JP2012031519A - Directional electromagnetic steel sheet and manufacturing method therefor - Google Patents

Directional electromagnetic steel sheet and manufacturing method therefor Download PDF

Info

Publication number
JP2012031519A
JP2012031519A JP2011146562A JP2011146562A JP2012031519A JP 2012031519 A JP2012031519 A JP 2012031519A JP 2011146562 A JP2011146562 A JP 2011146562A JP 2011146562 A JP2011146562 A JP 2011146562A JP 2012031519 A JP2012031519 A JP 2012031519A
Authority
JP
Japan
Prior art keywords
steel sheet
amount
laser
coating
laser irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011146562A
Other languages
Japanese (ja)
Other versions
JP5923882B2 (en
Inventor
Seiji Okabe
誠司 岡部
Hiroaki Toda
広朗 戸田
Hiroshi Yamaguchi
山口  広
Takeshi Omura
大村  健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011146562A priority Critical patent/JP5923882B2/en
Publication of JP2012031519A publication Critical patent/JP2012031519A/en
Application granted granted Critical
Publication of JP5923882B2 publication Critical patent/JP5923882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a directional electromagnetic steel sheet excellent in both core loss and magnetostriction characteristics.SOLUTION: The method includes, when irradiating with a laser a directional electromagnetic steel sheet subjected to forsterite film formation followed by tensile strength coating formation to thereby reduce the core loss of the flat rolled electromagnetic steel sheet and strip, detecting the amount of forsterite film prior to tensile strength coating formation, as well as detecting the amount of tensile strength coating after tensile strength coating formation, collating these amounts of detection with the relation between the amounts of forsterite film and tensile strength coating in which the core loss after laser irradiation is within a target range and the laser irradiation conditions, the relation being evaluated in advance, and irradiating with a laser the directional electromagnetic steel sheet under the irradiation conditions obtained as the result of the collation.

Description

本発明は、トランスなどの鉄心材料に供して好適な鉄損の低い方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a grain-oriented electrical steel sheet having a low iron loss, which is suitable for iron core materials such as transformers.

方向性電磁鋼板は、主にトランスの鉄心として利用され、磁化特性に優れていること、特に鉄損が低いことが求められている。
そのためには、第一に、鋼板中の二次再結晶粒を(110)[001]方位(ゴス方位)に高度に揃える必要があり、第二には、最終製品の鋼中に存在する不純物や析出物をできるだけ減少させる必要がある。
The grain-oriented electrical steel sheet is mainly used as an iron core of a transformer and is required to have excellent magnetization characteristics, particularly low iron loss.
To that end, firstly, the secondary recrystallized grains in the steel plate must be highly aligned in the (110) [001] orientation (Goss orientation), and secondly, impurities present in the final product steel. It is necessary to reduce the amount of precipitates as much as possible.

しかしながら、結晶方位の制御や不純物・析出物の低減には限界があることから、鋼板の表面に対して物理的な手法で不均一性を導入することにより、磁区の幅を細分化して鉄損を低減する技術、すなわち磁区細分化技術が開発されている。
たとえば、特許文献1には、最終製品板の表面に、圧延方向にほぼ直角にレーザビームを数mm間隔で照射し、鋼板表層に線状の高転位密度領域を導入することにより、磁区幅を狭くして鉄損を低減する技術が提案されている。
However, since there is a limit to the control of crystal orientation and the reduction of impurities / precipitates, by introducing non-uniformity to the surface of the steel sheet using a physical method, the width of the magnetic domain is subdivided to reduce iron loss. A technology for reducing the magnetic field, that is, a magnetic domain fragmentation technology has been developed.
For example, Patent Document 1 discloses that the surface width of the final product plate is irradiated with a laser beam at intervals of several millimeters substantially perpendicular to the rolling direction, and a linear high dislocation density region is introduced into the steel sheet surface layer, thereby reducing the magnetic domain width. Techniques have been proposed for reducing iron loss by narrowing.

通常、方向性電磁鋼板の製品板の表層は、フォルステライト被膜と張力コーティングからなっており、レーザ照射は張力コーティングの後に施される。レーザ照射による鉄損低減は、レーザ照射により鋼板に熱的歪みを与え、その結果、磁区が細分化されることによって果たされる。
一方、フォルステライト被膜と張力コーティングは共に、鋼板に引張応力を付与する効果があり、やはり磁区を細分化する効果を持つ。従って、フォルステライト被膜と張力コーティングによって鋼板に付与される張力は、レーザ照射による鉄損低減効果に影響を及ぼす一因となっている。
しかしながら、従来は、素材毎に予め決められた条件でレーザ照射条件を決定しており、実際の鋼板に形成されたフォルステライト被膜と張力コーティングの厚みのばらつきの影響については、考慮が払われていなかった。
Usually, the surface layer of the product plate of the grain-oriented electrical steel sheet is composed of a forsterite film and a tension coating, and laser irradiation is performed after the tension coating. Reduction of iron loss by laser irradiation is achieved by applying thermal strain to the steel sheet by laser irradiation and, as a result, subdividing the magnetic domains.
On the other hand, both the forsterite film and the tension coating have the effect of imparting tensile stress to the steel sheet, and also have the effect of subdividing the magnetic domains. Therefore, the tension applied to the steel sheet by the forsterite film and the tension coating is one factor that affects the iron loss reduction effect by laser irradiation.
Conventionally, however, laser irradiation conditions are determined in advance for each material, and consideration is given to the effects of variations in the thickness of the forsterite film and tension coating formed on the actual steel sheet. There wasn't.

特公昭57−2252号公報Japanese Patent Publication No.57-2252

方向性電磁鋼板に対するレーザ照射は、磁区細分化効果により鉄損を低減するが、一方で鋼板中に歪を導入するため、磁歪が増大して、変圧器の騒音が悪化するという副作用がある。従って、十分な鉄損低減効果が得られるならば、照射熱量を極力下げることによって鋼板中に対する歪の導入を抑制することが好ましい。   Laser irradiation on grain-oriented electrical steel sheets reduces iron loss due to the magnetic domain refinement effect. On the other hand, since distortion is introduced into the steel sheet, there is a side effect that magnetostriction increases and transformer noise worsens. Therefore, if a sufficient iron loss reduction effect is obtained, it is preferable to suppress the introduction of strain into the steel sheet by reducing the irradiation heat amount as much as possible.

本発明は、上記の要請に有利に応えるもので、レーザ照射による磁区細分化に際し、フォルステライト被膜や張力コーティングにおける厚みのばらつきの影響を考慮した上で、鋼板に対する過度の歪導入を抑制して、鉄損特性と磁歪特性の両者に優れた方向性電磁鋼板の有利な製造方法を提案することを目的とする。   The present invention advantageously responds to the above-mentioned demand, and suppresses the introduction of excessive strain to the steel sheet in consideration of the influence of thickness variation in the forsterite film and tension coating during magnetic domain subdivision by laser irradiation. An object of the present invention is to propose an advantageous method for producing a grain-oriented electrical steel sheet excellent in both iron loss characteristics and magnetostriction characteristics.

