JP2012031333A - Gas oil composition - Google Patents

Gas oil composition Download PDF

Info

Publication number
JP2012031333A
JP2012031333A JP2010173881A JP2010173881A JP2012031333A JP 2012031333 A JP2012031333 A JP 2012031333A JP 2010173881 A JP2010173881 A JP 2010173881A JP 2010173881 A JP2010173881 A JP 2010173881A JP 2012031333 A JP2012031333 A JP 2012031333A
Authority
JP
Japan
Prior art keywords
gas oil
oil composition
light oil
mass
distillation temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010173881A
Other languages
Japanese (ja)
Other versions
JP5437193B2 (en
Inventor
Shinnosuke Yamauchi
慎之助 山内
Masanobu Ogura
正伸 小倉
Kiyoshi Aoki
清 青木
Shigeyuki Tanaka
重行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2010173881A priority Critical patent/JP5437193B2/en
Publication of JP2012031333A publication Critical patent/JP2012031333A/en
Application granted granted Critical
Publication of JP5437193B2 publication Critical patent/JP5437193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas oil composition capable of improving fuel cost, while improving exhaust gas characteristic.SOLUTION: In this gas oil composition including a desulfurized gas oil base material obtained by desulfurizing a fraction formed by mixing a straight-run gas oil fraction whose 90% distillation temperature distilled from an atmospheric distillation apparatus is 330-345°C with a catalytically cracked gas oil fraction whose 90% distillation temperature obtained from a fluidized catalytic cracking unit is 320-350°C in a volume proportion of 95:5 to 80:20, (a) a cetane number is 50-60, (b) a 90% distillation temperature is 282-336°C, (c) a 15°C density is 0.832-0.848 g/cm, (d) a flash point is ≥61°C, (e) a 40°C kinematic viscosity is 1.9-4.1 mm/s, (f) a sulfur content is ≤50 mass ppm, (g) a total aromatic amount is ≤30 mass%, (h) a polycyclic aromatic is ≤4.5 mass%, and (i) HFRR is ≤420 μm.

Description

本発明は、低硫黄の軽油組成物に関し、さらに詳しくは、燃費に優れ、かつエンジン排ガス特性に優れる軽油組成物に関する。   The present invention relates to a low-sulfur gas oil composition, and more particularly to a gas oil composition having excellent fuel efficiency and excellent engine exhaust gas characteristics.

車両用や発電機用などに用いられるディーゼルエンジンから排出されるNOxや粒子状物質を低減することは社会的要請であり、ディーゼルエンジン用燃料である軽油には、粒子状物質を低減するために、硫黄分の低減、蒸留性状の軽質化、芳香族量の低減などが求められている。これらに対応するために、一般的には、常圧蒸留装置から留出する直留軽油(LGO)留分の蒸留性状を軽質化し、かつその軽油留分を水素化脱硫処理した上で、灯油留分などを配合することにより軽油は処方される。しかしながら、軽質化によって密度が低下し、燃費が悪化する場合があることが知られている。   It is a social requirement to reduce NOx and particulate matter discharged from diesel engines used for vehicles and generators, etc. In order to reduce particulate matter in diesel oil fuel Therefore, reduction of sulfur content, lightening of distillation properties, reduction of aromatic content, etc. are required. In order to deal with these problems, kerosene is generally used after lightening the distillation properties of the straight-run gas oil (LGO) fraction distilled from the atmospheric distillation apparatus and hydrodesulfurizing the gas oil fraction. Light oil is formulated by blending fractions and the like. However, it is known that the lightening may lower the density and deteriorate the fuel efficiency.

一方、粒子状物質を低減するために、エンジンの後処理装置として、Diesel Particulate Filter(DPF)が装着されるようになってきている。DPFは、ディーゼルエンジンから排出される粒子状物質をフィルタで捕捉する装置であり、粒子状物質の捕捉に伴い、差圧が発生する。この粒子状物質堆積により発生した差圧を解消するために、DPFへ燃料噴射を行い、堆積した粒子状物質を除去してDPFを再生する必要がある。このように、DPFの再生は燃料消費の悪化を招くものであるため、省燃費特性を改善するためには、DPFの差圧の上昇を抑制することが重要になる。   On the other hand, in order to reduce particulate matter, Diesel Particulate Filter (DPF) has come to be installed as an engine aftertreatment device. The DPF is a device that captures particulate matter discharged from a diesel engine with a filter, and a differential pressure is generated as the particulate matter is captured. In order to eliminate the differential pressure generated by the particulate matter deposition, it is necessary to inject fuel into the DPF, remove the deposited particulate matter, and regenerate the DPF. Thus, since regeneration of the DPF causes deterioration of fuel consumption, it is important to suppress an increase in the differential pressure of the DPF in order to improve fuel consumption characteristics.

