WO2022269821A1 - Heat-exchange ventilator - Google Patents

Heat-exchange ventilator Download PDF

Info

Publication number
WO2022269821A1
WO2022269821A1 PCT/JP2021/023840 JP2021023840W WO2022269821A1 WO 2022269821 A1 WO2022269821 A1 WO 2022269821A1 JP 2021023840 W JP2021023840 W JP 2021023840W WO 2022269821 A1 WO2022269821 A1 WO 2022269821A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
current value
motor
freezing
air
Prior art date
Application number
PCT/JP2021/023840
Other languages
French (fr)
Japanese (ja)
Inventor
知 井ノ口
福太郎 長田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/023840 priority Critical patent/WO2022269821A1/en
Priority to JP2023529334A priority patent/JPWO2022269821A1/ja
Publication of WO2022269821A1 publication Critical patent/WO2022269821A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present disclosure relates to a heat exchange ventilation system that performs ventilation while exchanging heat between outdoor air and indoor air using a heat exchanger.
  • a heat exchange type ventilation system transfers the heat energy of the indoor air that has been conditioned by the indoor air conditioner to the outdoor air through a heat exchanger when the outdoor air is taken into the room. Ventilate while recovering energy.
  • a heat exchange ventilation system transfers the thermal energy of the discharged indoor air to the outdoor air taken in by the heat exchanger. Moisture held in the air condenses and forms water droplets. Furthermore, when the outdoor temperature drops, the water droplets freeze and become ice, causing clogging of the heat exchanger, resulting in a decrease in heat exchange efficiency or a decrease in exhaust air volume.
  • the temperature of the outdoor air to be supplied is detected, and if the temperature of the outdoor air falls below a specific temperature, the operation and stop of the supply air blower are stopped for a certain period of time. Clogging of the heat exchanger is prevented by performing repeated intermittent operation or by reducing the output of the supply air blower for a certain period of time.
  • Patent Document 1 the motor current value of an exhaust direct current (DC) motor provided in an exhaust fan is monitored, and when the motor current value exceeds a predetermined value, the heat exchanger malfunctions due to freezing.
  • a heat exchange ventilator is disclosed that detects clogging and reduces the rotation speed of an air supply DC motor provided in an air supply fan to melt ice and prevent clogging of a heat exchanger. If the rotation speed of the air supply DC motor is decreased, the ice can be melted, but the ventilation air volume of the heat exchange type ventilation system is limited.
  • the present disclosure has been made in view of the above, and is capable of accurately detecting temporary clogging of a heat exchanger due to freezing, improving the freezing state of the heat exchanger, and temporarily clogging due to freezing.
  • a heat exchange type ventilator capable of suppressing unnecessary limitation of ventilation air volume caused by improvement operation of a frozen state of a heat exchanger except when the heat exchanger is clogged.
  • the heat exchange type ventilation device includes an exhaust air passage for exhausting indoor air to the outside, a supply air passage for supplying outdoor air to the room, is independently formed inside, an exhaust fan provided in an exhaust air passage and provided with an exhaust motor to generate an exhaust flow flowing through the exhaust air passage, and an air supply motor having an air supply air passage and an air supply blower that is provided in and generates an air supply flow that flows through the air supply air passage.
  • the heat exchange type ventilation device includes a heat exchanger that is provided across the supply air passage and the exhaust air passage and exchanges heat between the supply air flow and the exhaust air flow, and is arranged upstream of the heat exchanger in the exhaust air passage.
  • an exhaust filter an outdoor temperature detector that detects the outdoor temperature, which is the temperature of the outdoor air, a current detector that detects the motor current value flowing through the exhaust motor, and the operation of the air supply fan and the exhaust fan. and a control unit that controls the The control unit stores a current motor current value of the exhaust motor as a pre-freezing reference current value when the outdoor temperature is less than a predetermined temperature threshold, and stores the current value after storing the pre-freezing reference current value. If the motor current value of the exhaust motor is equal to or less than the freezing determination current value that is smaller than the pre-freezing reference current value, it is determined that the heat exchanger is frozen, and the air volume of the supply air blower is reduced to that of the exhaust air blower. Freeze state improvement control is performed by reducing the air flow to melt the ice.
  • the heat exchange ventilator it is possible to accurately detect temporary clogging of the heat exchanger due to freezing, improve the freezing state of the heat exchanger, and temporarily heat exchange due to freezing. It is possible to suppress unnecessary restrictions on the amount of ventilation air due to the operation to improve the frozen state of the heat exchanger except when the container is clogged.
  • FIG. 2 is a block diagram showing the functional configuration of the heat exchange ventilator according to the first embodiment
  • FIG. 4 is a characteristic diagram showing the relationship between the air volume of the fan and the static pressure when constant command voltage control is performed on the fan according to Embodiment 1
  • FIG. 4 is a characteristic diagram showing the relationship between the motor current and the number of rotations of the blower when constant command voltage control is performed on the blower according to Embodiment 1
  • a first flow chart showing an operation example of detecting clogging due to freezing of the heat exchanger and improving the freezing state of the heat exchanger in the heat exchange ventilator according to the first embodiment.
  • FIG. 1 shows an example of a hardware configuration of a processing circuit according to Embodiment 1;
  • FIG. 3 is a block diagram showing the functional configuration of another heat exchange type ventilation device according to the first embodiment;
  • FIG. 1 is a schematic diagram showing the configuration of a heat exchange ventilator 1 according to the first embodiment.
  • FIG. 2 is a block diagram showing the functional configuration of the heat exchange ventilator 1 according to the first embodiment.
  • the heat exchange type ventilator 1 is a device capable of performing ventilation while exchanging heat between the supply air flow and the exhaust air flow.
  • the heat exchange type ventilator 1 operates for the purpose of 24-hour ventilation. Therefore, once the heat exchange ventilator 1 starts operating, it basically does not stop operating except during maintenance.
  • the heat exchange type ventilator 1 maintains a comfortable air environment in the room by ventilating the room by supplying air from the outside to the room and exhausting air from the room to the outside. In addition, the heat exchange type ventilator 1 reduces the temperature difference between the air taken into the room and the air in the room by heat exchange between the supply air flow and the exhaust air flow, thereby reducing the burden of air conditioning in the room. .
  • the heat exchange ventilator 1 is installed, for example, in a space behind the ceiling.
  • the heat exchange type ventilator 1 includes a housing 1a, a heat exchanger 2, an air supply fan 3, an exhaust fan 4, an air supply filter 5, an exhaust filter 6, and an indoor air outlet 7. , an indoor intake section 8 , an outdoor intake section 9 , an outdoor outlet section 10 , an outdoor temperature detection section 11 , a control device 12 , and a display section 13 .
  • a heat exchanger 2 that exchanges heat between the supply air flow and the exhaust air flow is housed in the housing 1a.
  • the housing 1 a has, for example, a rectangular parallelepiped hexahedron, and constitutes the main body of the heat exchange ventilator 1 .
  • a supply air passage 21 through which an air supply flow passes, an exhaust air passage 22 through which an exhaust flow passes, and a partition wall 23 that partitions the supply air passage 21 and the exhaust air passage 22 are provided inside the housing 1a.
  • the supply air passage 21 is indicated by a dashed arrow.
  • the exhaust air passage 22 is indicated by a solid arrow.
  • FIG. 1 shows the heat exchange ventilator 1 in a state where one surface of the housing 1a is removed from the housing 1a.
  • an indoor air outlet 7 as an air supply outlet, an indoor air inlet 8 as an exhaust air inlet, and an outdoor air inlet 9 as an air inlet are provided on one side surface 1b of the housing 1a.
  • an outdoor-side blow-out portion 10 which is an exhaust blow-out port, are provided.
  • An outdoor-side air supply duct (not shown) that communicates the outdoor side with the outdoor-side suction part 9 is connected to the outdoor-side suction part 9 that is an air supply suction port.
  • An indoor air supply duct (not shown) that communicates between the room and the indoor air outlet 7 is connected to the indoor air outlet 7 serving as an air supply outlet.
  • An indoor exhaust duct (not shown) that communicates the interior of the room with the indoor intake unit 8 is connected to the indoor intake unit 8 that is an exhaust intake port.
  • An outdoor-side exhaust duct (not shown) that communicates the outdoor side with the outdoor-side blowing portion 10 is connected to the outdoor-side blowing portion 10 that is an exhaust air outlet.
  • the heat exchanger 2 is provided across the supply airflow path 21 and the exhaust airflow path 22, and performs total heat exchange between the supply airflow and the exhaust airflow.
  • the heat exchanger 2 has a primary side air passage through which the exhaust flow passes and a secondary side air passage through which the supply air flow passes. Inside the heat exchanger 2, the primary air passage and the secondary air passage intersect perpendicularly.
  • the primary side air passage and the secondary side air passage are formed by a laminate configured by alternately laminating and adhering flat sheets of flat paper and corrugated sheets of corrugated paperboard. In FIG. 1, illustration of the primary side air passage and the secondary side air passage is omitted.
  • the laminate has a quadrangular prism shape.
  • the end surfaces of the heat exchanger 2 located at both ends in the stacking direction are square.
  • the stacking direction is the direction in which the flat sheets and the corrugated sheets are stacked, and is the depth direction of the paper surface in FIG.
  • the supply air passage 21 is an air passage for supplying outdoor air, which is outdoor air, into the room.
  • the upstream supply air passage 21a is an air passage on the upstream side of the heat exchanger 2 in the air supply passage 21 and is an upstream air supply passage that communicates with the outside of the room.
  • the downstream supply air passage 21b is an air passage on the downstream side of the heat exchanger 2 in the air supply passage 21 and communicates with the interior of the room.
  • the exhaust air passage 22 is an air passage for exhausting return air, which is indoor air, to the outside, and is an upstream exhaust air formed between the indoor side suction part 8 which is an exhaust suction port and the heat exchanger 2.
  • the downstream exhaust air passage 22b is an air passage on the downstream side of the heat exchanger 2 and is a downstream exhaust air passage that communicates with the outside of the room.
  • a heat exchange type ventilator 1 has a supply air blower 3 that takes in outdoor air and sends the taken in air indoors, and an exhaust fan 4 that takes in indoor air and sends the taken in air outdoors. .
  • the air supply blower 3 is arranged in the downstream air supply air passage 21 b and generates an air supply flow from the outdoor side suction section 9 toward the indoor side blowout section 7 .
  • the air supply fan 3 includes an air supply fan 31 in an air supply fan casing 30 and a DC brushless motor that is an air supply DC motor 32 for rotating the air supply fan 31 .
  • the air supply fan 3 rotates the air supply fan 31 with the air supply DC motor 32 to generate an air supply flow.
  • the operation of the air supply fan 3 is controlled by the control unit 123 by controlling the operation, stop, and rotation speed of the air supply DC motor 32 by the control unit 123, which will be described later.
  • the air supply DC motor 32 has an air supply motor control circuit 320 that controls the driving of the air supply DC motor 32 and adjusts the load according to the control of the control unit 123 as a control circuit that is a feature of the DC motor.
  • the air supply motor control circuit 320 controls control parameters such as the voltage output to the air supply DC motor 32, the motor current flowing through the air supply DC motor 32, and the rotation speed of the air supply DC motor 32.
  • the motor power of the air supply DC motor 32 can be adjusted. By acquiring these control parameters, the control unit 123 can grasp the operating state of the air supply DC motor 32 .
  • the control unit 123 constantly monitors the control parameters of the DC motor 32 for air supply, so that the pressure sensor that detects the pressure of the air passage or the air flowing to the air passage To detect the clogging state of an exhaust filter 6 without using an air volume sensor for detecting the air volume.
  • the air supply motor control circuit 320 operates the air supply DC motor 32 upon receiving an output instruction from the control unit 123 . Further, when the load applied to the air supply blower 3, such as a change in pressure in the air passage, fluctuates, the load applied to the air supply DC motor 32 also changes, and the rotation speed, voltage, and motor current change.
  • the air supply motor control circuit 320 includes an air supply rotation speed detection unit 321 , an air supply voltage detection unit 322 , an air supply current detection unit 323 , and an air supply communication unit 324 .
  • the air supply rotation speed detection unit 321 detects the rotation speed of the air supply DC motor 32 .
  • the air supply voltage detector 322 detects the voltage supplied to the air supply DC motor 32 .
  • the air supply current detection unit 323 detects a motor current value, which is the current value of the motor current flowing through the air supply DC motor 32 .
  • the air supply communication unit 324 communicates with the control device 12 .
  • the air supply rotation speed detection unit 321 , the air supply voltage detection unit 322 , and the air supply current detection unit 323 transmit detection results to the control unit 123 via the air supply communication unit 324 .
  • the exhaust blower 4 is arranged in the downstream exhaust air passage 22b and generates an exhaust flow from the indoor intake section 8 toward the outdoor outlet 10 .
  • the exhaust fan 4 includes an exhaust fan 41 in an exhaust fan casing 40 and a DC brushless motor that is an exhaust DC motor 42 for rotating the exhaust fan 41 .
  • the exhaust fan 4 generates an exhaust flow by rotating the exhaust fan 41 with the exhaust DC motor 42 .
  • the operation of the exhaust fan 4 is controlled by the control unit 123 by controlling the operation, stop, and rotational speed of the exhaust DC motor 42 by the control unit 123, which will be described later.
  • the exhaust DC motor 42 has an exhaust motor control circuit 420 that controls the driving of the exhaust DC motor 42 and adjusts the load according to the control of the control unit 123 as a control circuit that is a feature of the DC motor.
  • the exhaust motor control circuit 420 controls control parameters such as the voltage output to the exhaust DC motor 42, the motor current value flowing through the exhaust DC motor 42, and the number of rotations of the exhaust DC motor 42.
  • the motor power of motor 42 can be adjusted. By acquiring these control parameters, the control unit 123 can grasp the operating state of the exhaust DC motor 42 .
  • the exhaust motor control circuit 420 operates the exhaust DC motor 42 upon receiving an output instruction from the control unit 123 . Further, when the load applied to the exhaust blower 4 such as a change in pressure in the air path fluctuates, the load applied to the exhaust DC motor 42 also changes, and the rotation speed, voltage value, and motor current value also change.
  • the exhaust motor control circuit 420 includes an exhaust rotation speed detection unit 421 , an exhaust voltage detection unit 422 , an exhaust current detection unit 423 , and an exhaust communication unit 424 .
  • the exhaust rotation speed detection unit 421 detects the rotation speed of the exhaust DC motor 42 .
  • the exhaust voltage detector 422 detects the voltage supplied to the exhaust DC motor 42 .
  • the exhaust current detection unit 423 detects a motor current value, which is the current value of the motor current flowing through the exhaust DC motor 42 .
  • the exhaust communication unit 424 communicates with the control device 12 .
  • the exhaust rotation speed detection unit 421 , the exhaust voltage detection unit 422 , and the exhaust current detection unit 423 transmit detection results to the control unit 123 via the exhaust communication unit 424 .
  • the air supply filter 5 is an air filter that cleans the outside air by removing dust from the outside air sucked into the heat exchanger 2 in order to prevent the performance of the heat exchanger 2 from being clogged with dust contained in the outside air. be.
  • the air supply filter 5 is detachably installed in the upstream air supply air passage 21 a of the air supply air passage 21 . That is, the air supply filter 5 is installed at a position upstream of the heat exchanger 2 in the air supply passage 21 .
  • the outside air taken into the heat exchange type ventilator 1 passes through the air supply filter 5, and some of the contained suspended particles are removed.
  • the air supply filter 5 can be replaced from a normal dust filter with a high-performance dust filter that can collect fine particulate matter and pollen at a higher collection rate than a normal dust filter.
  • the exhaust filter 6 is an air filter that removes dust from the return air sucked into the heat exchanger 2 in order to prevent the performance of the heat exchanger 2 from being clogged with dust contained in the return air.
  • the exhaust filter 6 is detachably installed in the upstream side exhaust air passage 22 a of the exhaust air passage 22 . That is, the exhaust filter 6 is installed upstream of the heat exchanger 2 in the exhaust air passage 22 .
  • the return air taken into the heat exchange type ventilator 1 passes through the exhaust filter 6 to remove part of the contained suspended particles.
  • the outdoor temperature detection unit 11 is a detection unit that detects the outdoor temperature T, which is the temperature of outdoor air sucked into the heat exchange type ventilation device 1 from the outdoors via the outdoor side suction unit 9, that is, the temperature of the outside air. That is, the outdoor temperature detection unit 11 can be rephrased as an outdoor temperature detection unit that detects the temperature of the outdoor air.
  • the outdoor temperature detection unit 11 is provided in an upstream air supply air passage 21 a of the air supply air passage 21 .
  • the outdoor temperature detection unit 11 transmits the detected outdoor air temperature to the control unit 123 .
  • the display unit 13 displays various warnings such as a clogging warning that the heat exchanger 2 is clogged due to freezing and a freezing warning that freezing may occur in the heat exchanger 2. to be notified.
  • the display unit 13 can notify various warnings by, for example, lighting a light-emitting diode. Details of each warning will be described later.
  • the control device 12 is provided inside the housing 1a and controls the heat exchange type ventilator 1 as a whole.
  • the control device 12 includes a storage section 121 , a communication section 122 and a control section 123 .
  • the storage unit 121 stores various information used for controlling the heat exchange ventilator 1 .
  • the communication unit 122 communicates with devices external to the air supply fan 3, the exhaust fan 4, and the heat exchange type ventilator 1.
  • the control unit 123 controls the entire heat exchange ventilator 1 including the air supply fan 3 and the exhaust fan 4 . Further, the control unit 123 serves as a determination unit that determines whether temporary clogging of the heat exchanger 2 due to freezing has occurred, and whether clogging of the exhaust filter 6 has occurred over time. have a function.
  • the control unit 123 controls the ventilation operation of the heat exchange ventilator 1 under predetermined conditions.
  • the predetermined conditions are command voltage constant control to keep the voltage supplied to the DC motor of the blower constant, and ventilation operation with a predetermined ventilation amount. is the same predetermined air volume.
  • the control unit 123 determines whether or not there is a possibility that freezing will occur in the heat exchanger 2 based on the current outdoor temperature T. That is, the controller 123 compares the current outdoor temperature T with the temperature threshold. When the current outdoor temperature T is equal to or higher than the temperature threshold, the controller 123 determines that the current outdoor temperature and the heat exchanger 2 are in a state where there is no possibility of freezing in the heat exchanger 2 . Further, when the current outdoor temperature T is less than the temperature threshold, the control unit 123 determines that the current outdoor temperature and the heat exchanger 2 are in a state where freezing may occur in the heat exchanger 2. do. That is, based on the current outdoor temperature T, the control unit 123 determines whether or not there is a possibility that freezing will occur in the heat exchanger 2 .
  • the control unit 123 controls the current exhaust DC motor
  • the motor current value I of 42 is stored as the pre-icing reference current value Ii0 .
  • the control unit 123 calculates a current value by subtracting a predetermined set value A from the pre-icing reference current value Ii0 , and stores the current value as the freezing determination current value Ii1 .
  • the control unit 123 calculates a current obtained by subtracting a predetermined set value B from the pre-icing reference current value Ii0 , and stores the calculated current as the freezing improvement determination current value Ii2 .
  • the pre-freezing reference current value Ii0 is determined by the control unit 123 to determine whether or not freezing has occurred in the heat exchanger 2, that is, whether clogging of the heat exchanger 2 has occurred due to freezing. This is a reference motor current value used for determination based on the motor current value. Note that the pre-freezing reference current value Ii0 may be referred to as the current value Ii0 .
  • the icing determination current value Ii1 determines whether or not icing has occurred in the heat exchanger 2, that is, whether or not clogging of the heat exchanger 2 has occurred due to icing. This is the motor current value used for making decisions based on the current value.
  • the ice-freezing determination current value Ii1 is a value smaller than the pre-freezing reference current value Ii0 . Note that the freezing determination current value Ii1 may be referred to as the current value Ii1 .
  • the freezing improvement determination current value Ii2 indicates the recovery state of the heat exchanger 2 from the freezing state by the freezing state improvement control described later, that is, the improvement state of the freezing state after it is determined that the freezing has occurred in the heat exchanger 2. , are motor current values used for determination by the control unit 123 based on the motor current value of the exhaust DC motor 42 .
  • the freezing improvement determination current value Ii2 is smaller than the pre-freezing reference current value Ii0 and greater than the freezing determination current value Ii1 .
  • the ice improvement determination current value Ii2 may be referred to as the current value Ii2 .
  • the set value A is a subtraction value used to calculate the freezing determination current value Ii1 based on the pre-freezing reference current value Ii0 .
  • the set value A is determined in advance through experiments and simulations and stored in the control unit 123 . Further, the control unit 123 can calculate the set value A by multiplying the pre-freezing reference current value Ii0 by a predetermined ratio. The predetermined ratio is determined in advance through experiments and simulations and stored in control unit 123 .
  • the set value B is a subtraction value used to calculate the freezing improvement determination current value Ii2 based on the pre-icing reference current value Ii0 .
  • the set value B is determined in advance through experiments and simulations and stored in the control unit 123 .
  • Setting value A and setting value B have a magnitude relationship of A>B.
  • the control unit 123 After acquiring the pre-freezing reference current value Ii0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 , the control unit 123 monitors the current outdoor temperature T, and controls the current exhaust DC motor 42. When the current value I becomes equal to or less than the freezing determination current value Ii1 , it is determined that freezing has occurred in the heat exchanger 2, that is, clogging of the heat exchanger 2 has occurred due to freezing.
  • the control unit 123 reduces the air volume of the air supply fan 3 to the exhaust fan 4 for a predetermined operation change time. , to reduce the inflow of outside air, which has a lower temperature than the indoor air, into the heat exchanger 2. As a result, the ice in the heat exchanger 2 can be melted by the heat of the airflow of the indoor air that is conveyed to the heat exchanger 2 by the exhaust air blower 4 and exhausted from the room.
  • the control unit 123 After the freezing state improvement control, the control unit 123 returns the state of the air supply fan 3 to the normal operating state, and based on the amount of change in the motor current value of the exhaust fan 4, the heat exchanger under the freezing state improvement control. 2 to determine the effect of improving the frozen state.
  • the control unit 123 When the current motor current value I of the exhaust DC motor 42 is equal to or greater than the freezing improvement determination current value Ii2 , the control unit 123 has the effect of improving the freezing state of the heat exchanger 2, and there is a possibility that freezing will occur. However, it is determined that the frozen state has been improved. After that, the control unit 123 returns to the operation of determining whether or not there is a possibility that freezing will occur in the heat exchanger 2 based on the current outdoor temperature T.
  • the control unit 123 determines that the effect of improving the freezing state of the heat exchanger 2 is insufficient. .
  • the current motor current value I of the exhaust DC motor 42 becomes equal to or greater than the current value Ii2 for the freezing improvement determination.
  • the icing condition improvement control is repeated to alleviate and improve the icing condition of the heat exchanger 2 .
  • the operation change time C may be extended, and the reduction amount by which the air volume of the air supply fan 3 is reduced below the air volume of the exhaust fan 4 may be increased.
  • the amount of outside air having a lower temperature than the indoor air flowing into the heat exchanger 2 can be further reduced, and the effect of improving the frozen state of the heat exchanger 2 can be increased.
  • the control unit 123 determines that the current motor current value I of the exhaust DC motor 42 is less than the freezing improvement determination current value Ii2 and that the effect of improving the freezing state of the heat exchanger 2 is insufficient. If the freezing condition improvement control can be repeatedly executed, the user is notified of the freezing condition warning to the effect that the freezing condition can be improved even though the freezing condition has occurred in the heat exchanger 2 .
  • the control unit 123 notifies the user of a freezing clogging warning indicating that temporary clogging of the heat exchanger 2 due to freezing has occurred. .
  • the control unit 123 sets the pre-freezing reference current value I i0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 are stored until there is no possibility of freezing in the heat exchanger 2. These information are reset when there is no state.
  • FIG. 3 is a characteristic diagram showing the relationship between the air volume of the fan and the static pressure when the command voltage constant control is performed on the fan according to the first embodiment.
  • FIG. 4 is a characteristic diagram showing the relationship between the motor current and the number of rotations of the blower when constant command voltage control is performed on the blower according to the first embodiment.
  • the motor current required to drive the DC motor decreases as the number of rotations increases during command voltage constant control in which the voltage supplied to the DC motor provided in the blower is constant. have a relationship.
  • the blowers in Embodiment 1 are the air supply blower 3 and the exhaust blower 4 .
  • the DC motors in Embodiment 1 are the air supply DC motor 32 and the exhaust DC motor 42 .
  • the control unit 123 can acquire the motor current value, which is the current value of the motor current flowing through the air supply DC motor 32 of the air supply blower 3, from the air supply current detection unit 323. 42 can be obtained from the exhaust current detection unit 423. Also, the control unit 123 can acquire the outdoor temperature T, that is, the temperature of the outside air, from the outdoor temperature detection unit 11 . The control unit 123 detects the occurrence of freezing in the heat exchanger 2 and clogging due to freezing in the heat exchanger 2 based on the outdoor temperature and the motor current value of the exhaust DC motor 42 .
  • a characteristic curve 111 represents the relationship between air volume and static pressure.
  • the heat exchange type ventilator 1 has ventilation performance indicated by the characteristic curve 111 .
  • the initial pressure loss curve 112 represents the relationship between the air volume and the static pressure when the heat exchanger 2 is not clogged due to freezing. That is, the initial pressure loss is the pressure loss when the heat exchanger 2 is not frozen.
  • a clogging pressure loss curve 113 represents the relationship between air volume and static pressure when clogging due to freezing occurs in the heat exchanger 2 . That is, the clogging pressure loss is the pressure loss when the heat exchanger 2 is frozen.
  • the air volume at the intersection 114 between the characteristic curve 111 and the initial pressure loss curve 112 is the ventilation air volume by the heat exchange ventilator 1 at the time of the initial pressure loss.
  • the motor current of each fan at this ventilation air volume corresponds to the motor current 131 in FIG.
  • the heat exchange type ventilator 1 when the outside air temperature decreases during ventilation operation, condensation occurs in the heat exchanger internal exhaust air passage 22c, which is the exhaust air passage 22 in the heat exchanger 2. That is, when the indoor air flowing through the exhaust air passage 22 exchanges heat with the outdoor air in the heat exchanger 2 and the temperature drops below the dew point, dew condensation occurs.
  • the temperature of the exhaust gas after heat exchange falls below the freezing temperature, the moisture generated by the dew condensation freezes into ice, clogging the heat exchanger 2, and lowering the ventilation function. That is, when the heat exchanger 2 is clogged due to freezing, the freezing causes airflow resistance, resulting in an increase in pressure loss, which deteriorates the ventilation function.
  • control unit 123 In order to maintain a predetermined ventilation air volume in command voltage constant control that keeps the voltage supplied to the blower constant when the pressure loss increases due to the freezing of the ice, the control unit 123: Control is performed to decrease the current value of the exhaust DC motor 42 so as to increase the rotation speed of the exhaust DC motor 42 according to the relationship between the rotation speed of the exhaust DC motor 42 and the motor current value of the exhaust DC motor 42 . Frozen ice melts when the outdoor temperature rises or when the amount of heat in the exhausted indoor air increases. That is, clogging of the heat exchanger 2 due to freezing is temporary clogging.
  • a clogging pressure loss curve 113 represents the relationship between the air volume and the static pressure when clogging of the heat exchanger 2 due to freezing occurs, making it difficult for air to pass through the heat exchanger 2 .
  • the air volume at the intersection 115 between the characteristic curve 111 and the clogging pressure loss curve 113 is the ventilation air volume from the heat exchange ventilator 1 .
  • the rotation speed of the blower at this ventilation air volume corresponds to the motor current 132 in FIG.
  • the air volume is lower than at the intersection point 114, and even if the blower is rotating, ventilation is difficult.
  • the blower motor current also decreases from the position of motor current 131 to the position of motor current 132 .
  • the clogging of the heat exchanger 2 due to freezing reduces the ventilation function of the heat exchange type ventilator 1. That is, when the heat exchanger 2 is clogged due to freezing, the clogging of the heat exchanger 2 due to freezing causes airflow resistance, resulting in an increase in pressure loss. lower the
  • FIG. 5 is a first flowchart showing an operation example of an operation for detecting clogging due to freezing of the heat exchanger 2 and an operation for improving the freezing state of the heat exchanger 2 in the heat exchange type ventilator 1 according to the first embodiment.
  • FIG. 6 is a second flowchart showing an operation example of detecting clogging due to freezing of the heat exchanger 2 and improving the freezing state of the heat exchanger 2 in the heat exchange ventilator 1 according to the first embodiment. be.
  • the control unit 123 acquires the motor current value of the air supply DC motor 32 mounted on the air supply blower 3, and controls the exhaust air from the exhaust DC motor 42 mounted on the exhaust blower 4.
  • the motor current value of the DC motor 42 is acquired, and the outdoor temperature, that is, the airflow temperature of the outdoor air is acquired from the outdoor temperature detection unit 11 .
  • the control unit 123 executes filter clogging and ice clogging detection based on the acquired motor current value of the air supply DC motor 32, the acquired motor current value of the exhaust DC motor 42, and the outdoor temperature.
  • the air supply DC motor 32 mounted on the air supply fan 3 and the exhaust DC motor 42 mounted on the exhaust fan 4 are controlled by command voltage constant control.
  • step S110 the current outdoor temperature T is monitored after the heat exchange ventilator 1 starts operating.
  • the controller 123 acquires the current outdoor temperature T from the outdoor temperature detector 11 .
  • the control unit 123 acquires the current outdoor temperature T at predetermined intervals and monitors the outdoor temperature T.
  • the outdoor temperature T may be described as the temperature T.
  • the control unit 123 performs ventilation operation by controlling the operations of the air supply DC motor 32 and the exhaust DC motor 42 in accordance with the detected current outdoor temperature T.
  • step S120 it is determined whether or not the current outdoor temperature T is equal to or higher than the first temperature threshold T0 , which is a temperature threshold. Specifically, the controller 123 compares the current outdoor temperature T acquired in step S110 with the first temperature threshold T0 to determine whether the heat exchanger 2 is frozen in the current outdoor temperature T state. determines whether there is a possibility that
  • the first temperature threshold value T0 is a reference threshold value for the control unit 123 to determine whether or not freezing may occur in the heat exchanger 2, and is determined in advance and stored in the control unit 123. ing.
  • the first temperature threshold value T0 can be said to be a reference threshold value for determining whether or not the heat exchanger 2 is likely to freeze.
  • the first temperature threshold T0 can be said to be a freezing warning temperature, which is a temperature at which the possibility of freezing in the heat exchanger 2 should be warned.
  • the first temperature threshold T0 is, for example, 1°C.
  • the control unit 123 controls the current outdoor temperature T and the heat exchanger 2 in a state where there is no possibility of freezing in the heat exchanger 2. Determine that there is. In addition, when the current outdoor temperature T is less than the first temperature threshold value T0 , the control unit 123 determines that the current outdoor temperature T and the heat exchanger 2 may freeze in the heat exchanger 2. state.
  • step S120 If it is determined that the current outdoor temperature T is equal to or higher than the first temperature threshold value T0 , that is, if it is determined that there is no possibility of freezing occurring in the heat exchanger 2, the result of step S120 is Yes, and step S110 back to If it is determined that the current outdoor temperature T is less than the first temperature threshold T0 , that is, if it is determined that there is a possibility that freezing will occur in the heat exchanger 2, the result of step S120 is No, and step S130 proceed to
  • step S130 it is determined whether or not the pre-icing reference current value Ii0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 have been acquired.