フォルステライト被膜と張力コーティングが鋼板に付与する張力(以下、両者の合計を被膜張力と呼ぶ)は、鋼板に発生するランセット磁区と呼ばれる磁区構造を低減することで磁区細分化効果を持ち、さらにレーザ照射による磁区細分化効果を強調する作用も有している。従って、被膜張力が大きければ、レーザ照射の強度を下げても十分な磁区細分化効果が達成される。
しかしながら、通常、素材鋼板コイルごとに、さらに同じ鋼板コイルでも長手方向、幅方向の位置によって被膜張力にばらつきが生じるのが一般的である。
この点、レーザ照射に先立って、被膜張力の膜厚分布が検出されていれば、それに応じた最適条件でレーザ照射を行うことで、鉄損を最小化すると同時に変圧器の騒音を抑制できると考えられる。
本発明は、上記の知見に立脚するものである。
The tension imparted to the steel sheet by the forsterite film and the tension coating (hereinafter referred to as the film tension) has a magnetic domain refinement effect by reducing the magnetic domain structure called the lancet magnetic domain generated in the steel sheet, and further the laser. It also has the effect of enhancing the magnetic domain refinement effect by irradiation. Therefore, if the film tension is high, a sufficient magnetic domain refinement effect can be achieved even if the intensity of laser irradiation is lowered.
However, generally, for each raw steel plate coil, even in the same steel plate coil, the coating tension generally varies depending on the position in the longitudinal direction and the width direction.
In this regard, if the film thickness distribution of the film tension is detected prior to laser irradiation, it is possible to minimize the iron loss and at the same time suppress the transformer noise by performing laser irradiation under the optimum conditions accordingly. Conceivable.
The present invention is based on the above findings.

なお、被膜形成後の鉄損値やレーザ照射後の鉄損値をフィードバックしてレーザ照射条件を調整することも考えられるが、この方法では、鉄損の上昇が被膜張力に起因したものでない場合には、被膜に対して過度のレーザ照射を行ってしまうことになり、被膜を損傷させて却って鉄損劣化が拡大してしまうおそれがある。   Although it is possible to adjust the laser irradiation conditions by feeding back the iron loss value after film formation and the iron loss value after laser irradiation, this method does not increase the iron loss due to the film tension. In such a case, an excessive laser irradiation is performed on the coating, which may damage the coating and increase the iron loss deterioration.

すなわち、本発明の要旨構成は次のとおりである。
1.フォルステライト被膜の形成後、張力コーティングを形成した方向性電磁鋼板に、レーザを照射して電磁鋼板の鉄損を低減するに際し、
張力コーティングの形成前にフォルステライト被膜量を検出すると共に、張力コーティングの形成後に張力コーティングの量を検出し、これらの検出量を、予め求めておいた、レーザ照射後の鉄損が目標範囲内となるようなフォルステライト被膜量および張力コーティング量とレーザ照射条件との関係と照合し、該照合の結果得られた照射条件下でレーザ照射を行うことを特徴とする方向性電磁鋼板の製造方法。
That is, the gist configuration of the present invention is as follows.
1. After the forsterite film is formed, the grain-oriented electrical steel sheet on which the tension coating is formed is irradiated with a laser to reduce the iron loss of the electrical steel sheet.
The amount of forsterite film is detected before the tension coating is formed, and the amount of tension coating is detected after the tension coating is formed, and the detected iron loss after laser irradiation is within the target range. A method for producing a grain-oriented electrical steel sheet characterized by collating with the relationship between the amount of forsterite coating and tension coating and the laser irradiation conditions, and performing laser irradiation under the irradiation conditions obtained as a result of the collation .

2.前記張力コーティングの量をX(g/m2)とし、前記フォルステライト被膜の量をY(g/m2)とするとき、前記レーザ照射のエネルギー密度U(mJ/mm2)が、次式(1)
3.75 ≦ U × exp{1.6×(0.07×X+0.05×Y)} ≦ 6.25 --- (1)
を満足する条件下でレーザ照射を行うことを特徴とする前記1に記載の方向性電磁鋼板の製造方法。
2. When the amount of the tension coating is X (g / m 2 ) and the amount of the forsterite film is Y (g / m 2 ), the energy density U (mJ / mm 2 ) of the laser irradiation is given by (1)
3.75 ≦ U × exp {1.6 × (0.07 × X + 0.05 × Y)} ≦ 6.25 --- (1)
2. The method for producing a grain-oriented electrical steel sheet according to 1 above, wherein the laser irradiation is performed under a condition that satisfies the following conditions.

3.フォルステライト被膜と張力コーティングをそなえる表面に、レーザを照射して得た方向性電磁鋼板であって、該張力コーティングの量をX(g/m2)、該フォルステライト被膜の量をY(g/m2)とするとき、レーザ照射部分に線状に形成された磁区構造における熱影響領域の幅W(μm)が、次式(2)
800 ≦ W × exp{1.6×(0.07×X+0.05×Y)} ≦ 1600 --- (2)
の関係を満足することを特徴とする方向性電磁鋼板。
3. A grain-oriented electrical steel sheet obtained by irradiating a laser on a surface having a forsterite film and a tension coating, wherein the amount of the tension coating is X (g / m 2 ) and the amount of the forsterite film is Y (g / m 2 ), the width W (μm) of the heat-affected region in the magnetic domain structure formed linearly at the laser irradiated portion is expressed by the following equation (2)
800 ≦ W × exp {1.6 × (0.07 × X + 0.05 × Y)} ≦ 1600 --- (2)
A grain-oriented electrical steel sheet characterized by satisfying the above relationship.

本発明に従い、レーザ照射を行うに先立ち、フォルステライト被膜量と張力コーティングの量を検出し、これらの検出量に応じた適切な照射条件下でレーザ照射を行うことにより、鉄損の低減と同時に、磁歪ひいては変圧器の騒音を低減することができる。   According to the present invention, prior to laser irradiation, the amount of forsterite film and tension coating is detected, and laser irradiation is performed under appropriate irradiation conditions according to these detection amounts, thereby simultaneously reducing iron loss. In addition, magnetostriction and thus noise of the transformer can be reduced.

以下、本発明を具体的に説明する。
本発明では、レーザ照射に先立ってフォルステライト被膜と張力コーティングの量、換言すれば被膜厚みを検出しておくことが重要である。
フォルステライト被膜の張力は、主としてフォルステライト被膜の量に比例するので、コイルのフォルステライト被膜の量を検出しておく。このとき、コイルの一定の位置からサンプルを取って分析し、代表値とすることができる。より好ましくは連続的にフォルステライト被膜量を検出して記録しておくことである。これは、張力コーティング形成前に鋼板を連続的に蛍光X線分析によって酸素量を測定することで、その酸素量からフォルステライト被膜(Mg2SiO4)の量に換算することができる。
Hereinafter, the present invention will be specifically described.
In the present invention, it is important to detect the amount of forsterite film and tension coating, in other words, the film thickness prior to laser irradiation.
Since the tension of the forsterite film is mainly proportional to the amount of the forsterite film, the amount of the forsterite film of the coil is detected. At this time, a sample can be taken and analyzed from a certain position of the coil to obtain a representative value. More preferably, the amount of forsterite film is continuously detected and recorded. This can be converted into the amount of forsterite film (Mg 2 SiO 4 ) from the amount of oxygen by continuously measuring the amount of oxygen by fluorescent X-ray analysis before forming the tension coating.

