JP2012031025A - Garnet-type lithium ion-conducting oxide and method for producing the same - Google Patents

Garnet-type lithium ion-conducting oxide and method for producing the same Download PDF

Info

Publication number
JP2012031025A
JP2012031025A JP2010173392A JP2010173392A JP2012031025A JP 2012031025 A JP2012031025 A JP 2012031025A JP 2010173392 A JP2010173392 A JP 2010173392A JP 2010173392 A JP2010173392 A JP 2010173392A JP 2012031025 A JP2012031025 A JP 2012031025A
Authority
JP
Japan
Prior art keywords
garnet
lithium ion
type lithium
ion conductive
conductive oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010173392A
Other languages
Japanese (ja)
Other versions
JP5617417B2 (en
Inventor
Hiroshi Sawada
博 佐和田
Shingo Ota
慎吾 太田
Hidehito Matsuo
秀仁 松尾
Masahiko Asaoka
賢彦 朝岡
Satoru Kosaka
悟 小坂
Yoshihiro Kishida
佳大 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2010173392A priority Critical patent/JP5617417B2/en
Publication of JP2012031025A publication Critical patent/JP2012031025A/en
Application granted granted Critical
Publication of JP5617417B2 publication Critical patent/JP5617417B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a garnet-type lithium ion-conducting oxide which has high conductivity and has a small rate of change of conductivity against temperature.SOLUTION: The garnet-type lithium ion-conducting oxide includes aluminum in a skeleton represented by LiLn(MM)O(wherein Ln is one or more sorts of elements selected from the group consisting of La, Pr, Nd, etc., Mis one or more sorts of elements selected from the group consisting of Si, Sc, Ti, V, Ga, Ge, Y, Zr, Nb, In, Sb, Te, Hf, Ta, W, and Bi, Mis an element different from Mand one or more sorts of elements selected from the group consisting of Sc, Ti, V, Y, Nb, Hf, Ta, Si, Ga and Ge, x is a number which satisfies 3≤x≤8, y and z are numbers which satisfy y>0, z≥0, 1.9≤y+z≤2.1, and t is a number which satisfies 11≤t≤13).

Description

本発明は、ガーネット型リチウムイオン伝導性酸化物及びその製法に関する。   The present invention relates to a garnet-type lithium ion conductive oxide and a method for producing the same.

全固体型リチウムイオン二次電池は、非水電解液を用いるリチウム二次電池に比べて、固体電解質を用いるため発火の心配がない。しかし、高容量の全固体型リチウムイオン二次電池は世界的に見ても未だ実用化されていない。この原因の一つに固体電解質自体の問題がある。固体電解質に求められる主な特性として、リチウムイオン伝導度(導電率)が高いこと、化学的安定性に優れていること、電位窓が広いこと、の3つが挙げられる。ガーネット型酸化物は、こうした特性のうち、化学的安定性に優れ、電位窓が広いという利点を持つため、固体電解質の有望な候補の一つである(例えば非特許文献1,2参照)。   Compared to a lithium secondary battery using a non-aqueous electrolyte, the all solid-state lithium ion secondary battery uses a solid electrolyte, so there is no fear of ignition. However, high-capacity all solid-state lithium ion secondary batteries have not yet been put into practical use even in the world. One of the causes is a problem of the solid electrolyte itself. There are three main characteristics required for a solid electrolyte: high lithium ion conductivity (conductivity), excellent chemical stability, and a wide potential window. A garnet oxide is one of the promising candidates for a solid electrolyte because of its excellent chemical stability and wide potential window among these characteristics (see, for example, Non-Patent Documents 1 and 2).

J. Am. Ceram. Soc., 2003年,86巻3号,437-440頁J. Am. Ceram. Soc., 2003, 86, 3, 437-440 Angew. Chem. Int. Ed., 2007年, 46巻, 7778-7781頁Angew. Chem. Int. Ed., 2007, 46, 7778-7781

こうしたガーネット型酸化物は、さらなる特性向上が望まれている。特に、導電率を上げることや温度に対する導電率の変化の割合を小さくすることが望まれている。   Such garnet-type oxides are desired to have further improved characteristics. In particular, it is desired to increase the conductivity and reduce the rate of change in conductivity with respect to temperature.

本発明は、高い導電率を有すると共に、温度に対する導電率の変化の割合が小さいガーネット型リチウムイオン伝導性酸化物を提供することを主目的とする。   The main object of the present invention is to provide a garnet-type lithium ion conductive oxide having a high conductivity and a small rate of change in conductivity with respect to temperature.

上述した目的を達成するために、本発明者らは、鋭意研究を重ねた結果、ガーネット型リチウムイオン伝導性酸化物にAlを適量添加することにより、導電率が向上すると共に、導電率の活性化エネルギーが低下して温度に対する導電率の変化の割合が小さくなることを見いだし、本発明を完成するに至った。   In order to achieve the above-described object, the present inventors have conducted intensive research. As a result, by adding an appropriate amount of Al to a garnet-type lithium ion conductive oxide, the conductivity is improved and the activity of the conductivity is improved. It has been found that the rate of change in electrical conductivity with respect to temperature becomes smaller due to the decrease in chemical energy, and the present invention has been completed.

即ち、本発明のガーネット型リチウムイオン伝導性酸化物は、
LixLn3(M1 y2 z)Ot …(1)
(式(1)中、Lnは、La,Pr,Nd,Sm,Lu,Y,K,Mg,Ba,Ca,Srからなる群より選ばれた1種以上の元素、
1は、Si,Sc,Ti,V,Ga,Ge,Y,Zr,Nb,In,Sb,Te,Hf,Ta,W,Biからなる群より選ばれた1種以上の元素、
2は、M1とは異なる元素であって、Sc,Ti,V,Y,Nb,Hf,Ta,Si,Ga及びGeからなる群より選ばれた1種以上の元素、
xは、3≦x≦8を満たす数、
y及びzは、y>0,z≧0,1.9≦y+z≦2.1を満たす数、
tは、11≦t≦13を満たす数)
で表される骨格中にAlを含有しており、Alは前記LixLn3(M1 y2 z)Otの結晶格子内及び前記LixLn3(M1 y2 z)Otの粒子間の粒界の少なくとも一方に存在するものである。
That is, the garnet-type lithium ion conductive oxide of the present invention is
Li x Ln 3 (M 1 y M 2 z ) O t (1)
(In the formula (1), Ln is one or more elements selected from the group consisting of La, Pr, Nd, Sm, Lu, Y, K, Mg, Ba, Ca, Sr,
M 1 is one or more elements selected from the group consisting of Si, Sc, Ti, V, Ga, Ge, Y, Zr, Nb, In, Sb, Te, Hf, Ta, W, Bi,
M 2 is an element different from M 1, and one or more elements selected from the group consisting of Sc, Ti, V, Y, Nb, Hf, Ta, Si, Ga, and Ge,
x is a number satisfying 3 ≦ x ≦ 8,
y and z are numbers satisfying y> 0, z ≧ 0, 1.9 ≦ y + z ≦ 2.1,
t is a number satisfying 11 ≦ t ≦ 13)
Al is contained in the skeleton represented by the formula, and Al is contained in the crystal lattice of the Li x Ln 3 (M 1 y M 2 z ) O t and the Li x Ln 3 (M 1 y M 2 z ) O. It exists in at least one of the grain boundaries between the grains of t .

本発明のガーネット型リチウムイオン伝導性酸化物の製法は、
上述したガーネット型リチウムイオン伝導性酸化物を製造する方法であって、
(a)式(1)の各元素を含む出発原料を式(1)の化学量論比になるようにそれぞれ秤量し、混合した後の粉末を仮焼し、その後、仮焼した粉末に、本焼結でのLiの欠損を補うためにリチウム化合物を添加し、該リチウム化合物を添加した粉末を再度仮焼することにより本焼結前粉末を得る工程と、
(b)該本焼結前粉末を成形したあとアルミナ製焼成容器中で本焼結を行うか、又は、前記本焼結前粉末にAl元素を有する化合物を添加した粉末を成形したあと本焼結を行うことにより、上述したガーネット型リチウムイオン伝導性酸化物を得る工程と、
を含むものである。
The method for producing the garnet-type lithium ion conductive oxide of the present invention is as follows:
A method for producing the above-described garnet-type lithium ion conductive oxide,
(A) Each starting material containing each element of formula (1) is weighed so as to have a stoichiometric ratio of formula (1), and the mixed powder is calcined, and then the calcined powder is A step of adding a lithium compound to make up for the loss of Li in the main sintering, and pre-sintering the powder to which the lithium compound has been added to obtain a pre-sintering powder;
(B) After the pre-sintering powder is formed, main sintering is performed in an alumina firing container, or after the pre-sintering powder is added with a compound containing an Al element, the main sintering is performed. A step of obtaining the above-described garnet-type lithium ion conductive oxide by
Is included.