  • the control unit 123 determines whether or not the pre-icing reference current value Ii0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 are stored in the control unit 123, thereby It is determined whether or not the previous reference current value Ii0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 have already been acquired.
  • the control unit 123 stores the pre-freezing reference current value Ii0 , the ice-freezing determination current value Ii1 , and the ice-improvement determination current value Ii2 .
  • the control unit 123 stores the pre-icing reference current value Ii0 and the ice-freezing determination current value Ii0. It is determined that the current value Ii1 and the freezing improvement determination current value Ii2 have already been acquired. If the control unit 123 does not store the pre-icing reference current value Ii0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 , the control unit 123 stores the pre-icing reference current value Ii0 and the freezing determination current value Ii0. It is determined that the current value Ii1 and the freezing improvement determination current value Ii2 have not been acquired.
  • step S130 If it is determined that the pre-freezing reference current value Ii0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 have not been obtained, the determination in step S130 is No, and the process proceeds to step S140. If it is determined that the pre-freezing reference current value Ii0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 have already been obtained, the determination in step S130 is Yes, and the process proceeds to step S150.
  • step S140 the pre-icing reference current value Ii0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 are obtained.
  • the control unit 123 acquires the current motor current value I of the exhaust DC motor 42 from the exhaust current detection unit 423 of the exhaust DC motor 42 mounted on the exhaust fan 4 .
  • the control unit 123 stores the acquired current motor current value I of the exhaust DC motor 42 as a pre-freezing reference current value Ii0 . Thereby, the control unit 123 can acquire the pre-freezing reference current value Ii0 . That is, the control unit 123 can grasp the motor current value I of the exhaust DC motor 42 in the normal state in the pressure loss state of the environment before clogging due to freezing occurs in the heat exchanger 2 .
  • control unit 123 controls the current exhaust DC
  • a motor current value I of the motor 42 is stored as a pre-freezing reference current value Ii0 .
  • control unit 123 calculates a current value by subtracting a predetermined set value A from the pre-icing reference current value Ii0 .
  • the control unit 123 stores the current value calculated based on the set value A and the pre-freezing reference current value Ii0 as the freezing determination current value Ii1 . Thereby, the control unit 123 can acquire the freezing determination current value Ii1 .
  • the control unit 123 calculates a current by subtracting a predetermined set value B from the pre-icing reference current value Ii0 .
  • the control unit 123 stores the current value calculated based on the set value B and the pre-freezing reference current value Ii0 as the ice improvement determination current value Ii2 . Thereby, the control unit 123 can acquire the freezing improvement determination current value Ii2 .
  • the process proceeds to step S150.
  • the pre-freezing reference current value Ii0 may be relatively high or relatively high. There are cases where it is low, and it does not become a constant value. Therefore, the degree of influence of freezing changes depending on whether the pre-icing reference current value Ii0 is relatively high or when the pre-icing reference current value Ii0 is relatively low.
  • the control unit 123 may not be able to accurately determine whether or not freezing has occurred.
  • the set value A when the set value A is set to a constant value as described above, False positives that occur can be avoided. That is, when the pre-freezing reference current value Ii0 is relatively high, it is suitable for determining whether or not freezing has occurred in the heat exchanger 2 when the pre-icing reference current value Ii0 is relatively high. Also, the set value A can be set to a relatively large value. Further, when the pre-freezing reference current value Ii0 is relatively low, it is suitable for determining whether or not freezing has occurred in the heat exchanger 2 when the pre-icing reference current value Ii0 is relatively low. Also, the set value A can be set to a relatively small value.
  • step S150 it is determined whether or not the current outdoor temperature T is equal to or lower than a second temperature threshold T1, which is a temperature threshold. Specifically, the control unit 123 compares the outdoor temperature T obtained in step S110 with the second temperature threshold T1 to determine whether freezing occurs in the heat exchanger 2 at the current outdoor temperature T. Determine whether there is a possibility of
  • the second temperature threshold T1 is a threshold that serves as a reference for the control unit 123 to determine whether or not there is a possibility that freezing will occur in the heat exchanger 2, and is determined in advance and stored in the control unit 123. ing.
  • the second temperature threshold value T1 is a reference threshold value for determining whether or not there is no possibility of freezing in the heat exchanger 2 when steps S160 to S240, which will be described later, are repeated. I can say. That is, the second temperature threshold T1 can be said to be the freezing safe temperature, which is the temperature at which it can be determined that the heat exchanger 2 will not freeze.
  • the second temperature threshold T1 is, for example, 3°C.
  • the control unit 123 determines that the heat exchanger 2 is likely to freeze when the current outdoor temperature T is equal to or lower than the second temperature threshold T1. Further, the control unit 123 determines that the heat exchanger 2 is in a state where there is no possibility of freezing when the current outdoor temperature T is higher than the second temperature threshold value T1.
  • step S120 ⁇ step S130 ⁇ step S140 ⁇ step S150 and the flow of step S120 ⁇ step S130 ⁇ step S150 it is determined that freezing may occur in the heat exchanger 2 in the flow of No in step S120. has been judged.
  • step S230 or step S240 ⁇ step S150 in order to determine whether or not to continue monitoring the motor current value I of the exhaust DC motor 42 of the exhaust fan 4 in step S190 described later, heat exchange is performed. It is necessary to determine in step S150 whether there is a possibility that freezing will occur in the vessel 2 .
  • step S150 If it is determined that the current outdoor temperature T is equal to or lower than the second temperature threshold value T1, that is, if it is determined that there is a possibility that freezing will occur in the heat exchanger 2, the result of step S150 is Yes, and step S160 proceed to If it is determined that the current outdoor temperature T is greater than the second temperature threshold value T1, that is, if it is determined that there is no possibility of freezing occurring in the heat exchanger 2, the result of step S150 is No, and step Proceed to S250.
  • step S160 the motor current value I of the exhaust DC motor 42 of the exhaust fan 4 is monitored.
  • the control unit 123 acquires the current motor current value I of the exhaust DC motor 42 from the exhaust current detection unit 423 of the exhaust motor control circuit 420 of the exhaust fan 4 .
  • the control unit 123 acquires the motor current value I of the exhaust DC motor 42 at a predetermined cycle and monitors the motor current value I of the exhaust DC motor 42 .
  • step S170 it is determined whether or not the current motor current value I of the exhaust DC motor 42 is equal to or less than the freezing determination current value Ii1 .
  • the control unit 123 compares the current motor current value I of the exhaust DC motor 42 acquired in step S160 with the freezing determination current value Ii1 stored in the control unit 123 to It is determined whether or not the motor current value I of the DC motor 42 is equal to or less than the freezing determination current value Ii1 . That is, the control unit 123 determines whether or not the current motor current value I of the exhaust DC motor 42 has decreased by the set value A or more from the pre-freezing reference current value Ii0 .
  • the control unit 123 determines that the heat exchanger 2 is frozen. Further, when the current motor current value I of the exhaust DC motor 42 is greater than the freezing determination current value Ii1 , the control unit 123 determines that the heat exchanger 2 is not frozen.
  • the control unit 123 determines that the heat exchanger 2 is frozen.
  • step S170 If it is determined that the current motor current value I of the exhaust DC motor 42 is equal to or less than the freezing determination current value Ii1 , the determination in step S170 is Yes, and the process proceeds to step S180. If it is determined that the current motor current value I of the exhaust DC motor 42 is greater than the freezing determination current value Ii1 , the determination in step S170 is No, and the process returns to step S160.
  • the control unit 123 controls the current motor current value I is greater than the freezing determination current value Ii1 , that is, while No in step S170 ⁇ step S160 is repeated, normal operation is performed with the air volume of the air supply DC motor 32 and the air volume of the exhaust DC motor 42 being the same. to control the operation of the heat exchange type ventilator 1 .
  • step S180 the output of the air supply fan 3 is reduced or the air supply fan 3 is stopped during a predetermined operation change time C to melt the ice and improve the ice condition.
  • control is performed. Specifically, the control unit 123 performs control to reduce the output of the air supply fan 3 only during the operation change time C, or control to stop the air supply fan 3 only during the operation change time C.
  • the reduction in the output of the air supply fan 3 is a reduction in the voltage supplied to the air supply fan 3 , that is, the reduction in the voltage supplied to the air supply DC motor 32 . In reducing the output of the air supply fan 3, the output of the air supply fan 3 is reduced by the set value D.
  • control unit 123 performs control to reduce the output of the air supply fan 3 by the set value D only during the operation change time C, or freeze state improvement control to stop the air supply fan 3 only during the operation change time C. I do.
  • the control to reduce the output of the air supply fan 3 only during the operation change time C or the control to stop the air supply fan 3 only during the operation change time C is the air volume of the air supply fan 3 for the operation change time C. is less than the air volume of the exhaust fan 4 .
  • the operation change time C is the time during which the control unit 123 performs control to change the operation of the air supply fan 3 in order to improve the freezing of the heat exchanger 2 .
  • the operation change time C is determined in advance through experiments and simulations and stored in the control unit 123 .
  • the operation change time C is, for example, 5 minutes.
  • the predetermined operation change time C means the operation change time C set in a series of frozen condition improvement control.
  • the control itself for melting the frozen state to improve the frozen state is the control performed in step S180.
  • the control for melting the ice to improve the ice condition including the process of extending or shortening the operation change time C as described later, is a series of ice condition improvement control. can think. That is, the predetermined action change time C includes the initial value of the action change time C, the extended action change time C, and the shortened action change time C, which are predetermined and set before step S180 is performed. including the operation change time C.
  • the set value D is a reduction amount by which the control unit 123 reduces the output of the air supply fan 3 in order to improve the freezing of the heat exchanger 2 .
  • the set value D is determined in advance through experiments and simulations and stored in the control unit 123 .
  • the heat exchange type ventilator 1 can improve the frozen state of the heat exchanger 2 .
  • the outside air having a lower temperature than the indoor air is stopped from flowing into the heat exchanger 2, and is conveyed to the heat exchanger 2 by the exhaust air blower 4 and exhausted from the room. Ice in the heat exchanger 2 can be melted by the heat of the indoor air flow. Thereby, the heat exchange type ventilator 1 can improve the frozen state of the heat exchanger 2 .
  • step S190 the state of the air supply fan 3 is returned to the normal state. Specifically, the control unit 123 restores the state of the air supply fan 3 whose output is reduced in step S180 or the state of the air supply fan 3 which is stopped in step S180 to the normal operation state before step S180.
  • step S200 it is determined whether or not the current motor current value I of the exhaust DC motor 42 is equal to or greater than the freezing improvement determination current value Ii2 . That is, it is determined whether or not the current motor current value I of the exhaust DC motor 42 has increased by more than "AB", which is the difference between the freezing determination current value Ii1 and the freezing improvement determination current value Ii2 . be. Specifically, after the control unit 123 returns the air supply fan 3 to the normal operation state in step S190, the current exhaust current detection unit 423 of the exhaust motor control circuit 420 of the exhaust fan 4 detects the current exhaust A motor current value I of the DC motor 42 is acquired.
  • control unit 123 compares the acquired current motor current value I of the exhaust DC motor 42 with the freezing improvement determination current value Ii2 stored in the control unit 123, It is determined whether or not the motor current value I is equal to or greater than the ice improvement determination current value Ii2 .
  • the control unit 123 determines that the ice condition of the heat exchanger 2 is improved. .
  • the control unit 123 determines that the effect of improving the freezing state of the heat exchanger 2 is insufficient.
  • the freezing improvement determination current value Ii2 corresponds to the motor current 133 positioned between the motor current 131 and the motor current 132 in FIG.
  • step S200 If it is determined that the current motor current value I of the exhaust DC motor 42 is equal to or greater than the freezing improvement determination current value Ii2 , the determination in step S200 is Yes, and the process proceeds to step S260.
  • the control unit 123 has the effect of improving the frozen state of the heat exchanger 2, determines that the frozen state has been improved although there is a possibility of freezing, and proceeds to step S260. If it is determined that the current motor current value I of the exhaust DC motor 42 is less than the ice improvement determination current value Ii2 , the determination in step S200 is No, and the process proceeds to step S210.
  • step S210 it is determined whether or not the frozen state in the heat exchanger 2 can be improved depending on whether the current operation change time C is equal to or less than the set value E. Specifically, the control unit 123 determines whether the current operation change time C is equal to or less than the set value E.
  • the set value E is a reference value for the control unit 123 to determine whether or not the freezing state in the heat exchanger 2 can be improved based on the current operation change time C, and is a value larger than the initial value of the operation change time C. is the time threshold for The set value E is determined in advance through experiments and simulations and stored in the controller 123 .
  • the control unit 123 determines that the freezing state in the heat exchanger 2 can be improved by further performing the freezing state improvement control.
  • the control unit 123 determines that clogging due to freezing occurs in the heat exchanger 2, and even if the freezing state improvement control is performed, the freezing in the heat exchanger 2 is prevented. Determine that the condition cannot be improved.
  • step S210 If it is determined that the current operation change time C is equal to or less than the set value E, the answer to step S210 is Yes, and the process proceeds to step S220. If it is determined that the current operation change time C is longer than the set value E, the determination in step S210 is No, and the process proceeds to step S240.
  • step S220 the operation change time C is extended. Specifically, the control unit 123 adds a predetermined set value F to the current operation change time C, and stores the result as the operation change time C to be used for the next ice condition improvement control. If the operation change time C used for the current ice condition improvement control is already extended, the control unit 123 adds the set value F to the extended operation change time C. is stored as the operation change time C to be used for the next ice condition improvement control.
  • the set value D described above may be increased. By increasing the set value D, it is possible to further reduce the amount of outside air, which is cooler than the indoor air, flowing into the heat exchanger 2, thereby increasing the effect of improving the frozen state of the heat exchanger 2. After that, the process proceeds to step S230.
  • step S220 ⁇ step S230 ⁇ step S150 freezing occurs repeatedly unless the temperature conditions are improved in step S150, that is, unless the current outdoor temperature T changes to be greater than the second temperature threshold T1. It is notified that the heat exchanger 2 is in a state where freezing may occur, and the flow of No in step S170 ⁇ step S160 is repeated to continuously confirm the occurrence of freezing. Further, the flow from Yes in step S170 to step S180 is repeated to continuously perform the ice state improvement control.
  • the set value F is an extension time that is added to the current operation change time C in order to set the operation change time C to be extended.
  • the set value F is determined in advance through experiments and simulations and stored in the controller 123 .
  • the operation change time C is extended and set according to the amount of decrease in the current motor current value I of the exhaust DC motor 42 after the operation change time C has elapsed. Then, after the operation change time C is extended and set, the current outdoor temperature T is equal to or lower than the second temperature threshold T1, and the current motor current value I of the exhaust DC motor 42 is the freezing determination current value Ii1 . In the following cases, the control for reducing the air volume of the air supply fan 3 by the extended operation change time C below the air volume of the exhaust fan 4 is repeatedly performed.
  • a warning of freezing is issued.
  • the control unit 123 controls the display unit 13 to display a freezing occurrence warning.
  • the freezing warning is a warning indicating that the current outdoor temperature T and the heat exchanger 2 are in a state where freezing may occur in the heat exchanger 2 . That is, as long as there is no change in the temperature condition in step S150, i.e., unless there is a change in which the current outdoor temperature T becomes greater than the second temperature threshold T1, the freezing occurrence warning indicates that freezing may occur in the heat exchanger 2. This is a warning indicating that there is a possibility that the freezing condition improvement control will be repeatedly performed due to the possibility of repeated freezing condition improvement control.
  • the freezing occurrence warning indicates that the freezing level of the freezing generated in the heat exchanger 2 is a light freezing level at which the freezing of the heat exchanger 2 can be melted by the freezing condition improvement control.
  • step S240 a warning of ice clogging is issued.
  • the control unit 123 controls the display unit 13 to display the frozen clogging warning.
  • the user can recognize that the heat exchanger 2 is temporarily clogged due to ice. After that, the process returns to step S150.
  • the freezing clogging warning is a warning indicating that temporary clogging of the heat exchanger 2 due to freezing has occurred in the heat exchanger 2 and that the freezing state has not recovered even if the freezing state improvement control is performed.
  • the frozen clogging warning is issued when the level of the frozen state of the ice generated in the heat exchanger 2 cannot be melted by the frozen state improvement control, and the frozen state remains even if the frozen state improvement control is performed. This indicates a severely frozen state level that cannot be recovered.
  • step S250 the warning of freezing is canceled.
  • the control unit 123 performs control to terminate the display of the freezing occurrence warning on the display unit 13 .
  • the pre-icing reference current value Ii0 , the freezing determination current value Ii1 , the freezing improvement determination current value Ii2 , and the extended operation change time C are cleared.
  • the control unit 123 controls the stored pre-icing reference current value Ii0 , the freezing determination current value Ii1 , the freezing improvement determination current value Ii2 , and the extended operation change time C. Delete from section 123 . After that, the process returns to step S110.
  • step S260 it is determined whether or not the current motor current value I of the exhaust DC motor 42 has returned to the pre-freezing reference current value Ii0 . That is, it is determined whether or not the current motor current value I of the exhaust DC motor 42 is greater than or equal to the anti-icing current value Ii2 and less than the pre-icing reference current value Ii0 . Specifically, the control unit 123 compares the current motor current value I of the exhaust DC motor 42 acquired in step S200 with the pre-freezing reference current value Ii0 , thereby determining the current exhaust DC motor 42 has returned to the pre-freezing reference current value Ii0 . By performing step S260, it is possible to determine whether or not the heat exchanger 2 has recovered from the frozen state.
  • the control unit 123 determines that the freezing of the heat exchanger 2 has been appropriately improved. It is determined that the heat exchanger 2 has recovered from the frozen state to the normal state.
  • the control unit 123 determines that the improvement of the freezing of the heat exchanger 2 is insufficient and that the heat exchanger 2 cannot recover from the freezing state. That is, it is possible to determine whether or not the heat exchanger 2 has recovered from freezing by determining whether the current motor current value I of the exhaust DC motor 42 has returned to the pre-freezing reference current value Ii0 .
  • step S260 determines whether the current motor current value I of the exhaust DC motor 42 has returned to the pre-freezing reference current value Ii0 . If it is determined that the current motor current value I of the exhaust DC motor 42 has returned to the pre-freezing reference current value Ii0 , the determination in step S260 is YES, and the process proceeds to step S270. If it is determined that the current motor current value I of the exhaust DC motor 42 has not returned to the pre-freezing reference current value Ii0 , the determination in step S260 is No, and the process proceeds to step S210.
  • step S270 it is determined that the freezing condition improvement control may be excessively performed, and the operation change time C is shortened. Specifically, the control unit 123 subtracts a predetermined set value G from the current operation change time C, and stores the result as the operation change time C to be used for the next frozen state improvement control. If the operation change time C used in the current frozen state improvement control is already extended or shortened, the control unit 123 further sets the set value for the extended or shortened operation change time C. G is subtracted and stored as operation change time C to be used for the next ice condition improvement control. After that, the process proceeds to step S230.
  • FIG. 7 is a diagram explaining an example of the freezing state improvement control in the heat exchange ventilator 1 according to the first embodiment.
  • the state of the DC motor 32 for air supply, the motor current value I of the DC motor 42 for exhaust, and the frozen state of the heat exchanger 2 are shown on the vertical axis.
  • the state of the air supply DC motor 32 is an operating state or a stopped state.
  • the frozen state of the heat exchanger 2 includes a normal state without ice, a frozen state, and a semi-frozen state between the normal state and the frozen state.
  • the horizontal axis in FIG. 7 indicates time.
  • the heat exchanger 2 begins to freeze at time T1. Then, the current motor current value I of the exhaust DC motor 42 decreases from time T1.
  • the frozen state of the heat exchanger 2 is a semi-frozen state between the normal state and the frozen state.
  • Time T3 corresponds to Yes in step S170 and step S180 in FIG.
  • Time T4 corresponds to Yes in steps S190 and S200 in FIG.
  • Time T6 corresponds to Yes in step S170 and step S180 in FIG.
  • a motor current value I7 which is the current motor current value I of the exhaust DC motor 42 at time T7, is equal to or greater than the ice improvement determination current value Ii2 , but is less than the pre-icing reference current value Ii0 . It has not returned to the reference current value Ii0 . Also, at this point, the heat exchanger 2 has not returned to its normal, non-icing state. Then, since the heat exchanger 2 has not returned to the normal state without freezing, freezing occurs in the heat exchanger 2 in a short period of time, and from time T7, the occurrence of freezing in the heat exchanger 2 begin.
  • Time T7 corresponds to Yes in steps S190 and S200 in FIG. More specifically, time T7 corresponds to steps S190 ⁇ Yes in step S200 ⁇ No in step S260 ⁇ Yes in step S210 ⁇ step S220 ⁇ step S230 ⁇ step S150 in FIGS. That is, the control unit 123 shifts to control of normal operation. Further, the control unit 123 extends the operation change time C in step S220.
  • FIG. Time T8 corresponds to Yes in step S170 and step S180 in FIG.
  • Time T9 corresponds to Yes in steps S190 and S200 in FIG.
  • the state of the air supply fan 3 is returned to the normal state in step S190, and then the current motor current value I of the exhaust DC motor 42 is changed when the air supply DC motor 32 is in operation. detect. Then, in the heat exchange type ventilator 1, even if the detected current motor current value I of the exhaust DC motor 42 exceeds the freezing improvement determination current value Ii2 , as in the state at time T7, In some cases, the ice on the heat exchanger 2 is not completely removed.
  • the control unit 123 determines that the freezing of the heat exchanger 2 has not been completely removed. judge. Further, the control unit 123 determines that the improvement of the freezing of the heat exchanger 2 is insufficient, and extends the operation change time C used for the freezing state improvement control in the next step S180.
  • the control unit 123 determines that the freezing of the heat exchanger 2 has been appropriately improved and the heat exchanger 2 has recovered from the freezing state to the normal state. Further, the control unit 123 determines that the icing state improvement control may be excessively performed, and shortens the operation change time C used for the icing state improvement control in the next step S180.
  • control unit 123 repeatedly performs the control described above, so that the freezing state improvement control suitable for improving the freezing of the heat exchanger 2 can be performed.
  • Each of the control unit 123 of the control device 12, the air supply motor control circuit 320, and the exhaust motor control circuit 420 is implemented as a processing circuit having the hardware configuration shown in FIG. 8, for example.
  • 8 is a diagram illustrating an example of a hardware configuration of a processing circuit according to Embodiment 1.
  • FIG. When the control unit 123 of the control device 12, the air supply motor control circuit 320, and the exhaust motor control circuit 420 are each realized by the processing circuit shown in FIG. Circuit 320 and exhaust motor control circuit 420 are implemented by processor 201 executing a program stored in memory 202 . Also, multiple processors and multiple memories may work together to achieve the above functions.
  • control unit 123 of the control device 12 Some of the functions of the control unit 123 of the control device 12, the air supply motor control circuit 320, and the exhaust motor control circuit 420 are implemented as electronic circuits, and the other functions are implemented by the processor 201 and the memory 202. You may make it implement
  • the heat exchange type ventilator 1 depending on whether the current outdoor temperature T is equal to or higher than the first temperature threshold value T0 , the heat exchanger 2 in the state of the current outdoor temperature T A primary determination is made as to whether or not freezing may occur. Further, when it is determined in the primary determination that there is a possibility that freezing occurs in the heat exchanger 2, the heat exchange type ventilator 1 determines whether or not freezing has occurred in the heat exchanger 2 by the exhaust DC motor. A secondary determination based on the motor current value I of 42 is performed.
  • the heat exchange ventilator 1 detects temporary clogging of the heat exchanger 2 due to freezing in the heat exchange ventilator 1 using two determination parameters. 2 clogging can be determined with high accuracy.
  • the heat exchange type ventilator 1 can eliminate erroneous detection of clogging of the exhaust filter 6 over time as temporary clogging of the heat exchanger 2 due to freezing. It is possible to suppress unnecessary restrictions on the amount of ventilation air due to the frozen state improvement control being performed when the heat exchanger 2 is not clogged.
  • the heat exchange ventilator 1 accurately determines temporary clogging of the heat exchanger 2 due to freezing that occurs in the heat exchange ventilator 1 without using a pressure sensor or a flow sensor. It is possible to suppress unnecessary restrictions on the ventilation air volume.
  • the icing state improvement control for melting the icing to improve the icing state is performed corresponding to the icing state, and the icing state in the heat exchanger 2 is improved.
  • the heat exchange ventilator 1 can suppress an unnecessary decrease in the air volume when temporary clogging of the heat exchanger 2 due to freezing occurs, and ventilation of the heat exchange ventilator 1 A decrease in the amount can be suppressed.
  • the heat exchange type ventilator 1 can reduce unnecessary waiting time for melting ice by changing the operation change time C according to the state of freezing, and can suppress unnecessary decrease in ventilation air volume. can.
  • the heat exchange ventilator 1 adapts various reference values and set values used when determining the occurrence of temporary clogging of the heat exchanger 2 due to freezing to the installation environment of the heat exchange ventilator 1. can be set to any reasonable value. As a result, the heat exchange ventilator 1 can accurately determine temporary clogging of the heat exchanger 2 due to freezing in accordance with the installation environment of the heat exchange ventilator 1 .
  • the motor current value I of the exhaust DC motor 42 is used to determine the clogging of the heat exchange type ventilator 1, but the motor current of the exhaust DC motor 42 is It is also possible to replace the value I with determination using the rotation speed N of the exhaust DC motor 42 or the command voltage value of the exhaust DC motor 42, which are known techniques.
  • Embodiment 1 an example in which a DC motor is used for the motors used in the air supply fan 3 and the exhaust fan 4 is shown, but the motors used in the air supply fan 3 and the exhaust fan 4 are It is not limited to DC motors. That is, alternating current (AC) motors may be used for the air supply fan 3 and the exhaust fan 4 . Even when AC motors are used for the air supply fan 3 and the exhaust fan 4, the above effects can be obtained by performing the same control as above.
  • AC alternating current
  • FIG. 9 is a block diagram showing the functional configuration of another heat exchange ventilator 1X according to the first embodiment.
  • FIG. 9 components similar to those shown in FIG. 2 are assigned the same reference numerals as in FIG. 2, and detailed description thereof is omitted.
  • Another heat exchange ventilator 1X basically has the same configuration and effect as the heat exchange ventilator 1 according to the first embodiment, but AC motors are used for the air supply fan 3 and the exhaust fan 4. is different from the heat exchange ventilator 1 according to the first embodiment.
  • Another heat exchange type ventilator 1X includes a housing 1a, a heat exchanger 2, an air supply fan 3X, an exhaust fan 4X, an air supply filter 5, an exhaust filter 6, and an indoor air outlet.
  • a unit 7 an indoor intake unit 8 , an outdoor intake unit 9 , an outdoor outlet unit 10 , an outdoor temperature detection unit 11 , a control device 12X, and a display unit 13 .
  • the air supply blower 3X is arranged in the downstream air supply air passage 21b and generates an air supply flow from the outdoor side suction section 9 toward the indoor side blowout section 7.
  • the air supply fan 3X includes an air supply fan 31 inside the air supply fan casing 30 and an air supply AC motor 33 for rotating the air supply fan 31 .
  • the air supply fan 3X rotates the air supply fan 31 with the air supply AC motor 33 to generate an air supply flow.
  • the operation of the air supply fan 3X is controlled by the control unit 123X, which will be described later, by controlling the operation, stop, and rotation speed of the air supply AC motor 33 by the control unit 123X.
  • the exhaust air blower 4X is arranged in the downstream exhaust air passage 22b and generates an exhaust flow from the indoor intake section 8 to the outdoor outlet section 10.
  • the exhaust fan 4X includes an exhaust fan 41 in an exhaust fan casing 40 and an exhaust AC motor 43 for rotating the exhaust fan 41 .
  • the exhaust fan 4X rotates the exhaust fan 41 with the exhaust AC motor 43 to generate an exhaust flow.
  • the operation of the exhaust air blower 4X is controlled by the control unit 123X, which will be described later, by controlling the operation, stop, and rotational speed of the exhaust AC motor 43 by the control unit 123X.
  • the control device 12X is provided inside the housing 1a and controls the entire heat exchange type ventilator 1X.
  • the control device 12X includes a storage unit 121, a control unit 123X, an air supply current detection unit 124, and an exhaust current detection unit 125.
  • the control unit 123X controls the entire heat exchange ventilator 1X including the air supply fan 3X and the exhaust fan 4X. Instead of the current value of the motor current flowing through the air supply DC motor 32 and the current value of the motor current flowing through the exhaust DC motor 42, the control unit 123X determines the current value of the motor current flowing through the air supply AC motor 33 and the exhaust current. The same control as that of the control unit 123 of the heat exchange type ventilator 1 according to the first embodiment is performed except that the current value of the motor current flowing through the AC motor 43 is used.
  • the air-supply current detection unit 124 detects current in the air-supply AC motor 33 using, for example, a measured value of a current measuring device such as a clamp meter clamped on a wire connecting a power supply (not shown) and the air-supply AC motor 33 . It is possible to detect the current value of the flowing motor current. Note that the method for detecting the current value of the motor current flowing through the air supply AC motor 33 is not limited to this.
  • the exhaust current detection unit 125 uses, for example, a measured value of a current measuring device such as a clamp meter clamped on a wire connecting the power supply (not shown) and the exhaust current detection unit 125, and the current flowing to the exhaust current detection unit 125 is measured.
  • the current value of the motor current can be detected. Note that the method for detecting the current value of the motor current flowing through the exhaust current detection unit 125 is not limited to this.
  • the other heat exchange type ventilator 1X is configured as described above, and uses the current value of the motor current flowing through the AC motor 33 for air supply and the current value of the motor current flowing through the AC motor 43 for exhausting, Control similar to that shown in FIGS. 5 and 6 can be performed, and effects similar to those of the heat exchange ventilator 1 according to the first embodiment can be obtained. It is also possible to adopt a configuration in which the air supply current detection unit 124 is provided in the air supply fan 3X and the exhaust current detection unit 125 is provided in the exhaust fan 4X. In this case, the air supply fan 3X, the exhaust fan 4X, and the controller 12X can communicate with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A control unit (123) of this heat-exchange ventilator stores the present motor current value of an exhaust motor as a pre-freezing reference current value when the outdoor temperature is less than a predetermined temperature threshold value. When the present motor current value of the exhaust motor after storing the pre-freezing reference current value is equal to or less than a freezing determination current value that is smaller than the pre-freezing reference current value, the control unit (123) determines that ice has formed in the heat exchanger, and performs freezing state improvement control to melt the ice by reducing the air flow rate of an air supply blower (3) below the air flow rate of an exhaust blower (4).