燃料消費量の少ないディーゼル軽油組成物として、直留軽油と分解装置から得られる分解軽油とを、軽油脱硫装置に混合通油して得られる脱硫軽油基材を含有するディーゼル軽油組成物が提案されている(例えば、特許文献1参照。)。特許文献1に記載されている実施例はいずれも、特許文献1に係る特許出願の出願当時の軽油の硫黄分規制値を反映して、硫黄分は0.04〜0.05質量%にまで低減されているものの、燃費の改善は十分ではない。さらに、現在では、エンジンの後処理装置に用いられる触媒は、軽油中の硫黄分の燃焼により生成される硫黄酸化物により被毒され、触媒の機能が低下することが判っており、軽油の硫黄分規制値は10質量ppm以下にまで強化されている。原油を原料油として得られる軽油組成物において、硫黄分を10質量ppm以下にまで低減させるためには、脱硫が困難な化合物(難脱硫物質)も脱硫しなければならず、脱硫触媒として分解機能を有する触媒を用いることになる。このため、例えば特許文献1に記載のディーゼル軽油組成物において、硫黄分を現在の硫黄分規制値まで低減させようとした場合、脱硫反応と共に分解反応も進行してしまい、得られるディーゼル軽油組成物の密度はさらに低下してしまい、燃費はより悪化してしまう場合がある。   As a diesel light oil composition with low fuel consumption, a diesel light oil composition containing a desulfurized light oil base material obtained by mixing and passing through straight gas light oil and cracked light oil obtained from a cracker through a light oil desulfurizer is proposed. (For example, refer to Patent Document 1). All the examples described in Patent Document 1 reflect the sulfur content regulation value of light oil at the time of filing of the patent application related to Patent Document 1, and the sulfur content is 0.04 to 0.05 mass%. Although it has been reduced, the improvement in fuel efficiency is not sufficient. Furthermore, it is now known that catalysts used in engine aftertreatment devices are poisoned by sulfur oxides produced by the combustion of sulfur in light oil, reducing the function of the catalyst. The minute regulation value is strengthened to 10 mass ppm or less. In a light oil composition obtained from crude oil as a raw material oil, in order to reduce the sulfur content to 10 ppm by mass or less, it is necessary to desulfurize compounds that are difficult to desulfurize (difficult desulfurization substances), and the decomposition function as a desulfurization catalyst The catalyst which has is used. For this reason, for example, in the diesel light oil composition described in Patent Document 1, when it is attempted to reduce the sulfur content to the current sulfur content regulation value, the decomposition reaction also proceeds together with the desulfurization reaction, and the resulting diesel light oil composition is obtained. The density of the fuel cell may further decrease, and the fuel consumption may be further deteriorated.

また、ディーゼル自動車における排出ガスの効果的な低減と良好な低温性能を両立させた、硫黄分が50質量ppm以下の低硫黄軽油組成物も提案されている。例えば、特許文献2には、低温流動性を改善させるために、特定の性状を有する軽油基材に、ノルマルパラフィンが特定量の基材や水素化分解装置から得られる水素化分解軽油を配合した低硫黄軽油組成物が記載されている。しかしながら、引用文献2では、低硫黄軽油組成物において、さらに省燃費特性を改善させることは検討されていない。   In addition, a low sulfur gas oil composition having a sulfur content of 50 mass ppm or less that combines effective reduction of exhaust gas in diesel vehicles and good low-temperature performance has been proposed. For example, in Patent Document 2, in order to improve low-temperature fluidity, hydrocracked diesel oil obtained from a base oil or hydrocracking apparatus having a specific amount of normal paraffin is blended with a light oil base material having specific properties. A low sulfur gas oil composition is described. However, Cited Document 2 does not discuss further improving the fuel saving characteristics in the low sulfur gas oil composition.

このように、ディーゼルエンジンにおいて、低排出ガス特性と省燃費特性を両立することは、環境性と経済性の点からともに重要であり、現行の軽油の硫黄分規制値を満足しながら、低排出ガス特性と省燃費特性を両立させる軽油組成物が望まれている。   In this way, in diesel engines, it is important to achieve both low emission characteristics and low fuel consumption from the viewpoint of environmental friendliness and economy, and low emissions while satisfying the current sulfur regulations for diesel oil. A light oil composition that achieves both gas characteristics and fuel saving characteristics is desired.

特開平8−311462号公報JP-A-8-311462 特開2005−220329号公報Japanese Patent Laid-Open No. 2005-220329

本発明は、このような状況下で、排出ガス特性を改善しつつ、燃費を向上させる軽油組成物を提供することを目的とするものである。   An object of this invention is to provide the light oil composition which improves a fuel consumption, improving an exhaust gas characteristic in such a condition.

本発明者らは、ディーゼルエンジンから排出される排出ガス低減技術と燃費の向上技術について鋭意検討した結果、特定の蒸留性状を有する直留軽油留分と特定の蒸留性状を有する接触分解軽油留分とを特定比率で混合し脱硫処理することにより、蒸留性状は軽質化しているが高い密度を有する軽油組成物を製造できることを見出し、本発明を完成するに至った。   As a result of intensive studies on a technology for reducing exhaust gas discharged from a diesel engine and a technology for improving fuel consumption, the present inventors have found that a straight-run gas oil fraction having a specific distillation property and a catalytic cracking gas oil fraction having a specific distillation property And a desulfurization treatment at a specific ratio, it was found that a light oil composition having a high density but a light distillation property can be produced, and the present invention has been completed.

すなわち、本発明は、
(1)常圧蒸留装置から留出する90%留出温度が330〜345℃の直留軽油留分と、流動接触分解装置から得られる90%留出温度が320〜350℃の接触分解軽油留分とを容量割合で95:5〜80:20で混合したものを、脱硫処理して得られる脱硫軽油基材を含む軽油組成物であって、
(a)セタン価が50〜60、
(b)90%留出温度が282〜336℃、
(c)15℃密度が0.832〜0.848g/cm
(d)引火点が61℃以上、
(e)40℃動粘度が1.9〜4.1mm/s、
(f)硫黄分が50質量ppm以下、
(g)全芳香族量が30質量%以下、
(h)多環芳香族が4.5質量%以下、及び
(i)HFRRが420μm以下
であることを特徴とする軽油組成物を提供するものである。
That is, the present invention
(1) A 90% distillation temperature of 330-345 ° C distillate gas oil distilled from an atmospheric distillation unit and a 90% distillation temperature of 320-350 ° C catalytic cracking gas oil obtained from a fluid catalytic cracking unit A gas oil composition comprising a desulfurized gas oil base material obtained by desulfurizing a mixture of a fraction and a volume ratio of 95: 5 to 80:20,
(A) a cetane number of 50-60,
(B) 90% distillation temperature is 282 to 336 ° C,
(C) 15 degreeC density is 0.832-0.848g / cm < 3 >,
(D) Flash point is 61 ° C or higher,
(E) Kinematic viscosity at 40 ° C. of 1.9 to 4.1 mm 2 / s,
(F) Sulfur content is 50 mass ppm or less,
(G) The total aromatic content is 30% by mass or less,
(H) The light oil composition is characterized in that the polycyclic aromatic is 4.5% by mass or less, and (i) the HFRR is 420 μm or less.

本発明によれば、低排出ガス特性と省燃費特性を両立させた、車両用や発電機用などに用いられるディーゼルエンジン用の燃料油組成物として好適な軽油組成物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the light oil composition suitable as a fuel oil composition for diesel engines used for vehicles, generators, etc. which made the low exhaust gas characteristic and the fuel-saving characteristic compatible can be provided.

本発明の軽油組成物は、常圧蒸留装置から留出する90%留出温度が330〜345℃の直留軽油留分と、流動接触分解装置から得られる90%留出温度が320〜350℃の接触分解軽油留分とを容量割合で95:5〜80:20で混合したものを、脱硫処理して得られる脱硫軽油基材を含む軽油組成物であって、下記(a)〜(i)の燃料特性を備えることを特徴とする。
(a)セタン価が50〜60、
(b)90%留出温度が282〜336℃、
(c)15℃密度が0.832〜0.848g/cm
(d)引火点が61℃以上、
(e)40℃動粘度が1.9〜4.1mm/s、
(f)硫黄分が50質量ppm以下、
(g)全芳香族量が30質量%以下、
(h)多環芳香族が4.5質量%以下、及び
(i)HFRRが420μm以下。
The gas oil composition of the present invention has a 90% distillation temperature of 330 to 345 ° C distilled from an atmospheric distillation apparatus and a 90% distillation temperature of 320 to 350 obtained from a fluid catalytic cracking apparatus. A gas oil composition comprising a desulfurized gas oil base material obtained by desulfurizing a mixture of a catalytically cracked gas oil fraction at 0.degree. C. at a volume ratio of 95: 5 to 80:20, and comprising the following (a) to ( The fuel characteristic of i) is provided.
(A) a cetane number of 50-60,
(B) 90% distillation temperature is 282 to 336 ° C,
(C) 15 degreeC density is 0.832-0.848g / cm < 3 >,
(D) Flash point is 61 ° C or higher,
(E) Kinematic viscosity at 40 ° C. of 1.9 to 4.1 mm 2 / s,
(F) Sulfur content is 50 mass ppm or less,
(G) The total aromatic content is 30% by mass or less,
(H) Polycyclic aromatic is 4.5 mass% or less, and (i) HFRR is 420 μm or less.

本発明においては、蒸留性状をそれぞれ最適化した常圧蒸留装置から留出する直留軽油(LGO)留分と流動接触分解装置から得られる接触分解軽油(LCO)留分とを、特定の割合で混合した後、水素化脱硫装置で脱硫処理して得られた脱硫軽油基材を用いる。当該脱硫軽油基材は、90%留出温度が低く、充分に軽質化されているにも関わらず、密度が高い。このため、当該脱硫軽油基材を含むことにより、本発明の軽油組成物は、ディーゼルエンジンからの排出ガス低減と燃費向上を同時に達成することができる。   In the present invention, a straight-run gas oil (LGO) fraction distilled from an atmospheric distillation device whose distillation properties are optimized respectively and a catalytic cracking light oil (LCO) fraction obtained from a fluid catalytic cracking device are in a specific ratio. Then, a desulfurized light oil base material obtained by desulfurization with a hydrodesulfurization apparatus is used. The desulfurized gas oil base material has a low density of 90% and a high density despite being sufficiently lightened. For this reason, by including the desulfurized light oil base material, the light oil composition of the present invention can simultaneously achieve exhaust gas reduction from a diesel engine and fuel efficiency improvement.

以下、本発明の内容を更に詳しく説明する。
本発明の軽油組成物において、常圧蒸留装置から留出する直留軽油(LGO)留分の90%留出温度は330〜345℃であり、好ましくは332〜343℃である。90%留出温度が330℃以上であることにより、ディーゼルエンジンの燃費を良好な範囲内に保つことができる。また、90%留出温度が345℃以下であることにより、エンジンから排出される粒子状物質の成分であるsootの排出量を低減させることができる。なお、本出願書類において、90%留出温度は、ASTM D86の規定に準拠して測定した値を意味する。
Hereinafter, the contents of the present invention will be described in more detail.
In the gas oil composition of the present invention, the 90% distillation temperature of the straight-run gas oil (LGO) fraction distilled from the atmospheric distillation apparatus is 330 to 345 ° C, preferably 332 to 343 ° C. When the 90% distillation temperature is 330 ° C. or higher, the fuel efficiency of the diesel engine can be kept within a favorable range. Further, when the 90% distillation temperature is 345 ° C. or lower, the discharge amount of soot that is a component of the particulate matter discharged from the engine can be reduced. In addition, in this application document, 90% distillation temperature means the value measured based on the rule of ASTM D86.

本発明の軽油組成物において、流動接触分解装置から得られる接触分解軽油(LCO)留分の90%留出温度は320〜350℃であり、好ましくは322〜348℃である。90%留出温度が320℃以上であることにより、ディーゼルエンジンの燃費を良好な範囲内に保つことができる。また、90%留出温度が350℃以下であることにより、エンジンから排出される粒子状物質の成分であるsootや高沸点炭化水素成分から成る可溶性有機成分(Soluble Organic Fraction:SOF分)の排出量を低減させることができる。なお、本出願書類において、90%留出温度は、ASTM D86の規定に準拠して測定した値を意味する。   In the light oil composition of the present invention, the 90% distillation temperature of the catalytically cracked light oil (LCO) fraction obtained from the fluid catalytic cracker is 320 to 350 ° C, preferably 322 to 348 ° C. When the 90% distillation temperature is 320 ° C. or higher, the fuel efficiency of the diesel engine can be kept within a favorable range. In addition, when the 90% distillation temperature is 350 ° C. or lower, the discharge of soluble organic components (SOF content) composed of soot and high-boiling hydrocarbon components that are components of particulate matter discharged from the engine The amount can be reduced. In addition, in this application document, 90% distillation temperature means the value measured based on the rule of ASTM D86.

本発明の軽油組成物において、脱硫処理する直留軽油(LGO)留分と接触分解軽油(LCO)留分の配合割合は、95:5〜80:20、好ましくは92:8〜81:19である。直留軽油(LGO)留分と接触分解軽油(LCO)留分の総量に対する接触分解軽油(LCO)の配合量を5質量%以上とすることにより、ディーゼルエンジンの燃費を良好な範囲内に保つことができる。また、20質量%以下とすることにより、エンジンから排出される粒子状物質の成分であるsootやSOF分の排出量を低減させることができる。   In the light oil composition of the present invention, the blending ratio of the straight-run gas oil (LGO) fraction and the catalytic cracking light oil (LCO) fraction to be desulfurized is 95: 5 to 80:20, preferably 92: 8 to 81:19. It is. Maintaining the fuel efficiency of diesel engines within a good range by setting the blending amount of catalytic cracking light oil (LCO) to the total amount of straight-run gas oil (LGO) fraction and catalytic cracking light oil (LCO) fraction to 5% by mass or more. be able to. Moreover, by setting it as 20 mass% or less, the discharge amount of soot and SOF which are the components of the particulate matter discharged | emitted from an engine can be reduced.

本発明の軽油組成物に含まれる脱硫軽油基材(以下、本発明の脱硫軽油基材)は、直留軽油(LGO)留分と接触分解軽油(LCO)留分の混合原料油を、触媒の存在下で水素化処理することにより製造することができる。触媒や水素化処理方法自体は、既知の触媒や水素化処理方法を用いることができる。   The desulfurized light oil base material (hereinafter referred to as the desulfurized light oil base material of the present invention) contained in the light oil composition of the present invention is a mixed raw material oil of a straight-run light oil (LGO) fraction and a catalytic cracked light oil (LCO) fraction. It can manufacture by hydrotreating in presence of this. As the catalyst and the hydrotreating method itself, a known catalyst and hydrotreating method can be used.

本発明において水素化処理に用いる触媒としては、特に限定されず、種々の水素化処理触媒を使用することができる。触媒の担体としては、例えば、シリカ、アルミナ、ゼオライト、ボリア、マグネシア、チタニア、リン酸化物などの無機化合物、又はこれらの1 種以上の混合物等や複合酸化物等が挙げられる。また、上記担体に担持させる金属としては、モリブデンやタングステン等の周期律表第6族金属、コバルト、ニッケル、白金、ロジウム、ルテニウム等の周期律表第8族金属を用いることができ、これらは単独で用いてもよく、2 種以上を組み合わせて用いてもよい。好ましくは、コバルト−モリブデン系水素化処理触媒、ニッケル−モリブデン系水素化処理触媒、ニッケル−コバルト−モリブデン系水素化処理触媒、ニッケル−タングステン系水素化処理触である。
上記成分以外にリン、フッ素、ホウ素、亜鉛、塩素、ナトリウム、リチウム、カリウム、ルビジウム、マグネシウム、セシウム、ジルコニアなどの第三成分を担持したものも用いることができる。更に、クエン酸等のキレート性有機化合物を含ませてもよい。これらのキレート性有機化合物は、コバルト又はニッケルと錯体を形成した状態で水素化処理触媒に含まれるとより好ましい。
In the present invention, the catalyst used for the hydrotreating is not particularly limited, and various hydrotreating catalysts can be used. Examples of the catalyst carrier include inorganic compounds such as silica, alumina, zeolite, boria, magnesia, titania, and phosphorous oxide, or a mixture of one or more of these, composite oxides, and the like. Further, as the metal supported on the carrier, a periodic table group 6 metal such as molybdenum or tungsten, or a periodic table group 8 metal such as cobalt, nickel, platinum, rhodium, ruthenium, or the like can be used. It may be used alone or in combination of two or more. Preferred are a cobalt-molybdenum-based hydrogenation catalyst, a nickel-molybdenum-based hydrogenation catalyst, a nickel-cobalt-molybdenum-based hydrogenation catalyst, and a nickel-tungsten-based hydrogenation catalyst.
In addition to the above components, those carrying a third component such as phosphorus, fluorine, boron, zinc, chlorine, sodium, lithium, potassium, rubidium, magnesium, cesium, zirconia can also be used. Further, a chelating organic compound such as citric acid may be included. These chelating organic compounds are more preferably contained in the hydrotreating catalyst in a state of forming a complex with cobalt or nickel.

上記水素化処理条件として、水素圧力を通常の水素化脱硫に用いる水素分圧よりも高く設定することにより、本発明の脱硫軽油基材を製造することができる。水素分圧は2〜10MPa 、好ましくは3〜8MPa 、更に好ましくは5〜8MPaである。水素分圧が上記範囲内にあれば、脱硫性能を向上でき、脱硫軽油基材の芳香族分を所定の範囲にまで低減することができる。   By setting the hydrogen pressure higher than the hydrogen partial pressure used in normal hydrodesulfurization as the hydrotreating condition, the desulfurized light oil base material of the present invention can be produced. The hydrogen partial pressure is 2 to 10 MPa, preferably 3 to 8 MPa, and more preferably 5 to 8 MPa. If the hydrogen partial pressure is within the above range, the desulfurization performance can be improved, and the aromatic content of the desulfurized light oil base material can be reduced to a predetermined range.