また、張力コーティングの張力も、コーティングの量に比例する。これは、張力コーティング形成からレーザ照射までのいずれかの時点でコイルの一定の位置からサンプルを取って分析して代表値とすることができる。より好ましくは連続的にコーティングの量を検出して記録しておくことである。これは、連続的にコイルを蛍光X線で酸素分析し、先に検出しておいたフォルステライト被膜厚みに起因する酸素量を除いて、張力コーティングに起因する酸素量を算出し、その酸素量とコーティングの化学組成(化学式)から換算するか、または張力コーティングには含まれているがフォルステライト被膜には含まれない成分(例えば、リンやクロム等)を蛍光X線分析することで検出し、その検出量とコーティングの化学組成(化学式)から換算することができる。   The tension coating tension is also proportional to the amount of coating. This can be taken as a representative value by taking a sample from a certain position of the coil and analyzing it at any time from tension coating formation to laser irradiation. More preferably, the amount of coating is continuously detected and recorded. This is because the coil is continuously subjected to oxygen analysis with fluorescent X-rays, and the oxygen amount resulting from the tension coating is calculated by excluding the oxygen amount resulting from the thickness of the forsterite film previously detected. And converted from the chemical composition (chemical formula) of the coating or detected by fluorescent X-ray analysis of components that are contained in the tension coating but not in the forsterite film (eg, phosphorus and chromium). The detected amount and the chemical composition (chemical formula) of the coating can be converted.

さらに、被膜張力に応じて、どのようなレーザ照射条件を採用することが適切かを、予め求めておき、被膜張力に応じて適切なレーザ照射条件を選択できるようにしておくことが重要である。   Furthermore, it is important to determine in advance what kind of laser irradiation conditions should be adopted according to the film tension, and to be able to select appropriate laser irradiation conditions according to the film tension. .

本発明では、これらの結果に基づいて、被膜張力に応じた最適条件でレーザ照射することによって、鉄損と変圧器騒音の両者を併せて最小にすることが可能となる。
ここに、レーザ照射条件とは、代表的にはエネルギー密度を指すが、その他にもレーザ出力、ビーム径、走査速度、照射点間隔(パルスレーザの場合)および線状照射の圧延方向での繰り返し間隔の調整などを、単独または組み合わせて調整することが考えられる。
In the present invention, based on these results, it is possible to minimize both the iron loss and the transformer noise by irradiating the laser under the optimum conditions according to the film tension.
Here, laser irradiation conditions typically indicate energy density, but in addition, laser output, beam diameter, scanning speed, irradiation point interval (in the case of pulsed laser), and repetition of linear irradiation in the rolling direction. It is conceivable to adjust the interval or the like alone or in combination.

本発明において、適切なレーザ照射条件を選択するには、被膜張力の増大に伴ってレーザ出力を下げることが有効である。これは、被膜張力が大きいほど磁区幅が低減されるために、レーザ照射による磁区細分化効果を減じても所望の鉄損改善が可能なためである。
具体的には、両面当たりの張力コーティングの量をX(g/m2)、両面当たりのフォルステライト被膜の量をY(g/m2)としたとき、レーザ照射のエネルギー量は単位面積当たりのエネルギー量U(mJ/mm2)で整理される。
In the present invention, in order to select an appropriate laser irradiation condition, it is effective to lower the laser output as the film tension increases. This is because the magnetic domain width is reduced as the coating tension increases, so that the desired iron loss can be improved even if the magnetic domain fragmentation effect by laser irradiation is reduced.
Specifically, when the amount of tension coating per side is X (g / m 2 ) and the amount of forsterite coating per side is Y (g / m 2 ), the energy amount of laser irradiation is per unit area. It is arranged by the amount of energy U (mJ / mm 2 ).

すなわち、エネルギー密度U(mJ/mm2)を、
U = k×exp{−1.6×(0.07×X+0.05×Y)}
で表わしたとき、定数kを5.0程度とすることが特に有効であることが、発明者らの実験調査によって判明した。
また、照射エネルギー量は±25%程度増減しても効果の変動は小さいので、実際には、定数kは3.75以上6.25以下の範囲とするのが好適である。
従って、本発明では、上式を整理して、
3.75 ≦ U × exp{1.6×(0.07×X+0.05×Y)} ≦ 6.25 --- (1)
の関係式を、満足することが好ましい。
換言すれば、エネルギー密度U、張力コーティングの量X(g/m2)およびフォルステライト被膜の量Y(g/m2)が上記式(1)を満足したレーザ照射条件は、被膜張力に応じた最適条件となるため、鉄損と変圧器騒音の両者を効果的に低減することができるのである。
なお、上掲式(1)において、XとYに掛かる係数は、フォルステライト被膜量と張力コーティング量が被膜張力に及ぼす影響度をそれぞれ反映している。
That is, the energy density U (mJ / mm 2 )
U = k × exp {−1.6 × (0.07 × X + 0.05 × Y)}
It was proved by the inventors' experimental investigation that it is particularly effective to set the constant k to about 5.0.
In addition, even if the irradiation energy amount is increased or decreased by about ± 25%, the effect variation is small, so in practice, the constant k is preferably in the range of 3.75 to 6.25.
Therefore, in the present invention, the above formulas are arranged,
3.75 ≦ U × exp {1.6 × (0.07 × X + 0.05 × Y)} ≦ 6.25 --- (1)
It is preferable that the following relational expression is satisfied.
In other words, the laser irradiation conditions in which the energy density U, the tension coating amount X (g / m 2 ), and the forsterite coating amount Y (g / m 2 ) satisfy the above formula (1) depend on the coating tension. Therefore, both iron loss and transformer noise can be effectively reduced.
In the above equation (1), the coefficients applied to X and Y reflect the degree of influence of the forsterite film amount and the tension coating amount on the film tension, respectively.

さらに、発明者らは、この好適範囲にあるレーザの照射が電磁鋼板の磁区細分化効果にどのように影響するかを、磁性コロイド法(ビッター法)による磁区構造の観察によって解析した。その結果、電磁鋼板でストライプ状に観察される主磁区が、レーザ照射の熱影響によって乱れた磁区構造を呈する領域(以下、熱影響領域とする)の幅を所定範囲に限定することで、良好な鉄損改善効果が得られることが明らかになった。
そして、その熱影響領域の幅W(μm)は次式(2)、
800 ≦ W × exp{1.6×(0.07×X+0.05×Y)} ≦ 1600 --- (2)
を満たすことが肝要であることが併せて明らかになった。
ここに、上記式(2)の中辺の値が800よりも小さい場合は、歪の導入量が少なすぎて鉄損低減の効果が十分に得られず、一方1600よりも大きい場合は歪の導入量が多すぎてトランスの騒音が増大したり、鉄損が増大してしまうからである。
なお、上記熱影響領域の幅Wは、コイル長さ500mごとに、1m程度の熱影響領域の幅を測定して平均した値である。
Furthermore, the inventors analyzed how the irradiation of the laser in this preferred range affects the magnetic domain fragmentation effect of the magnetic steel sheet by observing the magnetic domain structure by the magnetic colloid method (bitter method). As a result, the main magnetic domain observed in stripes on the magnetic steel sheet is good by limiting the width of the region exhibiting a magnetic domain structure disturbed by the thermal effect of laser irradiation (hereinafter referred to as a heat-affected region) to a predetermined range. As a result, it was revealed that the iron loss improvement effect can be obtained.
And the width W (μm) of the heat affected area is expressed by the following equation (2),
800 ≦ W × exp {1.6 × (0.07 × X + 0.05 × Y)} ≦ 1600 --- (2)
It was also revealed that meeting the requirements is essential.
Here, when the value of the middle side of the above formula (2) is smaller than 800, the amount of strain introduced is too small to sufficiently obtain the effect of reducing iron loss, while when larger than 1600, the strain is reduced. This is because the introduction amount is too large and the noise of the transformer increases or the iron loss increases.
The width W of the heat affected zone is a value obtained by measuring and averaging the width of the heat affected zone of about 1 m for every 500 m of the coil length.