Description

熱交換型換気装置heat exchange ventilation system
 本開示は、熱交換器により室外の空気と室内の空気との間で熱交換を行いながら換気する熱交換型換気装置に関する。 The present disclosure relates to a heat exchange ventilation system that performs ventilation while exchanging heat between outdoor air and indoor air using a heat exchanger.
 熱交換型換気装置は、室外の空気を室内に取り込む際に、室内の空気調和装置によって空気調和された室内空気の熱エネルギーを、熱交換器を通して室外の空気に受け渡すことで、換気による熱エネルギーの回収を行いつつ換気を行う。 A heat exchange type ventilation system transfers the heat energy of the indoor air that has been conditioned by the indoor air conditioner to the outdoor air through a heat exchanger when the outdoor air is taken into the room. Ventilate while recovering energy.
 熱交換型換気装置は、冬期において室外温度が低下した場合、排出する室内空気の熱エネルギーを熱交換器において室内に取り込む室外空気に受け渡す際に、排出する室内空気が冷却されることで室内空気内に保持されていた水分が結露し、水滴となる。さらに室外温度が低下した場合には、水滴が凍結して結氷となって熱交換器の目詰まりを引き起こし、熱交換効率の低下あるいは排気風量の低下を引き起こすという問題がある。 When the outdoor temperature drops in winter, a heat exchange ventilation system transfers the thermal energy of the discharged indoor air to the outdoor air taken in by the heat exchanger. Moisture held in the air condenses and forms water droplets. Furthermore, when the outdoor temperature drops, the water droplets freeze and become ice, causing clogging of the heat exchanger, resulting in a decrease in heat exchange efficiency or a decrease in exhaust air volume.
 このため、熱交換型換気装置においては、給気する室外空気の温度を検出し、室外空気の温度が特定の温度を下回った場合に、一定時間の間において給気送風機の運転と停止とを繰り返す間欠運転を実施する、あるいは一定時間の間において給気送風機の出力の低減を行うことで熱交換器の目詰まり防止を行っている。 For this reason, in a heat exchange type ventilator, the temperature of the outdoor air to be supplied is detected, and if the temperature of the outdoor air falls below a specific temperature, the operation and stop of the supply air blower are stopped for a certain period of time. Clogging of the heat exchanger is prevented by performing repeated intermittent operation or by reducing the output of the supply air blower for a certain period of time.
 特許文献1には、排気用ファンが備える排気用直流(Direct Current:DC)モータのモータ電流値を監視し、モータ電流値が予め決められた値以上になった場合に結氷による熱交換器の目詰まりを検知し、給気用ファンが備える給気用DCモータの回転数を減少させることで結氷を溶かして熱交換器の目詰まりを防止する熱交換型換気装置が開示されている。給気用DCモータの回転数を減少させる場合には、結氷を溶かすことができるが、熱交換型換気装置の換気風量が制限される。 In Patent Document 1, the motor current value of an exhaust direct current (DC) motor provided in an exhaust fan is monitored, and when the motor current value exceeds a predetermined value, the heat exchanger malfunctions due to freezing. A heat exchange ventilator is disclosed that detects clogging and reduces the rotation speed of an air supply DC motor provided in an air supply fan to melt ice and prevent clogging of a heat exchanger. If the rotation speed of the air supply DC motor is decreased, the ice can be melted, but the ventilation air volume of the heat exchange type ventilation system is limited.
特開2015-190684号公報JP 2015-190684 A
 しかしながら、上記特許文献1の熱交換型換気装置によれば、熱交換器の凍結に起因しない経年的なフィルタの目詰まりが発生した場合においてモータ電流値が予め決められた値以上になることにより、給気用DCモータの回転数を減少させることになり、結氷を溶かして熱交換器の目詰まりを防止する必要がないときでも、不必要に換気風量が制限される、という問題があった。 However, according to the heat exchange ventilator of Patent Document 1, when the filter is clogged over time and is not caused by freezing of the heat exchanger, the motor current value becomes a predetermined value or more. , the number of revolutions of the air supply DC motor is reduced, and even when there is no need to melt ice to prevent clogging of the heat exchanger, there is a problem that the ventilation air volume is unnecessarily limited. .
 本開示は、上記に鑑みてなされたものであって、結氷による一時的な熱交換器の目詰まりを精度良く検知でき、熱交換器の結氷状態を改善することができるとともに結氷による一時的な熱交換器の目詰まり時以外における熱交換器の結氷状態の改善動作に起因した不必要な換気風量の制限を抑制することができる熱交換型換気装置を得ることを目的とする。 The present disclosure has been made in view of the above, and is capable of accurately detecting temporary clogging of a heat exchanger due to freezing, improving the freezing state of the heat exchanger, and temporarily clogging due to freezing. To obtain a heat exchange type ventilator capable of suppressing unnecessary limitation of ventilation air volume caused by improvement operation of a frozen state of a heat exchanger except when the heat exchanger is clogged.
 上述した課題を解決し、目的を達成するために、本開示にかかる熱交換型換気装置は、室内空気を室外に排気する排気風路と、室外空気を室内に給気する給気風路と、が独立して内部に形成された筐体と、排気用モータを備えて排気風路に設けられ排気風路を流れる排気流を発生させる排気用送風機と、給気用モータを備えて給気風路に設けられ給気風路を流れる給気流を発生させる給気用送風機と、を備える。熱交換型換気装置は、給気風路と排気風路とに跨って設けられ給気流と排気流との間で熱交換させる熱交換器と、排気風路における熱交換器よりも上流側に配置された排気用フィルタと、室外空気の温度である室外温度を検知する室外温度検知部と、排気用モータに流れるモータ電流値を検知する電流検知部と、給気用送風機および排気用送風機の動作を制御する制御部と、を備える。制御部は、室外温度が予め決められた温度閾値未満である場合に、現在の排気用モータのモータ電流値を結氷前基準電流値として記憶し、結氷前基準電流値を記憶した後における現在の排気用モータのモータ電流値が、結氷前基準電流値より小さい結氷判定電流値以下である場合に熱交換器に結氷が発生していると判定し、給気用送風機の風量を排気用送風機の風量より減らして結氷を溶かす結氷状態改善制御を行う。 In order to solve the above-described problems and achieve the object, the heat exchange type ventilation device according to the present disclosure includes an exhaust air passage for exhausting indoor air to the outside, a supply air passage for supplying outdoor air to the room, is independently formed inside, an exhaust fan provided in an exhaust air passage and provided with an exhaust motor to generate an exhaust flow flowing through the exhaust air passage, and an air supply motor having an air supply air passage and an air supply blower that is provided in and generates an air supply flow that flows through the air supply air passage. The heat exchange type ventilation device includes a heat exchanger that is provided across the supply air passage and the exhaust air passage and exchanges heat between the supply air flow and the exhaust air flow, and is arranged upstream of the heat exchanger in the exhaust air passage. an exhaust filter, an outdoor temperature detector that detects the outdoor temperature, which is the temperature of the outdoor air, a current detector that detects the motor current value flowing through the exhaust motor, and the operation of the air supply fan and the exhaust fan. and a control unit that controls the The control unit stores a current motor current value of the exhaust motor as a pre-freezing reference current value when the outdoor temperature is less than a predetermined temperature threshold, and stores the current value after storing the pre-freezing reference current value. If the motor current value of the exhaust motor is equal to or less than the freezing determination current value that is smaller than the pre-freezing reference current value, it is determined that the heat exchanger is frozen, and the air volume of the supply air blower is reduced to that of the exhaust air blower. Freeze state improvement control is performed by reducing the air flow to melt the ice.
 本開示にかかる熱交換型換気装置によれば、結氷による一時的な熱交換器の目詰まりを精度良く検知でき、熱交換器の結氷状態を改善することができるとともに結氷による一時的な熱交換器の目詰まり時以外における熱交換器の結氷状態の改善動作に起因した不必要な換気風量の制限を抑制することができる、という効果を奏する。 According to the heat exchange ventilator according to the present disclosure, it is possible to accurately detect temporary clogging of the heat exchanger due to freezing, improve the freezing state of the heat exchanger, and temporarily heat exchange due to freezing. It is possible to suppress unnecessary restrictions on the amount of ventilation air due to the operation to improve the frozen state of the heat exchanger except when the container is clogged.
実施の形態1にかかる熱交換型換気装置の構成を示す模式図Schematic diagram showing the configuration of a heat-exchange ventilator according to the first embodiment 実施の形態1にかかる熱交換型換気装置の機能構成を示すブロック図FIG. 2 is a block diagram showing the functional configuration of the heat exchange ventilator according to the first embodiment; 実施の形態1における送風機に対して指令電圧一定制御を行っているときの送風機の風量と静圧との関係を示す特性図FIG. 4 is a characteristic diagram showing the relationship between the air volume of the fan and the static pressure when constant command voltage control is performed on the fan according to Embodiment 1; 実施の形態1における送風機に対して指令電圧一定制御を行っているときの送風機におけるモータ電流と回転数との関係を示す特性図FIG. 4 is a characteristic diagram showing the relationship between the motor current and the number of rotations of the blower when constant command voltage control is performed on the blower according to Embodiment 1; 実施の形態1にかかる熱交換型換気装置における熱交換器の結氷による目詰まりの検出動作および熱交換器の結氷状態の改善動作の動作例を示す第1のフローチャートA first flow chart showing an operation example of detecting clogging due to freezing of the heat exchanger and improving the freezing state of the heat exchanger in the heat exchange ventilator according to the first embodiment. 実施の形態1にかかる熱交換型換気装置における熱交換器の結氷による目詰まりの検出動作および熱交換器の結氷状態の改善動作の動作例を示す第2のフローチャートA second flowchart showing an operation example of an operation for detecting clogging due to freezing of the heat exchanger and an operation for improving the freezing state of the heat exchanger in the heat exchange type ventilator according to the first embodiment. 実施の形態1にかかる熱交換型換気装置における結氷状態改善制御の一例を説明する図A diagram for explaining an example of freezing state improvement control in the heat exchange ventilator according to the first embodiment. 実施の形態1における処理回路のハードウェア構成の一例を示す図FIG. 1 shows an example of a hardware configuration of a processing circuit according to Embodiment 1; 実施の形態1にかかる他の熱交換型換気装置の機能構成を示すブロック図FIG. 3 is a block diagram showing the functional configuration of another heat exchange type ventilation device according to the first embodiment;
 以下に、実施の形態にかかる熱交換型換気装置を図面に基づいて詳細に説明する。 Below, the heat exchange type ventilation system according to the embodiment will be described in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1にかかる熱交換型換気装置1の構成を示す模式図である。図2は、実施の形態1にかかる熱交換型換気装置1の機能構成を示すブロック図である。熱交換型換気装置1は、給気流と排気流との間の熱交換を行いながら換気を行うことが可能な装置である。熱交換型換気装置1は、24時間換気を目的として運転する。したがって、熱交換型換気装置1は、基本的には、運転が開始されるとメンテナンス時以外では運転を停止することはない。
Embodiment 1.
FIG. 1 is a schematic diagram showing the configuration of a heat exchange ventilator 1 according to the first embodiment. FIG. 2 is a block diagram showing the functional configuration of the heat exchange ventilator 1 according to the first embodiment. The heat exchange type ventilator 1 is a device capable of performing ventilation while exchanging heat between the supply air flow and the exhaust air flow. The heat exchange type ventilator 1 operates for the purpose of 24-hour ventilation. Therefore, once the heat exchange ventilator 1 starts operating, it basically does not stop operating except during maintenance.
 熱交換型換気装置1は、室外から室内への給気と室内から室外への排気とにより室内を換気することで、室内の快適な空気環境を維持する。また、熱交換型換気装置1は、給気流と排気流との間の熱交換により、室内に取り込まれる空気と室内の空気との温度差を小さくして、室内の空気調和の負担を低減させる。熱交換型換気装置1は、例えば天井裏の空間に設置される。 The heat exchange type ventilator 1 maintains a comfortable air environment in the room by ventilating the room by supplying air from the outside to the room and exhausting air from the room to the outside. In addition, the heat exchange type ventilator 1 reduces the temperature difference between the air taken into the room and the air in the room by heat exchange between the supply air flow and the exhaust air flow, thereby reducing the burden of air conditioning in the room. . The heat exchange ventilator 1 is installed, for example, in a space behind the ceiling.
 熱交換型換気装置1は、筐体1aと、熱交換器2と、給気用送風機3と、排気用送風機4と、給気用フィルタ5と、排気用フィルタ6と、室内側吹出部7と、室内側吸込部8と、室外側吸込部9と、室外側吹出部10と、室外温度検知部11と、制御装置12と、表示部13と、を備える。 The heat exchange type ventilator 1 includes a housing 1a, a heat exchanger 2, an air supply fan 3, an exhaust fan 4, an air supply filter 5, an exhaust filter 6, and an indoor air outlet 7. , an indoor intake section 8 , an outdoor intake section 9 , an outdoor outlet section 10 , an outdoor temperature detection section 11 , a control device 12 , and a display section 13 .
 熱交換型換気装置1は、給気流と排気流との間の熱交換を行う熱交換器2が筐体1aに収納されている。筐体1aは、例えば直方体形状の六面体を有し、熱交換型換気装置1の本体部を構成する。筐体1aの内部には、給気流が通る給気風路21と、排気流が通る排気風路22と、給気風路21と排気風路22とを仕切る仕切壁23とが設けられている。図1では、給気風路21が破線の矢印で示されている。図1では、排気風路22が実線の矢印で示されている。図1では、筐体1aから筐体1aにおける1つの面が取り外された状態における熱交換型換気装置1が示されている。 In the heat exchange type ventilator 1, a heat exchanger 2 that exchanges heat between the supply air flow and the exhaust air flow is housed in the housing 1a. The housing 1 a has, for example, a rectangular parallelepiped hexahedron, and constitutes the main body of the heat exchange ventilator 1 . A supply air passage 21 through which an air supply flow passes, an exhaust air passage 22 through which an exhaust flow passes, and a partition wall 23 that partitions the supply air passage 21 and the exhaust air passage 22 are provided inside the housing 1a. In FIG. 1 , the supply air passage 21 is indicated by a dashed arrow. In FIG. 1, the exhaust air passage 22 is indicated by a solid arrow. FIG. 1 shows the heat exchange ventilator 1 in a state where one surface of the housing 1a is removed from the housing 1a.
 筐体1aのうちの1つの側面1bには、給気吹出口である室内側吹出部7と、排気吸込口である室内側吸込部8と、給気吸込口である室外側吸込部9と、排気吹出口である室外側吹出部10と、が設けられている。給気吸込口である室外側吸込部9には、室外と室外側吸込部9とを連通する不図示の室外側給気ダクトが接続される。給気吹出口である室内側吹出部7には、室内と室内側吹出部7とを連通する不図示の室内側給気ダクトが接続される。排気吸込口である室内側吸込部8には、室内と室内側吸込部8とを連通する不図示の室内側排気ダクトが接続される。排気吹出口である室外側吹出部10には、室外と室外側吹出部10とを連通する不図示の室外側排気ダクトが接続される。 On one side surface 1b of the housing 1a, an indoor air outlet 7 as an air supply outlet, an indoor air inlet 8 as an exhaust air inlet, and an outdoor air inlet 9 as an air inlet are provided. , and an outdoor-side blow-out portion 10, which is an exhaust blow-out port, are provided. An outdoor-side air supply duct (not shown) that communicates the outdoor side with the outdoor-side suction part 9 is connected to the outdoor-side suction part 9 that is an air supply suction port. An indoor air supply duct (not shown) that communicates between the room and the indoor air outlet 7 is connected to the indoor air outlet 7 serving as an air supply outlet. An indoor exhaust duct (not shown) that communicates the interior of the room with the indoor intake unit 8 is connected to the indoor intake unit 8 that is an exhaust intake port. An outdoor-side exhaust duct (not shown) that communicates the outdoor side with the outdoor-side blowing portion 10 is connected to the outdoor-side blowing portion 10 that is an exhaust air outlet.
 熱交換器2は、給気風路21と排気風路22とに跨って設けられ、給気流と排気流との間の全熱交換を行う。熱交換器2は、排気流が通る一次側風路と、給気流が通る二次側風路とを有する。熱交換器2の内部において、一次側風路と二次側風路とは垂直に交差している。一次側風路と二次側風路とは、平板紙と、波板紙であるコルゲートシートとが交互に積層および接着されて構成された積層体により形成されている。図1では、一次側風路と二次側風路との図示を省略している。積層体は、四角柱形状を呈する。熱交換器2のうち積層方向における両端に位置する端面は、それぞれ正方形を呈する。積層方向は、平板紙およびコルゲートシートが積層されている方向であり、図1における紙面の奥行方向である。 The heat exchanger 2 is provided across the supply airflow path 21 and the exhaust airflow path 22, and performs total heat exchange between the supply airflow and the exhaust airflow. The heat exchanger 2 has a primary side air passage through which the exhaust flow passes and a secondary side air passage through which the supply air flow passes. Inside the heat exchanger 2, the primary air passage and the secondary air passage intersect perpendicularly. The primary side air passage and the secondary side air passage are formed by a laminate configured by alternately laminating and adhering flat sheets of flat paper and corrugated sheets of corrugated paperboard. In FIG. 1, illustration of the primary side air passage and the secondary side air passage is omitted. The laminate has a quadrangular prism shape. The end surfaces of the heat exchanger 2 located at both ends in the stacking direction are square. The stacking direction is the direction in which the flat sheets and the corrugated sheets are stacked, and is the depth direction of the paper surface in FIG.
 給気風路21は、室外の空気である外気を室内へ給気するための風路であり、給気吸込口である室外側吸込部9と熱交換器2との間に形成された上流側給気風路21aと、熱交換器2と給気吹出口である室内側吹出部7との間に形成された下流側給気風路21bと、熱交換器2内の給気風路21である熱交換器内給気風路21cと、を有している。すなわち、上流側給気風路21aは、給気風路21において熱交換器2よりも上流側の風路であって、室外に連通する上流側の給気風路である。また、下流側給気風路21bは、給気風路21において熱交換器2よりも下流側の風路であって、室内に連通する下流側の給気風路である。 The supply air passage 21 is an air passage for supplying outdoor air, which is outdoor air, into the room. A supply air path 21a, a downstream side supply air path 21b formed between the heat exchanger 2 and the indoor-side blowout portion 7, which is a supply air outlet, and a heat supply air path 21 in the heat exchanger 2. and an in-exchanger supply air passage 21c. That is, the upstream supply air passage 21a is an air passage on the upstream side of the heat exchanger 2 in the air supply passage 21 and is an upstream air supply passage that communicates with the outside of the room. In addition, the downstream supply air passage 21b is an air passage on the downstream side of the heat exchanger 2 in the air supply passage 21 and communicates with the interior of the room.
 排気風路22は、室内空気である還気を室外へ排気するための風路であり、排気吸込口である室内側吸込部8と熱交換器2との間に形成された上流側排気風路22aと、熱交換器2と排気吹出口である室外側吹出部10との間に形成された下流側排気風路22bと、熱交換器2内の排気風路22である熱交換器内排気風路22cと、を有している。すなわち、上流側排気風路22aは、熱交換器2よりも上流側の風路であって、室内に連通する上流側の排気風路である。また、下流側排気風路22bは、熱交換器2よりも下流側の風路であって、室外に連通する下流側の排気風路である。 The exhaust air passage 22 is an air passage for exhausting return air, which is indoor air, to the outside, and is an upstream exhaust air formed between the indoor side suction part 8 which is an exhaust suction port and the heat exchanger 2. A path 22a, a downstream side exhaust air passage 22b formed between the heat exchanger 2 and the outdoor air outlet 10 that is an exhaust air outlet, and an exhaust air passage 22 in the heat exchanger 2 inside the heat exchanger. and an exhaust air passage 22c. That is, the upstream exhaust air passage 22a is an air passage on the upstream side of the heat exchanger 2 and communicates with the interior of the room. Further, the downstream exhaust air passage 22b is an air passage on the downstream side of the heat exchanger 2 and is a downstream exhaust air passage that communicates with the outside of the room.
 熱交換型換気装置1は、室外の空気を取り込み、取り込まれた空気を室内へ送る給気用送風機3と、室内の空気を取り込み、取り込まれた空気を室外へ送る排気用送風機4とを有する。 A heat exchange type ventilator 1 has a supply air blower 3 that takes in outdoor air and sends the taken in air indoors, and an exhaust fan 4 that takes in indoor air and sends the taken in air outdoors. .
 給気用送風機3は、下流側給気風路21bに配置され、室外側吸込部9から室内側吹出部7に向かう給気流の流れを生成する。給気用送風機3は、給気用送風機ケーシング30内に給気用ファン31と、給気用ファン31を回転させるための給気用DCモータ32であるDCブラシレスモータと、を備える。給気用送風機3は、給気用DCモータ32によって給気用ファン31を回転させることによって給気流を発生させる。給気用送風機3は、後述する制御部123によって給気用DCモータ32の運転、停止および回転速度が制御されることで、制御部123によって運転動作が制御される。 The air supply blower 3 is arranged in the downstream air supply air passage 21 b and generates an air supply flow from the outdoor side suction section 9 toward the indoor side blowout section 7 . The air supply fan 3 includes an air supply fan 31 in an air supply fan casing 30 and a DC brushless motor that is an air supply DC motor 32 for rotating the air supply fan 31 . The air supply fan 3 rotates the air supply fan 31 with the air supply DC motor 32 to generate an air supply flow. The operation of the air supply fan 3 is controlled by the control unit 123 by controlling the operation, stop, and rotation speed of the air supply DC motor 32 by the control unit 123, which will be described later.
 給気用DCモータ32は、DCモータの特徴である制御回路として、制御部123の制御に従って給気用DCモータ32の駆動の制御と負荷調整とを行う給気用モータ制御回路320を有する。給気用モータ制御回路320は、給気用DCモータ32に出力する電圧、給気用DCモータ32に流れるモータ電流、および給気用DCモータ32の回転数などの制御パラメータを制御することで給気用DCモータ32のモータパワーを調整することができる。制御部123は、これらの制御パラメータを取得することで、給気用DCモータ32の運転状態を把握することが可能である。本実施の形態1では、DCモータのこの特徴を利用し、制御部123が給気用DCモータ32の制御パラメータを常時監視することで、風路の圧力を検知する圧力センサまたは風路に流れる風量を検知する風量センサを使用せずに排気用フィルタ6の目詰まり状態を検知する。 The air supply DC motor 32 has an air supply motor control circuit 320 that controls the driving of the air supply DC motor 32 and adjusts the load according to the control of the control unit 123 as a control circuit that is a feature of the DC motor. The air supply motor control circuit 320 controls control parameters such as the voltage output to the air supply DC motor 32, the motor current flowing through the air supply DC motor 32, and the rotation speed of the air supply DC motor 32. The motor power of the air supply DC motor 32 can be adjusted. By acquiring these control parameters, the control unit 123 can grasp the operating state of the air supply DC motor 32 . In the first embodiment, using this feature of the DC motor, the control unit 123 constantly monitors the control parameters of the DC motor 32 for air supply, so that the pressure sensor that detects the pressure of the air passage or the air flowing to the air passage To detect the clogging state of an exhaust filter 6 without using an air volume sensor for detecting the air volume.
 給気用モータ制御回路320は、制御部123から出力指示を受け取ると、給気用DCモータ32の運転を行う。また、給気用送風機3に加わる風路の圧力変化などの負荷が変動すると給気用DCモータ32に加わる負荷も変化し、回転数、電圧、モータ電流が変化する。給気用モータ制御回路320は、給気用回転数検知部321と、給気用電圧検知部322と、給気用電流検知部323と、給気用通信部324と、を備える。 The air supply motor control circuit 320 operates the air supply DC motor 32 upon receiving an output instruction from the control unit 123 . Further, when the load applied to the air supply blower 3, such as a change in pressure in the air passage, fluctuates, the load applied to the air supply DC motor 32 also changes, and the rotation speed, voltage, and motor current change. The air supply motor control circuit 320 includes an air supply rotation speed detection unit 321 , an air supply voltage detection unit 322 , an air supply current detection unit 323 , and an air supply communication unit 324 .
 給気用回転数検知部321は、給気用DCモータ32の回転数を検知する。給気用電圧検知部322は、給気用DCモータ32に供給される電圧を検知する。給気用電流検知部323は、給気用DCモータ32に流れるモータ電流の電流値であるモータ電流値を検知する。給気用通信部324は、制御装置12と通信を行う。給気用回転数検知部321と給気用電圧検知部322と給気用電流検知部323とは、給気用通信部324を介して検知結果を制御部123へ送信する。 The air supply rotation speed detection unit 321 detects the rotation speed of the air supply DC motor 32 . The air supply voltage detector 322 detects the voltage supplied to the air supply DC motor 32 . The air supply current detection unit 323 detects a motor current value, which is the current value of the motor current flowing through the air supply DC motor 32 . The air supply communication unit 324 communicates with the control device 12 . The air supply rotation speed detection unit 321 , the air supply voltage detection unit 322 , and the air supply current detection unit 323 transmit detection results to the control unit 123 via the air supply communication unit 324 .
 排気用送風機4は、下流側排気風路22bに配置され、室内側吸込部8から室外側吹出部10に向かう排気流の流れを生成する。排気用送風機4は、排気用送風機ケーシング40内に排気用ファン41と、排気用ファン41を回転させるための排気用DCモータ42であるDCブラシレスモータと、を備える。排気用送風機4は、排気用DCモータ42によって排気用ファン41を回転させることによって排気流を発生させる。排気用送風機4は、後述する制御部123によって排気用DCモータ42の運転、停止および回転速度が制御されることで、制御部123によって運転動作が制御される。 The exhaust blower 4 is arranged in the downstream exhaust air passage 22b and generates an exhaust flow from the indoor intake section 8 toward the outdoor outlet 10 . The exhaust fan 4 includes an exhaust fan 41 in an exhaust fan casing 40 and a DC brushless motor that is an exhaust DC motor 42 for rotating the exhaust fan 41 . The exhaust fan 4 generates an exhaust flow by rotating the exhaust fan 41 with the exhaust DC motor 42 . The operation of the exhaust fan 4 is controlled by the control unit 123 by controlling the operation, stop, and rotational speed of the exhaust DC motor 42 by the control unit 123, which will be described later.
 排気用DCモータ42は、DCモータの特徴である制御回路として、制御部123の制御に従って排気用DCモータ42の駆動の制御と負荷調整とを行う排気用モータ制御回路420を有する。排気用モータ制御回路420は、排気用DCモータ42に出力する電圧、排気用DCモータ42に流れるモータ電流値、および排気用DCモータ42の回転数などの制御パラメータを制御することで排気用DCモータ42のモータパワーを調整することができる。制御部123は、これらの制御パラメータを取得することで、排気用DCモータ42の運転状態を把握することが可能である。 The exhaust DC motor 42 has an exhaust motor control circuit 420 that controls the driving of the exhaust DC motor 42 and adjusts the load according to the control of the control unit 123 as a control circuit that is a feature of the DC motor. The exhaust motor control circuit 420 controls control parameters such as the voltage output to the exhaust DC motor 42, the motor current value flowing through the exhaust DC motor 42, and the number of rotations of the exhaust DC motor 42. The motor power of motor 42 can be adjusted. By acquiring these control parameters, the control unit 123 can grasp the operating state of the exhaust DC motor 42 .
 排気用モータ制御回路420は、制御部123から出力指示を受け取ると、排気用DCモータ42の運転を行う。また、排気用送風機4に加わる風路の圧力変化などの負荷が変動すると排気用DCモータ42に加わる負荷も変化し、回転数、電圧値、モータ電流値が変化する。排気用モータ制御回路420は、排気用回転数検知部421と、排気用電圧検知部422と、排気用電流検知部423と、排気用通信部424と、を備える。 The exhaust motor control circuit 420 operates the exhaust DC motor 42 upon receiving an output instruction from the control unit 123 . Further, when the load applied to the exhaust blower 4 such as a change in pressure in the air path fluctuates, the load applied to the exhaust DC motor 42 also changes, and the rotation speed, voltage value, and motor current value also change. The exhaust motor control circuit 420 includes an exhaust rotation speed detection unit 421 , an exhaust voltage detection unit 422 , an exhaust current detection unit 423 , and an exhaust communication unit 424 .
 排気用回転数検知部421は、排気用DCモータ42の回転数を検知する。排気用電圧検知部422は、排気用DCモータ42に供給される電圧を検知する。排気用電流検知部423は、排気用DCモータ42に流れるモータ電流の電流値であるモータ電流値を検知する。排気用通信部424は、制御装置12と通信を行う。排気用回転数検知部421と排気用電圧検知部422と排気用電流検知部423とは、排気用通信部424を介して検知結果を制御部123へ送信する。 The exhaust rotation speed detection unit 421 detects the rotation speed of the exhaust DC motor 42 . The exhaust voltage detector 422 detects the voltage supplied to the exhaust DC motor 42 . The exhaust current detection unit 423 detects a motor current value, which is the current value of the motor current flowing through the exhaust DC motor 42 . The exhaust communication unit 424 communicates with the control device 12 . The exhaust rotation speed detection unit 421 , the exhaust voltage detection unit 422 , and the exhaust current detection unit 423 transmit detection results to the control unit 123 via the exhaust communication unit 424 .
 給気用フィルタ5は、外気に含まれる塵埃の目詰まりによる熱交換器2の性能低下を防止するために、熱交換器2に吸い込まれる外気の塵埃を取り除いて外気を清浄化するエアフィルタである。給気用フィルタ5は、取り外し自在に給気風路21の上流側給気風路21aに設置されている。すなわち、給気用フィルタ5は、給気風路21における熱交換器2よりも上流側の位置に設置されている。 The air supply filter 5 is an air filter that cleans the outside air by removing dust from the outside air sucked into the heat exchanger 2 in order to prevent the performance of the heat exchanger 2 from being clogged with dust contained in the outside air. be. The air supply filter 5 is detachably installed in the upstream air supply air passage 21 a of the air supply air passage 21 . That is, the air supply filter 5 is installed at a position upstream of the heat exchanger 2 in the air supply passage 21 .
 熱交換型換気装置1に取り込まれた外気は、給気用フィルタ5を通過し、含まれる浮遊粒子の一部が除去される。給気用フィルタ5は、通常の除塵フィルタから、通常の除塵フィルタよりも微小粒子状物質および花粉をより高い捕集率で捕集できる高性能除塵フィルタに交換することが可能である。 The outside air taken into the heat exchange type ventilator 1 passes through the air supply filter 5, and some of the contained suspended particles are removed. The air supply filter 5 can be replaced from a normal dust filter with a high-performance dust filter that can collect fine particulate matter and pollen at a higher collection rate than a normal dust filter.
 排気用フィルタ6は、還気に含まれる塵埃の目詰まりによる熱交換器2の性能低下を防止するために、熱交換器2に吸い込まれる還気の塵埃を取り除くエアフィルタである。排気用フィルタ6は、取り外し自在に排気風路22の上流側排気風路22aに設置されている。すなわち、排気用フィルタ6は、排気風路22における熱交換器2よりも上流側の位置に設置されている。熱交換型換気装置1に取り込まれた還気は、排気用フィルタ6を通過し、含まれる浮遊粒子の一部が除去される。 The exhaust filter 6 is an air filter that removes dust from the return air sucked into the heat exchanger 2 in order to prevent the performance of the heat exchanger 2 from being clogged with dust contained in the return air. The exhaust filter 6 is detachably installed in the upstream side exhaust air passage 22 a of the exhaust air passage 22 . That is, the exhaust filter 6 is installed upstream of the heat exchanger 2 in the exhaust air passage 22 . The return air taken into the heat exchange type ventilator 1 passes through the exhaust filter 6 to remove part of the contained suspended particles.
 室外温度検知部11は、屋外から室外側吸込部9を介して熱交換型換気装置1に吸い込まれる屋外の空気の温度である室外温度T、すなわち外気の温度を検知する検知部である。すなわち、室外温度検知部11は、外気の温度を検知する外気温度検知部と換言できる。室外温度検知部11は、給気風路21における上流側給気風路21aに設けられている。室外温度検知部11は、検知した屋外の空気の温度を制御部123に送信する。 The outdoor temperature detection unit 11 is a detection unit that detects the outdoor temperature T, which is the temperature of outdoor air sucked into the heat exchange type ventilation device 1 from the outdoors via the outdoor side suction unit 9, that is, the temperature of the outside air. That is, the outdoor temperature detection unit 11 can be rephrased as an outdoor temperature detection unit that detects the temperature of the outdoor air. The outdoor temperature detection unit 11 is provided in an upstream air supply air passage 21 a of the air supply air passage 21 . The outdoor temperature detection unit 11 transmits the detected outdoor air temperature to the control unit 123 .
 表示部13は、結氷による熱交換器2の目詰まりが発生した旨の目詰まり警告および熱交換器2において結氷が発生する可能性がある旨の結氷発生警告といった各種の警告を表示してユーザに報知する。表示部13は、例えば発光ダイオードを点灯させることにより、各種の警告を報知することができる。各警告の詳細については、後述する。 The display unit 13 displays various warnings such as a clogging warning that the heat exchanger 2 is clogged due to freezing and a freezing warning that freezing may occur in the heat exchanger 2. to be notified. The display unit 13 can notify various warnings by, for example, lighting a light-emitting diode. Details of each warning will be described later.
 制御装置12は、筐体1aの内部に設けられ、熱交換型換気装置1の全体を制御する。制御装置12は、記憶部121と、通信部122と、制御部123と、を備える。 The control device 12 is provided inside the housing 1a and controls the heat exchange type ventilator 1 as a whole. The control device 12 includes a storage section 121 , a communication section 122 and a control section 123 .
 記憶部121は、熱交換型換気装置1の制御に用いられる各種の情報を記憶する。 The storage unit 121 stores various information used for controlling the heat exchange ventilator 1 .
 通信部122は、給気用送風機3、排気用送風機4および熱交換型換気装置1の外部の機器と通信を行う。 The communication unit 122 communicates with devices external to the air supply fan 3, the exhaust fan 4, and the heat exchange type ventilator 1.
 制御部123は、給気用送風機3および排気用送風機4を含む熱交換型換気装置1の全体を制御する。また、制御部123は、結氷による一時的な熱交換器2の目詰まりが発生しているか、および排気用フィルタ6に経年的な目詰まりが発生しているか否かを判定する判定部としての機能を有する。 The control unit 123 controls the entire heat exchange ventilator 1 including the air supply fan 3 and the exhaust fan 4 . Further, the control unit 123 serves as a determination unit that determines whether temporary clogging of the heat exchanger 2 due to freezing has occurred, and whether clogging of the exhaust filter 6 has occurred over time. have a function.
 制御部123は、予め決められた条件で熱交換型換気装置1の換気運転を制御する。予め決められた条件は、送風機が備えるDCモータに供給する電圧を一定とする指令電圧一定制御、且つ予め決められた換気量での換気運転であり、給気用送風機3と排気用送風機4との風量は予め決められた同じ風量とされる。 The control unit 123 controls the ventilation operation of the heat exchange ventilator 1 under predetermined conditions. The predetermined conditions are command voltage constant control to keep the voltage supplied to the DC motor of the blower constant, and ventilation operation with a predetermined ventilation amount. is the same predetermined air volume.