また、反応温度は300〜400℃、好ましくは、320〜380℃である。反応温度が上記範囲内であれば、脱硫性能が高く、脱硫軽油基材の芳香族分を所定の範囲にまで低減することができる。   Moreover, reaction temperature is 300-400 degreeC, Preferably, it is 320-380 degreeC. When the reaction temperature is within the above range, the desulfurization performance is high, and the aromatic content of the desulfurized light oil base material can be reduced to a predetermined range.

また、液空間速度は0.3〜5hr−1、好ましくは0.5〜4hr−1、更に好ましくは、0.5〜3hr−1である。液空間速度が上記範囲内にあれば、触媒と原料油の接触時間が十分で、処理効率が向上し、かつ、脱硫反応が十分に行われ、生成油の残留硫黄分が少なくなる。 Also, the liquid hourly space velocity 0.3~5Hr -1, preferably 0.5~4Hr -1, and more preferably from 0.5~3hr -1. When the liquid space velocity is within the above range, the contact time between the catalyst and the raw material oil is sufficient, the processing efficiency is improved, the desulfurization reaction is sufficiently performed, and the residual sulfur content of the produced oil is reduced.

また、水素/油比は100〜600Nm/kl、好ましくは150〜400Nm/kl、更に好ましくは150〜300Nm/klである。水素/油比が上記範囲内にあれば、十分に脱硫反応が進行し、過剰に水素を消費することもなく、処理コストを削減できる。 The hydrogen / oil ratio is 100 to 600 Nm 3 / kl, preferably 150 to 400 Nm 3 / kl, more preferably 150 to 300 Nm 3 / kl. If the hydrogen / oil ratio is within the above range, the desulfurization reaction proceeds sufficiently, and the processing cost can be reduced without consuming excessive hydrogen.

本発明の軽油組成物は、上記(a)〜(i)の燃料特性を満足する範囲内において、上記脱硫軽油基材以外のその他の軽油留分を含んでいてもよい。その他の軽油留分としては、原油を常圧蒸留装置で分留して得られる常圧残渣油を減圧蒸留装置で処理して得られる減圧軽油を水素化処理して得られる水素化軽油留分、常圧残渣油や減圧蒸留装置で得られる減圧残渣油を水素化処理して得られる水素化軽油留分、軽油よりも重質な留分を原料に用いて水素化分解処理で得られる水素化分解軽油、動植物油を水素化処理して得られる水素化軽油留分などが挙げられる。   The light oil composition of the present invention may contain other light oil fractions other than the desulfurized light oil base within the range satisfying the fuel characteristics (a) to (i). As other gas oil fractions, hydrogenated gas oil fractions obtained by hydrotreating vacuum gas oil obtained by treating atmospheric residue oil obtained by fractionating crude oil with an atmospheric distillation device using a vacuum distillation device , Hydrogenated gas oil fraction obtained by hydrotreating normal pressure residue oil or vacuum residue oil obtained by vacuum distillation equipment, hydrogen obtained by hydrocracking treatment using a heavier fraction than gas oil as a raw material Examples thereof include hydrocracked gas oil and hydrogenated gas oil fraction obtained by hydrotreating animal and vegetable oils.

本発明の軽油組成物は、上記(a)〜(i)の燃料特性を満足する範囲内において、さらに灯油留分を含めることもできる。但し、通常は、灯油留分を含む場合には、90%留出温度又は15℃密度が、上記(b)又は(c)の範囲から外れてしまう場合が多い。このため、本発明の軽油組成物としては、灯油留分を含まないものであることが好ましい。   The light oil composition of the present invention may further contain a kerosene fraction within the range satisfying the fuel characteristics (a) to (i) above. However, usually, when a kerosene fraction is included, the 90% distillation temperature or 15 ° C. density often falls outside the above range (b) or (c). For this reason, it is preferable that the light oil composition of the present invention does not contain a kerosene fraction.

本発明の軽油組成物においては、セタン価は50〜60、好ましくは52〜60である。これよりセタン価が低いと、ディーゼルエンジンの低温時始動性が低下するほか、エンジンからのCOやHCの排出量が多くなる場合がある。なお、本出願書類において、セタン価は、ASTM D613−84の規定に準拠して測定した値を意味する。   In the light oil composition of the present invention, the cetane number is 50 to 60, preferably 52 to 60. If the cetane number is lower than this, the startability of the diesel engine at low temperatures may be lowered, and the CO and HC emissions from the engine may increase. In addition, in this application document, a cetane number means the value measured based on the prescription | regulation of ASTMD613-84.

本発明の軽油組成物においては、90%留出温度は282〜336℃、好ましくは300〜336℃、より好ましくは320〜336℃である。90%留出温度が282℃以上であることにより、ディーゼルエンジンの燃費を良好な範囲内に保つことができる。また、336℃以下であることにより、エンジンから排出される粒子状物質の成分であるsootやSOF分の排出量を低減させることができる。なお、本出願書類において、90%留出温度は、ASTM D86の規定に準拠して測定した値を意味する。   In the light oil composition of the present invention, the 90% distillation temperature is 282 to 336 ° C, preferably 300 to 336 ° C, more preferably 320 to 336 ° C. When the 90% distillation temperature is 282 ° C. or higher, the fuel efficiency of the diesel engine can be kept within a favorable range. Moreover, by being 336 degrees C or less, the discharge amount of soot and SOF which are the components of the particulate matter discharged | emitted from an engine can be reduced. In addition, in this application document, 90% distillation temperature means the value measured based on the rule of ASTM D86.

本発明の軽油組成物においては、15℃密度は0.832〜0.848g/cm、好ましくは0.832〜0.840g/cm、より好ましくは0.833〜0.839g/cmである。密度が当該範囲内にあることにより、ディーゼルエンジンの燃費を良好な範囲内に保つことができ、かつエンジンから排出される粒子状物質の成分であるsootやSOF分の排出量を低減させることができる。なお、本出願書類において、15℃密度は、ASTM D−4052の規定に準拠して測定した値を意味する。 In the light oil composition of the present invention, the density at 15 ° C. is 0.832 to 0.848 g / cm 3 , preferably 0.832 to 0.840 g / cm 3 , more preferably 0.833 to 0.839 g / cm 3. It is. By having the density within the range, the fuel efficiency of the diesel engine can be kept within a good range, and the amount of soot and SOF that are components of particulate matter discharged from the engine can be reduced. it can. In addition, in this application document, a 15 degreeC density means the value measured based on the prescription | regulation of ASTMD-4052.

本発明の軽油組成物においては、引火点は61℃以上、好ましくは62℃以上である。引火点が61℃以上であることにより、軽質分の割合が多くなりすぎず、ディーゼルエンジンの燃費を良好な範囲内に保つことができる。なお、本出願書類において、引火点は、ASTM D−93の規定に準拠して測定した値を意味する。   In the light oil composition of the present invention, the flash point is 61 ° C. or higher, preferably 62 ° C. or higher. When the flash point is 61 ° C. or higher, the proportion of light components does not increase too much, and the fuel efficiency of the diesel engine can be kept within a favorable range. In addition, in this application document, a flash point means the value measured based on the prescription | regulation of ASTM D-93.

本発明の軽油組成物においては、40℃動粘度は1.9〜4.1mm/s、好ましくは2.0〜3.8mm/sである。動粘度がこの範囲内であれば、ディーゼルエンジンの噴射ポンプで故障を生じないほか、燃料噴霧に悪影響しディーゼルエンジンから排出される粒子状物質が増加することを防ぐことができ好ましい。なお、本出願書類において、40℃動粘度は、ASTM D−445の規定に準拠して測定した値を意味する。 In the light oil composition of the present invention, the 40 ° C. kinematic viscosity is 1.9 to 4.1 mm 2 / s, preferably 2.0 to 3.8 mm 2 / s. A kinematic viscosity within this range is preferable because it does not cause a failure in the injection pump of the diesel engine, and prevents an increase in particulate matter discharged from the diesel engine that adversely affects fuel spray. In addition, in this application document, 40 degreeC kinematic viscosity means the value measured based on the prescription | regulation of ASTM D-445.

本発明の軽油組成物においては、硫黄分は50質量ppm以下、好ましくは10質量ppm以下、より好ましくは9質量ppm以下である。硫黄分がこれより多いと、エンジンから排出される粒子状物質の成分であるサルフェートの排出量が多くなり、更に排ガス後処理装置の性能に悪影響を及ぼし、その他の排出ガスが増加する場合がある。なお、本出願書類において、硫黄分は、ASTM D−5453の規定に準拠して測定した値を意味する。   In the light oil composition of this invention, a sulfur content is 50 mass ppm or less, Preferably it is 10 mass ppm or less, More preferably, it is 9 mass ppm or less. If the sulfur content is higher than this, the amount of sulfate that is a component of the particulate matter emitted from the engine will increase, which may adversely affect the performance of the exhaust gas aftertreatment device and increase other exhaust gases. . In addition, in this application document, a sulfur content means the value measured based on the prescription | regulation of ASTMD-5453.

本発明の軽油組成物においては、全芳香族量は30質量%以下、好ましくは27質量%以下であり、多環芳香族量は4.5質量%以下、好ましくは3.1質量%以下である。下限に制限はないが、本発明に用いる直留軽油(LGO)留分と接触分解軽油(LCO)留分を用いると、通常、全芳香族量は19質量%以上、多環芳香族量は1.6質量%以上含まれている。全芳香族量や多環芳香族量がこれらの数値以下であることにより、ディーゼルエンジンから排出される粒子状物質やNOx排出量を低減させることができる。なお、本出願書類において、芳香族量は、ASTM D5186の規定に準拠して測定した値を意味する。   In the light oil composition of the present invention, the total aromatic content is 30% by mass or less, preferably 27% by mass or less, and the polycyclic aromatic content is 4.5% by mass or less, preferably 3.1% by mass or less. is there. Although there is no restriction on the lower limit, when the straight-run gas oil (LGO) fraction and the catalytic cracking gas oil (LCO) fraction used in the present invention are used, the total aromatic content is usually 19% by mass or more, and the polycyclic aromatic content is 1.6% by mass or more is contained. When the total aromatic amount and the polycyclic aromatic amount are less than or equal to these values, the particulate matter and NOx emission discharged from the diesel engine can be reduced. In addition, in this application document, the amount of aromatics means the value measured based on the rule of ASTM D5186.

本発明の軽油組成物においては、HFRRは420μm以下である。HFRRの摩耗痕径が420μm以下であることにより、ディーゼルエンジンの燃料噴射ポンプに異常摩耗が発生するリスクを低減させることができる。なお、本出願書類において、HFRRは、ASTM D−6079の規定に準拠して測定した値を意味する。   In the light oil composition of the present invention, HFRR is 420 μm or less. When the wear scar diameter of HFRR is 420 μm or less, it is possible to reduce the risk of abnormal wear occurring in the fuel injection pump of the diesel engine. In addition, in this application document, HFRR means the value measured based on the rule of ASTM D-6079.

また、本発明の軽油組成物には、必要に応じて、各種の添加剤を適宜配合することができる。このような添加剤としては、セタン価向上剤、界面活性剤、流動性向上剤、防腐剤、防錆剤、泡消剤、清浄剤、酸化防止剤、色相改善剤、潤滑性向上剤など公知の燃料添加剤が挙げられる。これらを一種または数種組み合わせて添加することができる。   Moreover, various additives can be suitably mix | blended with the light oil composition of this invention as needed. Examples of such additives include cetane number improvers, surfactants, fluidity improvers, antiseptics, rust inhibitors, defoamers, detergents, antioxidants, hue improvers, and lubricity improvers. These fuel additives are mentioned. These can be added singly or in combination.

以下に本発明の内容を実施例および比較例により更に詳しく説明するが、本発明はこれらによって制限されるものではない。   The content of the present invention will be described in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited thereto.

なお、実施例及び比較例の各軽油組成物については、表1に示すエンジンを用いてエンジンベンチ試験を行い、JE05モード燃料消費量、排ガス排出量(NOx、CO、THC)を測定した。燃料消費量は、比較例1の軽油組成物の燃料消費量を100%とし、その他の実施例及び比較例の軽油組成物について相対比較した。また、1800rpm、100Nmの一定運転条件下、2時間エンジンを稼働する際に排出されるPM(粒子状物質)がDPFに堆積することによるDPF前後の差圧上昇を計測した。   In addition, about each light oil composition of an Example and a comparative example, the engine bench test was done using the engine shown in Table 1, and JE05 mode fuel consumption and exhaust gas discharge | emission amount (NOx, CO, THC) were measured. Regarding the fuel consumption, the fuel consumption of the light oil composition of Comparative Example 1 was set to 100%, and the light oil compositions of other Examples and Comparative Examples were relatively compared. In addition, the increase in the differential pressure before and after the DPF due to PM (particulate matter) discharged when the engine was operated for 2 hours under the constant operating condition of 1800 rpm and 100 Nm was measured.

Figure 2012031333
Figure 2012031333

[実施例1〜4、比較例1〜2]
まず、表2に示すような性状を有する原料基材を、表3に示す配合で混合した。その後、ULGO−1〜6の脱硫処理は、CoMoP担持脱硫触媒を用い、表3に示す条件で脱硫した。一方、灯油基材(UKERO)は、原油を常圧蒸留装置で分留して得られる直留灯油(KERO)を、表3に示す脱硫条件−7で水素化脱硫処理を行うことにより、調製した。
脱硫処理により得られた脱硫軽油基材の性状を表4に示す。
[Examples 1-4, Comparative Examples 1-2]
First, the raw material base material which has a property as shown in Table 2 was mixed by the mixing | blending shown in Table 3. Thereafter, ULGO-1 to 6 were desulfurized using a CoMoP-supported desulfurization catalyst under the conditions shown in Table 3. On the other hand, a kerosene base (UKERO) is prepared by hydrodesulfurizing a straight-run kerosene (KERO) obtained by fractionating crude oil with an atmospheric distillation apparatus under the desulfurization conditions-7 shown in Table 3. did.
Table 4 shows the properties of the desulfurized light oil base material obtained by the desulfurization treatment.

Figure 2012031333
Figure 2012031333

Figure 2012031333
Figure 2012031333

Figure 2012031333
Figure 2012031333

得られた脱硫軽油基材を、表5に示す燃料処方により配合し、さらにそれぞれ潤滑性向上剤を150質量ppm添加することにより、軽油組成物を製造した。得られた軽油組成物の性状、及び表1に示すエンジンを用いてエンジンベンチ試験を行った結果に得られた性能を表5に示す。   The obtained desulfurized gas oil base material was blended according to the fuel formulation shown in Table 5, and 150 mass ppm of a lubricity improver was further added to produce a light oil composition. Table 5 shows the properties of the obtained light oil composition and the performance obtained as a result of an engine bench test using the engine shown in Table 1.

Figure 2012031333
Figure 2012031333

この結果、実施例1〜4の軽油組成物は、90%留出温度が345℃よりも高い直留軽油留分のみを脱硫処理して得られた脱硫軽油基材と、直留灯油を脱硫処理して得られた脱硫灯油基材とを配合した比較例1の軽油組成物に比べて、低燃費であり、かつPM堆積によるDPFの差圧上昇が抑制されており、さらにCO及びTHCの排出が少ないことがわかった。これに対して、LCO留分の混合量が多い比較例2の軽油組成物では、比較例1の軽油組成物に比べて燃費向上効果は確認されたものの、DPF差圧上昇が顕著であり、かつNOx、CO、THCの悪化が確認された。これらの結果から、90%留出温度が特定の範囲内にあるLGO留分と90%留出温度が特定の範囲内にあるLCO留分とを、特定の混合比で混合した原料混合油を脱硫処理して得られる脱硫軽油基材を含む本発明の軽油組成物を用いることにより、燃費向上と優れた排出ガス性能を両立させることができることが明らかである。   As a result, the light oil compositions of Examples 1 to 4 were obtained by desulfurizing straight-run kerosene and a desulfurized light oil base material obtained by desulfurizing only a straight-run light oil fraction having a 90% distillation temperature higher than 345 ° C. Compared to the light oil composition of Comparative Example 1 blended with the desulfurized kerosene base material obtained by the treatment, the fuel efficiency is low, and the increase in the differential pressure of the DPF due to PM deposition is suppressed. It turned out that there was little discharge. On the other hand, in the light oil composition of Comparative Example 2 in which the amount of LCO fraction mixed is large, the fuel efficiency improvement effect was confirmed as compared with the light oil composition of Comparative Example 1, but the DPF differential pressure increase was significant. In addition, deterioration of NOx, CO, and THC was confirmed. From these results, a raw material mixed oil obtained by mixing an LGO fraction having a 90% distillation temperature within a specific range and an LCO fraction having a 90% distillation temperature within a specific range at a specific mixing ratio is obtained. By using the light oil composition of the present invention including the desulfurized light oil base material obtained by the desulfurization treatment, it is apparent that both improvement in fuel efficiency and excellent exhaust gas performance can be achieved.

Claims (1)

常圧蒸留装置から留出する90%留出温度が330〜345℃の直留軽油留分と、流動接触分解装置から得られる90%留出温度が320〜350℃の接触分解軽油留分とを容量割合で95:5〜80:20で混合したものを、脱硫処理して得られる脱硫軽油基材を含む軽油組成物であって、
(a)セタン価が50〜60、
(b)90%留出温度が282〜336℃、
(c)15℃密度が0.832〜0.848g/cm
(d)引火点が61℃以上、
(e)40℃動粘度が1.9〜4.1mm/s、
(f)硫黄分が50質量ppm以下、
(g)全芳香族量が30質量%以下、
(h)多環芳香族が4.5質量%以下、及び
(i)HFRRが420μm以下
であることを特徴とする軽油組成物。
A straight-run gas oil fraction having a 90% distillation temperature of 330 to 345 ° C. distilled from an atmospheric distillation apparatus, and a catalytic cracking gas oil fraction having a 90% distillation temperature of 320 to 350 ° C. obtained from a fluid catalytic cracker Is a gas oil composition comprising a desulfurized light oil base material obtained by desulfurizing a mixture of 95: 5 to 80:20 by volume ratio,
(A) a cetane number of 50-60,
(B) 90% distillation temperature is 282 to 336 ° C,
(C) 15 degreeC density is 0.832-0.848g / cm < 3 >,
(D) Flash point is 61 ° C or higher,
(E) Kinematic viscosity at 40 ° C. of 1.9 to 4.1 mm 2 / s,
(F) Sulfur content is 50 mass ppm or less,
(G) The total aromatic content is 30% by mass or less,
(H) A light oil composition, wherein the polycyclic aromatic is 4.5% by mass or less, and (i) HFRR is 420 μm or less.
JP2010173881A 2010-08-02 2010-08-02 Light oil composition Active JP5437193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010173881A JP5437193B2 (en) 2010-08-02 2010-08-02 Light oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010173881A JP5437193B2 (en) 2010-08-02 2010-08-02 Light oil composition

Publications (2)

Publication Number Publication Date
JP2012031333A true JP2012031333A (en) 2012-02-16
JP5437193B2 JP5437193B2 (en) 2014-03-12

Family

ID=45845121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010173881A Active JP5437193B2 (en) 2010-08-02 2010-08-02 Light oil composition

Country Status (1)

Country Link
JP (1) JP5437193B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014109A (en) * 2014-07-02 2016-01-28 出光興産株式会社 Method for producing light oil base material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311462A (en) * 1995-05-19 1996-11-26 Idemitsu Kosan Co Ltd Diesel gas oil composition
JPH08333586A (en) * 1995-06-05 1996-12-17 Showa Yotsukaichi Sekiyu Kk Production of high-performance low-sulfur gas oil composition
JP2004075724A (en) * 2002-08-09 2004-03-11 Nippon Oil Corp Gas oil composition
JP2004137353A (en) * 2002-10-17 2004-05-13 Idemitsu Kosan Co Ltd Method for hydrodesulfurization of gas oil and gas oil composition obtained by the method
JP2005220329A (en) * 2004-02-09 2005-08-18 Nippon Oil Corp Gas oil composition
JP2006063232A (en) * 2004-08-27 2006-03-09 Nippon Oil Corp Gas oil composition
WO2006070660A1 (en) * 2004-12-28 2006-07-06 Japan Energy Corporation Method for producing super-low sulfur gas oil base material or super-low sulfur gas oil composition, and super-low sulfur gas oil composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08311462A (en) * 1995-05-19 1996-11-26 Idemitsu Kosan Co Ltd Diesel gas oil composition
JPH08333586A (en) * 1995-06-05 1996-12-17 Showa Yotsukaichi Sekiyu Kk Production of high-performance low-sulfur gas oil composition
JP2004075724A (en) * 2002-08-09 2004-03-11 Nippon Oil Corp Gas oil composition
JP2004137353A (en) * 2002-10-17 2004-05-13 Idemitsu Kosan Co Ltd Method for hydrodesulfurization of gas oil and gas oil composition obtained by the method
JP2005220329A (en) * 2004-02-09 2005-08-18 Nippon Oil Corp Gas oil composition
JP2006063232A (en) * 2004-08-27 2006-03-09 Nippon Oil Corp Gas oil composition
WO2006070660A1 (en) * 2004-12-28 2006-07-06 Japan Energy Corporation Method for producing super-low sulfur gas oil base material or super-low sulfur gas oil composition, and super-low sulfur gas oil composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014109A (en) * 2014-07-02 2016-01-28 出光興産株式会社 Method for producing light oil base material

Also Published As

Publication number Publication date
JP5437193B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
Song Introduction to chemistry of diesel fuels
Song Chemistry of diesel fuels
JP5121137B2 (en) Light oil composition
JP2003105354A (en) Fuel oil base and gas oil and gas oil composition containing the same
JP2004269685A (en) Gas oil composition and its manufacturing method
JP5520115B2 (en) Light oil composition
JP5520114B2 (en) Light oil composition
JP5154817B2 (en) Gas oil base and gas oil composition
JP5105858B2 (en) Hydrocarbon fuel oil and method for producing the same
JP5730006B2 (en) Light oil composition
JP2005220329A (en) Gas oil composition
JP5437193B2 (en) Light oil composition
JP5121138B2 (en) Light oil composition
JP4658491B2 (en) Production method of environment-friendly diesel oil
JP2004067906A (en) Gas oil composition and its manufacturing method
JP5084583B2 (en) Method for producing light oil composition
JP4119190B2 (en) Light oil composition and method for producing the same
JP4808539B2 (en) Method for producing desulfurized gas oil base material
JP2004244628A (en) Gas oil with reduced sulfur content and its manufacturing process
JP4626950B2 (en) Eco-friendly gasoline and method for producing the same
JP4803785B2 (en) Method for producing gasoline base material, environmentally friendly gasoline, and method for producing the same
JP4216624B2 (en) Method for producing deep desulfurized diesel oil
CN103562358A (en) Gas oil composition and method for producing same
JP5036074B2 (en) Environmentally friendly gasoline
JP5436041B2 (en) Light oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131211

R150 Certificate of patent or registration of utility model

Ref document number: 5437193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250