本発明において、仕上げ焼鈍に続く、張力コーティング処理までの工程は、従来公知の製造工程のいずれもが適合する。ただし、方向性電磁鋼板に対するレーザ照射は、仕上げ焼鈍によるフォルステライト被膜の形成と張力コーティングの形成後である必要がある。
というのは、方向性電磁鋼板の特徴であるゴス方位となる二次再結晶粒を発現させ、かつフォルステライト被膜を形成させたり、張力コーティングを形成し張力効果を発現させるのは、いずれも高温での熱処理になるが、このような高温処理は、レーザ照射処理によって鋼板に導入された歪みを除去または減少させるため、本発明のレーザ照射処理前に実施する必要があるからである。
In the present invention, any conventionally known manufacturing process is suitable for the process up to the tension coating process following the finish annealing. However, the laser irradiation on the grain-oriented electrical steel sheet needs to be after the formation of the forsterite film by finish annealing and the formation of the tension coating.
This is because it is the high temperature to develop the secondary recrystallized grains that have the Goss orientation characteristic of grain-oriented electrical steel sheets, and to form a forsterite film, or to form a tension coating to develop the tension effect. This is because such a high temperature treatment needs to be performed before the laser irradiation treatment of the present invention in order to remove or reduce the distortion introduced into the steel sheet by the laser irradiation treatment.

また、磁区細分化処理を施した方向性電磁鋼板の鉄損は、二次再結晶の方位集積が高い方がより小さくなることが知られている。方位集積の目安としてB8(800 A/mで磁化した際の磁束密度)がよく用いられるが、本発明に用いる方向性電磁鋼板は好ましくはB8が1.88T以上、より好ましくは1.92T以上のものが好適である。
なお、磁束密度の制御は、成分調整によって行うことができ、インヒビター成分の調整や圧延、焼鈍条件の制御などの公知の方法を取ることができる。
Further, it is known that the iron loss of the grain-oriented electrical steel sheet subjected to the magnetic domain refinement treatment becomes smaller as the orientation of secondary recrystallization is higher. B 8 (magnetic flux density when magnetized at 800 A / m) is often used as a measure of orientation accumulation, but the grain-oriented electrical steel sheet used in the present invention preferably has B 8 of 1.88 T or more, more preferably 1.92 T or more. Are preferred.
The magnetic flux density can be controlled by adjusting the components, and known methods such as adjusting the inhibitor components, rolling, and controlling the annealing conditions can be used.

さらに、本発明において、電磁鋼板の表面に形成されている張力コーティングは、従来公知の張力コーティングで構わないが、リン酸アルミニウムやリン酸マグネシウム等のリン酸塩とシリカを主成分とするガラス質の張力絶縁コーティングであることが好ましい。   Further, in the present invention, the tension coating formed on the surface of the electrical steel sheet may be a conventionally known tension coating, but a glassy substance mainly composed of a phosphate such as aluminum phosphate or magnesium phosphate and silica. The tension insulating coating is preferred.

レーザ照射は、鋼板の圧延方向と交差する方向に線状に繰り返して行う。
熱歪みを導入する発振器は、YAGレーザ、CO2レーザおよびファイバーレーザ等のパルス発振、さらには連続発振での照射等、公知の方法を採用することができる。
ここに、レーザ照射による鋼板に対する歪の導入領域を、幅:0.05〜0.5μm、深さ:5〜40μmで、かつ圧延方向の繰り返し間隔:1〜20mm程度として、上掲式(2)を満たすことが好ましい。
Laser irradiation is repeatedly performed linearly in a direction intersecting with the rolling direction of the steel sheet.
As an oscillator for introducing thermal distortion, a known method such as pulse oscillation of a YAG laser, CO 2 laser, fiber laser or the like, or irradiation with continuous oscillation can be employed.
Here, the region where strain is introduced into the steel sheet by laser irradiation is as follows: width: 0.05 to 0.5 μm, depth: 5 to 40 μm, and repetition interval in the rolling direction: about 1 to 20 mm. It is preferable.

さらに、本発明において、「線状」とは、実線だけでなく、点線や破線なども含むものとする。レーザ照射が連続した線状ではなく、不連続の場合には、熱影響領域は平均値を用いるものとする。   Furthermore, in the present invention, “linear” includes not only a solid line but also a dotted line and a broken line. In the case where the laser irradiation is not continuous but discontinuous, an average value is used for the heat affected zone.

レーザ照射による熱影響領域の幅は、レーザのスポット径(圧延方向)、出力、ビームの移動速度とを調整することで制御できる。また、熱影響領域の幅は照射部分の磁区を観察して、圧延方向にストライプ状に伸びている主磁区が熱応力によって乱されている領域の幅として計測できる。なお、磁区観察は、上述したようなビッター法、電子顕微鏡法といった公知の方法により行うことができる。   The width of the heat-affected region caused by laser irradiation can be controlled by adjusting the laser spot diameter (rolling direction), output, and beam moving speed. Further, the width of the heat-affected region can be measured as the width of the region in which the main magnetic domain extending in a stripe shape in the rolling direction is disturbed by thermal stress by observing the magnetic domain in the irradiated portion. The magnetic domain observation can be performed by a known method such as the above-described bitter method or electron microscope method.

本発明では、予め、レーザの照射条件とその照射によって生じる磁区構造における熱影響領域の幅との関係を求めておき、方向性電磁鋼板を製造する際にフォルステライト被膜と張力コーティングの量から、上掲式(2)を満たす範囲のWが得られる照射条件を選択することで、フォルステライト被膜や張力コーティングの量の変動があっても一定の鉄損を安定的に得ることが可能になる。   In the present invention, in advance, the relationship between the laser irradiation conditions and the width of the heat-affected region in the magnetic domain structure caused by the irradiation is determined, and when producing a grain-oriented electrical steel sheet, from the amount of forsterite film and tension coating, By selecting an irradiation condition that provides W in the range satisfying the above formula (2), it becomes possible to stably obtain a certain iron loss even if the amount of forsterite film or tension coating varies. .

また、本発明において「圧延方向と交差する方向」とは、圧延方向と直角する方向に対し±30°以内の角度範囲を意味する。   In the present invention, the “direction intersecting the rolling direction” means an angle range within ± 30 ° with respect to the direction perpendicular to the rolling direction.

〔実施例1〕
仕上げ焼鈍後、張力コーティング処理を施した、板厚:0.23mm、幅:1m、重量:5トンの方向性電磁鋼板のコイルを、連続的に送りながらレーザを連続的に照射した。この方向性電磁鋼板は、3.4質量%のSiを含有し、磁束密度B8が1.93Tで、1.7T,50Hzでの鉄損W17/50が0.90W/kgと一般的な高配向性の方向性電磁鋼板であり、張力絶縁被膜はフォルステライト被膜の上に形成されたコロイド状シリカ、リン酸マグネシウム、クロム酸からなる薬液を840℃で焼き付けた一般的な張力絶縁被膜である。
また、張力被膜形成前に鋼板を蛍光X線による酸素分析で全長、全幅にわたってフォルステライト被膜量Y(g/m2)を測定して記録し、張力被膜形成後に蛍光X線によるクロム分析で全長、全幅にわたって張力コーティングの量X(g/m2)を測定して記録した。
[Example 1]
After finishing annealing, a laser was continuously irradiated while continuously feeding a coil of a directional electrical steel sheet having a thickness of 0.23 mm, a width of 1 m, and a weight of 5 tons, which had been subjected to a tension coating treatment. This grain-oriented electrical steel sheet contains 3.4% by mass of Si, the magnetic flux density B 8 is 1.93T, and the iron loss W 17/50 at 1.7T and 50Hz is 0.90W / kg. It is a grain-oriented electrical steel sheet, and the tension insulation coating is a general tension insulation coating obtained by baking a chemical solution composed of colloidal silica, magnesium phosphate, and chromic acid formed on the forsterite coating at 840 ° C.
Before forming the tension coating, the steel sheet is measured by oxygen analysis with fluorescent X-rays, and the forsterite coating amount Y (g / m 2 ) is measured and recorded over the entire width. After forming the tension coating, the total length is analyzed by chromium analysis with fluorescent X-rays. The amount of tension coating X (g / m 2 ) was measured and recorded over the entire width.