 制御部123は、現在の室外温度Tに基づいて、熱交換器2において結氷が発生する可能性があるか否かを判別する。すなわち、制御部123は、現在の室外温度Tを温度閾値と比較する。制御部123は、現在の室外温度Tが温度閾値以上である場合に、現在の室外温度および熱交換器2が、熱交換器2において結氷が発生する可能性がない状態であると判定する。また、制御部123は、現在の室外温度Tが温度閾値未満である場合に、現在の室外温度および熱交換器2が、熱交換器2において結氷が発生する可能性がある状態であると判定する。すなわち、制御部123は、現在の室外温度Tに基づいて、熱交換器2において結氷が発生する可能性があるか否かを判定する。 The control unit 123 determines whether or not there is a possibility that freezing will occur in the heat exchanger 2 based on the current outdoor temperature T. That is, the controller 123 compares the current outdoor temperature T with the temperature threshold. When the current outdoor temperature T is equal to or higher than the temperature threshold, the controller 123 determines that the current outdoor temperature and the heat exchanger 2 are in a state where there is no possibility of freezing in the heat exchanger 2 . Further, when the current outdoor temperature T is less than the temperature threshold, the control unit 123 determines that the current outdoor temperature and the heat exchanger 2 are in a state where freezing may occur in the heat exchanger 2. do. That is, based on the current outdoor temperature T, the control unit 123 determines whether or not there is a possibility that freezing will occur in the heat exchanger 2 .
 制御部123は、現在の室外温度Tが温度閾値未満である場合に、すなわち現在の室外温度Tの状態において熱交換器2で結氷が発生する可能性がある場合に、現在の排気用DCモータ42のモータ電流値Iを、結氷前基準電流値Ii0として記憶する。また、制御部123は、結氷前基準電流値Ii0から予め決められた設定値Aを減算した電流値を算出するし、結氷判定電流値Ii1として記憶する。また、制御部123は、結氷前基準電流値Ii0から予め決められた設定値Bを減算した電流を算出し、結氷改善判定電流値Ii2として記憶する。 When the current outdoor temperature T is less than the temperature threshold, that is, when the heat exchanger 2 is likely to freeze under the current outdoor temperature T, the control unit 123 controls the current exhaust DC motor The motor current value I of 42 is stored as the pre-icing reference current value Ii0 . Further, the control unit 123 calculates a current value by subtracting a predetermined set value A from the pre-icing reference current value Ii0 , and stores the current value as the freezing determination current value Ii1 . Further, the control unit 123 calculates a current obtained by subtracting a predetermined set value B from the pre-icing reference current value Ii0 , and stores the calculated current as the freezing improvement determination current value Ii2 .
 結氷前基準電流値Ii0は、熱交換器2において結氷が発生したか否か、すなわち結氷による熱交換器2の目詰まりが発生したか否かを、制御部123が排気用DCモータ42のモータ電流値に基づいて判定するために用いられる、基準となるモータ電流値である。なお、結氷前基準電流値Ii0を電流値Ii0と記載する場合がある。 The pre-freezing reference current value Ii0 is determined by the control unit 123 to determine whether or not freezing has occurred in the heat exchanger 2, that is, whether clogging of the heat exchanger 2 has occurred due to freezing. This is a reference motor current value used for determination based on the motor current value. Note that the pre-freezing reference current value Ii0 may be referred to as the current value Ii0 .
 結氷判定電流値Ii1は、熱交換器2において結氷が発生したか否か、すなわち結氷による熱交換器2の目詰まりが発生したか否かを、制御部123が排気用DCモータ42のモータ電流値に基づいて判定するために用いられるモータ電流値である。結氷判定電流値Ii1は、結氷前基準電流値Ii0よりも小さい値である。なお、結氷判定電流値Ii1を電流値Ii1と記載する場合がある。 The icing determination current value Ii1 determines whether or not icing has occurred in the heat exchanger 2, that is, whether or not clogging of the heat exchanger 2 has occurred due to icing. This is the motor current value used for making decisions based on the current value. The ice-freezing determination current value Ii1 is a value smaller than the pre-freezing reference current value Ii0 . Note that the freezing determination current value Ii1 may be referred to as the current value Ii1 .
 結氷改善判定電流値Ii2は、熱交換器2において結氷が発生したと判定された後に、後述する結氷状態改善制御による熱交換器2の結氷状態からの回復状態、すなわち結氷状態の改善状態を、制御部123が排気用DCモータ42のモータ電流値に基づいて判定するために用いられるモータ電流値である。結氷改善判定電流値Ii2は、結氷前基準電流値Ii0よりも小さい値であり、結氷判定電流値Ii1よりも大きい値である。なお、結氷改善判定電流値Ii2を電流値Ii2と記載する場合がある。 The freezing improvement determination current value Ii2 indicates the recovery state of the heat exchanger 2 from the freezing state by the freezing state improvement control described later, that is, the improvement state of the freezing state after it is determined that the freezing has occurred in the heat exchanger 2. , are motor current values used for determination by the control unit 123 based on the motor current value of the exhaust DC motor 42 . The freezing improvement determination current value Ii2 is smaller than the pre-freezing reference current value Ii0 and greater than the freezing determination current value Ii1 . Note that the ice improvement determination current value Ii2 may be referred to as the current value Ii2 .
 設定値Aは、結氷前基準電流値Ii0に基づいて結氷判定電流値Ii1を算出するために用いられる減算値である。設定値Aは、実験およびシミュレーションにより予め決められて制御部123に記憶されている。また、制御部123は、結氷前基準電流値Ii0に対して予め決められた比率を乗じて設定値Aを算出することができる。予め決められた比率は、実験とシミュレーションにより予め決められて制御部123に記憶されている。 The set value A is a subtraction value used to calculate the freezing determination current value Ii1 based on the pre-freezing reference current value Ii0 . The set value A is determined in advance through experiments and simulations and stored in the control unit 123 . Further, the control unit 123 can calculate the set value A by multiplying the pre-freezing reference current value Ii0 by a predetermined ratio. The predetermined ratio is determined in advance through experiments and simulations and stored in control unit 123 .
 設定値Bは、結氷前基準電流値Ii0に基づいて結氷改善判定電流値Ii2を算出するために用いられる減算値である。設定値Bは、実験およびシミュレーションにより予め決められて制御部123に記憶されている。設定値Aと設定値Bとは、A>Bの大小関係を有する。 The set value B is a subtraction value used to calculate the freezing improvement determination current value Ii2 based on the pre-icing reference current value Ii0 . The set value B is determined in advance through experiments and simulations and stored in the control unit 123 . Setting value A and setting value B have a magnitude relationship of A>B.
 制御部123は、結氷前基準電流値Ii0と結氷判定電流値Ii1と結氷改善判定電流値Ii2との取得後に、現在の室外温度Tを監視し、現在の排気用DCモータ42のモータ電流値Iが結氷判定電流値Ii1以下となった場合に、熱交換器2において結氷が発生した、すなわち結氷による熱交換器2の目詰まりが発生したと判定する。 After acquiring the pre-freezing reference current value Ii0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 , the control unit 123 monitors the current outdoor temperature T, and controls the current exhaust DC motor 42. When the current value I becomes equal to or less than the freezing determination current value Ii1 , it is determined that freezing has occurred in the heat exchanger 2, that is, clogging of the heat exchanger 2 has occurred due to freezing.
 制御部123は、現在の排気用DCモータ42のモータ電流値Iが結氷判定電流値Ii1以下となった場合、予め決められた動作変更時間だけ給気用送風機3の風量を排気用送風機4の風量より減らす結氷状態改善制御を行い、室内空気よりも低温である外気の熱交換器2への流入量を低減させる。これにより、排気用送風機4によって熱交換器2に搬送されて室内から排気される室内空気の気流が有する熱によって、熱交換器2の結氷を溶かすことができる。 When the current motor current value I of the exhaust DC motor 42 becomes equal to or less than the freezing determination current value Ii1 , the control unit 123 reduces the air volume of the air supply fan 3 to the exhaust fan 4 for a predetermined operation change time. , to reduce the inflow of outside air, which has a lower temperature than the indoor air, into the heat exchanger 2. As a result, the ice in the heat exchanger 2 can be melted by the heat of the airflow of the indoor air that is conveyed to the heat exchanger 2 by the exhaust air blower 4 and exhausted from the room.
 制御部123は、結氷状態改善制御の後に、給気用送風機3の状態を通常の運転状態に戻し、排気用送風機4のモータ電流値の変化量に基づいて、結氷状態改善制御による熱交換器2の結氷状態の改善効果を判定する。制御部123は、現在の排気用DCモータ42のモータ電流値Iが結氷改善判定電流値Ii2以上の場合には、熱交換器2の結氷状態の改善効果があり、結氷が発生する可能性のある状態であるが結氷状態は改善されたと判定する。その後、制御部123は、熱交換器2において結氷が発生する可能性があるか否かを現在の室外温度Tに基づいて判別する動作に戻る。 After the freezing state improvement control, the control unit 123 returns the state of the air supply fan 3 to the normal operating state, and based on the amount of change in the motor current value of the exhaust fan 4, the heat exchanger under the freezing state improvement control. 2 to determine the effect of improving the frozen state. When the current motor current value I of the exhaust DC motor 42 is equal to or greater than the freezing improvement determination current value Ii2 , the control unit 123 has the effect of improving the freezing state of the heat exchanger 2, and there is a possibility that freezing will occur. However, it is determined that the frozen state has been improved. After that, the control unit 123 returns to the operation of determining whether or not there is a possibility that freezing will occur in the heat exchanger 2 based on the current outdoor temperature T.
 制御部123は、現在の排気用DCモータ42のモータ電流値Iが結氷改善判定電流値Ii2未満である場合には、熱交換器2の結氷状態の改善効果が不足していると判定する。制御部123は、熱交換器2の結氷状態の改善効果が不足していると判定した場合には、現在の排気用DCモータ42のモータ電流値Iが結氷改善判定電流値Ii2以上となるまで、あるいは現在の室外温度Tが予め決められた温度閾値より大となるまで、結氷状態改善制御を繰り返して熱交換器2の結氷状態の緩和および改善を図る。 When the current motor current value I of the exhaust DC motor 42 is less than the freezing improvement determination current value Ii2 , the control unit 123 determines that the effect of improving the freezing state of the heat exchanger 2 is insufficient. . When the control unit 123 determines that the effect of improving the frozen state of the heat exchanger 2 is insufficient, the current motor current value I of the exhaust DC motor 42 becomes equal to or greater than the current value Ii2 for the freezing improvement determination. Until the current outdoor temperature T becomes higher than a predetermined temperature threshold, the icing condition improvement control is repeated to alleviate and improve the icing condition of the heat exchanger 2 .
 結氷状態改善制御を繰り返す場合、動作変更時間Cを延長してもよく、また、給気用送風機3の風量を排気用送風機4の風量より減らす低減量を大きくしてもよい。これにより、室内空気よりも低温である外気の熱交換器2への流入量をより低減させて、熱交換器2の結氷状態の改善効果を増大させることができる。 When the freezing state improvement control is repeated, the operation change time C may be extended, and the reduction amount by which the air volume of the air supply fan 3 is reduced below the air volume of the exhaust fan 4 may be increased. As a result, the amount of outside air having a lower temperature than the indoor air flowing into the heat exchanger 2 can be further reduced, and the effect of improving the frozen state of the heat exchanger 2 can be increased.
 ここで、制御部123は、現在の排気用DCモータ42のモータ電流値Iが結氷改善判定電流値Ii2未満であり熱交換器2の結氷状態の改善効果が不足していると判定した場合、結氷状態改善制御を繰り返して実施可能な場合に、熱交換器2に結氷が発生したが結氷状態の改善が可能である旨の結氷発生の警告をユーザに報知する。 Here, when the control unit 123 determines that the current motor current value I of the exhaust DC motor 42 is less than the freezing improvement determination current value Ii2 and that the effect of improving the freezing state of the heat exchanger 2 is insufficient. If the freezing condition improvement control can be repeatedly executed, the user is notified of the freezing condition warning to the effect that the freezing condition can be improved even though the freezing condition has occurred in the heat exchanger 2 .
 一方、制御部123は、結氷状態改善制御を予め決められた回数繰り返した場合、結氷による一時的な熱交換器2の目詰まりが発生している旨の結氷目詰まりの警告をユーザに報知する。 On the other hand, when the freezing state improvement control is repeated a predetermined number of times, the control unit 123 notifies the user of a freezing clogging warning indicating that temporary clogging of the heat exchanger 2 due to freezing has occurred. .
 制御部123は、現在の室外温度Tが温度閾値未満である場合に、すなわち現在の室外温度Tの状態において熱交換器2で結氷が発生する可能性がある場合に、結氷前基準電流値Ii0と結氷判定電流値Ii1と結氷改善判定電流値Ii2とを、熱交換器2で結氷が発生する可能性がない状態となるまで記憶し、熱交換器2で結氷が発生する可能性がない状態となったときにこれらの情報のリセットを行う。 When the current outdoor temperature T is less than the temperature threshold, that is, when there is a possibility of freezing occurring in the heat exchanger 2 at the current outdoor temperature T, the control unit 123 sets the pre-freezing reference current value I i0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 are stored until there is no possibility of freezing in the heat exchanger 2. These information are reset when there is no state.
 図3は、実施の形態1における送風機に対して指令電圧一定制御を行っているときの送風機の風量と静圧との関係を示す特性図である。図4は、実施の形態1における送風機に対して指令電圧一定制御を行っているときの送風機におけるモータ電流と回転数との関係を示す特性図である。図4に示すように、実施の形態1における送風機は、送風機が備えるDCモータに供給する電圧を一定とする指令電圧一定制御時には回転数が大きくなるほどDCモータの駆動に必要なモータ電流が小さくなる関係を有している。実施の形態1における送風機は、給気用送風機3および排気用送風機4である。実施の形態1におけるDCモータは、給気用DCモータ32および排気用DCモータ42である。 FIG. 3 is a characteristic diagram showing the relationship between the air volume of the fan and the static pressure when the command voltage constant control is performed on the fan according to the first embodiment. FIG. 4 is a characteristic diagram showing the relationship between the motor current and the number of rotations of the blower when constant command voltage control is performed on the blower according to the first embodiment. As shown in FIG. 4, in the blower according to the first embodiment, the motor current required to drive the DC motor decreases as the number of rotations increases during command voltage constant control in which the voltage supplied to the DC motor provided in the blower is constant. have a relationship. The blowers in Embodiment 1 are the air supply blower 3 and the exhaust blower 4 . The DC motors in Embodiment 1 are the air supply DC motor 32 and the exhaust DC motor 42 .
 制御部123は、給気用送風機3の給気用DCモータ32に流れるモータ電流の電流値であるモータ電流値を給気用電流検知部323から取得でき、排気用送風機4の排気用DCモータ42に流れるモータ電流の電流値であるモータ電流値を排気用電流検知部423から取得できる。また、制御部123は、室外温度検知部11から室外温度T、すなわち外気の温度を取得できる。制御部123は、室外温度と排気用DCモータ42のモータ電流値とに基づいて熱交換器2における結氷の発生および熱交換器2における結氷による目詰まりを検知する。 The control unit 123 can acquire the motor current value, which is the current value of the motor current flowing through the air supply DC motor 32 of the air supply blower 3, from the air supply current detection unit 323. 42 can be obtained from the exhaust current detection unit 423. Also, the control unit 123 can acquire the outdoor temperature T, that is, the temperature of the outside air, from the outdoor temperature detection unit 11 . The control unit 123 detects the occurrence of freezing in the heat exchanger 2 and clogging due to freezing in the heat exchanger 2 based on the outdoor temperature and the motor current value of the exhaust DC motor 42 .
 図3において、特性曲線111は風量と静圧との関係を表す。熱交換型換気装置1は特性曲線111に示す換気性能を有している。初期圧損曲線112は、熱交換器2における結氷による目詰まりが発生していないときの、風量と静圧との関係を表す。すなわち、初期圧損は、熱交換器2に結氷が発生していないときの圧損である。目詰まり圧損曲線113は、熱交換器2における結氷による目詰まりが発生したときの、風量と静圧との関係を表す。すなわち、目詰まり圧損は、熱交換器2に結氷が発生したときの圧損である。特性曲線111と初期圧損曲線112との交点114の風量が、初期圧損時における熱交換型換気装置1による換気風量となる。この換気風量における各送風機のモータ電流が、図4におけるモータ電流131に対応する。 In FIG. 3, a characteristic curve 111 represents the relationship between air volume and static pressure. The heat exchange type ventilator 1 has ventilation performance indicated by the characteristic curve 111 . The initial pressure loss curve 112 represents the relationship between the air volume and the static pressure when the heat exchanger 2 is not clogged due to freezing. That is, the initial pressure loss is the pressure loss when the heat exchanger 2 is not frozen. A clogging pressure loss curve 113 represents the relationship between air volume and static pressure when clogging due to freezing occurs in the heat exchanger 2 . That is, the clogging pressure loss is the pressure loss when the heat exchanger 2 is frozen. The air volume at the intersection 114 between the characteristic curve 111 and the initial pressure loss curve 112 is the ventilation air volume by the heat exchange ventilator 1 at the time of the initial pressure loss. The motor current of each fan at this ventilation air volume corresponds to the motor current 131 in FIG.
 熱交換型換気装置1は、換気運転中に外気温度が低下していくと、熱交換器2内の排気風路22である熱交換器内排気風路22cに結露が生じる。すなわち、排気風路22を流れる室内空気が熱交換器2で室外空気と熱交換することで露点以下に温度低下すると結露が生じる。そして、結露により発生した水分は、熱交換後の排気温度が結氷温度を下回ると、凍結して結氷となり、熱交換器2の目詰まりを引き起こし、換気機能を低下させる。すなわち、結氷による熱交換器2の目詰まりが発生すると、結氷が風路抵抗となって圧損が増加した状態となり、換気機能を低下させる。 In the heat exchange type ventilator 1, when the outside air temperature decreases during ventilation operation, condensation occurs in the heat exchanger internal exhaust air passage 22c, which is the exhaust air passage 22 in the heat exchanger 2. That is, when the indoor air flowing through the exhaust air passage 22 exchanges heat with the outdoor air in the heat exchanger 2 and the temperature drops below the dew point, dew condensation occurs. When the temperature of the exhaust gas after heat exchange falls below the freezing temperature, the moisture generated by the dew condensation freezes into ice, clogging the heat exchanger 2, and lowering the ventilation function. That is, when the heat exchanger 2 is clogged due to freezing, the freezing causes airflow resistance, resulting in an increase in pressure loss, which deteriorates the ventilation function.
 制御部123は、結氷が風路抵抗となって圧損が増加した状態になった場合、送風機に供給する電圧を一定とする指令電圧一定制御において、予め決められた換気風量を維持するために、排気用DCモータ42の回転数と排気用DCモータ42のモータ電流値との関係に従って排気用DCモータ42の回転数を上げるように排気用DCモータ42の電流値を減少させる制御を行う。結氷は、室外温度が上昇する、あるいは排気する室内空気の熱量が増加することで溶ける。すなわち、結氷による熱交換器2の目詰まりは、一時的な目詰まりである。 In order to maintain a predetermined ventilation air volume in command voltage constant control that keeps the voltage supplied to the blower constant when the pressure loss increases due to the freezing of the ice, the control unit 123: Control is performed to decrease the current value of the exhaust DC motor 42 so as to increase the rotation speed of the exhaust DC motor 42 according to the relationship between the rotation speed of the exhaust DC motor 42 and the motor current value of the exhaust DC motor 42 . Frozen ice melts when the outdoor temperature rises or when the amount of heat in the exhausted indoor air increases. That is, clogging of the heat exchanger 2 due to freezing is temporary clogging.
 結氷による熱交換器2の目詰まりが発生すると、初期圧損曲線112は、図3における矢印方向に立ち上がる。目詰まり圧損曲線113は、結氷による熱交換器2の目詰まりが発生して、空気が熱交換器2を通りにくくなった状態になったときの風量と静圧との関係を表す。 When clogging occurs in the heat exchanger 2 due to freezing, the initial pressure loss curve 112 rises in the direction of the arrow in FIG. A clogging pressure loss curve 113 represents the relationship between the air volume and the static pressure when clogging of the heat exchanger 2 due to freezing occurs, making it difficult for air to pass through the heat exchanger 2 .
 この場合、特性曲線111と目詰まり圧損曲線113との交点115の風量が、熱交換型換気装置1による換気風量となる。この換気風量における送風機の回転数が、図4におけるモータ電流132に対応する。交点115では、交点114と比較すると風量が低下し、送風機が回転運転していても換気がされ難い状態となる。また、送風機のモータ電流もモータ電流131の位置からモータ電流132の位置に減少する。 In this case, the air volume at the intersection 115 between the characteristic curve 111 and the clogging pressure loss curve 113 is the ventilation air volume from the heat exchange ventilator 1 . The rotation speed of the blower at this ventilation air volume corresponds to the motor current 132 in FIG. At the intersection point 115, the air volume is lower than at the intersection point 114, and even if the blower is rotating, ventilation is difficult. The blower motor current also decreases from the position of motor current 131 to the position of motor current 132 .
 そして、結氷による熱交換器2の目詰まりは、熱交換型換気装置1の換気機能を低下させる。すなわち、結氷による熱交換器2の目詰まりが発生すると、結氷による熱交換器2の目詰まりが風路抵抗となって圧損が増加した状態となり、送風機の風量および換気風量が低減し、換気機能を低下させる。 Then, the clogging of the heat exchanger 2 due to freezing reduces the ventilation function of the heat exchange type ventilator 1. That is, when the heat exchanger 2 is clogged due to freezing, the clogging of the heat exchanger 2 due to freezing causes airflow resistance, resulting in an increase in pressure loss. lower the
 図5は、実施の形態1にかかる熱交換型換気装置1における熱交換器2の結氷による目詰まりの検出動作および熱交換器2の結氷状態の改善動作の動作例を示す第1のフローチャートである。図6は、実施の形態1にかかる熱交換型換気装置1における熱交換器2の結氷による目詰まりの検出動作および熱交換器2の結氷状態の改善動作の動作例を示す第2のフローチャートである。 FIG. 5 is a first flowchart showing an operation example of an operation for detecting clogging due to freezing of the heat exchanger 2 and an operation for improving the freezing state of the heat exchanger 2 in the heat exchange type ventilator 1 according to the first embodiment. be. FIG. 6 is a second flowchart showing an operation example of detecting clogging due to freezing of the heat exchanger 2 and improving the freezing state of the heat exchanger 2 in the heat exchange ventilator 1 according to the first embodiment. be.
 制御部123は、給気用送風機3に搭載された給気用DCモータ32から給気用DCモータ32のモータ電流値を取得し、排気用送風機4に搭載された排気用DCモータ42から排気用DCモータ42のモータ電流値を取得し、室外温度検知部11から室外温度、すなわち外気の気流温度を取得する。制御部123は、取得した給気用DCモータ32のモータ電流値、排気用DCモータ42のモータ電流値、および室外温度に基づいて、フィルタ目詰まり、結氷目詰まり検知を実行する。熱交換型換気装置1において、給気用送風機3に搭載された給気用DCモータ32と、排気用送風機4に搭載された排気用DCモータ42とは、指令電圧一定制御で制御される。 The control unit 123 acquires the motor current value of the air supply DC motor 32 mounted on the air supply blower 3, and controls the exhaust air from the exhaust DC motor 42 mounted on the exhaust blower 4. The motor current value of the DC motor 42 is acquired, and the outdoor temperature, that is, the airflow temperature of the outdoor air is acquired from the outdoor temperature detection unit 11 . The control unit 123 executes filter clogging and ice clogging detection based on the acquired motor current value of the air supply DC motor 32, the acquired motor current value of the exhaust DC motor 42, and the outdoor temperature. In the heat exchange type ventilator 1, the air supply DC motor 32 mounted on the air supply fan 3 and the exhaust DC motor 42 mounted on the exhaust fan 4 are controlled by command voltage constant control.
 以下、熱交換型換気装置1における排気用フィルタ6の結氷による目詰まりの検知動作について説明する。 The operation of detecting clogging due to freezing of the exhaust filter 6 in the heat exchange type ventilator 1 will be described below.
 ステップS110において、熱交換型換気装置1の運転開始後に、現在の室外温度Tの監視が行われる。具体的に、制御部123が、現在の室外温度Tを室外温度検知部11から取得する。制御部123は、予め決められた周期で現在の室外温度Tを取得して、室外温度Tを監視する。なお、室外温度Tを温度Tと記載する場合がある。制御部123は、検知した現在の室外温度Tに対応して、給気用DCモータ32および排気用DCモータ42の動作を制御して換気運転を行う。 In step S110, the current outdoor temperature T is monitored after the heat exchange ventilator 1 starts operating. Specifically, the controller 123 acquires the current outdoor temperature T from the outdoor temperature detector 11 . The control unit 123 acquires the current outdoor temperature T at predetermined intervals and monitors the outdoor temperature T. FIG. In addition, the outdoor temperature T may be described as the temperature T. The control unit 123 performs ventilation operation by controlling the operations of the air supply DC motor 32 and the exhaust DC motor 42 in accordance with the detected current outdoor temperature T.
 ステップS120において、現在の室外温度Tが温度閾値である第1温度閾値T以上であるか否かが判定される。具体的に、制御部123が、ステップS110において取得された現在の室外温度Tと、第1温度閾値Tとを比較することにより、現在の室外温度Tの状態において、熱交換器2で結氷が発生する可能性があるか否かを判定する。 In step S120, it is determined whether or not the current outdoor temperature T is equal to or higher than the first temperature threshold T0 , which is a temperature threshold. Specifically, the controller 123 compares the current outdoor temperature T acquired in step S110 with the first temperature threshold T0 to determine whether the heat exchanger 2 is frozen in the current outdoor temperature T state. determines whether there is a possibility that
 第1温度閾値Tは、熱交換器2において結氷が発生する可能性があるか否かを制御部123が判定するための基準となる閾値であり、予め決められて制御部123に記憶されている。第1温度閾値Tは、熱交換器2において結氷が発生する可能性がある状態となるか否かを判定するための基準となる閾値といえる。また、第1温度閾値Tは、熱交換器2において結氷が発生する可能性を警戒するべき温度である結氷発生警戒温度といえる。第1温度閾値Tは、例えば1℃である。 The first temperature threshold value T0 is a reference threshold value for the control unit 123 to determine whether or not freezing may occur in the heat exchanger 2, and is determined in advance and stored in the control unit 123. ing. The first temperature threshold value T0 can be said to be a reference threshold value for determining whether or not the heat exchanger 2 is likely to freeze. Also, the first temperature threshold T0 can be said to be a freezing warning temperature, which is a temperature at which the possibility of freezing in the heat exchanger 2 should be warned. The first temperature threshold T0 is, for example, 1°C.
 制御部123は、現在の室外温度Tが第1温度閾値T以上である場合に、現在の室外温度Tおよび熱交換器2が、熱交換器2において結氷が発生する可能性がない状態であると判定する。また、制御部123は、現在の室外温度Tが第1温度閾値T未満である場合に、現在の室外温度Tおよび熱交換器2が、熱交換器2において結氷が発生する可能性がある状態であると判定する。 When the current outdoor temperature T is equal to or higher than the first temperature threshold value T0 , the control unit 123 controls the current outdoor temperature T and the heat exchanger 2 in a state where there is no possibility of freezing in the heat exchanger 2. Determine that there is. In addition, when the current outdoor temperature T is less than the first temperature threshold value T0 , the control unit 123 determines that the current outdoor temperature T and the heat exchanger 2 may freeze in the heat exchanger 2. state.
 現在の室外温度Tが第1温度閾値T以上であると判定された場合、すなわち熱交換器2において結氷が発生する可能性がないと判定された場合は、ステップS120においてYesとなり、ステップS110に戻る。現在の室外温度Tが第1温度閾値T未満であると判定された場合、すなわち熱交換器2において結氷が発生する可能性があると判定された場合は、ステップS120においてNoとなり、ステップS130に進む。 If it is determined that the current outdoor temperature T is equal to or higher than the first temperature threshold value T0 , that is, if it is determined that there is no possibility of freezing occurring in the heat exchanger 2, the result of step S120 is Yes, and step S110 back to If it is determined that the current outdoor temperature T is less than the first temperature threshold T0 , that is, if it is determined that there is a possibility that freezing will occur in the heat exchanger 2, the result of step S120 is No, and step S130 proceed to
 ステップS130では、結氷前基準電流値Ii0と、結氷判定電流値Ii1と、結氷改善判定電流値Ii2と、が取得済みであるか否かが判定される。具体的に、制御部123が、結氷前基準電流値Ii0と結氷判定電流値Ii1と結氷改善判定電流値Ii2とが制御部123に記憶されているか否かを判定することにより、結氷前基準電流値Ii0と結氷判定電流値Ii1と結氷改善判定電流値Ii2とが取得済みであるか否かを判定する。 In step S130, it is determined whether or not the pre-icing reference current value Ii0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 have been acquired. Specifically, the control unit 123 determines whether or not the pre-icing reference current value Ii0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 are stored in the control unit 123, thereby It is determined whether or not the previous reference current value Ii0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 have already been acquired.
 制御部123は、結氷前基準電流値Ii0と結氷判定電流値Ii1と結氷改善判定電流値Ii2とが制御部123に記憶されている場合に、結氷前基準電流値Ii0と結氷判定電流値Ii1と結氷改善判定電流値Ii2とが取得済みであると判定する。制御部123は、結氷前基準電流値Ii0と結氷判定電流値Ii1と結氷改善判定電流値Ii2とが制御部123に記憶されていない場合に、結氷前基準電流値Ii0と結氷判定電流値Ii1と結氷改善判定電流値Ii2とが取得済みでないと判定する。 When the control unit 123 stores the pre-freezing reference current value Ii0 , the ice-freezing determination current value Ii1 , and the ice-improvement determination current value Ii2 , the control unit 123 stores the pre-icing reference current value Ii0 and the ice-freezing determination current value Ii0. It is determined that the current value Ii1 and the freezing improvement determination current value Ii2 have already been acquired. If the control unit 123 does not store the pre-icing reference current value Ii0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 , the control unit 123 stores the pre-icing reference current value Ii0 and the freezing determination current value Ii0. It is determined that the current value Ii1 and the freezing improvement determination current value Ii2 have not been acquired.
 結氷前基準電流値Ii0と結氷判定電流値Ii1と結氷改善判定電流値Ii2とが取得済みでないと判定された場合は、ステップS130においてNoとなり、ステップS140に進む。結氷前基準電流値Ii0と結氷判定電流値Ii1と結氷改善判定電流値Ii2とが取得済みであると判定された場合は、ステップS130においてYesとなり、ステップS150に進む。 If it is determined that the pre-freezing reference current value Ii0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 have not been obtained, the determination in step S130 is No, and the process proceeds to step S140. If it is determined that the pre-freezing reference current value Ii0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 have already been obtained, the determination in step S130 is Yes, and the process proceeds to step S150.
 ステップS140では、結氷前基準電流値Ii0と結氷判定電流値Ii1と結氷改善判定電流値Ii2とが取得される。具体的に、制御部123が、排気用送風機4に搭載された排気用DCモータ42の排気用電流検知部423から、現在の排気用DCモータ42のモータ電流値Iを取得する。 In step S140, the pre-icing reference current value Ii0 , the freezing determination current value Ii1 , and the freezing improvement determination current value Ii2 are obtained. Specifically, the control unit 123 acquires the current motor current value I of the exhaust DC motor 42 from the exhaust current detection unit 423 of the exhaust DC motor 42 mounted on the exhaust fan 4 .
 制御部123は、取得した現在の排気用DCモータ42のモータ電流値Iを、結氷前基準電流値Ii0として記憶する。これにより、制御部123は、結氷前基準電流値Ii0を取得することができる。すなわち、制御部123は、熱交換器2における結氷による目詰まりが発生する前の環境の圧損状態で、排気用DCモータ42の通常状態のモータ電流値Iを把握することができる。 The control unit 123 stores the acquired current motor current value I of the exhaust DC motor 42 as a pre-freezing reference current value Ii0 . Thereby, the control unit 123 can acquire the pre-freezing reference current value Ii0 . That is, the control unit 123 can grasp the motor current value I of the exhaust DC motor 42 in the normal state in the pressure loss state of the environment before clogging due to freezing occurs in the heat exchanger 2 .
 このように、制御部123は、現在の室外温度Tが第1温度閾値T未満である場合、すなわち現在の室外温度Tが第1温度閾値Tを下回った際に、現在の排気用DCモータ42のモータ電流値Iを結氷前基準電流値Ii0として記憶する。 In this way, the control unit 123 controls the current exhaust DC A motor current value I of the motor 42 is stored as a pre-freezing reference current value Ii0 .
 また、制御部123は、結氷前基準電流値Ii0から予め決められた設定値Aを減算した電流値を算出する。制御部123は、設定値Aと結氷前基準電流値Ii0とに基づいて算出した電流値を、結氷判定電流値Ii1として記憶する。これにより、制御部123は、結氷判定電流値Ii1を取得することができる。また、制御部123は、結氷前基準電流値Ii0から予め決められた設定値Bを減算した電流を算出する。制御部123は、設定値Bと結氷前基準電流値Ii0とに基づいて算出した電流値を、結氷改善判定電流値Ii2として記憶する。これにより、制御部123は、結氷改善判定電流値Ii2を取得することができる。その後、ステップS150に進む。 Further, the control unit 123 calculates a current value by subtracting a predetermined set value A from the pre-icing reference current value Ii0 . The control unit 123 stores the current value calculated based on the set value A and the pre-freezing reference current value Ii0 as the freezing determination current value Ii1 . Thereby, the control unit 123 can acquire the freezing determination current value Ii1 . Further, the control unit 123 calculates a current by subtracting a predetermined set value B from the pre-icing reference current value Ii0 . The control unit 123 stores the current value calculated based on the set value B and the pre-freezing reference current value Ii0 as the ice improvement determination current value Ii2 . Thereby, the control unit 123 can acquire the freezing improvement determination current value Ii2 . After that, the process proceeds to step S150.
