請求項1から5のいずれか一項に記載の熱交換形換気装置。   When equipped with an air supply switching unit and an exhaust switching unit for reversing the direction of gas, provided with a pressure detection means for detecting pressure in the exhaust path, and when the pressure detected by the pressure detection means is out of a predetermined pressure range, The heat exchange type ventilation apparatus according to any one of claims 1 to 5, wherein the air supply switching unit and the exhaust gas switching unit perform switching between the air supply route and the exhaust route. 気体の向きを反転させる給気切替部および排気切替部を備え、前記給気切替部および前記排気切替部が給気経路および排気経路の切り替えを開始した場合、所定の時間、前記給気切替部および前記排気切替部による切り替えを所定の間隔で継続することを特徴とする請求項1から6のいずれか一項に記載の熱交換形換気装置。   An air supply switching unit and an exhaust gas switching unit that reverse the direction of the gas, and when the air supply switching unit and the exhaust gas switching unit start switching the air supply path and the exhaust path, the air supply switching unit for a predetermined time The switching by the exhaust switching unit is continued at a predetermined interval. The heat exchange type ventilator according to any one of claims 1 to 6. 気体の向きを反転させる給気切替部および排気切替部を備えた熱交換形換気装置であって、前記給気切替部および前記排気切替部にて前記給気経路および前記排気経路を切り替える間、前記第1送風手段および前記第2送風手段が停止することを特徴とする請求項1から7のいずれか一項に記載の熱交換形換気装置。   A heat exchange type ventilation apparatus provided with an air supply switching unit and an exhaust gas switching unit that reverses the direction of gas, while switching the air supply path and the exhaust path in the air supply switching unit and the exhaust gas switching unit, The heat exchange ventilator according to any one of claims 1 to 7, wherein the first air blowing means and the second air blowing means are stopped. 給気切替部および排気切替部にて経路を切り替える間、第1送風手段および第2送風手段が停止し、切り替え終了後、所定の時間、前記第1送風手段および前記第2送風手段の搬送動力を増加させることを特徴とする請求項8に記載の熱交換形換気装置。   The first air blowing unit and the second air blowing unit are stopped while the air supply switching unit and the exhaust gas switching unit are switching the routes. After the switching is finished, the conveyance power of the first air blowing unit and the second air blowing unit is determined for a predetermined time. The heat exchange type ventilator according to claim 8, wherein 給気経路および排気経路が断熱性を持った材料からなることを特徴とする請求項1から9のいずれか一項に記載の熱交換形換気装置。   The heat exchange type ventilator according to any one of claims 1 to 9, wherein the air supply path and the exhaust path are made of a material having heat insulation properties. 給気経路および/または排気経路に含まれている、給気切替部および/または排気切替部と全熱交換素子とを接続する経路の一部分を2本の経路に分割し、前記全熱交換素子通過前の空気を分割した前記経路の片方に、前記全熱交換素子通過後の空気を分割した前記経路のもう一方に流すことを特徴とする請求項4から10のいずれか一項に記載の熱交換形換気装置。   A part of the path connecting the air supply switching unit and / or the exhaust gas switching unit and the total heat exchange element included in the air supply path and / or the exhaust path is divided into two paths, and the total heat exchange element 11. The air according to claim 4, wherein the air after passing through the total heat exchange element is caused to flow to the other side of the divided path in one of the paths into which the air before passing is divided. Heat exchange ventilator. 分割した2本の経路に、互いの経路に流れる風の向きを一方向に規定する風向調整板が備えられている構成を特徴とする請求項11記載の熱交換形換気装置。   The heat exchange type ventilator according to claim 11, wherein the two divided paths are provided with a wind direction adjusting plate that regulates the direction of the wind flowing through each path in one direction. 気体の向きを反転させる給気切替部および排気切替部を備え、前記給気切替部および/または前記排気切替部に発生する結露・結氷を給気経路および/または排気経路を切り替える時に蒸発・融解させる構成を特徴とする請求項1から10のいずれか一項に記載の熱交換形換気装置。   Equipped with an air supply switching unit and an exhaust switching unit that reverse the direction of the gas, and condensation and icing generated in the air supply switching unit and / or the exhaust gas switching unit evaporate and melt when switching the air supply route and / or the exhaust route The heat exchange type ventilator according to any one of claims 1 to 10, wherein the heat exchanging ventilator is configured to perform the above. 給気切替部に発生する結露・結氷を、給気経路切り替え時に室内へ給気される空気の熱を用いて蒸発・融解させる構成を特徴とする請求項11に記載の熱交換形換気装置。   The heat exchange type ventilator according to claim 11, wherein the dew condensation or icing generated in the air supply switching unit is evaporated and melted using heat of air supplied into the room when the air supply path is switched. 排気切替部に発生する結露・結氷を、排気経路の切り替え時に室内から吸い込まれた空気の熱を用いて蒸発・融解させる構成を特徴とする請求項11または12に記載の熱交換形換気装置。   13. The heat exchange type ventilator according to claim 11 or 12, wherein condensation or icing generated in the exhaust switching unit is evaporated and melted by using heat of air sucked from the room when the exhaust path is switched.
JP2010275327A 2010-07-07 2010-12-10 Heat exchange ventilator Expired - Fee Related JP5617585B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010275327A JP5617585B2 (en) 2010-07-07 2010-12-10 Heat exchange ventilator
PCT/JP2011/003825 WO2012004978A1 (en) 2010-07-07 2011-07-05 Heat exchange ventilation apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010154585 2010-07-07
JP2010154585 2010-07-07
JP2010275327A JP5617585B2 (en) 2010-07-07 2010-12-10 Heat exchange ventilator

Publications (2)

Publication Number Publication Date
JP2012032134A true JP2012032134A (en) 2012-02-16
JP5617585B2 JP5617585B2 (en) 2014-11-05

Family

ID=45440968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010275327A Expired - Fee Related JP5617585B2 (en) 2010-07-07 2010-12-10 Heat exchange ventilator

Country Status (2)

Country Link
JP (1) JP5617585B2 (en)
WO (1) WO2012004978A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189290A (en) * 2011-03-14 2012-10-04 Panasonic Corp Heat exchange ventilation device
WO2016047028A1 (en) * 2014-09-25 2016-03-31 パナソニックIpマネジメント株式会社 Heat exchanger ventilator
JP2016532843A (en) * 2013-10-09 2016-10-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ System and method for air treatment and conditioning
JP2016540183A (en) * 2013-11-28 2016-12-22 エリート・トロワ Dual-flow air / air exchanger, apparatus for treating air, and method for protecting such an exchanger from ice and purifying it
KR102319017B1 (en) * 2021-03-11 2021-11-03 (주)에이피 Ventilation apparatus with function of preventing condensation of total heat exchanger and notifying operation of outside air cooling and heating

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5845388B2 (en) * 2011-03-10 2016-01-20 パナソニックIpマネジメント株式会社 Heat exchange ventilator
GB2508425B (en) * 2012-11-30 2017-08-23 Greenwood Air Man Ltd Heat recovery ventilation unit
DE102015103594B3 (en) * 2015-03-11 2016-03-31 Hoval Aktiengesellschaft Ventilation unit and method for decentralized room ventilation
JP6289566B2 (en) * 2016-09-01 2018-03-07 三菱電機株式会社 Air conditioning ventilator
JPWO2022269820A1 (en) * 2021-06-23 2022-12-29
WO2022269821A1 (en) * 2021-06-23 2022-12-29 三菱電機株式会社 Heat-exchange ventilator
WO2024004022A1 (en) * 2022-06-28 2024-01-04 三菱電機株式会社 Heat exchange element, heat exchange structure, and heat exchange ventilation device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208339A (en) * 1983-05-12 1984-11-26 Matsushita Electric Ind Co Ltd Ventilator
JPS62261892A (en) * 1986-05-08 1987-11-14 Toshiba Corp Heat exchanger
JPS63156993A (en) * 1986-12-19 1988-06-30 Matsushita Seiko Co Ltd Full heat exchanger
JPH0861697A (en) * 1994-08-26 1996-03-08 Mitsubishi Electric Corp Air conditioning apparatus
JP2003148780A (en) * 2001-11-14 2003-05-21 Daikin Ind Ltd Heat exchanger unit
JP2004324901A (en) * 2003-04-21 2004-11-18 Matsushita Electric Ind Co Ltd Heat exchange ventilating device
JP2005037107A (en) * 2003-07-16 2005-02-10 Kyohei Yamaguchi Ventilation device for apartment house
WO2006071117A1 (en) * 2004-12-30 2006-07-06 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Ventilation system
JP2010096384A (en) * 2008-10-15 2010-04-30 Panasonic Corp Heat exchange type ventilation device
WO2010102627A1 (en) * 2009-03-10 2010-09-16 Exhausto A/S A building ventilation air-to-air heat exchanger control