次に、レーザ照射処理を施した。レーザ発信器は、Qスイッチパルス型YAGレーザで、ビーム径は0.3mm、パルス繰り返し周波数は25kHzで、ガルバノスキャナによって圧延方向と直行する方向に幅:200mm毎に1台の発振器を並べ、照射線を5mm間隔で描くように照射した。
この照射時の出力を、
(a) 1.0mJ/mm2一定、
(b) 2.0mJ/mm2一定、
(c) 4.0mJ/mm2一定、
(d) 測定した全長、全幅のX,Yに対して全長、全幅でエネルギー密度Uが
U(mJ/mm2) = 5.0×exp{−1.6×(0.07×X+0.05×Y)}
となる4条件に設定した。
各条件毎にコイルを3個ずつ処理し、それぞれのコイルから1トン毎にサンプルを採取し、素材の鉄損測定(W17/50)を行ったのち、試験用小型トランス15台ずつを作製して1.7T,50Hzに励磁した際の騒音の測定を行った。
測定結果を表1に示す。
Next, laser irradiation treatment was performed. The laser transmitter is a Q-switched pulse type YAG laser with a beam diameter of 0.3 mm, a pulse repetition frequency of 25 kHz, and a galvano scanner with one oscillator arranged in a direction perpendicular to the rolling direction at a width of 200 mm. Was irradiated so as to draw at intervals of 5 mm.
The output during this irradiation
(a) 1.0mJ / mm 2 constant,
(b) 2.0mJ / mm 2 constant,
(c) 4.0mJ / mm 2 constant,
(d) The measured total length, X and Y of the full width, the energy density U is U (mJ / mm 2 ) = 5.0 × exp {−1.6 × (0.07 × X + 0.05 × Y)}
The following four conditions were set.
Three coils are processed for each condition, samples are taken for each ton from each coil, the iron loss of the material is measured (W 17/50 ), and 15 small test transformers are produced. The noise when excited at 1.7T and 50Hz was measured.
The measurement results are shown in Table 1.

Figure 2012031519
Figure 2012031519

同表に示したとおり、本発明の条件を満足する上記(d)の条件で行った場合は、鉄損の平均値、標準偏差および騒音の全てに優れ、安定的に低鉄損、低騒音に適した方向性電磁鋼板が製造できることが確認された。   As shown in the table, when performed under the condition (d) that satisfies the conditions of the present invention, the iron loss average value, standard deviation and noise are all excellent, and stable low iron loss and low noise. It was confirmed that a grain-oriented electrical steel sheet suitable for the above can be manufactured.

〔実施例2〕
実施例1の条件(d)と同様にして、測定した全長、全幅のX,Yに対するエネルギー密度(mJ/mm2)を、次式
U = k×exp{−1.6×(0.07×X+0.05×Y)}
(k= U ×exp{1.6×(0.07×X+0.05×Y)}は、前掲式(1)の中辺)
において、定数kの値を3.4,3.75,5.0,6.25および6.6と変化させてレーザ照射を行った。
得られた素材および試験用小型トランスについて、実施例1と同じ方法で、鉄損と騒音レベルを評価した。
[Example 2]
In the same manner as in the condition (d) of Example 1, the measured energy density (mJ / mm 2 ) with respect to the total length and width of X and Y is expressed by the following equation: U = k × exp {−1.6 × (0.07 × X + 0.05 × Y)}
(K = U × exp {1.6 × (0.07 × X + 0.05 × Y)} is the middle side of equation (1) above)
, Laser irradiation was performed while changing the value of the constant k to 3.4, 3.75, 5.0, 6.25 and 6.6.
About the obtained raw material and the small transformer for a test, the iron loss and the noise level were evaluated by the same method as Example 1.

Figure 2012031519
Figure 2012031519

結果は表2に示したとおりであり、いずれの場合も鉄損の標準偏差は小さく、安定的に均一な鉄損のコイルを製造することができた。ただし、鉄損の平均値は、定数kの値を3.75以上、6.25以下とした条件が優れており、鋼板に対するレーザの照射条件としてより好適であることが分かる。   The results are as shown in Table 2. In each case, the standard deviation of the iron loss was small, and a coil with a uniform and uniform iron loss could be manufactured. However, the average value of the iron loss is excellent under the condition that the value of the constant k is 3.75 or more and 6.25 or less, and it can be seen that it is more suitable as the laser irradiation condition for the steel sheet.

〔実施例3〕
実施例1と同様の方法により、フォルステライト被膜および張力絶縁被膜を有する方向性電磁鋼板を得た。
また、張力被膜形成前に鋼板を蛍光X線による酸素分析で全長、全幅にわたってフォルステライト被膜量Y(g/m2)を測定して記録し、また張力被膜形成後に蛍光X線によるクロム分析で全長、全幅にわたって張力コーティングの量をX(g/m2)測定して記録した。
Example 3
A grain-oriented electrical steel sheet having a forsterite coating and a tension insulating coating was obtained in the same manner as in Example 1.
In addition, the forsterite coating amount Y (g / m 2 ) was measured and recorded over the entire length and width of the steel sheet by oxygen analysis using fluorescent X-rays before forming the tension coating, and by chromium analysis using fluorescent X-rays after forming the tension coating. The amount of tension coating was recorded by measuring X (g / m 2 ) over the entire length and width.

次に、レーザ照射処理を施した。レーザ発信器は、Qスイッチパルス型YAGレーザで、ビーム径は0.3mm、パルス繰り返し周波数は25kHzで、ガルバノスキャナによって圧延方向と直行する方向に幅:200mm毎に1台の発振器を並べ、照射線を5mm間隔で描くように照射した。
ここで、予め同様の鋼板でフォルステライト被膜の量Y(g/m2)と張力コーティングの量をX(g/m2)に応じて、鉄損が0.75W/kg以下となるような、レーザの1パルスあたりの最小出力を調査しておいた。このデータに基づいて、全長・全幅方向にわたって出力を調整した場合(条件A)と、全長・全幅で一定出力(3.6mJ/mm2)とした場合(条件B)とで比較した。
各条件毎にコイルを3個ずつ処理し、それぞれのコイルから1トン毎にサンプルを採取し、素材の鉄損測定(W17/50)を行ったのち、試験用小型トランス15台ずつを作製して1.7T,50Hzに励磁した際の騒音の測定を行った。
測定結果を表3に示す。
Next, laser irradiation treatment was performed. The laser transmitter is a Q-switched pulse type YAG laser with a beam diameter of 0.3 mm, a pulse repetition frequency of 25 kHz, and a galvano scanner with one oscillator arranged in a direction perpendicular to the rolling direction at a width of 200 mm. Was irradiated so as to draw at intervals of 5 mm.
Here, the iron loss becomes 0.75 W / kg or less according to the amount Y (g / m 2 ) of forsterite film and the amount of tension coating X (g / m 2 ) with the same steel plate in advance. The minimum output per pulse of the laser was investigated. Based on this data, a comparison was made between the case where the output was adjusted over the entire length and width direction (Condition A) and the case where the output was adjusted to a constant output (3.6 mJ / mm 2 ) over the entire length and width (Condition B).
Three coils are processed for each condition, samples are taken for each ton from each coil, the iron loss of the material is measured (W 17/50 ), and 15 small test transformers are produced. The noise when excited at 1.7T and 50Hz was measured.
Table 3 shows the measurement results.