 熱交換型換気装置1は同一の送風機によって小風量から大風量まで風量を変化させることができるため、換気風量によっては、結氷前基準電流値Ii0は、相対的に高い場合と、相対的に低い場合とがあり、一定値とはならない。このため、結氷前基準電流値Ii0が相対的に高い場合と、結氷前基準電流値Ii0が相対的に低い場合とでは、結氷による影響度合いが変化する。設定値Aが予め決められた一定の値である場合には、結氷前基準電流値Ii0が相対的に高い場合、および結氷前基準電流値Ii0が相対的に低い場合において、熱交換器2において結氷が発生したか否かを、制御部123が的確に判定できない可能性がある。 Since the heat exchange ventilator 1 can change the air volume from a small air volume to a large air volume with the same fan, depending on the ventilation air volume, the pre-freezing reference current value Ii0 may be relatively high or relatively high. There are cases where it is low, and it does not become a constant value. Therefore, the degree of influence of freezing changes depending on whether the pre-icing reference current value Ii0 is relatively high or when the pre-icing reference current value Ii0 is relatively low. When the set value A is a predetermined constant value, the heat exchanger 2, the control unit 123 may not be able to accurately determine whether or not freezing has occurred.
 これに対して、結氷前基準電流値Ii0に対して予め決められた比率を乗じて設定値Aを算出することにより、上記のような設定値Aが一定の値に設定されている場合に発生する誤検知を回避することができる。すなわち、結氷前基準電流値Ii0が相対的に高い場合には、熱交換器2において結氷が発生したか否かを結氷前基準電流値Ii0が相対的に高い場合に判定するために適した、相対的に大きい値の設定値Aを設定することができる。また、結氷前基準電流値Ii0が相対的に低い場合には、熱交換器2において結氷が発生したか否かを結氷前基準電流値Ii0が相対的に低い場合に判定するために適した、相対的に小さい値の設定値Aを設定することができる。 On the other hand, by multiplying the pre-freezing reference current value Ii0 by a predetermined ratio to calculate the set value A, when the set value A is set to a constant value as described above, False positives that occur can be avoided. That is, when the pre-freezing reference current value Ii0 is relatively high, it is suitable for determining whether or not freezing has occurred in the heat exchanger 2 when the pre-icing reference current value Ii0 is relatively high. Also, the set value A can be set to a relatively large value. Further, when the pre-freezing reference current value Ii0 is relatively low, it is suitable for determining whether or not freezing has occurred in the heat exchanger 2 when the pre-icing reference current value Ii0 is relatively low. Also, the set value A can be set to a relatively small value.
 ステップS150では、現在の室外温度Tが温度閾値である第2温度閾値T以下であるか否かが判定される。具体的に、制御部123が、ステップS110で取得された室外温度Tと、第2温度閾値Tとを比較することにより、現在の室外温度Tの状態において、熱交換器2で結氷が発生する可能性があるか否かを判定する。 In step S150, it is determined whether or not the current outdoor temperature T is equal to or lower than a second temperature threshold T1, which is a temperature threshold. Specifically, the control unit 123 compares the outdoor temperature T obtained in step S110 with the second temperature threshold T1 to determine whether freezing occurs in the heat exchanger 2 at the current outdoor temperature T. Determine whether there is a possibility of
 第2温度閾値Tは、熱交換器2において結氷が発生する可能性があるか否かを制御部123が判定するための基準となる閾値であり、予め決められて制御部123に記憶されている。第2温度閾値Tは、後述するステップS160からステップS240が繰り返される場合に、熱交換器2において結氷が発生する可能性がない状態になったか否かを判定するための基準となる閾値といえる。すなわち、第2温度閾値Tは、熱交換器2の凍結が発生しないことを判断できる温度である結氷安全温度といえる。第2温度閾値Tは、例えば3℃である。ステップS150を行うことにより、熱交換器2において結氷が発生する可能性があるかを判定することができる。 The second temperature threshold T1 is a threshold that serves as a reference for the control unit 123 to determine whether or not there is a possibility that freezing will occur in the heat exchanger 2, and is determined in advance and stored in the control unit 123. ing. The second temperature threshold value T1 is a reference threshold value for determining whether or not there is no possibility of freezing in the heat exchanger 2 when steps S160 to S240, which will be described later, are repeated. I can say. That is, the second temperature threshold T1 can be said to be the freezing safe temperature, which is the temperature at which it can be determined that the heat exchanger 2 will not freeze. The second temperature threshold T1 is, for example, 3°C. By performing step S<b>150 , it is possible to determine whether there is a possibility that freezing will occur in the heat exchanger 2 .
 制御部123は、現在の室外温度Tが第2温度閾値T以下である場合に、熱交換器2において結氷が発生する可能性がある状態であると判定する。また、制御部123は、現在の室外温度Tが第2温度閾値Tより大である場合に、熱交換器2において結氷が発生する可能性がない状態であると判定する。 The control unit 123 determines that the heat exchanger 2 is likely to freeze when the current outdoor temperature T is equal to or lower than the second temperature threshold T1. Further, the control unit 123 determines that the heat exchanger 2 is in a state where there is no possibility of freezing when the current outdoor temperature T is higher than the second temperature threshold value T1.
 なお、ステップS120→ステップS130→ステップS140→ステップS150のフローおよびステップS120→ステップS130→ステップS150のフローでは、ステップS120でNoのフローにおいて、熱交換器2において結氷が発生する可能性があると判定されている。一方、ステップS230あるいはステップS240→ステップS150のフローでは、後述するステップS190において排気用送風機4の排気用DCモータ42のモータ電流値Iの監視を継続するか否かを判定するために、熱交換器2において結氷が発生する可能性があるか否かをステップS150において判定する必要がある。 In the flow of step S120→step S130→step S140→step S150 and the flow of step S120→step S130→step S150, it is determined that freezing may occur in the heat exchanger 2 in the flow of No in step S120. has been judged. On the other hand, in the flow of step S230 or step S240→step S150, in order to determine whether or not to continue monitoring the motor current value I of the exhaust DC motor 42 of the exhaust fan 4 in step S190 described later, heat exchange is performed. It is necessary to determine in step S150 whether there is a possibility that freezing will occur in the vessel 2 .
 現在の室外温度Tが第2温度閾値T以下であると判定された場合、すなわち熱交換器2において結氷が発生する可能性があると判定された場合は、ステップS150においてYesとなり、ステップS160に進む。現在の室外温度Tが第2温度閾値Tより大であると判定された場合、すなわち熱交換器2において結氷が発生する可能性がないと判定された場合は、ステップS150においてNoとなり、ステップS250に進む。 If it is determined that the current outdoor temperature T is equal to or lower than the second temperature threshold value T1, that is, if it is determined that there is a possibility that freezing will occur in the heat exchanger 2, the result of step S150 is Yes, and step S160 proceed to If it is determined that the current outdoor temperature T is greater than the second temperature threshold value T1, that is, if it is determined that there is no possibility of freezing occurring in the heat exchanger 2, the result of step S150 is No, and step Proceed to S250.
 ステップS160では、排気用送風機4の排気用DCモータ42のモータ電流値Iの監視が行われる。具体的に、制御部123が、排気用送風機4の排気用モータ制御回路420の排気用電流検知部423から、現在の排気用DCモータ42のモータ電流値Iを取得する。制御部123は、予め決められた周期で排気用DCモータ42のモータ電流値Iを取得して、排気用DCモータ42のモータ電流値Iを監視する。 In step S160, the motor current value I of the exhaust DC motor 42 of the exhaust fan 4 is monitored. Specifically, the control unit 123 acquires the current motor current value I of the exhaust DC motor 42 from the exhaust current detection unit 423 of the exhaust motor control circuit 420 of the exhaust fan 4 . The control unit 123 acquires the motor current value I of the exhaust DC motor 42 at a predetermined cycle and monitors the motor current value I of the exhaust DC motor 42 .
 ステップS170において、現在の排気用DCモータ42のモータ電流値Iが結氷判定電流値Ii1以下であるか否かが判定される。具体的に、制御部123が、ステップS160で取得された現在の排気用DCモータ42のモータ電流値Iと、制御部123に記憶された結氷判定電流値Ii1とを比較し、現在の排気用DCモータ42のモータ電流値Iが結氷判定電流値Ii1以下であるか否かが判定される。すなわち、制御部123は、現在の排気用DCモータ42のモータ電流値Iが結氷前基準電流値Ii0から設定値A以上低下したか否かを判定する。 In step S170, it is determined whether or not the current motor current value I of the exhaust DC motor 42 is equal to or less than the freezing determination current value Ii1 . Specifically, the control unit 123 compares the current motor current value I of the exhaust DC motor 42 acquired in step S160 with the freezing determination current value Ii1 stored in the control unit 123 to It is determined whether or not the motor current value I of the DC motor 42 is equal to or less than the freezing determination current value Ii1 . That is, the control unit 123 determines whether or not the current motor current value I of the exhaust DC motor 42 has decreased by the set value A or more from the pre-freezing reference current value Ii0 .
 ここで、現在の排気用DCモータ42のモータ電流値Iが結氷判定電流値Ii1以下である場合には、制御部123は、熱交換器2に結氷が発生したと判定する。また、現在の排気用DCモータ42のモータ電流値Iが結氷判定電流値Ii1より大である場合は、制御部123は、熱交換器2に結氷が発生していないと判定する。 Here, when the current motor current value I of the exhaust DC motor 42 is equal to or less than the freezing determination current value Ii1 , the control unit 123 determines that the heat exchanger 2 is frozen. Further, when the current motor current value I of the exhaust DC motor 42 is greater than the freezing determination current value Ii1 , the control unit 123 determines that the heat exchanger 2 is not frozen.
 図4に示すように、熱交換器2における結氷の発生による圧力損失の増加に起因して、排気用DCモータ42のモータ電流値Iが低下する。そして、排気用DCモータ42のモータ電流値Iが結氷判定電流値Ii1以下である場合には、制御部123は、熱交換器2に結氷が発生したと判定する。 As shown in FIG. 4, due to an increase in pressure loss due to freezing in the heat exchanger 2, the motor current value I of the exhaust DC motor 42 decreases. Then, when the motor current value I of the exhaust DC motor 42 is equal to or less than the freezing determination current value Ii1 , the control unit 123 determines that the heat exchanger 2 is frozen.
 現在の排気用DCモータ42のモータ電流値Iが結氷判定電流値Ii1以下であると判定された場合は、ステップS170においてYesとなり、ステップS180に進む。現在の排気用DCモータ42のモータ電流値Iが結氷判定電流値Ii1より大であると判定された場合は、ステップS170においてNoとなり、ステップS160に戻る。 If it is determined that the current motor current value I of the exhaust DC motor 42 is equal to or less than the freezing determination current value Ii1 , the determination in step S170 is Yes, and the process proceeds to step S180. If it is determined that the current motor current value I of the exhaust DC motor 42 is greater than the freezing determination current value Ii1 , the determination in step S170 is No, and the process returns to step S160.
 ここで、熱交換型換気装置1においては、現在の排気用DCモータ42のモータ電流値Iが結氷判定電流値Ii1より大きい間は、すなわちステップS170においてNo→ステップS160が繰り返される間は、給気用DCモータ32の風量と排気用DCモータ42の風量とが同じ風量である通常の運転が行われる。すなわち、制御部123は、ステップS120において現在の室外温度Tが予め決められた温度閾値である第1温度閾値T未満と判定された場合に、現在の排気用DCモータ42のモータ電流値Iが結氷判定電流値Ii1より大きい間は、すなわちステップS170においてNo→ステップS160が繰り返される間は、給気用DCモータ32の風量と排気用DCモータ42の風量とを同じ風量とする通常運転で熱交換型換気装置1の運転を制御する。 Here, in the heat exchange type ventilator 1, while the current motor current value I of the exhaust DC motor 42 is greater than the freezing determination current value Ii1 , that is, while No in step S170→step S160 is repeated, A normal operation is performed in which the air volume of the air supply DC motor 32 and the air volume of the exhaust DC motor 42 are the same. That is, the control unit 123 controls the current motor current value I is greater than the freezing determination current value Ii1 , that is, while No in step S170→step S160 is repeated, normal operation is performed with the air volume of the air supply DC motor 32 and the air volume of the exhaust DC motor 42 being the same. to control the operation of the heat exchange type ventilator 1 .
 ステップS180では、予め決められた動作変更時間Cの間、給気用送風機3の出力低減、あるいは給気用送風機3の停止を行って、結氷を溶かして結氷状態を改善するための結氷状態改善制御が行われる。具体的に、制御部123が、動作変更時間Cの間だけ給気用送風機3の出力を低減させる制御、あるいは動作変更時間Cの間だけ給気用送風機3を停止させる制御を行う。給気用送風機3の出力低減は、給気用送風機3に供給する電圧の低減、すなわち給気用DCモータ32に供給する電圧の低減である。給気用送風機3の出力低減においては、設定値Dだけ給気用送風機3の出力が低減される。したがって、制御部123は、動作変更時間Cの間だけ給気用送風機3の出力を設定値Dだけ低減させる制御、あるいは動作変更時間Cの間だけ給気用送風機3を停止させる結氷状態改善制御を行う。動作変更時間Cの間だけ給気用送風機3の出力を低減させる制御、あるいは動作変更時間Cの間だけ給気用送風機3を停止させる制御は、動作変更時間Cだけ給気用送風機3の風量を排気用送風機4の風量より減らす制御である。 In step S180, the output of the air supply fan 3 is reduced or the air supply fan 3 is stopped during a predetermined operation change time C to melt the ice and improve the ice condition. control is performed. Specifically, the control unit 123 performs control to reduce the output of the air supply fan 3 only during the operation change time C, or control to stop the air supply fan 3 only during the operation change time C. The reduction in the output of the air supply fan 3 is a reduction in the voltage supplied to the air supply fan 3 , that is, the reduction in the voltage supplied to the air supply DC motor 32 . In reducing the output of the air supply fan 3, the output of the air supply fan 3 is reduced by the set value D. Therefore, the control unit 123 performs control to reduce the output of the air supply fan 3 by the set value D only during the operation change time C, or freeze state improvement control to stop the air supply fan 3 only during the operation change time C. I do. The control to reduce the output of the air supply fan 3 only during the operation change time C or the control to stop the air supply fan 3 only during the operation change time C is the air volume of the air supply fan 3 for the operation change time C. is less than the air volume of the exhaust fan 4 .
 動作変更時間Cは、熱交換器2の結氷を改善するために制御部123が給気用送風機3の動作を変更する制御を行う時間である。動作変更時間Cは、実験およびシミュレーションにより予め決められて制御部123に記憶されている。動作変更時間Cは、例えば5分である。なお、予め決められた動作変更時間Cとは、一連の結氷状態改善制御内で設定された動作変更時間Cを意味する。結氷を溶かして結氷状態を改善するための制御そのものは、ステップS180で行われる制御である。一方で、後述するように動作変更時間Cを延長あるいは短縮して設定する処理も含めた、結氷を溶かして結氷状態を改善するための制御は、広義の意味で、一連の結氷状態改善制御と考えることができる。すなちわ、予め決められた動作変更時間Cは、ステップS180が実施される前に予め決められて設定された、動作変更時間Cの初期値、延長された動作変更時間C、および短縮された動作変更時間Cを含む。 The operation change time C is the time during which the control unit 123 performs control to change the operation of the air supply fan 3 in order to improve the freezing of the heat exchanger 2 . The operation change time C is determined in advance through experiments and simulations and stored in the control unit 123 . The operation change time C is, for example, 5 minutes. Note that the predetermined operation change time C means the operation change time C set in a series of frozen condition improvement control. The control itself for melting the frozen state to improve the frozen state is the control performed in step S180. On the other hand, in a broad sense, the control for melting the ice to improve the ice condition, including the process of extending or shortening the operation change time C as described later, is a series of ice condition improvement control. can think. That is, the predetermined action change time C includes the initial value of the action change time C, the extended action change time C, and the shortened action change time C, which are predetermined and set before step S180 is performed. including the operation change time C.
 設定値Dは、熱交換器2の結氷を改善するために制御部123が給気用送風機3の出力を低減させる低減量である。設定値Dは、実験およびシミュレーションにより予め決められて制御部123に記憶されている。 The set value D is a reduction amount by which the control unit 123 reduces the output of the air supply fan 3 in order to improve the freezing of the heat exchanger 2 . The set value D is determined in advance through experiments and simulations and stored in the control unit 123 .
 給気用送風機3の出力を低減させることにより、室内空気よりも低温である外気の熱交換器2への流入量を低減させ、排気用送風機4によって熱交換器2に搬送されて室内から排気される室内空気の気流が有する熱によって、熱交換器2の結氷を溶かすことができる。これにより、熱交換型換気装置1は、熱交換器2の結氷状態を改善することができる。また、給気用送風機3を停止させることにより、室内空気よりも低温である外気の熱交換器2への流入を停止させ、排気用送風機4によって熱交換器2に搬送されて室内から排気される室内空気の気流が有する熱によって、熱交換器2の結氷を溶かすことができる。これにより、熱交換型換気装置1は、熱交換器2の結氷状態を改善することができる。 By reducing the output of the air supply blower 3, the amount of outside air that is lower in temperature than the indoor air flowing into the heat exchanger 2 is reduced. Ice in the heat exchanger 2 can be melted by the heat possessed by the indoor air flow. Thereby, the heat exchange type ventilator 1 can improve the frozen state of the heat exchanger 2 . In addition, by stopping the supply air blower 3, the outside air having a lower temperature than the indoor air is stopped from flowing into the heat exchanger 2, and is conveyed to the heat exchanger 2 by the exhaust air blower 4 and exhausted from the room. Ice in the heat exchanger 2 can be melted by the heat of the indoor air flow. Thereby, the heat exchange type ventilator 1 can improve the frozen state of the heat exchanger 2 .
 動作変更時間Cの経過後、ステップS190において、給気用送風機3の状態を通常状態に戻す。具体的に、制御部123が、ステップS180において出力を低減させた給気用送風機3の状態、あるいは停止させた給気用送風機3の状態を、ステップS180以前の、通常の動作状態に戻す。 After the operation change time C has elapsed, in step S190, the state of the air supply fan 3 is returned to the normal state. Specifically, the control unit 123 restores the state of the air supply fan 3 whose output is reduced in step S180 or the state of the air supply fan 3 which is stopped in step S180 to the normal operation state before step S180.
 ステップS200において、現在の排気用DCモータ42のモータ電流値Iが、結氷改善判定電流値Ii2以上であるか否かが判定される。すなわち、現在の排気用DCモータ42のモータ電流値Iが、結氷判定電流値Ii1と結氷改善判定電流値Ii2との差分である「A-B」以上、増加したか否かが判定される。具体的に、制御部123が、ステップS190において給気用送風機3を通常の動作状態に戻した後に、排気用送風機4の排気用モータ制御回路420の排気用電流検知部423から、現在の排気用DCモータ42のモータ電流値Iを取得する。そして、制御部123が、取得した現在の排気用DCモータ42のモータ電流値Iと、制御部123に記憶された結氷改善判定電流値Ii2とを比較し、現在の排気用DCモータ42のモータ電流値Iが結氷改善判定電流値Ii2以上であるか否かを判定する。 In step S200, it is determined whether or not the current motor current value I of the exhaust DC motor 42 is equal to or greater than the freezing improvement determination current value Ii2 . That is, it is determined whether or not the current motor current value I of the exhaust DC motor 42 has increased by more than "AB", which is the difference between the freezing determination current value Ii1 and the freezing improvement determination current value Ii2 . be. Specifically, after the control unit 123 returns the air supply fan 3 to the normal operation state in step S190, the current exhaust current detection unit 423 of the exhaust motor control circuit 420 of the exhaust fan 4 detects the current exhaust A motor current value I of the DC motor 42 is acquired. Then, the control unit 123 compares the acquired current motor current value I of the exhaust DC motor 42 with the freezing improvement determination current value Ii2 stored in the control unit 123, It is determined whether or not the motor current value I is equal to or greater than the ice improvement determination current value Ii2 .
 ここで、現在の排気用DCモータ42のモータ電流値Iが結氷改善判定電流値Ii2以上である場合には、制御部123は、熱交換器2の結氷状態の改善効果があると判定する。現在の排気用DCモータ42のモータ電流値Iが結氷改善判定電流値Ii2未満である場合には、制御部123は、熱交換器2の結氷状態の改善効果が不足していると判定する。なお、結氷改善判定電流値Ii2は、図4におけるモータ電流131とモータ電流132との間に位置するモータ電流133に対応する。 Here, when the current motor current value I of the exhaust DC motor 42 is equal to or greater than the ice improvement determination current value Ii2 , the control unit 123 determines that the ice condition of the heat exchanger 2 is improved. . When the current motor current value I of the exhaust DC motor 42 is less than the freezing improvement determination current value Ii2 , the control unit 123 determines that the effect of improving the freezing state of the heat exchanger 2 is insufficient. . The freezing improvement determination current value Ii2 corresponds to the motor current 133 positioned between the motor current 131 and the motor current 132 in FIG.
 現在の排気用DCモータ42のモータ電流値Iが結氷改善判定電流値Ii2以上であると判定された場合は、ステップS200においてYesとなり、ステップS260に進む。この場合、制御部123は、熱交換器2の結氷状態の改善効果があり、結氷が発生する可能性のある状態であるが結氷状態は改善されたと判定し、ステップS260に進む。現在の排気用DCモータ42のモータ電流値Iが結氷改善判定電流値Ii2未満であると判定された場合は、ステップS200においてNoとなり、ステップS210に進む。 If it is determined that the current motor current value I of the exhaust DC motor 42 is equal to or greater than the freezing improvement determination current value Ii2 , the determination in step S200 is Yes, and the process proceeds to step S260. In this case, the control unit 123 has the effect of improving the frozen state of the heat exchanger 2, determines that the frozen state has been improved although there is a possibility of freezing, and proceeds to step S260. If it is determined that the current motor current value I of the exhaust DC motor 42 is less than the ice improvement determination current value Ii2 , the determination in step S200 is No, and the process proceeds to step S210.
 ステップS210では、現在の動作変更時間Cが設定値E以下であるか否かにより、熱交換器2における結氷状態の改善の可否が判定される。具体的に、制御部123が、現在の動作変更時間Cが設定値E以下であるかを判定する。 In step S210, it is determined whether or not the frozen state in the heat exchanger 2 can be improved depending on whether the current operation change time C is equal to or less than the set value E. Specifically, the control unit 123 determines whether the current operation change time C is equal to or less than the set value E.
 設定値Eは、現在の動作変更時間Cに基づいて制御部123が熱交換器2における結氷状態の改善の可否を判定するための基準値であり、動作変更時間Cの初期値よりも大きい値の時間閾値である。設定値Eは、実験とシミュレーションにより予め決められて制御部123に記憶されている。 The set value E is a reference value for the control unit 123 to determine whether or not the freezing state in the heat exchanger 2 can be improved based on the current operation change time C, and is a value larger than the initial value of the operation change time C. is the time threshold for The set value E is determined in advance through experiments and simulations and stored in the controller 123 .
 制御部123は、現在の動作変更時間Cが設定値E以下である場合は、さらに結氷状態改善制御を行うことにより熱交換器2における結氷状態の改善が可能であると判定する。制御部123は、現在の動作変更時間Cが設定値Eより大である場合は、熱交換器2における結氷による目詰まりが発生し、さらに結氷状態改善制御を行っても熱交換器2における結氷状態の改善が不可能であると判定する。 When the current operation change time C is equal to or less than the set value E, the control unit 123 determines that the freezing state in the heat exchanger 2 can be improved by further performing the freezing state improvement control. When the current operation change time C is greater than the set value E, the control unit 123 determines that clogging due to freezing occurs in the heat exchanger 2, and even if the freezing state improvement control is performed, the freezing in the heat exchanger 2 is prevented. Determine that the condition cannot be improved.
 現在の動作変更時間Cが設定値E以下であると判定された場合には、ステップS210においてYesとなり、ステップS220に進む。現在の動作変更時間Cが設定値Eより大であると判定された場合には、ステップS210においてNoとなり、ステップS240に進む。 If it is determined that the current operation change time C is equal to or less than the set value E, the answer to step S210 is Yes, and the process proceeds to step S220. If it is determined that the current operation change time C is longer than the set value E, the determination in step S210 is No, and the process proceeds to step S240.
 ステップS220では、動作変更時間Cの延長が行われる。具体的に、制御部123が、現在の動作変更時間Cに予め決められた設定値Fを加算して、次回の結氷状態改善制御に用いる動作変更時間Cとして記憶する。制御部123は、今回の結氷状態改善制御に用いられた動作変更時間Cがすでに延長された動作変更時間Cである場合は、延長された動作変更時間Cに対してさらに設定値Fを加算して、次回の結氷状態改善制御に用いる動作変更時間Cとして記憶する。次回の結氷状態改善制御に用いる動作変更時間Cを延長することにより、室内空気よりも低温である外気の熱交換器2への流入量をより低減させて、熱交換器2の結氷状態の改善効果を増大させることができる。なお、上述した設定値Dを大きくしてもよい。設定値Dを大きくすることにより、室内空気よりも低温である外気の熱交換器2への流入量をより低減させて、熱交換器2の結氷状態の改善効果を増大させることができる。その後、ステップS230に進む。 In step S220, the operation change time C is extended. Specifically, the control unit 123 adds a predetermined set value F to the current operation change time C, and stores the result as the operation change time C to be used for the next ice condition improvement control. If the operation change time C used for the current ice condition improvement control is already extended, the control unit 123 adds the set value F to the extended operation change time C. is stored as the operation change time C to be used for the next ice condition improvement control. By extending the operation change time C used for the next frozen condition improvement control, the amount of outside air having a lower temperature than the indoor air flowing into the heat exchanger 2 is further reduced, and the frozen condition of the heat exchanger 2 is improved. effect can be increased. Note that the set value D described above may be increased. By increasing the set value D, it is possible to further reduce the amount of outside air, which is cooler than the indoor air, flowing into the heat exchanger 2, thereby increasing the effect of improving the frozen state of the heat exchanger 2. After that, the process proceeds to step S230.
 ステップS220→ステップS230→ステップS150へ進むフローでは、ステップS150において温度条件が改善されない限り、すなわち現在の室外温度Tが第2温度閾値T1より大となる変化がない限り結氷が繰り返し発生するため、熱交換器2に結氷が発生する可能性がある状態であることを報知するとともに、ステップS170でNo→ステップS160のフローを繰り返して結氷の発生の確認を継続的に行う。また、ステップS170でYes→ステップS180のフローを繰り返して、結氷状態改善制御を継続的に行う。 In the flow of step S220→step S230→step S150, freezing occurs repeatedly unless the temperature conditions are improved in step S150, that is, unless the current outdoor temperature T changes to be greater than the second temperature threshold T1. It is notified that the heat exchanger 2 is in a state where freezing may occur, and the flow of No in step S170→step S160 is repeated to continuously confirm the occurrence of freezing. Further, the flow from Yes in step S170 to step S180 is repeated to continuously perform the ice state improvement control.
 設定値Fは、動作変更時間Cを延長設定するために現在の動作変更時間Cに加算される延長時間である。設定値Fは、実験とシミュレーションにより予め決められて制御部123に記憶されている。 The set value F is an extension time that is added to the current operation change time C in order to set the operation change time C to be extended. The set value F is determined in advance through experiments and simulations and stored in the controller 123 .
 すなわち、動作変更時間Cの経過後の現在の排気用DCモータ42のモータ電流値Iの減少量に対応して動作変更時間Cが延長して設定される。そして、動作変更時間Cを延長して設定した後に、現在の室外温度Tが第2温度閾値T以下であり、且つ現在の排気用DCモータ42のモータ電流値Iが結氷判定電流値Ii1以下である場合に、延長した動作変更時間Cだけ給気用送風機3の風量を排気用送風機4の風量より減らす制御が、繰り返して行われる。 That is, the operation change time C is extended and set according to the amount of decrease in the current motor current value I of the exhaust DC motor 42 after the operation change time C has elapsed. Then, after the operation change time C is extended and set, the current outdoor temperature T is equal to or lower than the second temperature threshold T1, and the current motor current value I of the exhaust DC motor 42 is the freezing determination current value Ii1 . In the following cases, the control for reducing the air volume of the air supply fan 3 by the extended operation change time C below the air volume of the exhaust fan 4 is repeatedly performed.
 ステップS230では、結氷発生の警告が報知される。具体的に、制御部123が、結氷発生警告を表示部13に表示させる制御を行う。結氷発生警告は、現在の室外温度Tおよび熱交換器2が、熱交換器2において結氷が発生する可能性がある状態であることを示す警告である。すなわち、結氷発生警告は、ステップS150において温度条件の変化がない限り、すなわち現在の室外温度Tが第2温度閾値Tより大となる変化がない限り、熱交換器2において結氷が発生する可能性があるため、結氷状態改善制御が繰り返し行われる可能性がある状態であることを示す警告である。結氷発生警告は、熱交換器2に発生する結氷の結氷状態のレベルが、結氷状態改善制御によって熱交換器2の結氷を溶かすことができるレベルの、軽度の結氷状態レベルであることを示している。結氷発生警告が表示部13に表示されることにより、ユーザは、熱交換器2における結氷の発生により熱交換型換気装置1の換気量が低下したが、熱交換器2の結氷状態の改善が可能であることを認識できる。その後、ステップS150に戻る。 In step S230, a warning of freezing is issued. Specifically, the control unit 123 controls the display unit 13 to display a freezing occurrence warning. The freezing warning is a warning indicating that the current outdoor temperature T and the heat exchanger 2 are in a state where freezing may occur in the heat exchanger 2 . That is, as long as there is no change in the temperature condition in step S150, i.e., unless there is a change in which the current outdoor temperature T becomes greater than the second temperature threshold T1, the freezing occurrence warning indicates that freezing may occur in the heat exchanger 2. This is a warning indicating that there is a possibility that the freezing condition improvement control will be repeatedly performed due to the possibility of repeated freezing condition improvement control. The freezing occurrence warning indicates that the freezing level of the freezing generated in the heat exchanger 2 is a light freezing level at which the freezing of the heat exchanger 2 can be melted by the freezing condition improvement control. there is By displaying the freezing occurrence warning on the display unit 13, the user can understand that although the ventilation rate of the heat exchange ventilator 1 has decreased due to the occurrence of freezing in the heat exchanger 2, the freezing state of the heat exchanger 2 has not been improved. recognize that it is possible. After that, the process returns to step S150.
 ステップS240では、結氷目詰まりの警告が報知される。具体的に、制御部123が、結氷目詰まり警告を表示部13に表示させる制御を行う。結氷目詰まり警告が表示部13に表示されることにより、ユーザは、結氷による一時的な熱交換器2の目詰まりが発生していることを認識できる。その後、ステップS150に戻る。 In step S240, a warning of ice clogging is issued. Specifically, the control unit 123 controls the display unit 13 to display the frozen clogging warning. By displaying the ice clogging warning on the display unit 13, the user can recognize that the heat exchanger 2 is temporarily clogged due to ice. After that, the process returns to step S150.
 結氷目詰まり警告は、熱交換器2において結氷による一時的な熱交換器2の目詰まりが発生し、結氷状態改善制御を行っても結氷状態が回復しない旨を示す警告である。結氷目詰まり警告は、熱交換器2に発生する結氷の結氷状態のレベルが、結氷状態改善制御によって熱交換器2の結氷を溶かすことができず、結氷状態改善制御を行っても結氷状態が回復しないレベルの、重度の結氷状態レベルであることを示している。 The freezing clogging warning is a warning indicating that temporary clogging of the heat exchanger 2 due to freezing has occurred in the heat exchanger 2 and that the freezing state has not recovered even if the freezing state improvement control is performed. The frozen clogging warning is issued when the level of the frozen state of the ice generated in the heat exchanger 2 cannot be melted by the frozen state improvement control, and the frozen state remains even if the frozen state improvement control is performed. This indicates a severely frozen state level that cannot be recovered.
 ステップS250では、結氷発生の警告が解除される。具体的に、制御部123が、表示部13における結氷発生警告の表示を終了させる制御を行う。また、結氷前基準電流値Ii0と、結氷判定電流値Ii1と、結氷改善判定電流値Ii2と、延長された動作変更時間Cと、がクリアされる。具体的に、制御部123が、記憶している結氷前基準電流値Ii0と、結氷判定電流値Ii1と、結氷改善判定電流値Ii2と、延長された動作変更時間Cと、を制御部123から削除する。その後、ステップS110に戻る。 In step S250, the warning of freezing is canceled. Specifically, the control unit 123 performs control to terminate the display of the freezing occurrence warning on the display unit 13 . Also, the pre-icing reference current value Ii0 , the freezing determination current value Ii1 , the freezing improvement determination current value Ii2 , and the extended operation change time C are cleared. Specifically, the control unit 123 controls the stored pre-icing reference current value Ii0 , the freezing determination current value Ii1 , the freezing improvement determination current value Ii2 , and the extended operation change time C. Delete from section 123 . After that, the process returns to step S110.
 ステップS260では、現在の排気用DCモータ42のモータ電流値Iが、結氷前基準電流値Ii0に復帰したか否かが判定される。すなわち、現在の排気用DCモータ42のモータ電流値Iが、結氷改善判定電流値Ii2以上、結氷前基準電流値Ii0未満であるか否かが判定される。具体的に、制御部123が、ステップS200において取得された現在の排気用DCモータ42のモータ電流値Iと、結氷前基準電流値Ii0とを比較することにより、現在の排気用DCモータ42のモータ電流値Iが、結氷前基準電流値Ii0に復帰したか否かを判定する。ステップS260が行われることにより、熱交換器2が結氷状態から回復したか否かを判定できる。 In step S260, it is determined whether or not the current motor current value I of the exhaust DC motor 42 has returned to the pre-freezing reference current value Ii0 . That is, it is determined whether or not the current motor current value I of the exhaust DC motor 42 is greater than or equal to the anti-icing current value Ii2 and less than the pre-icing reference current value Ii0 . Specifically, the control unit 123 compares the current motor current value I of the exhaust DC motor 42 acquired in step S200 with the pre-freezing reference current value Ii0 , thereby determining the current exhaust DC motor 42 has returned to the pre-freezing reference current value Ii0 . By performing step S260, it is possible to determine whether or not the heat exchanger 2 has recovered from the frozen state.