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208339A (en) * 1983-05-12 1984-11-26 Matsushita Electric Ind Co Ltd Ventilator
JPS62261892A (en) * 1986-05-08 1987-11-14 Toshiba Corp Heat exchanger
JPS63156993A (en) * 1986-12-19 1988-06-30 Matsushita Seiko Co Ltd Full heat exchanger
JPH0861697A (en) * 1994-08-26 1996-03-08 Mitsubishi Electric Corp Air conditioning apparatus
JP2003148780A (en) * 2001-11-14 2003-05-21 Daikin Ind Ltd Heat exchanger unit
JP2004324901A (en) * 2003-04-21 2004-11-18 Matsushita Electric Ind Co Ltd Heat exchange ventilating device
JP2005037107A (en) * 2003-07-16 2005-02-10 Kyohei Yamaguchi Ventilation device for apartment house
WO2006071117A1 (en) * 2004-12-30 2006-07-06 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Ventilation system
JP2010096384A (en) * 2008-10-15 2010-04-30 Panasonic Corp Heat exchange type ventilation device
WO2010102627A1 (en) * 2009-03-10 2010-09-16 Exhausto A/S A building ventilation air-to-air heat exchanger control

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189290A (en) * 2011-03-14 2012-10-04 Panasonic Corp Heat exchange ventilation device
JP2016532843A (en) * 2013-10-09 2016-10-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ System and method for air treatment and conditioning
JP2016540183A (en) * 2013-11-28 2016-12-22 エリート・トロワ Dual-flow air / air exchanger, apparatus for treating air, and method for protecting such an exchanger from ice and purifying it
US10408479B2 (en) 2013-11-28 2019-09-10 F2A-Fabrication Aeraulique Et Acoustique Dual-flow air/air exchanger, apparatus for processing air and method for protecting such an exchanger against ice and for cleaning same
WO2016047028A1 (en) * 2014-09-25 2016-03-31 パナソニックIpマネジメント株式会社 Heat exchanger ventilator
CN106605107A (en) * 2014-09-25 2017-04-26 松下知识产权经营株式会社 Heat exchanger ventilator
CN106605107B (en) * 2014-09-25 2019-12-24 松下知识产权经营株式会社 Heat exchange type ventilator
KR102319017B1 (en) * 2021-03-11 2021-11-03 (주)에이피 Ventilation apparatus with function of preventing condensation of total heat exchanger and notifying operation of outside air cooling and heating

Also Published As

Publication number Publication date
WO2012004978A1 (en) 2012-01-12
JP5617585B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5617585B2 (en) Heat exchange ventilator
JP6669813B2 (en) Desiccant air conditioning method and system
JP5220102B2 (en) Heat exchange ventilator
WO2010002957A2 (en) Energy recovery ventilator
JP6791568B2 (en) Vehicle air conditioning equipment
KR102232441B1 (en) Air conditioner with six port
JP5845389B2 (en) Heat exchange ventilator
JP2019081460A (en) Vehicle air conditioner
JP2011202814A (en) Heat exchange type ventilation device
WO2013021817A1 (en) Outside air processing device
JP5934009B2 (en) Cooling dehumidification system
JP2011191036A (en) Desiccant air conditioner
JP6987635B2 (en) Air conditioner and valve
JP5347420B2 (en) Heat exchange ventilator
JP2010243005A (en) Dehumidification system
KR102369029B1 (en) Air conditioning system and controlling method thereof
JP6231418B2 (en) Cooling dehumidification system
JP2013014307A (en) Vehicle air conditioning apparatus
JP6009531B2 (en) Dehumidification system
JP2013014306A (en) Vehicle air conditioner
JP2012189252A (en) Heat exchange type ventilation device
KR20110074221A (en) Air conditioner having heat exchange unit of rotary type and heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20131212

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

LAPS Cancellation because of no payment of annual fees