Figure 2012031519
Figure 2012031519

同表に示したとおり、フォルステライト被膜の量Y(g/m2)と張力コーティングの量X(g/m2)に応じて、目標鉄損が得られる最小の出力にレーザ条件を調整する本発明に従う方法(条件A)で行った場合は、鉄損の平均値、標準偏差および騒音の全てに優れ、安定的に低鉄損、低騒音に適した方向性電磁鋼板が製造できることが確認された。 As shown in the table, depending on the amount of forsterite film Y (g / m 2) Amount of tension coating X (g / m 2), to adjust the laser conditions to minimize the output target iron loss is obtained When carried out by the method according to the present invention (Condition A), it is confirmed that a grain-oriented electrical steel sheet that is excellent in all of the average value, standard deviation and noise of iron loss and can be stably produced suitable for low iron loss and noise. It was done.

〔実施例4〕
仕上げ焼鈍の前に行う脱炭焼鈍において、焼鈍炉内部の雰囲気の酸化性と焼鈍分離剤として塗布するマグネシアの水和量とを意図的に変動させることで、フォルステライト被膜量を変化させた方向性電磁鋼板コイルに、仕上げ焼鈍を行った後、張力コーティング処理を施し、板厚:0.23mm、幅:1m、重量:5トンの方向性電磁鋼板のコイルを、連続的に送りながらレーザを連続的に照射した。この方向性電磁鋼板は、3.4質量%のSiを含有する高配向性の方向性電磁鋼板であり、磁束密度B8が1.93Tのコイルを選別し、1.7T,50Hzでの鉄損W17/50は0.85〜0.97W/kgの範囲にある方向性電磁鋼板であった。張力絶縁被膜はフォルステライト被膜の上に形成されたコロイド状シリカ、リン酸マグネシウム、クロム酸からなる薬液を840℃で焼き付けた一般的な張力絶縁被膜である。
さらに、張力被膜形成前に鋼板を蛍光X線による酸素分析で全長、全幅にわたってフォルステライト被膜量Y(g/m2)を測定して記録し、張力被膜形成後に蛍光X線によるクロム分析で全長、全幅にわたって張力コーティングの量X(g/m2)を測定して記録した。
Example 4
Direction in which the amount of forsterite coating was changed by deliberately changing the oxidation of the atmosphere inside the annealing furnace and the amount of hydration of magnesia applied as an annealing separator in decarburization annealing performed before finish annealing After conducting annealing on the magnetic steel sheet coil, it is subjected to tension coating treatment, and the laser is continuously sent while continuously feeding the coil of directional magnetic steel sheet with a thickness of 0.23mm, width of 1m, and weight of 5 tons. Irradiated. This grain-oriented electrical steel sheet is a highly oriented grain-oriented electrical steel sheet containing 3.4% by mass of Si, selecting a coil with a magnetic flux density B 8 of 1.93T, and iron loss W 17 / at 1.7T, 50Hz. 50 was a grain-oriented electrical steel sheet in the range of 0.85 to 0.97 W / kg. The tension insulating coating is a general tension insulating coating obtained by baking a chemical solution made of colloidal silica, magnesium phosphate and chromic acid formed on the forsterite coating at 840 ° C.
Furthermore, before forming the tension coating, the steel sheet is measured by oxygen analysis with fluorescent X-rays, and the forsterite coating amount Y (g / m 2 ) is measured and recorded over the entire width. The amount of tension coating X (g / m 2 ) was measured and recorded over the entire width.

次に、レーザ照射処理を施した。レーザ発信器は連続発振Ybファイバーレーザで、ビーム径:0.3mmとし、ガルバノスキャナによって圧延方向と直行する方向に幅:100mm毎に1台の発振器を並べ、照射線を5mm間隔で描くように照射した。予め出力を10〜400W、走査速度を5〜30m/sとして照射した際の磁区構造における熱影響領域の幅W(μm)を求めておき、必要な幅を得る条件を見出しておいた。
各条件毎にコイルを3個ずつ処理し、それぞれのコイルから1トン毎にサンプルを採取し、素材の鉄損測定(W17/50)を行ったのち、試験用小型トランス15台ずつを作製して1.7T,50Hzに励磁した際の騒音の測定を行った。
測定結果を表4に示す。
Next, laser irradiation treatment was performed. The laser transmitter is a continuous wave Yb fiber laser with a beam diameter of 0.3mm, and a galvano scanner with one oscillator arranged in a direction perpendicular to the rolling direction every 100mm in width, and the irradiation lines are drawn at intervals of 5mm. did. The width W (μm) of the heat-affected region in the magnetic domain structure when irradiated at an output of 10 to 400 W and a scanning speed of 5 to 30 m / s was obtained in advance, and the conditions for obtaining the necessary width were found.
Three coils are processed for each condition, samples are taken for each ton from each coil, the iron loss of the material is measured (W 17/50 ), and 15 small test transformers are produced. The noise when excited at 1.7T and 50Hz was measured.
Table 4 shows the measurement results.

Figure 2012031519
Figure 2012031519

同表に示したとおり、本発明の条件(前掲した式(2))を満足する熱影響領域の幅Wでレーザ照射を行った方向性電磁鋼板は、鉄損の平均値、騒音の平均値が共に良好で、安定的に低鉄損で、低騒音な方向性電磁鋼板となっていることが確認された。   As shown in the table, the grain-oriented electrical steel sheet irradiated with laser with the width W of the heat-affected region satisfying the conditions of the present invention (the above formula (2)) is the average value of iron loss and the average value of noise. It was confirmed that the grain-oriented electrical steel sheet was good, stable with low iron loss and low noise.

Claims (3)