 ここで、現在の排気用DCモータ42のモータ電流値Iが結氷前基準電流値Ii0と同等である場合には、制御部123は、熱交換器2の結氷の改善が適切に行われて熱交換器2が結氷状態から通常状態に回復できていると判定する。現在の排気用DCモータ42のモータ電流値Iが結氷前基準電流値Ii0未満である場合、すなわち排気用DCモータ42のモータ電流値Iが結氷前基準電流値Ii0に戻らない場合には、制御部123は、熱交換器2の結氷の改善が不足しており熱交換器2が結氷状態から回復できていないと判定する。すなわち、現在の排気用DCモータ42のモータ電流値Iが結氷前基準電流値Ii0に復帰したか否かを判定することにより、熱交換器2における結氷の復帰状態を判定することができる。 Here, when the current motor current value I of the exhaust DC motor 42 is equal to the pre-icing reference current value Ii0 , the control unit 123 determines that the freezing of the heat exchanger 2 has been appropriately improved. It is determined that the heat exchanger 2 has recovered from the frozen state to the normal state. When the current motor current value I of the exhaust DC motor 42 is less than the pre-freezing reference current value Ii0 , that is, when the motor current value I of the exhaust DC motor 42 does not return to the pre-icing reference current value Ii0 , the control unit 123 determines that the improvement of the freezing of the heat exchanger 2 is insufficient and that the heat exchanger 2 cannot recover from the freezing state. That is, it is possible to determine whether or not the heat exchanger 2 has recovered from freezing by determining whether the current motor current value I of the exhaust DC motor 42 has returned to the pre-freezing reference current value Ii0 .
 現在の排気用DCモータ42のモータ電流値Iが結氷前基準電流値Ii0に復帰したと判定された場合は、ステップS260においてYesとなり、ステップS270に進む。現在の排気用DCモータ42のモータ電流値Iが結氷前基準電流値Ii0に復帰していないと判定された場合は、ステップS260においてNoとなり、ステップS210に進む。 If it is determined that the current motor current value I of the exhaust DC motor 42 has returned to the pre-freezing reference current value Ii0 , the determination in step S260 is YES, and the process proceeds to step S270. If it is determined that the current motor current value I of the exhaust DC motor 42 has not returned to the pre-freezing reference current value Ii0 , the determination in step S260 is No, and the process proceeds to step S210.
 ステップS270では、結氷状態改善制御が過剰に行われている可能性があると判断し、動作変更時間Cの短縮が行われる。具体的に、制御部123が、現在の動作変更時間Cから予め決められた設定値Gを減算して、次回の結氷状態改善制御に用いる動作変更時間Cとして記憶する。制御部123は、今回の結氷状態改善制御に用いられた動作変更時間Cがすでに延長あるいは短縮された動作変更時間Cである場合は、延長あるいは短縮された動作変更時間Cに対してさらに設定値Gを減算して、次回の結氷状態改善制御に用いる動作変更時間Cとして記憶する。その後、ステップS230に進む。 In step S270, it is determined that the freezing condition improvement control may be excessively performed, and the operation change time C is shortened. Specifically, the control unit 123 subtracts a predetermined set value G from the current operation change time C, and stores the result as the operation change time C to be used for the next frozen state improvement control. If the operation change time C used in the current frozen state improvement control is already extended or shortened, the control unit 123 further sets the set value for the extended or shortened operation change time C. G is subtracted and stored as operation change time C to be used for the next ice condition improvement control. After that, the process proceeds to step S230.
 図7は、実施の形態1にかかる熱交換型換気装置1における結氷状態改善制御の一例を説明する図である。図7においては、給気用DCモータ32の状態、排気用DCモータ42のモータ電流値Iおよび熱交換器2の結氷状態を縦軸に示している。給気用DCモータ32の状態は、運転状態あるいは停止状態である。熱交換器2の結氷状態は、結氷がない通常状態、結氷状態、および通常状態と結氷状態との間の状態である半結氷状態がある。図7における横軸は、時間を示している。 FIG. 7 is a diagram explaining an example of the freezing state improvement control in the heat exchange ventilator 1 according to the first embodiment. In FIG. 7, the state of the DC motor 32 for air supply, the motor current value I of the DC motor 42 for exhaust, and the frozen state of the heat exchanger 2 are shown on the vertical axis. The state of the air supply DC motor 32 is an operating state or a stopped state. The frozen state of the heat exchanger 2 includes a normal state without ice, a frozen state, and a semi-frozen state between the normal state and the frozen state. The horizontal axis in FIG. 7 indicates time.
 図7に示すように、熱交換型換気装置1の運転中において、時刻T1に、熱交換器2における結氷の発生が、始まる。そして、現在の排気用DCモータ42のモータ電流値Iは、時刻T1から減少していく。 As shown in FIG. 7, during the operation of the heat exchange ventilator 1, the heat exchanger 2 begins to freeze at time T1. Then, the current motor current value I of the exhaust DC motor 42 decreases from time T1.
 時刻T2では、熱交換器2の結氷状態は、通常状態と結氷状態との間の状態である半結氷状態となっている。 At time T2, the frozen state of the heat exchanger 2 is a semi-frozen state between the normal state and the frozen state.
 時刻T3に、現在の排気用DCモータ42のモータ電流値Iが、結氷判定電流値Ii1に低下する。この時点で、熱交換器2は、結氷状態となっている。時刻T3に、給気用送風機3が停止されることで、結氷を溶かして結氷状態を改善するための結氷状態改善制御が、行われる。時刻T3は、図5における、ステップS170においてYes、およびステップS180に対応する。 At time T3, the current motor current value I of the exhaust DC motor 42 decreases to the freezing determination current value Ii1 . At this point, the heat exchanger 2 is frozen. At time T3, the supply air blower 3 is stopped, so that the freezing state improvement control for melting the freezing to improve the freezing state is performed. Time T3 corresponds to Yes in step S170 and step S180 in FIG.
 時刻T4に、給気用送風機3の状態が、通常状態に戻される。この時点で、現在の排気用DCモータ42のモータ電流値Iは、結氷前基準電流値Ii0に戻っている。また、この時点で、熱交換器2は、結氷がない通常の状態に戻っている。時刻T4は、図6における、ステップS190、およびステップS200においてYesに対応する。 At time T4, the state of the air supply fan 3 is returned to the normal state. At this point, the current motor current value I of the exhaust DC motor 42 has returned to the pre-freezing reference current value Ii0 . Also, at this point, the heat exchanger 2 has returned to its normal state without ice. Time T4 corresponds to Yes in steps S190 and S200 in FIG.
 時刻T5に、熱交換器2における結氷の発生が、始まる。そして、現在の排気用DCモータ42のモータ電流値Iは、時刻T5から減少していく。 At time T5, the formation of ice in the heat exchanger 2 begins. Then, the current motor current value I of the exhaust DC motor 42 decreases from time T5.
 時刻T6に、現在の排気用DCモータ42のモータ電流値Iが、結氷判定電流値Ii1に低下する。この時点で、熱交換器2は、結氷状態となっている。そして、時刻T6に、給気用送風機3が停止されることで、結氷状態改善制御が、行われる。時刻T6は、図5における、ステップS170においてYes、およびステップS180に対応する。 At time T6, the current motor current value I of the exhaust DC motor 42 decreases to the freezing determination current value Ii1 . At this point, the heat exchanger 2 is frozen. Then, at time T6, the air supply blower 3 is stopped, so that the frozen state improvement control is performed. Time T6 corresponds to Yes in step S170 and step S180 in FIG.
 時刻T7に、給気用送風機3の状態が、通常状態に戻される。時刻T7における現在の排気用DCモータ42のモータ電流値Iであるモータ電流値I7は、結氷改善判定電流値Ii2以上となっているが、結氷前基準電流値Ii0未満であり、結氷前基準電流値Ii0には戻っていない。また、この時点で、熱交換器2は、結氷がない通常の状態には戻っていない。そして、熱交換器2は、結氷がない通常の状態には戻っていないため、短時間で熱交換器2における結氷が発生し、時刻T7の時点から、熱交換器2における結氷の発生が、始まる。 At time T7, the state of the air supply fan 3 is returned to the normal state. A motor current value I7, which is the current motor current value I of the exhaust DC motor 42 at time T7, is equal to or greater than the ice improvement determination current value Ii2 , but is less than the pre-icing reference current value Ii0 . It has not returned to the reference current value Ii0 . Also, at this point, the heat exchanger 2 has not returned to its normal, non-icing state. Then, since the heat exchanger 2 has not returned to the normal state without freezing, freezing occurs in the heat exchanger 2 in a short period of time, and from time T7, the occurrence of freezing in the heat exchanger 2 begin.
 時刻T7は、図6における、ステップS190、およびステップS200においてYesに対応する。より詳細には、時刻T7は、図5および図6における、ステップS190→ステップS200においてYes→ステップS260においてNo→ステップS210においてYes→ステップS220→ステップS230→ステップS150に対応する。すなわち、制御部123は、通常の運転の制御に移行する。また、制御部123は、ステップS220において、動作変更時間Cの延長を行う。 Time T7 corresponds to Yes in steps S190 and S200 in FIG. More specifically, time T7 corresponds to steps S190→Yes in step S200→No in step S260→Yes in step S210→step S220→step S230→step S150 in FIGS. That is, the control unit 123 shifts to control of normal operation. Further, the control unit 123 extends the operation change time C in step S220.
 時刻T8に、現在の排気用DCモータ42のモータ電流値Iが、結氷判定電流値Ii1に低下する。この時点で、熱交換器2は、結氷状態となっている。そして、時刻T8に、給気用送風機3が停止されることで、結氷状態改善制御が、行われる。ここでは、延長された動作変更時間Cの間だけ、結氷状態改善制御が、行われる。時刻T8は、図5における、ステップS170においてYesおよびステップS180に対応する。 At time T8, the current motor current value I of the exhaust DC motor 42 decreases to the freezing determination current value Ii1 . At this point, the heat exchanger 2 is frozen. Then, at time T8, the air supply blower 3 is stopped, so that the frozen state improvement control is performed. Here, the icing condition improvement control is performed only during the extended operation change time C. FIG. Time T8 corresponds to Yes in step S170 and step S180 in FIG.
 時刻T9に、給気用送風機3の状態が、通常状態に戻される。この時点で、現在の排気用DCモータ42のモータ電流値Iは、結氷前基準電流値Ii0に戻っている。また、この時点で、熱交換器2は、結氷がない通常の状態に戻っている。時刻T9は、図6における、ステップS190、およびステップS200においてYesに対応する。 At time T9, the state of the air supply fan 3 is returned to the normal state. At this point, the current motor current value I of the exhaust DC motor 42 has returned to the pre-freezing reference current value Ii0 . Also, at this point, the heat exchanger 2 has returned to its normal state without ice. Time T9 corresponds to Yes in steps S190 and S200 in FIG.
 上記のように熱交換型換気装置1において排気用DCモータ42のモータ電流値Iを判定するにあたっては、給気用DCモータ32と排気用DCモータ42との双方の運転時でないと、通常の運転時と環境が異なることから、排気用DCモータ42のモータ電流値Iを正しく判定ができない。このため、熱交換型換気装置1においては、給気用DCモータ32の停止中には、排気用DCモータ42のモータ電流値Iの判定を行わない。また、熱交換型換気装置1は、ステップS180の結氷状態改善制御における給気用DCモータ32の停止中に実際の排気用DCモータ42のモータ電流値Iが結氷前基準電流値Ii0となった場合でも、停止している給気用DCモータ32の運転を直ぐに再開することはできない。 In determining the motor current value I of the exhaust DC motor 42 in the heat exchange type ventilator 1 as described above, unless both the air supply DC motor 32 and the exhaust DC motor 42 are operating, normal Since the environment differs from that during operation, the motor current value I of the exhaust DC motor 42 cannot be determined correctly. Therefore, in the heat exchange type ventilator 1, the motor current value I of the exhaust DC motor 42 is not determined while the air supply DC motor 32 is stopped. In addition, in the heat exchange ventilator 1, the actual motor current value I of the exhaust DC motor 42 becomes the pre-icing reference current value Ii0 while the air supply DC motor 32 is stopped in the freezing state improvement control in step S180. Even in such a case, the operation of the stopped air supply DC motor 32 cannot be restarted immediately.
 このため、動作変更時間Cの経過後にステップS190において給気用送風機3の状態を通常状態に戻した後に、給気用DCモータ32の運転時に現在の排気用DCモータ42のモータ電流値Iを検知する。そして、熱交換型換気装置1では、検知された現在の排気用DCモータ42のモータ電流値Iが結氷改善判定電流値Ii2を越えていたとしても、上記の時刻T7の状態のように、必ずしも熱交換器2の結氷が完全に解消されている状態となっていない場合がある。 Therefore, after the operation change time C has elapsed, the state of the air supply fan 3 is returned to the normal state in step S190, and then the current motor current value I of the exhaust DC motor 42 is changed when the air supply DC motor 32 is in operation. detect. Then, in the heat exchange type ventilator 1, even if the detected current motor current value I of the exhaust DC motor 42 exceeds the freezing improvement determination current value Ii2 , as in the state at time T7, In some cases, the ice on the heat exchanger 2 is not completely removed.
 そこで、ステップS190において給気用送風機3の状態を通常状態に戻した後に検知された現在の排気用DCモータ42のモータ電流値Iが結氷改善判定電流値Ii2を越えていたとしても、現在の排気用DCモータ42のモータ電流値Iが結氷前基準電流値Ii0未満である場合には、制御部123は、熱交換器2の結氷が完全に解消されている状態となっていないと判定する。また、制御部123は、熱交換器2の結氷の改善が不足していると判定し、次回のステップS180の結氷状態改善制御に用いられる動作変更時間Cを延長する。 Therefore, even if the current motor current value I of the exhaust DC motor 42 detected after the state of the air supply fan 3 is returned to the normal state in step S190 exceeds the freezing improvement judgment current value Ii2 , the current When the motor current value I of the exhaust DC motor 42 is less than the pre-icing reference current value Ii0 , the control unit 123 determines that the freezing of the heat exchanger 2 has not been completely removed. judge. Further, the control unit 123 determines that the improvement of the freezing of the heat exchanger 2 is insufficient, and extends the operation change time C used for the freezing state improvement control in the next step S180.
 また、ステップS190において給気用送風機3の状態を通常状態に戻した後に検知された現在の排気用DCモータ42のモータ電流値Iが結氷前基準電流値Ii0と同等である場合には、制御部123は、熱交換器2の結氷の改善が適切に行われて熱交換器2が結氷状態から通常状態に回復できていると判定する。また、制御部123は、結氷状態改善制御が過剰に行われている可能性があると判定し、次回のステップS180の結氷状態改善制御に用いられる動作変更時間Cを短縮する。 Further, when the current motor current value I of the exhaust DC motor 42 detected after the state of the air supply fan 3 is returned to the normal state in step S190 is equal to the pre-freezing reference current value Ii0 , The control unit 123 determines that the freezing of the heat exchanger 2 has been appropriately improved and the heat exchanger 2 has recovered from the freezing state to the normal state. Further, the control unit 123 determines that the icing state improvement control may be excessively performed, and shortens the operation change time C used for the icing state improvement control in the next step S180.
 すなわち、図7とは異なり、動作変更時間Cが長すぎる場合には、給気用送風機3を必要以上に停止させることになる。このため、ステップS190において給気用送風機3の状態を通常状態に戻した後に検知された現在の排気用DCモータ42のモータ電流値Iが結氷前基準電流値Ii0と同等である場合には、制御部123は、次回のステップS180の結氷状態改善制御に用いられる動作変更時間Cを短縮する。 That is, unlike FIG. 7, if the operation change time C is too long, the air supply fan 3 is stopped more than necessary. Therefore, when the current motor current value I of the exhaust DC motor 42 detected after the state of the air supply fan 3 is returned to the normal state in step S190 is equal to the pre-freezing reference current value Ii0 , , the control unit 123 shortens the operation change time C used for the ice condition improvement control in the next step S180.
 熱交換型換気装置1においては、制御部123が上記のような制御を繰り返し行うことにより、熱交換器2の結氷の改善に適切な結氷状態改善制御を行うことができる。 In the heat exchange type ventilator 1, the control unit 123 repeatedly performs the control described above, so that the freezing state improvement control suitable for improving the freezing of the heat exchanger 2 can be performed.
 制御装置12の制御部123、給気用モータ制御回路320および排気用モータ制御回路420のそれぞれは、例えば、図8に示したハードウェア構成の処理回路として実現される。図8は、実施の形態1における処理回路のハードウェア構成の一例を示す図である。制御装置12の制御部123、給気用モータ制御回路320および排気用モータ制御回路420のそれぞれが図8に示す処理回路により実現される場合、制御装置12の制御部123、給気用モータ制御回路320および排気用モータ制御回路420のそれぞれは、プロセッサ201がメモリ202に記憶されたプログラムを実行することにより、実現される。また、複数のプロセッサおよび複数のメモリが連携して上記機能を実現してもよい。また、制御装置12の制御部123、給気用モータ制御回路320および排気用モータ制御回路420のそれぞれの機能のうちの一部を電子回路として実装し、他の部分をプロセッサ201およびメモリ202を用いて実現するようにしてもよい。 Each of the control unit 123 of the control device 12, the air supply motor control circuit 320, and the exhaust motor control circuit 420 is implemented as a processing circuit having the hardware configuration shown in FIG. 8, for example. 8 is a diagram illustrating an example of a hardware configuration of a processing circuit according to Embodiment 1. FIG. When the control unit 123 of the control device 12, the air supply motor control circuit 320, and the exhaust motor control circuit 420 are each realized by the processing circuit shown in FIG. Circuit 320 and exhaust motor control circuit 420 are implemented by processor 201 executing a program stored in memory 202 . Also, multiple processors and multiple memories may work together to achieve the above functions. Some of the functions of the control unit 123 of the control device 12, the air supply motor control circuit 320, and the exhaust motor control circuit 420 are implemented as electronic circuits, and the other functions are implemented by the processor 201 and the memory 202. You may make it implement|achieve using.
 上述した本実施の形態1にかかる熱交換型換気装置1は、現在の室外温度Tが第1温度閾値T以上であるか否かによって、現在の室外温度Tの状態において熱交換器2で結氷が発生する可能性があるか否かの一次判定を実施する。また、熱交換型換気装置1は、一次判定において熱交換器2で結氷が発生する可能性があると判定された場合に、熱交換器2において結氷が発生したか否かを排気用DCモータ42のモータ電流値Iに基づいて判定する二次判定を実施する。 In the heat exchange type ventilator 1 according to the first embodiment described above, depending on whether the current outdoor temperature T is equal to or higher than the first temperature threshold value T0 , the heat exchanger 2 in the state of the current outdoor temperature T A primary determination is made as to whether or not freezing may occur. Further, when it is determined in the primary determination that there is a possibility that freezing occurs in the heat exchanger 2, the heat exchange type ventilator 1 determines whether or not freezing has occurred in the heat exchanger 2 by the exhaust DC motor. A secondary determination based on the motor current value I of 42 is performed.
 このように熱交換型換気装置1は、2つの判定パラメータを用いて熱交換型換気装置1における結氷による一時的な熱交換器2の目詰まりを検知するため、結氷による一時的な熱交換器2の目詰まりを精度良く判定することができる。これにより、熱交換型換気装置1は、排気用フィルタ6の経年的な目詰まりを結氷による一時的な熱交換器2の目詰まりと検知する誤検知を無くすことができ、結氷による一時的な熱交換器2の目詰まり時以外に結氷状態改善制御が行われることに起因した不必要な換気風量の制限を抑制することができる。 In this way, the heat exchange ventilator 1 detects temporary clogging of the heat exchanger 2 due to freezing in the heat exchange ventilator 1 using two determination parameters. 2 clogging can be determined with high accuracy. As a result, the heat exchange type ventilator 1 can eliminate erroneous detection of clogging of the exhaust filter 6 over time as temporary clogging of the heat exchanger 2 due to freezing. It is possible to suppress unnecessary restrictions on the amount of ventilation air due to the frozen state improvement control being performed when the heat exchanger 2 is not clogged.
 したがって、熱交換型換気装置1は、圧力センサまたは流量センサを使用せずに、熱交換型換気装置1に発生している、結氷による一時的な熱交換器2の目詰まりを精度良く判定することができ、不必要な換気風量の制限を抑制することができる。 Therefore, the heat exchange ventilator 1 accurately determines temporary clogging of the heat exchanger 2 due to freezing that occurs in the heat exchange ventilator 1 without using a pressure sensor or a flow sensor. It is possible to suppress unnecessary restrictions on the ventilation air volume.
 また、熱交換型換気装置1においては、結氷を溶かして結氷状態を改善するための結氷状態改善制御が結氷状態に対応して実施されて熱交換器2における結氷状態の改善が行われる。これにより、熱交換型換気装置1は、結氷による一時的な熱交換器2の目詰まりが発生している場合に、不必要な風量低下を抑えることができ、熱交換型換気装置1の換気量の低下を抑えることができる。また、熱交換型換気装置1は、結氷の状態に対応して動作変更時間Cを変更することにより、不必要な解氷待ち時間を減らすことができ、不要な換気風量の低下を抑えることができる。 In addition, in the heat exchange type ventilator 1, the icing state improvement control for melting the icing to improve the icing state is performed corresponding to the icing state, and the icing state in the heat exchanger 2 is improved. As a result, the heat exchange ventilator 1 can suppress an unnecessary decrease in the air volume when temporary clogging of the heat exchanger 2 due to freezing occurs, and ventilation of the heat exchange ventilator 1 A decrease in the amount can be suppressed. In addition, the heat exchange type ventilator 1 can reduce unnecessary waiting time for melting ice by changing the operation change time C according to the state of freezing, and can suppress unnecessary decrease in ventilation air volume. can.
 また、熱交換型換気装置1は、結氷による一時的な熱交換器2の目詰まりの発生を判定する際に用いる各種の基準値および設定値を、熱交換型換気装置1の設置環境に対応して任意の適正な値に設定することができる。これにより、熱交換型換気装置1は、熱交換型換気装置1の設置環境に対応して結氷による一時的な熱交換器2の目詰まりを精度良く判定することができる。 In addition, the heat exchange ventilator 1 adapts various reference values and set values used when determining the occurrence of temporary clogging of the heat exchanger 2 due to freezing to the installation environment of the heat exchange ventilator 1. can be set to any reasonable value. As a result, the heat exchange ventilator 1 can accurately determine temporary clogging of the heat exchanger 2 due to freezing in accordance with the installation environment of the heat exchange ventilator 1 .
 なお、本実施の形態1では熱交換型換気装置1の目詰まりを判定するために排気用DCモータ42のモータ電流値Iを用いた判定を行っているが、排気用DCモータ42のモータ電流値Iを、公知の技術となっている排気用DCモータ42の回転数N、または排気用DCモータ42の指令電圧値を用いた判定に置き換えることも可能である。 In the first embodiment, the motor current value I of the exhaust DC motor 42 is used to determine the clogging of the heat exchange type ventilator 1, but the motor current of the exhaust DC motor 42 is It is also possible to replace the value I with determination using the rotation speed N of the exhaust DC motor 42 or the command voltage value of the exhaust DC motor 42, which are known techniques.
 上述したように、本実施の形態1にかかる熱交換型換気装置1によれば、結氷による一時的な熱交換器2の目詰まりを精度良く検知でき、熱交換器2の結氷状態を改善することができるとともに結氷による一時的な熱交換器2の目詰まり時以外における熱交換器2の結氷状態の改善動作に起因した不必要な換気風量の制限を抑制することができる、という効果を奏する。 As described above, according to the heat exchange ventilator 1 according to Embodiment 1, temporary clogging of the heat exchanger 2 due to freezing can be accurately detected, and the freezing state of the heat exchanger 2 can be improved. In addition, it is possible to suppress the unnecessary limitation of the ventilation air volume due to the operation to improve the freezing state of the heat exchanger 2 except when the heat exchanger 2 is temporarily clogged due to freezing. .
 なお、実施の形態1では、給気用送風機3および排気用送風機4に用いられるモータにDCモータが使用される例について示したが、給気用送風機3および排気用送風機4に用いられるモータはDCモータに限定されない。すなわち、給気用送風機3および排気用送風機4には、交流(Alternating Current:AC)モータが用いられてもよい。給気用送風機3および排気用送風機4にACモータが用いられる場合も、上記と同様の制御が行われることにより、上述した効果が得られる。 In Embodiment 1, an example in which a DC motor is used for the motors used in the air supply fan 3 and the exhaust fan 4 is shown, but the motors used in the air supply fan 3 and the exhaust fan 4 are It is not limited to DC motors. That is, alternating current (AC) motors may be used for the air supply fan 3 and the exhaust fan 4 . Even when AC motors are used for the air supply fan 3 and the exhaust fan 4, the above effects can be obtained by performing the same control as above.
 図9は、実施の形態1にかかる他の熱交換型換気装置1Xの機能構成を示すブロック図である。図9においては、図2に示した構成と同様の構成については図2と同じ符号を付すことで、詳細な説明は省略する。他の熱交換型換気装置1Xは、基本的に実施の形態1にかかる熱交換型換気装置1と同様の構成および効果を有するが、給気用送風機3および排気用送風機4にACモータが用いられていることが、実施の形態1にかかる熱交換型換気装置1と異なる。 FIG. 9 is a block diagram showing the functional configuration of another heat exchange ventilator 1X according to the first embodiment. In FIG. 9, components similar to those shown in FIG. 2 are assigned the same reference numerals as in FIG. 2, and detailed description thereof is omitted. Another heat exchange ventilator 1X basically has the same configuration and effect as the heat exchange ventilator 1 according to the first embodiment, but AC motors are used for the air supply fan 3 and the exhaust fan 4. is different from the heat exchange ventilator 1 according to the first embodiment.
 他の熱交換型換気装置1Xは、筐体1aと、熱交換器2と、給気用送風機3Xと、排気用送風機4Xと、給気用フィルタ5と、排気用フィルタ6と、室内側吹出部7と、室内側吸込部8と、室外側吸込部9と、室外側吹出部10と、室外温度検知部11と、制御装置12Xと、表示部13と、を備える。 Another heat exchange type ventilator 1X includes a housing 1a, a heat exchanger 2, an air supply fan 3X, an exhaust fan 4X, an air supply filter 5, an exhaust filter 6, and an indoor air outlet. A unit 7 , an indoor intake unit 8 , an outdoor intake unit 9 , an outdoor outlet unit 10 , an outdoor temperature detection unit 11 , a control device 12X, and a display unit 13 .
 給気用送風機3Xは、下流側給気風路21bに配置され、室外側吸込部9から室内側吹出部7に向かう給気流の流れを生成する。給気用送風機3Xは、給気用送風機ケーシング30内に給気用ファン31と、給気用ファン31を回転させるための給気用ACモータ33と、を備える。給気用送風機3Xは、給気用ACモータ33によって給気用ファン31を回転させることによって給気流を発生させる。給気用送風機3Xは、後述する制御部123Xによって給気用ACモータ33の運転、停止および回転速度が制御されることで、制御部123Xによって運転動作が制御される。 The air supply blower 3X is arranged in the downstream air supply air passage 21b and generates an air supply flow from the outdoor side suction section 9 toward the indoor side blowout section 7. The air supply fan 3X includes an air supply fan 31 inside the air supply fan casing 30 and an air supply AC motor 33 for rotating the air supply fan 31 . The air supply fan 3X rotates the air supply fan 31 with the air supply AC motor 33 to generate an air supply flow. The operation of the air supply fan 3X is controlled by the control unit 123X, which will be described later, by controlling the operation, stop, and rotation speed of the air supply AC motor 33 by the control unit 123X.
 排気用送風機4Xは、下流側排気風路22bに配置され、室内側吸込部8から室外側吹出部10に向かう排気流の流れを生成する。排気用送風機4Xは、排気用送風機ケーシング40内に排気用ファン41と、排気用ファン41を回転させるための排気用ACモータ43と、を備える。排気用送風機4Xは、排気用ACモータ43によって排気用ファン41を回転させることによって排気流を発生させる。排気用送風機4Xは、後述する制御部123Xによって排気用ACモータ43の運転、停止および回転速度が制御されることで、制御部123Xによって運転動作が制御される。 The exhaust air blower 4X is arranged in the downstream exhaust air passage 22b and generates an exhaust flow from the indoor intake section 8 to the outdoor outlet section 10. The exhaust fan 4X includes an exhaust fan 41 in an exhaust fan casing 40 and an exhaust AC motor 43 for rotating the exhaust fan 41 . The exhaust fan 4X rotates the exhaust fan 41 with the exhaust AC motor 43 to generate an exhaust flow. The operation of the exhaust air blower 4X is controlled by the control unit 123X, which will be described later, by controlling the operation, stop, and rotational speed of the exhaust AC motor 43 by the control unit 123X.
 制御装置12Xは、筐体1aの内部に設けられ、熱交換型換気装置1Xの全体を制御する。制御装置12Xは、記憶部121と、制御部123Xと、給気用電流検知部124と、排気用電流検知部125と、を備える。 The control device 12X is provided inside the housing 1a and controls the entire heat exchange type ventilator 1X. The control device 12X includes a storage unit 121, a control unit 123X, an air supply current detection unit 124, and an exhaust current detection unit 125.
 制御部123Xは、給気用送風機3Xおよび排気用送風機4Xを含む熱交換型換気装置1Xの全体を制御する。制御部123Xは、給気用DCモータ32に流れるモータ電流の電流値および排気用DCモータ42に流れるモータ電流の電流値の代わりに、給気用ACモータ33に流れるモータ電流の電流値および排気用ACモータ43に流れるモータ電流の電流値を用いること以外は、実施の形態1にかかる熱交換型換気装置1の制御部123と同様の制御を行う。 The control unit 123X controls the entire heat exchange ventilator 1X including the air supply fan 3X and the exhaust fan 4X. Instead of the current value of the motor current flowing through the air supply DC motor 32 and the current value of the motor current flowing through the exhaust DC motor 42, the control unit 123X determines the current value of the motor current flowing through the air supply AC motor 33 and the exhaust current. The same control as that of the control unit 123 of the heat exchange type ventilator 1 according to the first embodiment is performed except that the current value of the motor current flowing through the AC motor 43 is used.
 給気用電流検知部124は、例えば不図示の電源と給気用ACモータ33とを接続する電線にクランプされたクランプメータといった電流測定器の測定値を用いて、給気用ACモータ33に流れるモータ電流の電流値を検知できる。なお、給気用ACモータ33に流れるモータ電流の電流値の検知方法は、これに限定されない。 The air-supply current detection unit 124 detects current in the air-supply AC motor 33 using, for example, a measured value of a current measuring device such as a clamp meter clamped on a wire connecting a power supply (not shown) and the air-supply AC motor 33 . It is possible to detect the current value of the flowing motor current. Note that the method for detecting the current value of the motor current flowing through the air supply AC motor 33 is not limited to this.
 排気用電流検知部125は、例えば不図示の電源と排気用電流検知部125とを接続する電線にクランプされたクランプメータといった電流測定器の測定値を用いて、排気用電流検知部125に流れるモータ電流の電流値を検知できる。なお、排気用電流検知部125に流れるモータ電流の電流値の検知方法は、これに限定されない。 The exhaust current detection unit 125 uses, for example, a measured value of a current measuring device such as a clamp meter clamped on a wire connecting the power supply (not shown) and the exhaust current detection unit 125, and the current flowing to the exhaust current detection unit 125 is measured. The current value of the motor current can be detected. Note that the method for detecting the current value of the motor current flowing through the exhaust current detection unit 125 is not limited to this.
 他の熱交換型換気装置1Xは、上記のような構成を備えることにより、給気用ACモータ33に流れるモータ電流の電流値および排気用ACモータ43に流れるモータ電流の電流値を用いて、図5および図6に示した制御と同様の制御を行うことができ、実施の形態1にかかる熱交換型換気装置1と同様の効果を得ることができる。なお、給気用電流検知部124が給気用送風機3Xに設けられ、排気用電流検知部125が排気用送風機4Xに設けられた構成とすることも可能である。この場合は、給気用送風機3Xおよび排気用送風機4Xと、制御装置12Xとは、通信可能とされる。 The other heat exchange type ventilator 1X is configured as described above, and uses the current value of the motor current flowing through the AC motor 33 for air supply and the current value of the motor current flowing through the AC motor 43 for exhausting, Control similar to that shown in FIGS. 5 and 6 can be performed, and effects similar to those of the heat exchange ventilator 1 according to the first embodiment can be obtained. It is also possible to adopt a configuration in which the air supply current detection unit 124 is provided in the air supply fan 3X and the exhaust current detection unit 125 is provided in the exhaust fan 4X. In this case, the air supply fan 3X, the exhaust fan 4X, and the controller 12X can communicate with each other.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiment is an example, and can be combined with another known technique, and part of the configuration can be omitted or changed without departing from the scope of the invention. It is possible.
 1 熱交換型換気装置、1a 筐体、1b 側面、1X 他の熱交換型換気装置、2 熱交換器、3,3X 給気用送風機、4,4X 排気用送風機、5 給気用フィルタ、6 排気用フィルタ、7 室内側吹出部、8 室内側吸込部、9 室外側吸込部、10 室外側吹出部、11 室外温度検知部、12,12X 制御装置、13 表示部、21 給気風路、21a 上流側給気風路、21b 下流側給気風路、21c 熱交換器内給気風路、22 排気風路、22a 上流側排気風路、22b 下流側排気風路、22c 熱交換器内排気風路、23 仕切壁、30 給気用送風機ケーシング、31 給気用ファン、32 給気用DCモータ、33 給気用ACモータ、40 排気用送風機ケーシング、41 排気用ファン、42 排気用DCモータ、43 排気用ACモータ、111 特性曲線、112 初期圧損曲線、113 目詰まり圧損曲線、114,115 交点、121 記憶部、122 通信部、123,123X 制御部、124 給気用電流検知部、125 排気用電流検知部、131 モータ電流、132 モータ電流、320 給気用モータ制御回路、321 給気用回転数検知部、322 給気用電圧検知部、323 給気用電流検知部、324 給気用通信部、420 排気用モータ制御回路、421 排気用回転数検知部、422 排気用電圧検知部、423 排気用電流検知部、424 排気用通信部、A,B,D,E,F,G 設定値、C 動作変更時間、T 室外温度、T 第1温度閾値、T 第2温度閾値。 1 heat exchange type ventilator, 1a housing, 1b side, 1X other heat exchange type ventilator, 2 heat exchanger, 3, 3X supply air blower, 4, 4X exhaust air blower, 5 air supply filter, 6 Exhaust Filter 7 Indoor Blow-out Portion 8 Indoor Suction Portion 9 Outdoor Suction Portion 10 Outdoor Blow-out Portion 11 Outdoor Temperature Detector 12, 12X Control Device 13 Display 21 Supply Air Path 21a upstream side air supply air path 21b downstream side air supply air path 21c heat exchanger internal air supply air path 22 exhaust air path 22a upstream side exhaust air path 22b downstream side exhaust air path 22c heat exchanger internal exhaust air path 23 Partition wall 30 Air supply fan casing 31 Air supply fan 32 Air supply DC motor 33 Air supply AC motor 40 Exhaust fan casing 41 Exhaust fan 42 Exhaust DC motor 43 Exhaust 111 characteristic curve 112 initial pressure loss curve 113 clogging pressure loss curve 114, 115 intersection point 121 storage unit 122 communication unit 123, 123X control unit 124 air supply current detection unit 125 exhaust current Detection unit 131 motor current 132 motor current 320 air supply motor control circuit 321 air supply rotation speed detection unit 322 air supply voltage detection unit 323 air supply current detection unit 324 air supply communication unit 420 Exhaust motor control circuit 421 Exhaust rotation speed detection unit 422 Exhaust voltage detection unit 423 Exhaust current detection unit 424 Exhaust communication unit A, B, D, E, F, G Setting values C operation change time, T outdoor temperature, T0 first temperature threshold, T1 second temperature threshold.