本発明のガーネット型リチウムイオン伝導性酸化物によれば、従来のガーネット型リチウムイオン伝導性酸化物に比べて、導電率が向上すると共に、導電率の活性化エネルギーが低下して温度に対する導電率の変化の割合が小さくなるという効果が得られる。このような効果が得られるメカニズムは明らかではないが、例えば、以下の(1),(2)が考えられる。(1)少なくとも一部のAlが、ガーネットの結晶格子中の中に取り込まれ、Liサイトの一部に置換している場合、以下のメカニズムが考えられる。すなわち、リチウムイオン伝導性ガーネット型酸化物のLiサイトは4配位又は6配位をとり、Lnサイトは8配位をとり、M1,M2サイトは6配位をとることが知られている。Alは一般に4配位又は6配位をとるため、Liサイト、M1サイト又はM2サイトに置換している可能性がある。但し、元々Liサイトに空サイトが多いことから、AlはLiサイトに置換しやすいと考えられる。AlとLiのイオン半径を比較すると、Al3+(4配位:0.39Å、6配位:0.535Å)、Li+(4配位:0.59Å、6配位:0.76Å)である。このため、AlがLiサイトを置換すると、Al−O距離が短いので、Li−O距離は若干伸びて、Liイオンが伝導しやすくなると考えられる。但し、Al量が多くなりすぎると、AlがLi伝導を阻害すると考えられる。以上のことから、添加するAl量には適正量が存在すると考えられる。(2)少なくとも一部のAlが、ガーネットの結晶粒界中に存在している場合、以下のメカニズムが考えられる。すなわち、結晶粒界中のAlが、固体電解質の焼結助剤として作用し、電解質の焼結密度を高め、粒界抵抗を下げ、その結果導電率が向上したと考えられる。なお、本発明のガーネット型リチウムイオン伝導性酸化物は、全固体型リチウムイオン二次電池への適用が可能であり、特に高出力が要求される自動車搭載用の二次電池への適用が期待される。 According to the garnet-type lithium ion conductive oxide of the present invention, the conductivity is improved as compared with the conventional garnet-type lithium ion conductive oxide, and the activation energy of the conductivity is reduced, so that the conductivity with respect to the temperature is reduced. The effect of reducing the rate of change of is obtained. Although the mechanism for obtaining such an effect is not clear, for example, the following (1) and (2) are conceivable. (1) When at least a part of Al is taken into the crystal lattice of garnet and is replaced with a part of the Li site, the following mechanism is considered. That is, it is known that the Li site of the lithium ion conductive garnet-type oxide has 4 or 6 coordination, the Ln site has 8 coordination, and the M 1 and M 2 sites have 6 coordination. Yes. Al is generally tetracoordinate or hexacoordinate, and thus may be substituted with a Li site, an M 1 site, or an M 2 site. However, since the Li site originally has many empty sites, it is considered that Al is easily replaced with the Li site. Comparing the ionic radii of Al and Li, Al 3+ (4-coordinate: 0.39Å, 6-coordinate: 0.535Å), Li + (4-coordinate: 0.59Å, 6-coordinate: 0.76Å) It is. For this reason, when Al substitutes for the Li site, the Al—O distance is short, so the Li—O distance is slightly increased, and Li ions are likely to be conducted. However, if the amount of Al becomes too large, it is considered that Al inhibits Li conduction. From the above, it is considered that there is an appropriate amount of Al to be added. (2) When at least a part of Al is present in the grain boundary of garnet, the following mechanism can be considered. That is, it is considered that Al in the grain boundary acts as a sintering aid for the solid electrolyte, increases the sintered density of the electrolyte, lowers the grain boundary resistance, and as a result, improves the conductivity. The garnet-type lithium ion conductive oxide of the present invention can be applied to an all-solid-state lithium ion secondary battery, and is particularly expected to be applied to a secondary battery mounted on an automobile that requires high output. Is done.

XRDパターンを示すグラフである。It is a graph which shows a XRD pattern. La3モルに対するAlのモル比と25℃導電率との関係を示すグラフである。It is a graph which shows the relationship between the molar ratio of Al with respect to La3 mol, and 25 degreeC electrical conductivity. La3モルに対するAlのモル比と導電率の活性化エネルギーとの関係を示すグラフである。It is a graph which shows the relationship between the molar ratio of Al with respect to La3 mol, and the activation energy of electrical conductivity. La3モルに対するAlのモル比と格子定数との関係を示すグラフである。It is a graph which shows the relationship between the molar ratio of Al with respect to La3 mol, and a lattice constant.

本発明のガーネット型リチウムイオン伝導性酸化物は、式(1)つまりLixLn3(M1 y2 z)Otで表される骨格中にAlを含有しており、Alは前記LixLn3(M1 y2 z)Otの結晶格子内及び前記LixLn3(M1 y2 z)Otの粒子間の粒界の少なくとも一方に存在するものである。ここで、Lnは、La,Pr,Nd,Sm,Lu,Y,K,Mg,Ba,Ca,Srからなる群より選ばれた1種以上の元素であるが、このうちLaが好ましい。M1は、Si,Sc,Ti,V,Ga,Ge,Y,Zr,Nb,In,Sb,Te,Hf,Ta,W,Biからなる群より選ばれた1種以上の元素であるが、このうちZrが好ましい。M2は、M1とは異なる元素であって、Sc,Ti,V,Y,Nb,Hf,Ta,Si,Ga及びGeからなる群より選ばれた1種以上の元素であるが、このうちNbが好ましい。xは、3≦x≦8を満たす数であるが、5≦x≦7を満たすことが好ましい。また、xは、5+yとしてもよい。y及びzは、y>0,z≧0,1.9≦y+z≦2.1を満たす数である。yは、1.4≦y<2を満たすことが好ましく、1.625≦y≦1.875を満たすことがより好ましい。zは、2−yとしてもよい。tは、11≦t≦13を満たす数(例えば12)である。Alは、Ln3モルに対して0.05モル以上0.30モル以下含有していることが好ましく、0.07モル以上0.25モル以下含有していることがより好ましい。 The garnet-type lithium ion conductive oxide of the present invention contains Al in the skeleton represented by the formula (1), that is, Li x Ln 3 (M 1 y M 2 z ) O t , and Al is the Li being present in at least one of x Ln 3 (M 1 y M 2 z) within the crystal lattice of O t and the Li x Ln 3 (M 1 y M 2 z) grain boundary between O t of the particles. Here, Ln is one or more elements selected from the group consisting of La, Pr, Nd, Sm, Lu, Y, K, Mg, Ba, Ca, and Sr, and among these, La is preferable. M 1 is one or more elements selected from the group consisting of Si, Sc, Ti, V, Ga, Ge, Y, Zr, Nb, In, Sb, Te, Hf, Ta, W, and Bi. Of these, Zr is preferred. M 2 is an element different from M 1 and is one or more elements selected from the group consisting of Sc, Ti, V, Y, Nb, Hf, Ta, Si, Ga, and Ge. Of these, Nb is preferred. x is a number that satisfies 3 ≦ x ≦ 8, but preferably satisfies 5 ≦ x ≦ 7. Further, x may be 5 + y. y and z are numbers satisfying y> 0, z ≧ 0, 1.9 ≦ y + z ≦ 2.1. y preferably satisfies 1.4 ≦ y <2, and more preferably satisfies 1.625 ≦ y ≦ 1.875. z may be 2-y. t is a number satisfying 11 ≦ t ≦ 13 (for example, 12). Al is preferably contained in an amount of 0.05 mol or more and 0.30 mol or less, and more preferably 0.07 mol or more and 0.25 mol or less, relative to 3 mol of Ln.

本発明のガーネット型リチウムイオン伝導性酸化物は、全固体型リチウム二次電池に利用可能である。こうした二次電池は、リチウムイオンを吸蔵・放出しうる正極活物質を有する正極と、リチウムイオンを吸蔵・放出しうる負極活物質を有する負極との間に、本発明のガーネット型リチウムイオン伝導性酸化物を介在させた構成とすることができる。正極活物質としては、遷移金属元素を含む硫化物や、リチウムと遷移金属元素とを含む酸化物などを用いることができる。具体的には、TiS2、TiS3、MoS3、FeS2などの遷移金属硫化物、Li(1-a)MnO2(0≦a<1など、以下同じ)、Li(1-a)Mn24などのリチウムマンガン複合酸化物、Li(1-a)CoO2などのリチウムコバルト複合酸化物、Li(1-a)NiO2などのリチウムニッケル複合酸化物、LiV23などのリチウムバナジウム複合酸化物、V25などの遷移金属酸化物などを用いることができる。これらのうち、リチウムの遷移金属複合酸化物、例えば、LiCoO2、LiNiO2、LiMnO2、LiV23などが好ましい。また、負極活物質としては、リチウム、リチウム合金、スズ化合物などの無機化合物、リチウムイオンを吸蔵・放出可能な炭素質材料、導電性ポリマーなどが挙げられるが、このうち炭素質材料が安全性の面から見て好ましい。この炭素質材料は、特に限定されるものではないが、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。このうち、人造黒鉛、天然黒鉛などのグラファイト類が、金属リチウムに近い作動電位を有し、高い作動電圧での充放電が可能であり電解質塩としてリチウム塩を使用した場合に自己放電を抑え、且つ充電時おける不可逆容量を少なくできるため、好ましい。 The garnet-type lithium ion conductive oxide of the present invention can be used for an all solid-state lithium secondary battery. Such a secondary battery has a garnet-type lithium ion conductivity according to the present invention between a positive electrode having a positive electrode active material capable of occluding and releasing lithium ions and a negative electrode having a negative electrode active material capable of occluding and releasing lithium ions. An oxide may be interposed. As the positive electrode active material, a sulfide containing a transition metal element, an oxide containing lithium and a transition metal element, or the like can be used. Specifically, transition metal sulfides such as TiS 2 , TiS 3 , MoS 3 , and FeS 2 , Li (1-a) MnO 2 (0 ≦ a <1, etc., the same shall apply hereinafter), Li (1-a) Mn Lithium manganese composite oxide such as 2 O 4 , lithium cobalt composite oxide such as Li (1-a) CoO 2 , lithium nickel composite oxide such as Li (1-a) NiO 2 , lithium such as LiV 2 O 3 Vanadium composite oxides, transition metal oxides such as V 2 O 5, and the like can be used. Of these, lithium transition metal composite oxides such as LiCoO 2 , LiNiO 2 , LiMnO 2 , and LiV 2 O 3 are preferable. In addition, examples of the negative electrode active material include inorganic compounds such as lithium, lithium alloys, and tin compounds, carbonaceous materials that can occlude and release lithium ions, and conductive polymers. Of these, carbonaceous materials are safe. It is preferable from the viewpoint. The carbonaceous material is not particularly limited, and examples thereof include cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, and carbon fibers. Of these, graphites such as artificial graphite and natural graphite have an operating potential close to that of metallic lithium, can be charged and discharged at a high operating voltage, and suppresses self-discharge when a lithium salt is used as an electrolyte salt. In addition, the irreversible capacity during charging can be reduced, which is preferable.

本発明のガーネット型リチウムイオン伝導性酸化物の製造方法の一例について説明する。この酸化物の製造方法は、(a)本焼結前粉末を作製する工程と、(b)本焼結前粉末を成形したあとアルミナ製焼成容器中で本焼結を行うか、又は、本焼結前粉末にAl元素を有する化合物を添加した粉末を成形したあと本焼結を行う工程とを含む。このうち、工程(a)は、1)第1混合工程、2)第1仮焼工程、3)第2混合工程、4)第2仮焼工程を含む。以下、工程(a)の1)〜4)及び工程(b)について、順に説明する。   An example of the manufacturing method of the garnet-type lithium ion conductive oxide of this invention is demonstrated. This oxide manufacturing method includes (a) a step of producing a pre-sintering powder, and (b) forming a pre-sintering powder and then performing a main sintering in an alumina firing container. And a step of performing main sintering after forming a powder obtained by adding a compound containing Al element to the powder before sintering. Among these, the step (a) includes 1) a first mixing step, 2) a first calcination step, 3) a second mixing step, and 4) a second calcination step. Hereinafter, steps 1) to 4) and step (b) of step (a) will be described in order.

(a)本焼結前粉末の作製
1)第1混合工程
第1混合工程では、式(1)つまりLixLn3(M1 y2 z)Ot(Ln,M1,M2,x,y,z,tは前出のとおり)の各元素を含む出発原料を式(1)の化学量論比になるようにそれぞれ秤量し、混合する。出発原料としては、各元素の炭酸塩や硫酸塩、硝酸塩、シュウ酸塩、塩化物、水酸化物、酸化物などを用いることができる。このうち、熱分解して炭酸ガスを生じる炭酸塩及び熱分解して水蒸気を生じる水酸化物が、ガスの処理が比較的容易であり好ましい。例えば、Liの炭酸塩、Lnの水酸化物、M1の酸化物及びM2の酸化物を用いることが好ましい。混合方法は、溶媒に入れずに乾式で混合粉砕してもよいし、溶媒に入れて湿式で混合粉砕するものとしてもよいが、溶媒に入れて湿式の混合粉砕を行うことが混合性の向上の面からは好ましい。この混合方法は、例えば、遊星ミル、アトライター、ボールミルなどを用いることができる。溶媒としては、Liが溶解しにくいものが好ましく、例えばエタノールなどの有機溶媒がより好ましい。混合時間は、混合量にもよるが、例えば2h〜8hとすることができる。
(A) Preparation of powder before main sintering 1) First mixing step In the first mixing step, the formula (1), that is, Li x Ln 3 (M 1 y M 2 z ) O t (Ln, M 1 , M 2 , (x, y, z, and t are as described above) The starting materials containing each element are weighed and mixed so as to have a stoichiometric ratio of the formula (1). As starting materials, carbonates, sulfates, nitrates, oxalates, chlorides, hydroxides, oxides and the like of each element can be used. Of these, carbonates that thermally decompose to generate carbon dioxide and hydroxides that thermally decompose to generate water vapor are preferable because they are relatively easy to process. For example, it is preferable to use Li carbonate, Ln hydroxide, M 1 oxide, and M 2 oxide. The mixing method may be dry mixing and pulverization without adding a solvent, or may be mixed and pulverized wet in a solvent. From the standpoint of this, it is preferable. As this mixing method, for example, a planetary mill, an attritor, a ball mill, or the like can be used. As the solvent, those in which Li is difficult to dissolve are preferable, and for example, an organic solvent such as ethanol is more preferable. The mixing time depends on the amount of mixing, but can be 2h to 8h, for example.

2)第1仮焼工程
第1仮焼工程では、第1混合工程で得られた混合粉末を仮焼する。このときの仮焼温度は、出発原料の状態変化(例えばガスの発生とか相変化など)が起きる温度以上、本焼結時の温度未満とするのが好ましい。例えば、出発原料の一つとしてLi2CO3を用いた場合には、この炭酸塩が分解する温度以上、本焼結時の温度未満とするのが好ましい。こうすれば、のちの本焼結において、熱分解でのガス発生による密度の低下を抑制することができる。具体的には、仮焼温度は、900℃〜1150℃とすることが好ましい。
2) First calcination step In the first calcination step, the mixed powder obtained in the first mixing step is calcined. The calcining temperature at this time is preferably not less than the temperature at which the state change (for example, gas generation or phase change) of the starting material occurs and less than the temperature during the main sintering. For example, when Li 2 CO 3 is used as one of the starting materials, it is preferable that the temperature be higher than the temperature at which the carbonate is decomposed and lower than the temperature at the time of main sintering. If it carries out like this, the fall of the density by the gas generation | occurrence | production by thermal decomposition can be suppressed in subsequent main sintering. Specifically, the calcination temperature is preferably 900 ° C. to 1150 ° C.

3)第2混合工程
第2混合工程では、第1仮焼工程で得られた仮焼粉末に、本焼結でのLiの欠損を補うためのリチウム化合物(例えば炭酸リチウム)を添加し、混合する。このときの添加量は、第1仮焼工程、第2仮焼工程及び本焼結工程などの焼成工程の各条件に応じて、経験的に定めるものとする。第2混合工程では、添加量として仮焼粉末中のLi量に対してLi量が4atomic%(at.%)以上20at.%以下の範囲に相当するLiを添加することが好ましい。
3) Second mixing step In the second mixing step, a lithium compound (for example, lithium carbonate) is added to the calcined powder obtained in the first calcining step to compensate for the loss of Li in the main sintering, and mixed. To do. The addition amount at this time is determined empirically according to each condition of the firing process such as the first calcining process, the second calcining process, and the main sintering process. In the second mixing step, the amount of Li is 4 atomic% (at.%) Or more and 20 at. It is preferable to add Li corresponding to a range of% or less.

4)第2仮焼工程
第2仮焼工程では、第2混合工程で得られた混合粉末を仮焼する。この工程は、第1仮焼工程と同様の条件で行ってもよいが、リチウム化合物の状態変化が起きる温度以上、第1仮焼工程の仮焼温度未満で行うことが好ましい。例えば、リチウム化合物として炭酸リチウムを用いた場合には、この炭酸塩が分解する温度以上、第1仮焼工程の仮焼温度未満とするのが好ましい。こうすれば、再仮焼した材料が固化してしまうのが抑制されるため、本焼結工程の前に、再仮焼した材料を粉砕する必要がなく好ましい。また、第2仮焼工程では、第1仮焼工程に比して状態変化させる必要のある材料の量が僅かであるため、仮焼時間を短くしてもよい。この第2仮焼工程を行うことにより、のちの本焼結工程において、第2混合工程で添加したリチウム化合物の状態変化に伴う密度の低下を抑制することができる。具体的には、仮焼温度は、900℃〜1150℃とすることが好ましい。
4) Second calcination step In the second calcination step, the mixed powder obtained in the second mixing step is calcined. This step may be performed under the same conditions as the first calcination step, but is preferably performed at a temperature higher than the temperature at which the state change of the lithium compound occurs and lower than the calcination temperature of the first calcination step. For example, when lithium carbonate is used as the lithium compound, it is preferable that the temperature be higher than the temperature at which the carbonate is decomposed and lower than the calcination temperature in the first calcination step. By doing so, the re-calcined material is suppressed from solidifying, and therefore it is preferable that the re-calcined material does not need to be pulverized before the main sintering step. Further, in the second calcination step, the amount of material that needs to be changed as compared with the first calcination step is small, and therefore the calcination time may be shortened. By performing this second calcining step, it is possible to suppress a decrease in density accompanying a change in state of the lithium compound added in the second mixing step in the subsequent main sintering step. Specifically, the calcination temperature is preferably 900 ° C. to 1150 ° C.

(b)本焼結前粉末の本焼結
この本焼結では、第2仮焼工程で得られた材料(本焼結前粉末という)を成形したあとアルミナ製焼成容器中で本焼結を行うか、又は、本焼結前粉末にAl元素を有する化合物(例えばアルミナ)を添加した粉末を成形したあと本焼結を行う。後者の場合、焼成容器はアルミナ製であってもよいし、他の材質で作製されたものでもよい。本焼結の温度は、第1仮焼温度や第2仮焼温度よりも高く設定する。本焼結前粉末は、2回仮焼しており、固化・固着していることが少ないため、簡単な解砕により比較的容易に成形体へ成形することができる。成形体への成形は、本焼結前粉末を、冷間等方成形(CIP)や熱間等方成形(HIP)、金型成形、ホットプレスなどにより任意の形状に行うことができる。
(B) Main sintering of powder before main sintering In this main sintering, the material obtained in the second calcining step (referred to as powder before main sintering) is molded and then main sintering is performed in an alumina firing container. Alternatively, the main sintering is performed after forming a powder obtained by adding a compound containing Al element (for example, alumina) to the powder before the main sintering. In the latter case, the firing container may be made of alumina or may be made of other materials. The temperature of the main sintering is set higher than the first calcination temperature and the second calcination temperature. Since the pre-sintered powder is calcined twice and rarely solidified or fixed, it can be formed into a molded body relatively easily by simple crushing. Molding into a compact can be performed by subjecting the pre-sintered powder to an arbitrary shape by cold isotropic molding (CIP), hot isotropic molding (HIP), mold molding, hot pressing, or the like.

以上詳述した製法によれば、出発原料の混合粉末を仮焼したあと、経験的に求めた添加量のリチウム化合物を添加して再仮焼し、その後本焼結を行うため、組成のずれを精度よく抑制することができる。なお、本発明のガーネット型リチウムイオン伝導性酸化物の製法は、これに限定されるものではなく、他の製法を採用しても構わない。   According to the manufacturing method described in detail above, after calcining the mixed powder of the starting material, the addition amount of the lithium compound empirically obtained is added and recalcined, and then the main sintering is performed. Can be accurately controlled. In addition, the manufacturing method of the garnet-type lithium ion conductive oxide of this invention is not limited to this, You may employ | adopt another manufacturing method.

[本焼結前粉末の作製]
本発明の効果を実証するために、ガーネット型リチウムイオン伝導性酸化物の例として、Li6.75La3(Zr1.75Nb0.25)O12を取り上げた。出発原料にはLi2CO3、La(OH)3、ZrO2、Nb25を用いた。はじめに、出発原料を化学量論比になるように秤量し、エタノール中にて遊星ボールミル(300rpm/ジルコニアボール)で2時間、混合・粉砕を行った(第1混合工程)。出発原料の混合粉末をボールとエタノールから分離した後、アルミナ製坩堝中にて、950℃、10時間大気雰囲気で仮焼を行った(第1仮焼工程)。その後、本焼結でのLiの欠損を補う目的で、仮焼した粉末に、Li6.75La3(Zr1.75Nb0.25)O12の組成中のLi量に対してLi換算で10at.%になるようにLi2CO3を過剰添加した。この混合粉末を、混合のためエタノール中にて遊星ボールミル(300rpm/ジルコニアボール)で2時間処理を行った(第2混合工程)。得られた粉末を再び950℃、10時間大気雰囲気の条件下で再度仮焼し(第2仮焼工程)、本焼結前粉末を得た。
[Preparation of powder before sintering]
In order to demonstrate the effect of the present invention, Li 6.75 La 3 (Zr 1.75 Nb 0.25 ) O 12 was taken up as an example of a garnet-type lithium ion conductive oxide. Li 2 CO 3 , La (OH) 3 , ZrO 2 , and Nb 2 O 5 were used as starting materials. First, starting materials were weighed so as to have a stoichiometric ratio, and mixed and pulverized for 2 hours in a planetary ball mill (300 rpm / zirconia balls) in ethanol (first mixing step). After the mixed powder of the starting material was separated from the balls and ethanol, calcination was performed in an alumina crucible in an air atmosphere at 950 ° C. for 10 hours (first calcination step). Thereafter, in order to make up for the loss of Li in the main sintering, the calcined powder was added to the Li amount in the composition of Li 6.75 La 3 (Zr 1.75 Nb 0.25 ) O 12 at 10 at. Li 2 CO 3 was excessively added so as to be a%. This mixed powder was treated in a planetary ball mill (300 rpm / zirconia ball) for 2 hours in ethanol for mixing (second mixing step). The obtained powder was again calcined again at 950 ° C. for 10 hours under atmospheric conditions (second calcining step) to obtain a pre-sintered powder.

[実施例1]
本焼結前粉末をペレット成型し、アルミナ製焼成容器中で1180℃、36時間大気中の条件下で本焼結を行い、ペレット試料を作製した。
[Example 1]
The pre-sintered powder was formed into a pellet and subjected to main sintering in an alumina firing container at 1180 ° C. for 36 hours in the atmosphere to prepare a pellet sample.

[実施例2]
本焼結前粉末に対して、0.9wt%のアルミナを加え、アルミナ乳鉢で30分充分に乾式混合した。その後、ペレット成型し、アルミナ製焼成容器中で1180℃、36時間大気中の条件下で本焼結を行い、ペレット試料を作製した。
[Example 2]
0.9 wt% alumina was added to the pre-sintered powder and thoroughly dry mixed in an alumina mortar for 30 minutes. Thereafter, pellet molding was performed, and main sintering was performed in an alumina firing container at 1180 ° C. for 36 hours in the air to prepare a pellet sample.

[実施例3]
本焼結前粉末に対して、1.5wt%のアルミナを加え、アルミナ乳鉢で30分充分に乾式混合した。その後、ペレット成型し、アルミナ製焼成容器中で1180℃、36時間大気中の条件下で本焼結を行い、ペレット試料を作製した。
[Example 3]
1.5 wt% alumina was added to the pre-sintered powder and thoroughly dry mixed in an alumina mortar for 30 minutes. Thereafter, pellet molding was performed, and main sintering was performed in an alumina firing container at 1180 ° C. for 36 hours in the air to prepare a pellet sample.

[実施例4]
本焼結前粉末に対して、3wt%のアルミナを加え、アルミナ乳鉢で30分充分に乾式混合した。その後、ペレット成型し、アルミナ製焼成容器中で1180℃、36時間大気中の条件下で本焼結を行い、ペレット試料を作製した。
[Example 4]
3 wt% alumina was added to the pre-sintered powder and thoroughly dry mixed in an alumina mortar for 30 minutes. Thereafter, pellet molding was performed, and main sintering was performed in an alumina firing container at 1180 ° C. for 36 hours in the air to prepare a pellet sample.

[比較例1]
本焼結前粉末の作製における第1混合工程の段階で、Al23も混合した。混合量はLa3モルに対して、Al0.15モルとした。それ以外は、[本焼結前粉末の作製]と同様の手順で本焼結前粉末を作製した。得られた本焼結前粉末をペレット成型し、アルミナ製焼成容器中で1180℃、36時間大気中の条件下で本焼結を行い、ペレット試料を作製した。
[Comparative Example 1]
Al 2 O 3 was also mixed at the stage of the first mixing step in producing the pre-sintered powder. The mixing amount was 0.15 mol of Al with respect to 3 mol of La. Other than that, the powder before this sintering was produced in the same procedure as [Production of powder before this sintering]. The obtained pre-sintered powder was formed into a pellet and subjected to main sintering in an alumina firing container at 1180 ° C. for 36 hours in the air to prepare a pellet sample.

[比較例2]
本焼結前粉末をペレット成型し、ジルコニア製焼成容器中で1180℃、36時間大気中の条件下で本焼結を行い、ペレット試料を作製した。
[Comparative Example 2]
The pre-sintered powder was formed into a pellet and subjected to main sintering in a zirconia firing container at 1180 ° C. for 36 hours in the air to prepare a pellet sample.

[導電率の測定]
恒温槽中にてACインピーダンスアナライザーを用い(周波数:40Hz〜110MHz、振幅電圧:100mV)、ナイキストプロットの円弧より抵抗値を求め、この抵抗値から導電率を算出した。ACインピーダンスアナライザーで測定する際のブロッキング電極にはAu電極を用いた。Au電極は市販のAuペーストを850℃、30分の条件で焼き付けることで形成した。得られた導電率を表1にまとめた。
[Measurement of conductivity]
Using an AC impedance analyzer in a thermostatic chamber (frequency: 40 Hz to 110 MHz, amplitude voltage: 100 mV), the resistance value was obtained from the arc of the Nyquist plot, and the conductivity was calculated from this resistance value. An Au electrode was used as a blocking electrode when measuring with an AC impedance analyzer. The Au electrode was formed by baking a commercially available Au paste at 850 ° C. for 30 minutes. The obtained conductivity is summarized in Table 1.

実施例1〜4で得られた試料は、3×10-4S/cm以上の高い導電率を示した。特に実施例1〜3で得られた試料は、6×10-4S/cm以上の高い導電率を示した。それに対して、比較例2で得られた試料は、3×10-5S/cmという低い導電率を示した。また、比較例1で得られた試料は、測定周波数:40Hz〜110MHzの範囲では、導電率を見積もることが出来なかった。 The samples obtained in Examples 1 to 4 showed a high conductivity of 3 × 10 −4 S / cm or more. In particular, the samples obtained in Examples 1 to 3 showed high conductivity of 6 × 10 −4 S / cm or more. On the other hand, the sample obtained in Comparative Example 2 showed a low conductivity of 3 × 10 −5 S / cm. Further, the conductivity of the sample obtained in Comparative Example 1 could not be estimated in the measurement frequency range of 40 Hz to 110 MHz.

[結晶構造の同定]
各試料の相は、XRD測定結果から求めた。XRDの測定は、XRD測定器(ブルカー(Buruker)製、D8ADVANCE)を用いて、試料粉末をCuKα、2θ:10〜120°、0.01°step/1sec.の条件で測定した。実施例1〜実施例5及び比較例1で得られた試料のXRDパターンを図1に示す(10°〜50°の拡大図)。図1のXRDパターンから、実施例1〜4及び比較例1で得られた試料は、ガーネット単一相と考えられ、他のピークは検出されなかった。一方、比較例2で得られた試料からは、La2Zr27のピークが検出された。
[Identification of crystal structure]
The phase of each sample was determined from the XRD measurement results. The XRD measurement was performed using an XRD measuring instrument (D8ADVANCE, manufactured by Bruker, Inc.) using CuKα, 2θ: 10 to 120 °, 0.01 ° step / 1 sec. It measured on condition of this. The XRD patterns of the samples obtained in Examples 1 to 5 and Comparative Example 1 are shown in FIG. 1 (enlarged view of 10 ° to 50 °). From the XRD pattern of FIG. 1, the samples obtained in Examples 1 to 4 and Comparative Example 1 were considered to be a garnet single phase, and other peaks were not detected. On the other hand, a La 2 Zr 2 O 7 peak was detected from the sample obtained in Comparative Example 2.

比較例1で得られた試料は、ガーネット単一相ながら、測定ができないほど導電率が低かったが、その理由は以下のように考えられる。比較例1のペレット中には、空孔がいくつか存在していた。これは、出発原料を混合する段階でAl23を混ぜたため、本焼結前粉末の段階で、LaAlO3が存在し(XRD測定により確認済み)、これが本焼結のときにガーネットに変化する際に、空孔を生成させ、結果として、固体電解質の導電率が低くなったと考えられる。 Although the sample obtained in Comparative Example 1 had a garnet single phase, its conductivity was so low that it could not be measured. The reason is considered as follows. Some pores were present in the pellet of Comparative Example 1. This is because Al 2 O 3 was mixed at the stage of mixing the starting materials, so LaAlO 3 was present at the stage of the powder before the main sintering (confirmed by XRD measurement), and this changed to garnet during the main sintering. In this case, it is considered that pores were generated, and as a result, the conductivity of the solid electrolyte was lowered.

比較例2で得られた試料は、坩堝にジルコニアを用いたため、試料中にはAlは存在していないと考えられる。一方で、実施例1〜4は、坩堝にアルミナを用い、試料によっては本焼結時にアルミナ添加を行っているので、ペレット中にAlが存在している。実施例1〜4の固体電解質ペレット中のLa3モルに対するAlのモル数をICP発光分析により求めた結果を表2に示す。   Since the sample obtained in Comparative Example 2 uses zirconia in the crucible, it is considered that Al is not present in the sample. On the other hand, since Examples 1 to 4 use alumina for the crucible and add alumina during the main sintering depending on the sample, Al is present in the pellets. Table 2 shows the results of ICP emission analysis for the number of moles of Al relative to 3 moles of La in the solid electrolyte pellets of Examples 1 to 4.

表2に示すようにガーネット単一相のXRDパターンが得られた試料中からAlが検出された。以上のことから、Alを混入させることにより、La2Zr27などの不純物の生成が抑制され、高い導電率を有する試料が得られたと考えられる。但し、Alの混入を仮焼の段階で行うと、本焼結時にはペレット中に空孔が生成し、高い導電率の電解質は得られないので、Alの混入は本焼結時に行うのが望ましいことが分かった。 As shown in Table 2, Al was detected in the sample from which the garnet single-phase XRD pattern was obtained. From the above, it is considered that by mixing Al, generation of impurities such as La 2 Zr 2 O 7 was suppressed, and a sample having high conductivity was obtained. However, if Al is mixed in the calcination stage, voids are generated in the pellet during the main sintering, and an electrolyte having a high conductivity cannot be obtained. Therefore, it is desirable to mix Al during the main sintering. I understood that.

[Al量と各種パラメータとの関係]
次に、固体電解質ペレット中のLa3モルに対するAlのモル数(ペレットAl量vs.La3という)と25℃導電率との関係を図2に示す。また、ペレットAl量vs.La3と導電率の活性化エネルギーとの関係を図3に示す。活性化エネルギー(Ea)は、25℃−100℃までの導電率データから、アレニウスの式:σ=Aexp(−Ea/kT)(σ:導電率、A:頻度因子、k:ボルツマン定数、T:絶対温度)を用い、アレニウスプロットの傾きを求めることにより算出した。更に、ペレットAl量vs.La3と結晶構造の格子定数(XRD測定データから求めた)との関係を図4に示す。
[Relation between Al content and various parameters]
Next, FIG. 2 shows the relationship between the number of moles of Al (referred to as pellet Al amount vs. La3) and the 25 ° C. conductivity relative to La3 mole in the solid electrolyte pellet. In addition, the amount of pellets Al. FIG. 3 shows the relationship between La3 and the activation energy of conductivity. The activation energy (Ea) is calculated from the conductivity data up to 25 ° C. to 100 ° C. from the Arrhenius equation: σ = Aexp (−Ea / kT) (σ: conductivity, A: frequency factor, k: Boltzmann constant, T : Absolute temperature) and calculating the slope of the Arrhenius plot. Furthermore, the pellet Al amount vs. FIG. 4 shows the relationship between La3 and the lattice constant of the crystal structure (determined from XRD measurement data).

図2及び図3に示すように、固体電解質中にAlを含有する試料は高い導電率及び低い活性化エネルギーを示した。特に、La3モルに対して、Alが0.05〜0.30モル(とりわけ0.07〜0.25モル)のときに優れた特性を示した。また、図4に示すように、ペレット中のAl量の増加に伴い、格子定数が若干低下する傾向が見られたことから、ペレット中のAlの一部はガーネット結晶構造中に存在することが示唆される。   As shown in FIGS. 2 and 3, the sample containing Al in the solid electrolyte showed high conductivity and low activation energy. In particular, excellent characteristics were exhibited when Al was 0.05 to 0.30 mol (especially 0.07 to 0.25 mol) with respect to 3 mol of La. In addition, as shown in FIG. 4, as the amount of Al in the pellet increased, the lattice constant tended to decrease slightly, so that a part of Al in the pellet may exist in the garnet crystal structure. It is suggested.

[その他の実施例]
上述した本焼結前粉末の作製において、出発原料をそれぞれLi6.5La3(Zr1.5Nb0.5)O12,Li6.625La3(Zr1.625Nb0.375)O12,Li6.875La3(Zr1.875Nb0.125)O12の化学量論比となるように秤量して本焼結前粉末を得た。こうして得られた各本焼結前粉末を成形したあとアルミナ製焼成容器を用いて本焼結を行うことにより、ガーネット型リチウムイオン伝導性酸化物を得た。各酸化物は、アルミナ製焼成容器を用いているため、Alを含有し、そのAlの少なくとも一部が結晶格子内に存在するか、粒子間の粒界に存在している。各酸化物の25℃導電率を測定したところ、それぞれ3×10-4S/cm,4.5×10-4S/cm,6×10-4S/cmであった。また、活性化エネルギーを算出したところ、いずれも0.34以下であった。
[Other Examples]
In the preparation of the above-mentioned pre-sintering powder, the starting materials were Li 6.5 La 3 (Zr 1.5 Nb 0.5 ) O 12 , Li 6.625 La 3 (Zr 1.625 Nb 0.375 ) O 12 , Li 6.875 La 3 (Zr 1.875 Nb 0.125, respectively. ) was obtained the sintered powder before and weighed so that the stoichiometric ratio of O 12. Each of the pre-sintered powders thus obtained was molded and then subjected to main sintering using an alumina firing container to obtain a garnet-type lithium ion conductive oxide. Since each oxide uses an alumina firing container, it contains Al, and at least a part of the Al exists in the crystal lattice or exists at the grain boundary between the particles. The 25 ° C. conductivity of each oxide was measured and found to be 3 × 10 −4 S / cm, 4.5 × 10 −4 S / cm, and 6 × 10 −4 S / cm, respectively. Moreover, when activation energy was computed, all were 0.34 or less.

本発明は、全固体型リチウムイオン二次電池に利用可能である。   The present invention can be used for an all solid-state lithium ion secondary battery.

Claims (7)

LixLn3(M1 y2 z)Ot …(1)
(式(1)中、Lnは、La,Pr,Nd,Sm,Lu,Y,K,Mg,Ba,Ca,Srからなる群より選ばれた1種以上の元素、
1は、Si,Sc,Ti,V,Ga,Ge,Y,Zr,Nb,In,Sb,Te,Hf,Ta,W,Biからなる群より選ばれた1種以上の元素、
2は、M1とは異なる元素であって、Sc,Ti,V,Y,Nb,Hf,Ta,Si,Ga及びGeからなる群より選ばれた1種以上の元素、
xは、3≦x≦8を満たす数、
y及びzは、y>0,z≧0,1.9≦y+z≦2.1を満たす数、
tは、11≦t≦13を満たす数)
で表される骨格中にAlを含有しており、Alは前記LixLn3(M1 y2 z)Otの結晶格子内及び前記LixLn3(M1 y2 z)Otの粒子間の粒界の少なくとも一方に存在する、
ガーネット型リチウムイオン伝導性酸化物。
Li x Ln 3 (M 1 y M 2 z ) O t (1)
(In the formula (1), Ln is one or more elements selected from the group consisting of La, Pr, Nd, Sm, Lu, Y, K, Mg, Ba, Ca, Sr,
M 1 is one or more elements selected from the group consisting of Si, Sc, Ti, V, Ga, Ge, Y, Zr, Nb, In, Sb, Te, Hf, Ta, W, Bi,
M 2 is an element different from M 1, and one or more elements selected from the group consisting of Sc, Ti, V, Y, Nb, Hf, Ta, Si, Ga, and Ge,
x is a number satisfying 3 ≦ x ≦ 8,
y and z are numbers satisfying y> 0, z ≧ 0, 1.9 ≦ y + z ≦ 2.1,
t is a number satisfying 11 ≦ t ≦ 13)
Al is contained in the skeleton represented by the formula, and Al is contained in the crystal lattice of the Li x Ln 3 (M 1 y M 2 z ) O t and the Li x Ln 3 (M 1 y M 2 z ) O. present in at least one of the grain boundaries between the grains of t ,
Garnet type lithium ion conductive oxide.
Ln3モルに対して、Alを0.07モル以上0.25モル以下含有している、請求項1記載のガーネット型リチウムイオン伝導性酸化物。   The garnet-type lithium ion conductive oxide according to claim 1, wherein Al is contained in an amount of 0.07 mol to 0.25 mol with respect to 3 mol of Ln. LnがLaであり、M1がZrであり、xが5≦x≦7を満たす、請求項1又は2に記載のガーネット型リチウムイオン伝導性酸化物。 The garnet-type lithium ion conductive oxide according to claim 1 , wherein Ln is La, M 1 is Zr, and x satisfies 5 ≦ x ≦ 7. 2がNbである、請求項1〜3のいずれか1項に記載のガーネット型リチウムイオン伝導性酸化物。 The garnet-type lithium ion conductive oxide according to any one of claims 1 to 3, wherein M 2 is Nb. 請求項1〜4のいずれか1項に記載のガーネット型リチウムイオン伝導性酸化物を製造する方法であって、
(a)式(1)の各元素を含む出発原料を式(1)の化学量論比になるようにそれぞれ秤量し、混合した後の粉末を仮焼し、その後、仮焼した粉末に、本焼結でのLiの欠損を補うためにリチウム化合物を添加し混合し、該混合した粉末を再度仮焼することにより本焼結前粉末を得る工程と、
(b)該本焼結前粉末を成形したあとアルミナ製焼成容器中で本焼結を行うことにより、請求項1〜4のいずれか1項に記載のガーネット型リチウムイオン伝導性酸化物を得る工程と、
を含むガーネット型リチウムイオン伝導性酸化物の製法。
A method for producing the garnet-type lithium ion conductive oxide according to any one of claims 1 to 4,
(A) Each starting material containing each element of formula (1) is weighed so as to have a stoichiometric ratio of formula (1), and the mixed powder is calcined, and then the calcined powder is A step of obtaining a pre-sintering powder by adding and mixing a lithium compound in order to make up for the loss of Li in the main sintering, and calcining the mixed powder again;
(B) The garnet-type lithium ion conductive oxide according to any one of claims 1 to 4 is obtained by forming the pre-sintered powder and then performing main sintering in an alumina firing container. Process,
Of a garnet-type lithium ion conductive oxide containing
請求項1〜4のいずれか1項に記載のガーネット型リチウムイオン伝導性酸化物を製造する方法であって、
(a)式(1)の各元素を含む出発原料を式(1)の化学量論比になるようにそれぞれ秤量し、混合した後の粉末を仮焼し、その後、仮焼した粉末に、本焼結でのLiの欠損を補うためにリチウム化合物を添加し混合し、該混合した粉末を再度仮焼することにより本焼結前粉末を得る工程と、
(b)該本焼結前粉末にAl元素を有する化合物を添加し、該添加した粉末を成形したあと本焼結を行うことにより、請求項1〜4のいずれか1項に記載のガーネット型リチウムイオン伝導性酸化物を得る工程と、
を含むガーネット型リチウムイオン伝導性酸化物の製法。
A method for producing the garnet-type lithium ion conductive oxide according to any one of claims 1 to 4,
(A) Each starting material containing each element of formula (1) is weighed so as to have a stoichiometric ratio of formula (1), and the mixed powder is calcined, and then the calcined powder is A step of obtaining a pre-sintering powder by adding and mixing a lithium compound in order to make up for the loss of Li in the main sintering, and calcining the mixed powder again;
(B) The garnet mold according to any one of claims 1 to 4, wherein a compound having an Al element is added to the pre-sintered powder, and the added powder is molded and then subjected to main sintering. Obtaining a lithium ion conductive oxide;
Of a garnet-type lithium ion conductive oxide containing
前記Al元素を有する化合物としてアルミナを用いる、
請求項6記載のガーネット型リチウムイオン伝導性酸化物の製法。
Alumina is used as the compound having the Al element.
The manufacturing method of the garnet-type lithium ion conductive oxide of Claim 6.
JP2010173392A 2010-08-02 2010-08-02 Garnet-type lithium ion conductive oxide and process for producing the same Active JP5617417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010173392A JP5617417B2 (en) 2010-08-02 2010-08-02 Garnet-type lithium ion conductive oxide and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010173392A JP5617417B2 (en) 2010-08-02 2010-08-02 Garnet-type lithium ion conductive oxide and process for producing the same

Publications (2)

Publication Number Publication Date
JP2012031025A true JP2012031025A (en) 2012-02-16
JP5617417B2 JP5617417B2 (en) 2014-11-05

Family

ID=45844916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010173392A Active JP5617417B2 (en) 2010-08-02 2010-08-02 Garnet-type lithium ion conductive oxide and process for producing the same

Country Status (1)

Country Link
JP (1) JP5617417B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617140A (en) * 2012-03-05 2012-08-01 内蒙古工业大学 Stibonium-doped quasi garnet-structured lithium ion crystalline-state solid electrolyte material and synthesis method thereof
JP2013184848A (en) * 2012-03-07 2013-09-19 Osaka Prefecture Univ Lithium ion-conductive oxide and method of manufacturing the same
WO2013136446A1 (en) * 2012-03-13 2013-09-19 株式会社 東芝 Lithium-ion conducting oxide, solid electrolyte rechargeable battery, and battery pack
CN103509555A (en) * 2012-06-15 2014-01-15 东贝光电科技股份有限公司 Lithium lanthanum garnet phosphor and light emitting diode having the same
WO2014038521A1 (en) * 2012-09-04 2014-03-13 日本碍子株式会社 Solid electrolyte ceramic material
JP2014220173A (en) * 2013-05-10 2014-11-20 日本碍子株式会社 Lithium ion conductive solid electrolyte, composite using the same, and battery
JP2015041573A (en) * 2013-08-23 2015-03-02 株式会社豊田中央研究所 Garnet type ion-conducting oxide, complex, lithium secondary battery, method for manufacturing garnet type ion-conducting oxide, and method for manufacturing complex
JP2015048280A (en) * 2013-09-02 2015-03-16 日本碍子株式会社 Method for producing solid electrolyte ceramic material
JPWO2013128759A1 (en) * 2012-03-02 2015-07-30 日本碍子株式会社 Solid electrolyte ceramic material and manufacturing method thereof
KR20160065133A (en) * 2013-10-07 2016-06-08 콴텀스케이프 코포레이션 Garnet materials for li secondary batteries
WO2016178321A1 (en) * 2015-05-07 2016-11-10 株式会社豊田自動織機 Structural body containing garnet-type ion conductor
JP2018006297A (en) * 2016-07-08 2018-01-11 旭化成株式会社 Lithium ion conductor
CN108727025A (en) * 2017-04-17 2018-11-02 中国科学院上海硅酸盐研究所 Lithium garnet composite ceramics, Its Preparation Method And Use
US20190084887A1 (en) * 2016-03-18 2019-03-21 Seiko Epson Corporation Solid electrolyte and lithium ion battery
US20190097267A1 (en) * 2016-03-18 2019-03-28 Seiko Epson Corporation Solid electrolyte and lithium ion battery
US10340549B2 (en) 2016-09-01 2019-07-02 Seiko Epson Corporation Electrolyte and battery, and electronic device and vehicle
CN112299844A (en) * 2019-07-30 2021-02-02 株式会社电装 Method for producing sintered body and sintered body
US11011776B2 (en) 2017-03-15 2021-05-18 Ngk Spark Plug Co., Ltd. Lithium-ion-conductive ceramic material, lithium-ion-conductive ceramic sintered body, and lithium battery
US11158842B2 (en) 2013-01-07 2021-10-26 Quantumscape Battery, Inc. Thin film lithium conducting powder material deposition from flux
US11158880B2 (en) 2016-08-05 2021-10-26 Quantumscape Battery, Inc. Translucent and transparent separators
US11165096B2 (en) 2016-01-27 2021-11-02 Quantumscape Battery, Inc. Annealed garnet electrolycte separators
EP3905409A1 (en) 2020-04-29 2021-11-03 Schott AG Aluminum-doped lithium ion conductor based on garnet structure
CN114373983A (en) * 2021-12-28 2022-04-19 广东马车动力科技有限公司 Sintering container and sintering method of lithium lanthanum zirconium oxygen-based solid electrolyte material
CN114450259A (en) * 2019-09-26 2022-05-06 富士色素株式会社 Composite oxide powder, method for producing solid electrolyte, and method for producing lithium ion secondary battery
US11391514B2 (en) 2015-04-16 2022-07-19 Quantumscape Battery, Inc. Lithium stuffed garnet setter plates for solid electrolyte fabrication
US11489193B2 (en) 2017-06-23 2022-11-01 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
US11600850B2 (en) 2017-11-06 2023-03-07 Quantumscape Battery, Inc. Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
US11916200B2 (en) 2016-10-21 2024-02-27 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102929A (en) * 2008-10-23 2010-05-06 Toyota Central R&D Labs Inc Lithium content garnet type oxide, lithium secondary cell, and method for manufacturing solid electrolyte
JP2010143785A (en) * 2008-12-18 2010-07-01 National Institute Of Advanced Industrial Science & Technology Lithium ion conductive oxide, producing method of the same and solid electrolyte constituted by the oxide
JP2010202499A (en) * 2009-02-04 2010-09-16 Toyota Central R&D Labs Inc Garnet-type lithium ion-conducting oxide
JP2010272344A (en) * 2009-05-21 2010-12-02 Toyota Central R&D Labs Inc All-solid-state lithium ion secondary battery
JP2011051855A (en) * 2009-09-03 2011-03-17 Ngk Insulators Ltd Method for producing ceramic material
JP2011070939A (en) * 2009-09-25 2011-04-07 Toyota Central R&D Labs Inc All-solid type lithium secondary battery
JP2011073963A (en) * 2009-09-03 2011-04-14 Ngk Insulators Ltd Ceramic material and use thereof
JP2011113655A (en) * 2009-11-24 2011-06-09 Toyota Central R&D Labs Inc Lithium secondary battery
JP2012018792A (en) * 2010-07-07 2012-01-26 National Univ Corp Shizuoka Univ Solid electrolyte material and lithium battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010102929A (en) * 2008-10-23 2010-05-06 Toyota Central R&D Labs Inc Lithium content garnet type oxide, lithium secondary cell, and method for manufacturing solid electrolyte
JP2010143785A (en) * 2008-12-18 2010-07-01 National Institute Of Advanced Industrial Science & Technology Lithium ion conductive oxide, producing method of the same and solid electrolyte constituted by the oxide
JP2010202499A (en) * 2009-02-04 2010-09-16 Toyota Central R&D Labs Inc Garnet-type lithium ion-conducting oxide
JP2010272344A (en) * 2009-05-21 2010-12-02 Toyota Central R&D Labs Inc All-solid-state lithium ion secondary battery
JP2011051855A (en) * 2009-09-03 2011-03-17 Ngk Insulators Ltd Method for producing ceramic material
JP2011073963A (en) * 2009-09-03 2011-04-14 Ngk Insulators Ltd Ceramic material and use thereof
JP2011070939A (en) * 2009-09-25 2011-04-07 Toyota Central R&D Labs Inc All-solid type lithium secondary battery
JP2011113655A (en) * 2009-11-24 2011-06-09 Toyota Central R&D Labs Inc Lithium secondary battery
JP2012018792A (en) * 2010-07-07 2012-01-26 National Univ Corp Shizuoka Univ Solid electrolyte material and lithium battery

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013128759A1 (en) * 2012-03-02 2015-07-30 日本碍子株式会社 Solid electrolyte ceramic material and manufacturing method thereof
CN102617140A (en) * 2012-03-05 2012-08-01 内蒙古工业大学 Stibonium-doped quasi garnet-structured lithium ion crystalline-state solid electrolyte material and synthesis method thereof
JP2013184848A (en) * 2012-03-07 2013-09-19 Osaka Prefecture Univ Lithium ion-conductive oxide and method of manufacturing the same
WO2013136446A1 (en) * 2012-03-13 2013-09-19 株式会社 東芝 Lithium-ion conducting oxide, solid electrolyte rechargeable battery, and battery pack
US9698446B2 (en) 2012-03-13 2017-07-04 Kabushiki Kaisha Toshiba Lithium-ion conducting oxide, solid electrolyte secondary battery and battery pack
JPWO2013136446A1 (en) * 2012-03-13 2015-08-03 株式会社東芝 Lithium ion conductive oxide, solid electrolyte secondary battery and battery pack
CN103509555A (en) * 2012-06-15 2014-01-15 东贝光电科技股份有限公司 Lithium lanthanum garnet phosphor and light emitting diode having the same
CN103509555B (en) * 2012-06-15 2014-10-22 东贝光电科技股份有限公司 Lithium lanthanum garnet phosphor and light emitting diode having the same
JPWO2014038521A1 (en) * 2012-09-04 2016-08-08 日本碍子株式会社 Solid electrolyte ceramic materials
WO2014038521A1 (en) * 2012-09-04 2014-03-13 日本碍子株式会社 Solid electrolyte ceramic material
US11876208B2 (en) 2013-01-07 2024-01-16 Quantumscape Battery, Inc. Thin film lithium conducting powder material deposition from flux
US11158842B2 (en) 2013-01-07 2021-10-26 Quantumscape Battery, Inc. Thin film lithium conducting powder material deposition from flux
JP2014220173A (en) * 2013-05-10 2014-11-20 日本碍子株式会社 Lithium ion conductive solid electrolyte, composite using the same, and battery
JP2015041573A (en) * 2013-08-23 2015-03-02 株式会社豊田中央研究所 Garnet type ion-conducting oxide, complex, lithium secondary battery, method for manufacturing garnet type ion-conducting oxide, and method for manufacturing complex
JP2015048280A (en) * 2013-09-02 2015-03-16 日本碍子株式会社 Method for producing solid electrolyte ceramic material
KR20210102457A (en) * 2013-10-07 2021-08-19 퀀텀스케이프 배터리, 인코포레이티드 Garnet materials for li secondary batteries
US11171358B2 (en) 2013-10-07 2021-11-09 Quantumscape Battery, Inc. Garnet materials for Li secondary batteries and methods of making and using garnet materials
US11367896B2 (en) 2013-10-07 2022-06-21 Quantumscape Battery, Inc. Garnet materials for Li secondary batteries and methods of making and using garnet materials
KR102478029B1 (en) * 2013-10-07 2022-12-15 퀀텀스케이프 배터리, 인코포레이티드 Garnet materials for li secondary batteries
KR20160065133A (en) * 2013-10-07 2016-06-08 콴텀스케이프 코포레이션 Garnet materials for li secondary batteries
KR102368632B1 (en) * 2013-10-07 2022-02-28 퀀텀스케이프 배터리, 인코포레이티드 Garnet materials for li secondary batteries
US11171357B2 (en) 2013-10-07 2021-11-09 Quantumscape Battery, Inc. Garnet materials for Li secondary batteries and methods of making and using garnet materials
US11658338B2 (en) 2013-10-07 2023-05-23 Quantumscape Battery, Inc. Garnet materials for li secondary batteries and methods of making and using garnet materials
US11355779B2 (en) 2013-10-07 2022-06-07 Quantumscape Battery, Inc. Garnet materials for Li secondary batteries and methods of making and using garnet materials
US11600857B2 (en) 2013-10-07 2023-03-07 Quantumscape Battery, Inc. Garnet materials for Li secondary batteries and methods of making and using garnet materials
US11575153B2 (en) 2013-10-07 2023-02-07 Quantumscape Battery, Inc. Garnet materials for Li secondary batteries and methods of making and using garnet materials
US11139503B2 (en) 2013-10-07 2021-10-05 Quantumscape Battery, Inc. Garnet materials for Li secondary batteries and methods of making and using garnet materials
US11592237B2 (en) 2015-04-16 2023-02-28 Quantumscape Battery, Inc. Lithium stuffed garnet setter plates for solid electrolyte fabrication
US11391514B2 (en) 2015-04-16 2022-07-19 Quantumscape Battery, Inc. Lithium stuffed garnet setter plates for solid electrolyte fabrication
WO2016178321A1 (en) * 2015-05-07 2016-11-10 株式会社豊田自動織機 Structural body containing garnet-type ion conductor
US11581576B2 (en) 2016-01-27 2023-02-14 Quantumscape Battery, Inc. Annealed garnet electrolyte separators
US11165096B2 (en) 2016-01-27 2021-11-02 Quantumscape Battery, Inc. Annealed garnet electrolycte separators
US10947160B2 (en) 2016-03-18 2021-03-16 Seiko Epson Corporation Solid electrolyte and lithium ion battery
US10784534B2 (en) * 2016-03-18 2020-09-22 Seiko Epson Corporation Solid electrolyte and lithium ion battery
US10774004B2 (en) * 2016-03-18 2020-09-15 Seiko Epson Corporation Solid electrolyte and lithium ion battery
US20190097267A1 (en) * 2016-03-18 2019-03-28 Seiko Epson Corporation Solid electrolyte and lithium ion battery
US20190084887A1 (en) * 2016-03-18 2019-03-21 Seiko Epson Corporation Solid electrolyte and lithium ion battery
JP2018006297A (en) * 2016-07-08 2018-01-11 旭化成株式会社 Lithium ion conductor
US11158880B2 (en) 2016-08-05 2021-10-26 Quantumscape Battery, Inc. Translucent and transparent separators
US10340549B2 (en) 2016-09-01 2019-07-02 Seiko Epson Corporation Electrolyte and battery, and electronic device and vehicle
US11916200B2 (en) 2016-10-21 2024-02-27 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
US11011776B2 (en) 2017-03-15 2021-05-18 Ngk Spark Plug Co., Ltd. Lithium-ion-conductive ceramic material, lithium-ion-conductive ceramic sintered body, and lithium battery
US11296355B2 (en) 2017-04-17 2022-04-05 Corning Incorporated Lithium-garnet solid electrolyte composite, tape articles, and methods thereof
CN108727025A (en) * 2017-04-17 2018-11-02 中国科学院上海硅酸盐研究所 Lithium garnet composite ceramics, Its Preparation Method And Use
US11749836B2 (en) 2017-04-17 2023-09-05 Corning Incorporated Lithium-garnet solid electrolyte composite, tape articles, and methods thereof
US11901506B2 (en) 2017-06-23 2024-02-13 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
US11489193B2 (en) 2017-06-23 2022-11-01 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
US11600850B2 (en) 2017-11-06 2023-03-07 Quantumscape Battery, Inc. Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
US11817551B2 (en) 2017-11-06 2023-11-14 Quantumscape Battery, Inc. Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
CN112299844A (en) * 2019-07-30 2021-02-02 株式会社电装 Method for producing sintered body and sintered body
CN114450259A (en) * 2019-09-26 2022-05-06 富士色素株式会社 Composite oxide powder, method for producing solid electrolyte, and method for producing lithium ion secondary battery
EP3905409A1 (en) 2020-04-29 2021-11-03 Schott AG Aluminum-doped lithium ion conductor based on garnet structure
CN114373983B (en) * 2021-12-28 2022-10-21 广东马车动力科技有限公司 Sintering container and sintering method of lithium lanthanum zirconium oxygen-based solid electrolyte material
CN114373983A (en) * 2021-12-28 2022-04-19 广东马车动力科技有限公司 Sintering container and sintering method of lithium lanthanum zirconium oxygen-based solid electrolyte material

Also Published As

Publication number Publication date
JP5617417B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5617417B2 (en) Garnet-type lithium ion conductive oxide and process for producing the same
JP5083336B2 (en) Garnet-type lithium ion conductive oxide
JP6079307B2 (en) Method for producing garnet-type lithium ion conductive oxide
JP6672848B2 (en) Lithium ion conductive oxide ceramic material having garnet type or garnet type similar crystal structure
JP5760638B2 (en) Method for producing garnet-type lithium ion conductive oxide
EP2302723B1 (en) Ceramic material and use thereof
JP6165546B2 (en) Solid electrolyte and all-solid lithium ion secondary battery
KR101496533B1 (en) Solid electrolyte material and lithium battery
JP5262572B2 (en) Lithium-containing garnet-type oxide, lithium secondary battery, and method for producing solid electrolyte
EP2353203B9 (en) Garnet-type lithium ion-conducting oxide and all-solid-state lithium ion secondary battery containing the same
JP6144007B2 (en) Garnet-type ion conductive oxide and method for producing the same
JP5846482B2 (en) Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member
JP2016171068A (en) Garnet-type lithium ion conductive oxide
JP2005502161A (en) Positive electrode active material for secondary battery and method for producing the same
JP2011073962A (en) Ceramic material and preparation method therefor
KR101909727B1 (en) Solid electrolyte, method for manufacturing the same, and all solid state rechargeable lithium battery including the same
JP2019123668A (en) Lithium sodium composite oxide, cathode active material for secondary battery, and secondary battery
JP4296274B2 (en) Lithium manganate positive electrode active material and all-solid lithium secondary battery
KR101537067B1 (en) Solid electrolyte for all solid state rechargeable lithium battery, method for preparing the same, and all solid state rechargeable lithium battery including the same
JP2005340078A (en) Active material for lithium ion secondary battery, its manufacturing method, and lithium ion secondary battery
JP5093669B2 (en) Manganese oxide, battery electrode active material, production method thereof, and secondary battery using battery electrode active material
CN114466822B (en) Oxide, solid electrolyte, and all-solid-state lithium ion secondary battery
JP6966308B2 (en) Positive active material for lithium-ion batteries and their manufacturing methods, lithium-ion batteries, and lithium-ion battery systems
KR20170011859A (en) Solid electrolyte, method for manufacturing the same, and all solid state rechargeable lithium battery including the same
JP2018085311A (en) Positive electrode active material for all-solid battery, method for manufacturing positive electrode including the same, positive electrode for all-solid battery, and all-solid battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R151 Written notification of patent or utility model registration

Ref document number: 5617417

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151