フォルステライト被膜の形成後、張力コーティングを形成した方向性電磁鋼板に、レーザを照射して電磁鋼板の鉄損を低減するに際し、
張力コーティングの形成前にフォルステライト被膜量を検出すると共に、張力コーティングの形成後に張力コーティングの量を検出し、これらの検出量を、予め求めておいた、レーザ照射後の鉄損が目標範囲内となるようなフォルステライト被膜量および張力コーティング量とレーザ照射条件との関係と照合し、該照合の結果得られた照射条件下でレーザ照射を行うことを特徴とする方向性電磁鋼板の製造方法。
After the forsterite film is formed, the grain-oriented electrical steel sheet on which the tension coating is formed is irradiated with a laser to reduce the iron loss of the electrical steel sheet.
The amount of forsterite film is detected before the tension coating is formed, and the amount of tension coating is detected after the tension coating is formed, and the detected iron loss after laser irradiation is within the target range. A method for producing a grain-oriented electrical steel sheet characterized by collating with the relationship between the amount of forsterite coating and tension coating and the laser irradiation conditions, and performing laser irradiation under the irradiation conditions obtained as a result of the collation .
前記張力コーティングの量をX(g/m2)とし、前記フォルステライト被膜の量をY(g/m2)とするとき、前記レーザ照射のエネルギー密度U(mJ/mm2)が、次式(1)
3.75 ≦ U × exp{1.6×(0.07×X+0.05×Y)} ≦ 6.25 --- (1)
を満足する条件下でレーザ照射を行うことを特徴とする請求項1に記載の方向性電磁鋼板の製造方法。
When the amount of the tension coating is X (g / m 2 ) and the amount of the forsterite film is Y (g / m 2 ), the energy density U (mJ / mm 2 ) of the laser irradiation is given by (1)
3.75 ≦ U × exp {1.6 × (0.07 × X + 0.05 × Y)} ≦ 6.25 --- (1)
The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein the laser irradiation is performed under a condition that satisfies the requirements.
フォルステライト被膜と張力コーティングをそなえる表面に、レーザを照射して得た方向性電磁鋼板であって、該張力コーティングの量をX(g/m2)、該フォルステライト被膜の量をY(g/m2)とするとき、レーザ照射部分に線状に形成された磁区構造における熱影響領域の幅W(μm)が、次式(2)
800 ≦ W × exp{1.6×(0.07×X+0.05×Y)} ≦ 1600 --- (2)
の関係を満足することを特徴とする方向性電磁鋼板。
A grain-oriented electrical steel sheet obtained by irradiating a laser on a surface having a forsterite film and a tension coating, wherein the amount of the tension coating is X (g / m 2 ) and the amount of the forsterite film is Y (g / m 2 ), the width W (μm) of the heat-affected region in the magnetic domain structure formed linearly at the laser irradiated portion is expressed by the following equation (2)
800 ≦ W × exp {1.6 × (0.07 × X + 0.05 × Y)} ≦ 1600 --- (2)
A grain-oriented electrical steel sheet characterized by satisfying the above relationship.
JP2011146562A 2010-06-30 2011-06-30 Oriented electrical steel sheet and manufacturing method thereof Active JP5923882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011146562A JP5923882B2 (en) 2010-06-30 2011-06-30 Oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010149837 2010-06-30
JP2010149837 2010-06-30
JP2011146562A JP5923882B2 (en) 2010-06-30 2011-06-30 Oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012031519A true JP2012031519A (en) 2012-02-16
JP5923882B2 JP5923882B2 (en) 2016-05-25

Family

ID=45845262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011146562A Active JP5923882B2 (en) 2010-06-30 2011-06-30 Oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5923882B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185229A (en) * 2012-03-09 2013-09-19 Jfe Steel Corp Method for working grain-oriented magnetic steel sheet and grain-oriented magnetic steel sheet
WO2014050907A1 (en) * 2012-09-28 2014-04-03 Jfeスチール株式会社 Steel sheet inspection apparatus, steel sheet inspection method, and steel sheet manufacturing method
WO2014050906A1 (en) * 2012-09-28 2014-04-03 Jfeスチール株式会社 Electron gun abnormality detector and electron gun abnormality detection method
WO2014157713A1 (en) * 2013-03-28 2014-10-02 Jfeスチール株式会社 Forsterite confirmation method, forsterite evaluation device, and steel sheet production line
WO2015170755A1 (en) * 2014-05-09 2015-11-12 新日鐵住金株式会社 Low magnetorestriction oriented electromagnetic steel sheet with low iron loss
JP2016089255A (en) * 2014-11-11 2016-05-23 Jfeスチール株式会社 Method for producing grain oriented magnetic steel sheet, and grain oriented magnetic steel sheet
EP3199649A4 (en) * 2014-09-26 2018-07-04 JFE Steel Corporation Grain-oriented electrical steel sheet, grain-oriented electrical steel sheet production method, grain-oriented electrical steel sheet evaluation method and iron core
US10385218B2 (en) 2014-11-14 2019-08-20 Posco Insulating coating composition for oriented electrical steel sheet, oriented electrical steel sheet having insulating coating formed on surface thereof by using same, and preparation method therefor
CN110326068A (en) * 2017-03-30 2019-10-11 杰富意钢铁株式会社 Transformer core
WO2020149322A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
WO2022148468A1 (en) * 2021-01-11 2022-07-14 宝山钢铁股份有限公司 Low-magnetostrictive oriented silicon steel and manufacturing method therefor
JP2023507438A (en) * 2019-12-20 2023-02-22 ポスコホールディングス インコーポレーティッド Grain-oriented electrical steel sheet and its magnetic domain refinement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167822A (en) * 1986-08-30 1987-07-24 Kawasaki Steel Corp Production of grain oriented silicon steel sheet of extremely low iron loss
JPH0456780A (en) * 1990-06-26 1992-02-24 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet with high-quality forsterite coating film
JP2002020817A (en) * 2000-07-06 2002-01-23 Nippon Steel Corp Method for manufacturing grain oriented silicon steel sheet suitable for direct ignition
JP2002060957A (en) * 2000-08-24 2002-02-28 Nippon Steel Corp Grain orented silicon steel sheet suitable for direct ignition
JP2002356750A (en) * 2000-05-12 2002-12-13 Nippon Steel Corp Grain-oriented electric steel plate of low core loss and low noise, and manufacturing method thereof
WO2008050700A1 (en) * 2006-10-23 2008-05-02 Nippon Steel Corporation Unidirectional magnetic steel sheet excellent in iron loss characteristic

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62167822A (en) * 1986-08-30 1987-07-24 Kawasaki Steel Corp Production of grain oriented silicon steel sheet of extremely low iron loss
JPH0456780A (en) * 1990-06-26 1992-02-24 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet with high-quality forsterite coating film
JP2002356750A (en) * 2000-05-12 2002-12-13 Nippon Steel Corp Grain-oriented electric steel plate of low core loss and low noise, and manufacturing method thereof
JP2002020817A (en) * 2000-07-06 2002-01-23 Nippon Steel Corp Method for manufacturing grain oriented silicon steel sheet suitable for direct ignition
JP2002060957A (en) * 2000-08-24 2002-02-28 Nippon Steel Corp Grain orented silicon steel sheet suitable for direct ignition
WO2008050700A1 (en) * 2006-10-23 2008-05-02 Nippon Steel Corporation Unidirectional magnetic steel sheet excellent in iron loss characteristic

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185229A (en) * 2012-03-09 2013-09-19 Jfe Steel Corp Method for working grain-oriented magnetic steel sheet and grain-oriented magnetic steel sheet
KR20150038464A (en) * 2012-09-28 2015-04-08 제이에프이 스틸 가부시키가이샤 Electron gun abnormality detector and electron gun abnormality detection method
WO2014050906A1 (en) * 2012-09-28 2014-04-03 Jfeスチール株式会社 Electron gun abnormality detector and electron gun abnormality detection method
JP2014070974A (en) * 2012-09-28 2014-04-21 Jfe Steel Corp Apparatus and method for detecting abnormality in electron gun
JP2014070972A (en) * 2012-09-28 2014-04-21 Jfe Steel Corp Steel plate inspection apparatus, steel plate inspection method, and steel plate manufacturing method
US10031068B2 (en) * 2012-09-28 2018-07-24 Jfe Steel Corporation Steel sheet inspection device, steel sheet inspection method, and steel sheet manufacturing method
EP2902778A4 (en) * 2012-09-28 2016-08-17 Jfe Steel Corp Steel sheet inspection apparatus, steel sheet inspection method, and steel sheet manufacturing method
CN104603610A (en) * 2012-09-28 2015-05-06 杰富意钢铁株式会社 Electron gun abnormality detector and electron gun abnormality detection method
CN104662418A (en) * 2012-09-28 2015-05-27 杰富意钢铁株式会社 Steel sheet inspection apparatus, steel sheet inspection method, and steel sheet manufacturing method
CN104662418B (en) * 2012-09-28 2018-05-15 杰富意钢铁株式会社 Steel plate check device, steel plate inspection method and steel sheet manufacturing method
WO2014050907A1 (en) * 2012-09-28 2014-04-03 Jfeスチール株式会社 Steel sheet inspection apparatus, steel sheet inspection method, and steel sheet manufacturing method
US9304078B2 (en) 2012-09-28 2016-04-05 Jfe Steel Corporation Electron gun abnormality detecting device and electron gun abnormality detecting method
KR101671742B1 (en) 2012-09-28 2016-11-02 제이에프이 스틸 가부시키가이샤 Electron gun abnormality detecting device and electron gun abnormality detecting method
RU2598394C1 (en) * 2012-09-28 2016-09-27 ДжФЕ СТИЛ КОРПОРЕЙШН Device for fault detection of electron gun and method of detecting fault electron gun
US9939382B2 (en) 2013-03-28 2018-04-10 Jfe Steel Corporation Method of checking forsterite, apparatus that evaluates forsterite, and production line that manufactures steel sheet
KR20150136518A (en) * 2013-03-28 2015-12-07 제이에프이 스틸 가부시키가이샤 Forsterite confirmation method, forsterite evaluation device, and steel sheet production line
JP5930119B2 (en) * 2013-03-28 2016-06-08 Jfeスチール株式会社 Forsterite confirmation method, forsterite evaluation device and steel plate production line
KR101992717B1 (en) * 2013-03-28 2019-06-25 제이에프이 스틸 가부시키가이샤 Method for checking forsterite, apparatus for evaluating forsterite, and production line for manufacturing steel sheet
JPWO2014157713A1 (en) * 2013-03-28 2017-02-16 Jfeスチール株式会社 Forsterite confirmation method, forsterite evaluation device and steel plate production line
WO2014157713A1 (en) * 2013-03-28 2014-10-02 Jfeスチール株式会社 Forsterite confirmation method, forsterite evaluation device, and steel sheet production line
WO2015170755A1 (en) * 2014-05-09 2015-11-12 新日鐵住金株式会社 Low magnetorestriction oriented electromagnetic steel sheet with low iron loss
JPWO2015170755A1 (en) * 2014-05-09 2017-04-20 新日鐵住金株式会社 Oriented electrical steel sheet with low iron loss and low magnetostriction
RU2665666C2 (en) * 2014-05-09 2018-09-03 Ниппон Стил Энд Сумитомо Метал Корпорейшн Low magnetorestriction oriented electromagnetic steel sheet with low iron loss
KR20160145654A (en) 2014-05-09 2016-12-20 신닛테츠스미킨 카부시키카이샤 Low magnetorestriction oriented electromagnetic steel sheet with low iron loss
US10610964B2 (en) 2014-05-09 2020-04-07 Nippon Steel Corporation Grain-oriented electrical steel sheet causing low core loss and low magnetostriction
US10697038B2 (en) 2014-09-26 2020-06-30 Jfe Steel Corporation Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core
EP3199649A4 (en) * 2014-09-26 2018-07-04 JFE Steel Corporation Grain-oriented electrical steel sheet, grain-oriented electrical steel sheet production method, grain-oriented electrical steel sheet evaluation method and iron core
EP3517637A1 (en) * 2014-09-26 2019-07-31 JFE Steel Corporation Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core
US10889875B2 (en) 2014-09-26 2021-01-12 Jfe Steel Corporation Grain oriented electrical steel sheet, method for manufacturing grain oriented electrical steel sheets, method for evaluating grain oriented electrical steel sheets, and iron core
JP2016089255A (en) * 2014-11-11 2016-05-23 Jfeスチール株式会社 Method for producing grain oriented magnetic steel sheet, and grain oriented magnetic steel sheet
US10385218B2 (en) 2014-11-14 2019-08-20 Posco Insulating coating composition for oriented electrical steel sheet, oriented electrical steel sheet having insulating coating formed on surface thereof by using same, and preparation method therefor
CN110326068A (en) * 2017-03-30 2019-10-11 杰富意钢铁株式会社 Transformer core
CN110326068B (en) * 2017-03-30 2023-06-09 杰富意钢铁株式会社 Transformer core
WO2020149322A1 (en) * 2019-01-16 2020-07-23 日本製鉄株式会社 Grain-oriented electrical steel sheet and method for manufacturing same
JPWO2020149322A1 (en) * 2019-01-16 2021-11-25 日本製鉄株式会社 Directional electromagnetic steel plate and its manufacturing method
RU2771129C1 (en) * 2019-01-16 2022-04-26 Ниппон Стил Корпорейшн Electrical steel sheet with oriented grain structure and method for its production
EP3913080A4 (en) * 2019-01-16 2022-11-16 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for manufacturing same
JP7188460B2 (en) 2019-01-16 2022-12-13 日本製鉄株式会社 Grain-oriented electrical steel sheet and manufacturing method thereof
JP2023507438A (en) * 2019-12-20 2023-02-22 ポスコホールディングス インコーポレーティッド Grain-oriented electrical steel sheet and its magnetic domain refinement method
WO2022148468A1 (en) * 2021-01-11 2022-07-14 宝山钢铁股份有限公司 Low-magnetostrictive oriented silicon steel and manufacturing method therefor

Also Published As

Publication number Publication date
JP5923882B2 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
JP5923882B2 (en) Oriented electrical steel sheet and manufacturing method thereof
KR101421387B1 (en) Grain oriented electrical steel sheet and method for manufacturing the same
CN103069033B (en) Grain-oriented magnetic steel sheet and process for producing same
KR101421391B1 (en) Grain oriented electrical steel sheet
WO2013099272A1 (en) Oriented electromagnetic steel plate and manufacturing method therefor
CN104024455B (en) Grain-oriented magnetic steel sheet and iron loss improvement method thereof
EP2602340A1 (en) Oriented electromagnetic steel plate and production method for same
WO2012017671A1 (en) Directional magnetic steel plate
WO2012001952A1 (en) Oriented electromagnetic steel plate and production method for same
JPWO2013099160A1 (en) Oriented electrical steel sheet
JP5712667B2 (en) Method for producing grain-oriented electrical steel sheet
JP5668795B2 (en) Oriented electrical steel sheet and transformer core using the same
JP6116796B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP5906654B2 (en) Method for producing grain-oriented electrical steel sheet
JP2008285758A (en) Grain-oriented electrical steel sheet
CN110352255B (en) Grain-oriented electromagnetic steel sheet and method for producing same
MX2012015155A (en) Process for producing grain-oriented magnetic steel sheet.
JP5729014B2 (en) Method for producing grain-oriented electrical steel sheet
JP6003321B2 (en) Method for producing grain-oriented electrical steel sheet
JP5565307B2 (en) Method for producing grain-oriented electrical steel sheet
JP7265186B2 (en) Grain-oriented electrical steel sheet and manufacturing method thereof
WO2024063163A1 (en) Grain-oriented electrical steel sheet
WO2022203089A1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
JP2019002039A (en) Directional electromagnetic steel sheet for controlling laser magnetic domain and manufacturing method therefor
EP4317468A1 (en) Grain-oriented electromagnetic steel sheet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5923882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250