Claims (6)

  1.  室内空気を室外に排気する排気風路と、室外空気を室内に給気する給気風路と、が独立して内部に形成された筐体と、
     排気用モータを備えて前記排気風路に設けられ前記排気風路を流れる排気流を発生させる排気用送風機と、
     給気用モータを備えて前記給気風路に設けられ前記給気風路を流れる給気流を発生させる給気用送風機と、
     前記給気風路と前記排気風路とに跨って設けられ前記給気流と前記排気流との間で熱交換させる熱交換器と、
     前記排気風路における前記熱交換器よりも上流側に配置された排気用フィルタと、
     前記室外空気の温度である室外温度を検知する室外温度検知部と、
     前記排気用モータに流れるモータ電流値を検知する電流検知部と、
     前記給気用送風機および前記排気用送風機の動作を制御する制御部と、
     を備え、
     前記制御部は、
     前記室外温度が予め決められた温度閾値未満である場合に、現在の前記排気用モータのモータ電流値を結氷前基準電流値として記憶し、
     前記結氷前基準電流値を記憶した後における現在の前記排気用モータのモータ電流値が、前記結氷前基準電流値より小さい結氷判定電流値以下である場合に前記熱交換器に結氷が発生していると判定し、
     前記給気用送風機の風量を前記排気用送風機の風量より減らして前記結氷を溶かす結氷状態改善制御を行うこと、
     を特徴とする熱交換型換気装置。
    A housing in which an exhaust air passage for exhausting indoor air to the outside and a supply air passage for supplying outdoor air to the room are independently formed;
    an exhaust fan including an exhaust motor and provided in the exhaust air passage to generate an exhaust flow flowing through the exhaust air passage;
    an air supply blower including an air supply motor and provided in the air supply air passage to generate an air supply flow flowing through the air supply air passage;
    a heat exchanger provided across the supply airflow path and the exhaust airflow path for exchanging heat between the supply airflow and the exhaust airflow;
    an exhaust filter disposed upstream of the heat exchanger in the exhaust air passage;
    an outdoor temperature detection unit that detects the outdoor temperature, which is the temperature of the outdoor air;
    a current detection unit that detects a motor current value flowing through the exhaust motor;
    a control unit that controls the operation of the air supply fan and the exhaust fan;
    with
    The control unit
    storing a current motor current value of the exhaust motor as a pre-freezing reference current value when the outdoor temperature is less than a predetermined temperature threshold;
    When the current motor current value of the exhaust motor after the pre-icing reference current value is stored is equal to or less than the ice-freezing determination current value smaller than the pre-icing reference current value, the heat exchanger is frozen. determine that there is
    performing ice condition improvement control for melting the ice by reducing the air volume of the air supply blower to be less than the air volume of the exhaust air blower;
    A heat exchange type ventilation device characterized by:
  2.  前記制御部は、現在の前記排気用モータのモータ電流値が、前記結氷前基準電流値より小さく前記結氷判定電流値より大きく予め決められた結氷改善判定電流値以上になるまで、前記結氷状態改善制御を繰り返すこと、
     を特徴とする請求項1に記載の熱交換型換気装置。
    The controller controls the icing state improvement until the current motor current value of the exhaust motor becomes smaller than the pre-icing reference current value, larger than the icing determination current value, and equal to or higher than a predetermined ice-freezing improvement determination current value. repeating control,
    The heat exchange type ventilator according to claim 1, characterized by:
  3.  前記制御部は、前記室外温度が予め決められた温度閾値未満である場合に、現在の前記排気用モータのモータ電流値が、前記結氷判定電流値より大きい間は、前記給気用送風機の風量と前記排気用送風機の風量とを同じ風量とする通常の制御を行うこと、
     を特徴とする請求項1または2に記載の熱交換型換気装置。
    When the outdoor temperature is less than a predetermined temperature threshold, the control unit controls the air volume of the air supply blower while the current motor current value of the exhaust motor is greater than the freezing determination current value. and performing normal control to make the air volume of the exhaust fan equal to the air volume,
    The heat exchange type ventilator according to claim 1 or 2, characterized by:
  4.  前記制御部は、前記結氷状態改善制御において、前記結氷状態改善制御内で設定された動作変更時間だけ前記給気用送風機の風量を低減する制御を行うこと、
     を特徴とする請求項1から3のいずれか1つに記載の熱交換型換気装置。
    In the icing state improvement control, the control unit performs control to reduce the air volume of the air supply blower for an operation change time set in the icing state improvement control;
    The heat exchange type ventilator according to any one of claims 1 to 3, characterized by:
  5.  前記制御部は、前記結氷状態改善制御において、前記結氷状態改善制御内で設定された動作変更時間だけ前記給気用送風機を停止する制御を行うこと、
     を特徴とする請求項1から3のいずれか1つに記載の熱交換型換気装置。
    In the icing state improvement control, the control unit performs control to stop the air supply fan for an operation change time set in the icing state improvement control;
    The heat exchange type ventilator according to any one of claims 1 to 3, characterized by:
  6.  前記制御部は、前記結氷前基準電流値に対して予め決められた比率の値を加算して前記結氷判定電流値を算出すること、
     を特徴とする請求項1から5のいずれか1つに記載の熱交換型換気装置。
    The control unit calculates the freezing determination current value by adding a predetermined ratio value to the pre-freezing reference current value;
    The heat exchange type ventilator according to any one of claims 1 to 5, characterized by:
PCT/JP2021/023840 2021-06-23 2021-06-23 Heat-exchange ventilator WO2022269821A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/023840 WO2022269821A1 (en) 2021-06-23 2021-06-23 Heat-exchange ventilator
JP2023529334A JPWO2022269821A1 (en) 2021-06-23 2021-06-23

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023840 WO2022269821A1 (en) 2021-06-23 2021-06-23 Heat-exchange ventilator

Publications (1)

Publication Number Publication Date
WO2022269821A1 true WO2022269821A1 (en) 2022-12-29

Family

ID=84545380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023840 WO2022269821A1 (en) 2021-06-23 2021-06-23 Heat-exchange ventilator

Country Status (2)

Country Link
JP (1) JPWO2022269821A1 (en)
WO (1) WO2022269821A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316940A (en) * 2003-04-11 2004-11-11 Fujitsu General Ltd Air conditioner
WO2009128150A1 (en) * 2008-04-16 2009-10-22 三菱電機株式会社 Heat exchanging ventilating apparatus
WO2012004978A1 (en) * 2010-07-07 2012-01-12 パナソニック株式会社 Heat exchange ventilation apparatus
JP2015135199A (en) * 2014-01-16 2015-07-27 三菱電機株式会社 Ventilation device
WO2015146018A1 (en) * 2014-03-28 2015-10-01 パナソニックIpマネジメント株式会社 Heat exchange ventilator
JP2018036006A (en) * 2016-09-01 2018-03-08 三菱電機株式会社 Air conditioning ventilator
JP2019090593A (en) * 2017-11-17 2019-06-13 パナソニックIpマネジメント株式会社 Ventilation device
WO2020196274A1 (en) * 2019-03-28 2020-10-01 パナソニックIpマネジメント株式会社 Ventilator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316940A (en) * 2003-04-11 2004-11-11 Fujitsu General Ltd Air conditioner
WO2009128150A1 (en) * 2008-04-16 2009-10-22 三菱電機株式会社 Heat exchanging ventilating apparatus
WO2012004978A1 (en) * 2010-07-07 2012-01-12 パナソニック株式会社 Heat exchange ventilation apparatus
JP2015135199A (en) * 2014-01-16 2015-07-27 三菱電機株式会社 Ventilation device
WO2015146018A1 (en) * 2014-03-28 2015-10-01 パナソニックIpマネジメント株式会社 Heat exchange ventilator
JP2018036006A (en) * 2016-09-01 2018-03-08 三菱電機株式会社 Air conditioning ventilator
JP2019090593A (en) * 2017-11-17 2019-06-13 パナソニックIpマネジメント株式会社 Ventilation device
WO2020196274A1 (en) * 2019-03-28 2020-10-01 パナソニックIpマネジメント株式会社 Ventilator

Also Published As

Publication number Publication date
JPWO2022269821A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
JP6731865B2 (en) Air conditioner outdoor unit, air conditioner, and air conditioning management method
JP3744409B2 (en) Heat exchanger unit
KR101034936B1 (en) Ventilation apparatus of heat exchanging type and controlling method thereof
JP6295422B2 (en) Ventilation equipment
KR101070186B1 (en) Direct expansion air handling unit having apparatus for automatic controlling air volum of blower by change of refrigerant flow
WO2016047028A1 (en) Heat exchanger ventilator
EP3489592A1 (en) Filter contamination detection method
JP2010190524A (en) Ventilator and method of controlling ventilator
JP6387276B2 (en) Refrigeration cycle equipment
WO2015146018A1 (en) Heat exchange ventilator
JP5981396B2 (en) Heat pump heat source machine
JP6458256B2 (en) Ventilation equipment
JP2003322380A (en) Air-conditioning system
WO2022269821A1 (en) Heat-exchange ventilator
JP6995192B2 (en) Vehicle air conditioning system
JP2003207188A (en) Refrigerating air conditioner and its operation-control method
JP6053563B2 (en) Heat exchange ventilator
WO2022269820A1 (en) Heat-exchange-type ventilation device
JP6322814B2 (en) Heat exchange ventilator
JP2016153701A (en) Heat exchange type ventilation device
JP6295413B2 (en) Supply / exhaust ventilator
JP2015068544A (en) Heat exchange ventilator
JP6785981B2 (en) Ventilator
JP2016065699A (en) Refrigeration cycle device
JP2017187237A (en) Heat exchange type ventilation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947106

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023529334

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE