JP2012026912A - Salinity concentration measuring instrument and salinity concentration measuring method - Google Patents

Salinity concentration measuring instrument and salinity concentration measuring method Download PDF

Info

Publication number
JP2012026912A
JP2012026912A JP2010166923A JP2010166923A JP2012026912A JP 2012026912 A JP2012026912 A JP 2012026912A JP 2010166923 A JP2010166923 A JP 2010166923A JP 2010166923 A JP2010166923 A JP 2010166923A JP 2012026912 A JP2012026912 A JP 2012026912A
Authority
JP
Japan
Prior art keywords
concentration
dilution
stock solution
salinity
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010166923A
Other languages
Japanese (ja)
Other versions
JP5044774B2 (en
Inventor
Masahiro Matsumaru
正宏 松丸
Hideyuki Amamiya
秀行 雨宮
Yoshinori Nakajima
吉則 中島
Masakiyo Inoue
正清 井上
Yoshikazu Iwaguchi
義和 岩口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atago Co Ltd
Original Assignee
Atago Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atago Co Ltd filed Critical Atago Co Ltd
Priority to JP2010166923A priority Critical patent/JP5044774B2/en
Priority to CN201110215273.4A priority patent/CN102495024B/en
Publication of JP2012026912A publication Critical patent/JP2012026912A/en
Application granted granted Critical
Publication of JP5044774B2 publication Critical patent/JP5044774B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a salinity concentration measuring instrument and a salinity concentration measuring method capable of measuring salinity concentration with high accuracy by easily and automatically calculating a dilution magnification with high accuracy.SOLUTION: The salinity concentration measuring instrument includes: soluble solid content concentration measuring means for measuring the soluble solid content concentration of an undiluted solution and a diluted solution of a sample; dilution magnification calculating means for calculating a dilution magnification on the basis of the soluble solid content concentration of the undiluted solution and the diluted solution; electrical conductivity measuring means for measuring the electrical conductivity of the diluted solution; and salinity concentration calculating means for calculating the salinity concentration of the undiluted solution on the basis of the dilution magnification and the electrical conductivity.

Description

本発明は、サンプル中の塩分濃度を測定するための装置及び方法に関し、特に、サンプルを容易に希釈して塩分濃度を精度良く測定することができる装置及び方法に関する。   The present invention relates to an apparatus and method for measuring a salinity concentration in a sample, and more particularly to an apparatus and a method capable of easily diluting a sample and measuring the salinity concentration with high accuracy.

サンプルの塩分濃度を測定するための塩分計として、塩分濃度と電気伝導率との線形関係に基づいて、サンプルの電気伝導率の測定値を塩分濃度に換算する電気伝導率式の塩分計が知られている(特許文献1)。   As a salinometer for measuring the salinity of a sample, an electric conductivity type salinity meter that converts the measured value of the electric conductivity of the sample into a salinity based on the linear relationship between the salinity and electric conductivity is known. (Patent Document 1).

しかしながら、塩分濃度が高いサンプルでは、塩分濃度と電気伝導率とが線形関係にないため、電気伝導率式の塩分計を用いて高濃度の塩分を測定することはできない。また、サンプルがナトリウムイオン以外のイオンを多く含む場合には、それらのイオンにより電気伝導率が増加し、サンプルがアミノ酸や油等の有機物を多く含む場合には、有機物の電極への付着により電気伝導率が減少するため、塩分濃度を正確に求めることができない。   However, in a sample having a high salinity concentration, the salinity concentration and the electric conductivity are not in a linear relationship, so that a high concentration salinity cannot be measured using an electric conductivity type salinity meter. In addition, when the sample contains a lot of ions other than sodium ions, the conductivity increases due to those ions, and when the sample contains a lot of organic substances such as amino acids and oils, the organic substances adhere to the electrodes due to the adhesion. Since the conductivity decreases, the salt concentration cannot be determined accurately.

そこで、高塩分濃度のサンプル及び様々なイオンや有機物を含むサンプルの場合、サンプルの原液を所定の希釈倍率で希釈して希釈液の塩分濃度を測定し、この塩分濃度測定値に希釈倍率を乗じて原液の塩分濃度を求める方法が行なわれてきた。しかし、希釈によりナトリウムイオン以外のイオンや有機物の影響が低減されても、希釈倍率の精度が低ければ、塩分濃度を正確に求めることができないという問題があった。また、希釈倍率の精度を高めるには、高精度の精密天秤や高性能の分注器を使用しなければならず、それらの操作には熟練が必要とされるという問題があった。   Therefore, in the case of high salinity samples and samples containing various ions and organic substances, dilute the sample stock solution at the specified dilution factor, measure the salt concentration of the diluted solution, and multiply the measured salt concentration value by the dilution factor. Thus, a method for obtaining the salt concentration of the stock solution has been performed. However, even if the influence of ions other than sodium ions and organic substances is reduced by dilution, there is a problem that the salt concentration cannot be obtained accurately if the accuracy of the dilution factor is low. Further, in order to increase the accuracy of the dilution ratio, a high-precision precision balance and a high-performance dispenser must be used, and there is a problem that skill is required for these operations.

特開2006−349450号公報JP 2006-349450 A

本発明は、上記問題点を解決するためになされたものであり、その目的は、希釈倍率を簡易に且つ自動で精度良く求め、それにより塩分濃度を精度良く測定することができる塩分濃度測定装置及び塩分濃度測定方法を提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to determine a dilution ratio simply and automatically with high accuracy, and thereby to measure a salinity concentration with high accuracy. And providing a method for measuring salinity.

上記目的を達成するため、本発明による塩分濃度測定装置は、サンプルの原液及び希釈液の可溶性固形分濃度を測定する可溶性固形分濃度測定手段と、原液及び希釈液の可溶性固形分濃度に基づいて希釈液の希釈倍率を算定する希釈倍率算定手段と、希釈液の電気伝導率を測定する電気伝導率測定手段と、希釈倍率及び電気伝導率に基づいて原液の塩分濃度を算定する塩分濃度算定手段とを備える。   To achieve the above object, the salinity concentration measuring device according to the present invention is based on soluble solid concentration measuring means for measuring the soluble solid concentration of the sample stock solution and the diluted solution, and the soluble solid content concentration of the stock solution and the diluted solution. A dilution ratio calculating means for calculating the dilution ratio of the diluted liquid, an electric conductivity measuring means for measuring the electric conductivity of the diluted liquid, and a salinity concentration calculating means for calculating the salt concentration of the stock solution based on the dilution ratio and the electric conductivity. With.

また、本発明による塩分濃度測定方法は、サンプルの原液の可溶性固形分濃度を測定する工程と、原液を希釈して希釈液を作成する工程と、希釈液の可溶性固形分濃度を測定する工程と、原液及び希釈液の可溶性固形分濃度に基づいて希釈液の希釈倍率を算定する工程と、希釈液の電気伝導率を測定する工程と、希釈倍率及び電気伝導率に基づいて原液の塩分濃度を算定する工程とを含む。   The salt concentration measurement method according to the present invention includes a step of measuring a soluble solid content concentration of a sample stock solution, a step of diluting the stock solution to create a diluted solution, and a step of measuring the soluble solid content concentration of the diluted solution. The step of calculating the dilution ratio of the diluted solution based on the soluble solid content concentration of the stock solution and the diluted solution, the step of measuring the electrical conductivity of the diluted solution, and the salt concentration of the stock solution based on the dilution rate and the electrical conductivity Including the process of calculating.

本発明によれば、希釈倍率を簡易に且つ自動で精度良く求め、それにより塩分濃度を精度良く測定することが可能な塩分濃度測定装置及び塩分濃度測定方法を提供することができる。   According to the present invention, it is possible to provide a salinity concentration measuring apparatus and a salinity concentration measuring method capable of obtaining a dilution ratio simply and automatically with high accuracy and thereby measuring the salinity concentration with high accuracy.

本発明の実施形態における塩分濃度測定装置の概略構成図である。It is a schematic block diagram of the salt concentration measuring apparatus in embodiment of this invention. 様々なサンプルについてBrix測定値と希釈濃度との関係を示す。The relationship between Brix measurement value and dilution concentration is shown for various samples. 様々なサンプルについて希釈倍率と塩分濃度測定値との関係を示す。The relationship between a dilution rate and a salt concentration measurement value is shown about various samples. 様々なサンプルについて様々な希釈倍率の希釈液の塩分濃度測定値から求めた原液の塩分濃度換算値と希釈倍率との関係を示す。The relationship between the salt concentration conversion value of the undiluted solution calculated from the salt concentration measurement value of the diluted solution at various dilution ratios and the dilution ratio for various samples is shown. 本発明の実施形態における塩分濃度測定方法を示すフローチャートである。It is a flowchart which shows the salt concentration measuring method in embodiment of this invention. 原液及び希釈液のBrix測定値の比から希釈倍率を算定した場合の原液塩分濃度換算値を示す。It shows the value converted into the salt concentration of the stock solution when the dilution rate is calculated from the ratio of the Brix measurement values of the stock solution and the diluted solution. 希釈倍率をBrix値の比から算定した場合の希釈倍率の誤差を示す。The error of the dilution rate at the time of calculating a dilution rate from the ratio of a Brix value is shown.

図1を参照すると、本発明の実施形態における塩分濃度測定装置10は、その筐体12に開口14が設けられ、この開口14にサンプルの原液S及び希釈液S’を載置するためのサンプル載置面16が設けられている。   Referring to FIG. 1, a salinity concentration measuring apparatus 10 according to an embodiment of the present invention has an opening 14 in a housing 12, and a sample for placing a sample stock solution S and a diluent S ′ in the opening 14. A placement surface 16 is provided.

塩分濃度測定装置10は、サンプルの原液S及び希釈液S’のBrix値(%)を測定する手段として、プリズム18、光源20、光検出部22、及び可溶性固形分濃度算定部24を含む。Brix値(%)は、周知のように、溶液中の可溶性固形分の濃度を表す。   The salinity concentration measuring apparatus 10 includes a prism 18, a light source 20, a light detection unit 22, and a soluble solid content concentration calculation unit 24 as means for measuring the Brix value (%) of the sample stock solution S and the diluent S ′. The Brix value (%) represents the concentration of soluble solids in the solution, as is well known.

プリズム18は、サンプルの原液S又は希釈液S’と境界面を成すように、サンプル載置面16の少なくとも一部を形成する。光源20は、サンプルの原液S又は希釈液S’とプリズム18との境界面にプリズム18側から光を入射させる。光検出部22は、サンプルの原液S又は希釈液S’とプリズム18との境界面で反射された光源20からの光を受光する。光検出部22には、例えば一次元イメージセンサや二次元イメージセンサ等、複数の受光素子を有する光電センサが使用される。これらのプリズム18、光源20、及び光検出部22は、一般的な屈折計に用いられるプリズム、光源、及び光検出部と同等のものであってよい。   The prism 18 forms at least a part of the sample mounting surface 16 so as to form a boundary surface with the sample stock solution S or the diluted solution S ′. The light source 20 makes light incident on the boundary surface between the sample stock solution S or the diluted solution S ′ and the prism 18 from the prism 18 side. The light detection unit 22 receives light from the light source 20 reflected by the boundary surface between the sample stock solution S or dilution solution S ′ and the prism 18. For the light detection unit 22, a photoelectric sensor having a plurality of light receiving elements such as a one-dimensional image sensor or a two-dimensional image sensor is used. The prism 18, the light source 20, and the light detection unit 22 may be equivalent to the prism, the light source, and the light detection unit used in a general refractometer.

可溶性固形分濃度算定部24は、光検出部22の出力から原液S及び希釈液S’のBrix値を算定する。ここで、「希釈倍率」は、サンプル希釈液の重量(g)を同希釈液に含まれるサンプル原液の重量(g)で除したものと定義される。   The soluble solid content concentration calculator 24 calculates the Brix values of the stock solution S and the diluted solution S ′ from the output of the light detector 22. Here, the “dilution ratio” is defined as the weight (g) of the sample diluent divided by the weight (g) of the sample stock solution contained in the diluent.

塩分濃度測定装置10は、希釈液S’の電気伝導率を測定する手段として、第1の電極26及び第2の電極28と、電気伝導率算定部34とを更に含む。   The salinity concentration measuring apparatus 10 further includes a first electrode 26, a second electrode 28, and an electric conductivity calculator 34 as means for measuring the electric conductivity of the diluent S '.

第1の電極26及び第2の電極28は、互いに離間してサンプルの希釈液S’と接触するようにサンプル載置面16に設けられる。第1の電極26と第2の電極28との間には、電源手段(図示せず)により電圧が印加される。第1の電極26と第2の電極28との間の電流及び電圧が、電流電圧検出手段(図示せず)により測定される。電気伝導率算定部34は、検出された電流及び電圧に基づいて希釈液S’の電気伝導率を算定する。   The first electrode 26 and the second electrode 28 are provided on the sample placement surface 16 so as to be in contact with the sample diluent S ′ while being separated from each other. A voltage is applied between the first electrode 26 and the second electrode 28 by a power supply means (not shown). The current and voltage between the first electrode 26 and the second electrode 28 are measured by a current voltage detection means (not shown). The electrical conductivity calculator 34 calculates the electrical conductivity of the diluent S ′ based on the detected current and voltage.

塩分濃度測定装置10は、光源20、光検出部22、第1の電極26、及び第2の電極28にインターフェース36を介して接続された処理回路38を含む。処理回路38は、演算制御部40、データ記憶部42、操作部44、及び表示部46を含む。   The salinity concentration measuring apparatus 10 includes a processing circuit 38 connected to a light source 20, a light detection unit 22, a first electrode 26, and a second electrode 28 via an interface 36. The processing circuit 38 includes an arithmetic control unit 40, a data storage unit 42, an operation unit 44, and a display unit 46.

演算制御部40は、先に述べた可溶性固形分濃度算定部24及び電気伝導率算定部34に加えて、希釈倍率算定部48、希釈倍率判定部50、及び塩分濃度算定部52を含む。希釈倍率算定部48は、以下の考察に基づいて、Brix値から希釈倍率を算定する。   The calculation control unit 40 includes a dilution rate calculation unit 48, a dilution rate determination unit 50, and a salt concentration calculation unit 52 in addition to the soluble solid content concentration calculation unit 24 and the electrical conductivity calculation unit 34 described above. The dilution factor calculation unit 48 calculates the dilution factor from the Brix value based on the following consideration.

表1は、様々なサンプルについて原液及び様々な希釈濃度の希釈液の屈折率を測定し、それらの屈折率をBrix値に換算した結果を示す。ここで、「希釈濃度(%)」は、希釈液100g中に含まれるサンプル原液の重量(g)と定義され、希釈濃度(%)=100/希釈倍率である。サンプル希釈液は、希釈濃度が5%、10%、15%、20%、25%、50%、75%となるように重量を厳密に測定しながら、サンプル原液に純水を加えて作成されたものである。

Figure 2012026912
Table 1 shows the results of measuring the refractive indexes of the stock solution and the diluted solutions of various dilution concentrations for various samples, and converting those refractive indexes into Brix values. Here, “dilution concentration (%)” is defined as the weight (g) of the sample stock solution contained in 100 g of the diluent, and is dilution concentration (%) = 100 / dilution ratio. Sample dilutions are made by adding pure water to the sample stock solution while strictly measuring the weight so that the dilution concentrations are 5%, 10%, 15%, 20%, 25%, 50%, and 75%. It is a thing.
Figure 2012026912

Brix測定値を横軸とし、希釈濃度を縦軸として表1をグラフ化した図2を参照すると、Brix測定値はサンプルによって異なるが、それぞれのサンプルのBrix測定値と希釈濃度とは概ね線形関係にあることが分かる。また、希釈濃度が0%のときBrix測定値も0%であることから、Brix測定値と希釈濃度とは比例関係にあると仮定できる。この仮定に基づいて、原液のBrix測定値を希釈液のBrix測定値で除することにより、サンプルによらず、希釈倍率を算定することができる。   Referring to FIG. 2 in which Table 1 is plotted with the Brix measurement value on the horizontal axis and the dilution concentration on the vertical axis, the Brix measurement value varies depending on the sample, but the Brix measurement value and the dilution concentration of each sample are generally linearly related. You can see that Since the Brix measurement value is 0% when the dilution concentration is 0%, it can be assumed that the Brix measurement value and the dilution concentration are in a proportional relationship. Based on this assumption, the dilution rate can be calculated regardless of the sample by dividing the Brix measurement value of the stock solution by the Brix measurement value of the diluent.

再び図1を参照して、希釈倍率判定部50は、希釈倍率が塩分濃度測定に適した範囲にあるかどうか判定する。塩分濃度測定に適した希釈倍率の範囲は、以下の考察に基づいて定められる。   Referring to FIG. 1 again, the dilution rate determination unit 50 determines whether the dilution rate is in a range suitable for salinity concentration measurement. The range of the dilution rate suitable for the salinity concentration measurement is determined based on the following considerations.

表2は、表1と同じ様々なサンプルについて、原液及び表1と同じ様々な希釈倍率の希釈液の電気伝導率を測定し、それらの電気伝導率からそれぞれの原液及び希釈液の塩分濃度を算定した結果を示す。表1と同様に、サンプル希釈液は、希釈濃度が5%、10%、15%、20%、25%、50%、75%となるように重量を厳密に測定しながら、サンプル原液に純水を加えて作成されたものである。

Figure 2012026912
Table 2 measures the electrical conductivity of the stock solution and the same dilution factor of various dilutions as in Table 1 for the same various samples as in Table 1, and determines the salinity of each stock solution and dilution from those electrical conductivities. The calculated results are shown. As in Table 1, the sample diluent is purely added to the sample stock solution while the weight is strictly measured so that the dilution concentrations are 5%, 10%, 15%, 20%, 25%, 50%, and 75%. It was created by adding water.
Figure 2012026912

希釈倍率を横軸とし、塩分濃度測定値を縦軸として表2をグラフ化した図3を参照すると、希釈倍率と塩分濃度測定値との関係を示す曲線は、一部のサンプル(例えば、焼肉のたれ、のりの佃煮など)では、希釈倍率が2倍付近のところで傾きが大きく変化している。また、希釈倍率が大きいほど塩分濃度は低いはずであるが、一部のサンプル(例えば、たまり醤油、白醤油、さいしこみ醤油など)では、希釈倍率1.33倍の希釈液の塩分濃度測定値が原液の塩分濃度測定値よりも高くなっている。   Referring to FIG. 3 in which Table 2 is plotted with the dilution factor as the horizontal axis and the salinity concentration measurement value as the vertical axis, a curve showing the relationship between the dilution factor and the salinity concentration measurement value is obtained for some samples (eg, yakiniku). In the case of soy sauce, boiled paste, etc.), the slope changes greatly when the dilution factor is around 2 times. In addition, although the salt concentration should be lower as the dilution factor is larger, in some samples (for example, Tamari soy sauce, white soy sauce, saikokomi soy sauce, etc.), the salt concentration measurement value of the diluted solution with a dilution factor of 1.33 Is higher than the measured salt concentration of the stock solution.

図4は、希釈倍率を横軸として、表2の塩分濃度測定値に希釈倍率を乗じることにより求めた原液の塩分濃度換算値を示すグラフである。希釈倍率が5倍以下の希釈液を用いて求めた原液の塩分濃度換算値は著しく小さいことが分かる。これは、サンプルに含まれる塩分以外の成分の影響と考えられる。   FIG. 4 is a graph showing the salt concentration converted value of the stock solution obtained by multiplying the measured value of salt concentration in Table 2 by the dilution factor with the dilution factor as the horizontal axis. It turns out that the salt concentration conversion value of the stock solution calculated | required using the dilution liquid whose dilution rate is 5 times or less is remarkably small. This is considered to be the influence of components other than salt contained in the sample.

一方、希釈倍率が15〜20倍の希釈液を用いて求めた原液の塩分濃度換算値は、希釈倍率が10倍の希釈液を用いて求めた原液の塩分濃度換算値に比べて小さいものがある。これは、希釈し過ぎたことにより、電気伝導率が正確に測定できなかったためと考えられる。   On the other hand, the salt concentration conversion value of the stock solution obtained using a dilution solution having a dilution ratio of 15 to 20 times is smaller than the salt concentration conversion value of the stock solution obtained using a dilution solution having a dilution ratio of 10 times. is there. This is presumably because the electrical conductivity could not be measured accurately due to excessive dilution.

したがって、塩分濃度を精度良く測定するための希釈倍率の適正範囲は、好ましくは5〜15倍である。図4において、希釈倍率が8〜12倍の範囲では原液の塩分濃度換算値が概ね一定であることから、希釈倍率の適正範囲は、より好ましくは8〜12倍である。   Therefore, the appropriate range of the dilution rate for measuring the salinity concentration with high accuracy is preferably 5 to 15 times. In FIG. 4, since the salt concentration conversion value of the stock solution is substantially constant when the dilution rate is in the range of 8 to 12 times, the appropriate range of the dilution rate is more preferably 8 to 12 times.

再び図1を参照すると、塩分濃度算定部52は、希釈液S’の電気伝導率から希釈液S’の塩分濃度を算定し、希釈液S’の塩分濃度と希釈倍率とから原液Sの塩分濃度を算定する。   Referring to FIG. 1 again, the salinity concentration calculator 52 calculates the salinity of the diluent S ′ from the electrical conductivity of the diluent S ′, and the salinity of the stock solution S from the salinity of the diluent S ′ and the dilution factor. Calculate the concentration.

データ記憶部42は、様々な算定式を予め記憶し、且つ測定中のデータを一時的に記憶する。より詳細には、データ記憶部42は、臨界角の算定式、屈折率の算定式、屈折率からBrix値へ換算式、希釈倍率の算定式、電気伝導率の算定式、及び塩分濃度の算定式を予め記憶している。   The data storage unit 42 stores various calculation formulas in advance and temporarily stores data being measured. More specifically, the data storage unit 42 includes a critical angle calculation formula, a refractive index calculation formula, a refractive index to Brix conversion formula, a dilution rate calculation formula, an electrical conductivity calculation formula, and a salinity calculation. The formula is stored in advance.

屈折率からBrix値への換算式は、例えば、ICUMSA(国際砂糖分析法標準化委員会)により定められた屈折率とBrix値との関係式に基づいて作成することができる。   The conversion formula from the refractive index to the Brix value can be created based on, for example, a relational expression between the refractive index and the Brix value determined by ICUMSA (International Sugar Analysis Standardization Committee).

希釈倍率の算定式は、先に述べたとおり、好ましくは原液のBrix値/希釈液のBrix値である。或いは、希釈倍率の算定式は、予め行なった測定結果の回帰分析から求めたBrix値と希釈濃度との関係式に基づくものであってもよい。この関係式は、好ましくは1次関数の式(y=ax+b)であるが、場合によっては非線形項を考慮すべく2次関数の式(y=ax+bx+c)等であってもよい。 As described above, the calculation formula for the dilution rate is preferably the Brix value of the stock solution / the Brix value of the diluted solution. Alternatively, the calculation formula for the dilution rate may be based on a relational expression between the Brix value and the dilution concentration obtained from the regression analysis of the measurement results performed in advance. This relational expression is preferably a linear function expression (y = ax + b), but may be a quadratic function expression (y = ax 2 + bx + c) or the like in consideration of the nonlinear term.

操作部44は、原液S及び希釈液S’のBrix値を測定するとき、及び希釈液S’の電気伝導率を測定するとき等にユーザに操作され、演算制御部40に信号を送る。   The operation unit 44 is operated by the user when measuring the Brix value of the stock solution S and the diluted solution S ′, and when measuring the electrical conductivity of the diluted solution S ′, and sends a signal to the arithmetic control unit 40.

表示部46は、算定した原液Sの塩分濃度を表示し、希釈倍率が適正範囲にない場合には、エラーメッセージを表示する。   The display unit 46 displays the calculated salt concentration of the stock solution S, and displays an error message when the dilution factor is not within the appropriate range.

図5を参照して、本発明の実施形態における塩分濃度測定方法を説明する。   With reference to FIG. 5, the salt concentration measuring method in the embodiment of the present invention will be described.

ステップS101において、原液Sの可溶性固形分濃度を示すBrix値を測定する。サンプルの原液Sは、プリズム18との境界面を覆うように、サンプル載置面16に延ばされる。ユーザが操作部44を操作すると、演算制御部40から光源20に信号が送られ、光源20が点灯する。光源20からの光は、原液Sとプリズム18との境界面に入射し(図1の矢印a)、原液Sの屈折率に応じてその一部が境界面で反射され、反射光が光検出部22により受光される(図1の矢印b)。   In step S101, a Brix value indicating the soluble solid content concentration of the stock solution S is measured. The sample stock solution S is extended to the sample mounting surface 16 so as to cover the boundary surface with the prism 18. When the user operates the operation unit 44, a signal is sent from the arithmetic control unit 40 to the light source 20, and the light source 20 is turned on. The light from the light source 20 enters the boundary surface between the stock solution S and the prism 18 (arrow a in FIG. 1), and a part of the light is reflected at the boundary surface according to the refractive index of the stock solution S, and the reflected light is detected by light. The light is received by the unit 22 (arrow b in FIG. 1).

可溶性固形分濃度算定部24は、データ記憶部42に予め記憶された臨界角の算定式及び屈折率の算定式を用いて、光検出部22の出力から、プリズム18から原液Sへの臨界角を求め、臨界角と既知のプリズム18の屈折率からスネルの法則に基づいて原液Sの屈折率を求める。次いで、データ記憶部42に予め記憶された屈折率からBrix値への換算式を用いて、原液Sの屈折率をBrix値に換算する。原液Sの屈折率及びBrix値は、データ記憶部42に記憶される。   The soluble solid content concentration calculation unit 24 uses the critical angle calculation formula and the refractive index calculation formula stored in advance in the data storage unit 42 to output the critical angle from the prism 18 to the stock solution S from the output of the light detection unit 22. And the refractive index of the stock solution S is determined from the critical angle and the known refractive index of the prism 18 based on Snell's law. Next, the refractive index of the stock solution S is converted into a Brix value using a conversion formula from a refractive index stored in advance in the data storage unit 42 to a Brix value. The refractive index and Brix value of the stock solution S are stored in the data storage unit 42.

ステップS103において、サンプルの希釈液S’を作成する。希釈液S’は、サンプル載置面16において、ステップS101で使用した原液Sに純水を加えることにより作成することができる。或いは、ステップS101で使用した原液Sと同じものを別の容器で希釈することにより希釈液S’を作成しても良い。いずれの場合でも、特別な道具を使用せず、また原液S及び原液Sに加える純水の重量を測定せずに、簡単に希釈液S’を作ることができる。   In step S103, a sample diluent S 'is prepared. The diluted solution S ′ can be prepared by adding pure water to the stock solution S used in step S <b> 101 on the sample placement surface 16. Alternatively, the diluted solution S ′ may be prepared by diluting the same stock solution S used in step S101 with another container. In any case, the diluting solution S ′ can be easily prepared without using a special tool and without measuring the weight of the stock solution S and the pure water added to the stock solution S.

ステップS105において、希釈液S’のBrix値を測定する。ステップS101と同様に、ユーザが操作部44を操作すると光源20が点灯し、希釈液S’とプリズム18との境界面で反射された光が光検出部22で受光される。可溶性固形分濃度算定部24は、データ記憶部42に予め記憶された臨界角の算定式及び屈折率の算定式を用いて、光検出部22の出力から、プリズム18から希釈液S’への臨界角を検出し、臨界角とプリズム18の屈折率から希釈液S’の屈折率を求める。次いで、ステップS101と同様に、データ記憶部42に予め記憶された屈折率からBrix値への換算式を用いて、希釈液S’の屈折率をBrix値に換算する。希釈液S’ の屈折率及びBrix値は、データ記憶部42に格納される。   In step S105, the Brix value of the diluent S 'is measured. Similarly to step S <b> 101, when the user operates the operation unit 44, the light source 20 is turned on, and the light reflected by the boundary surface between the diluent S ′ and the prism 18 is received by the light detection unit 22. The soluble solid content concentration calculation unit 24 uses the critical angle calculation formula and the refractive index calculation formula stored in advance in the data storage unit 42 to output the prism 18 to the diluent S ′ from the output of the light detection unit 22. The critical angle is detected, and the refractive index of the diluent S ′ is obtained from the critical angle and the refractive index of the prism 18. Next, similarly to step S101, the refractive index of the diluent S 'is converted into a Brix value using a conversion formula from a refractive index stored in advance in the data storage unit 42 to a Brix value. The refractive index and the Brix value of the diluent S ′ are stored in the data storage unit 42.

ステップS107において、原液Sから希釈液S’への希釈倍率を算定する。好ましくは、ステップS105で希釈液S’のBrix値が測定されると、希釈倍率算定部48は自動的に希釈倍率を算定する。希釈倍率は、データ記憶部42に予め記憶された希釈倍率の算定式を用いて、原液S及び希釈液S’のBrix値から算定される。好ましくは、希釈倍率は、原液SのBrix値を希釈液S’のBrix値で除することにより算定される。   In step S107, the dilution ratio from the stock solution S to the diluent S 'is calculated. Preferably, when the Brix value of the diluent S ′ is measured in step S105, the dilution factor calculator 48 automatically calculates the dilution factor. The dilution rate is calculated from the Brix values of the stock solution S and the diluted solution S ′ using a dilution rate calculation formula stored in advance in the data storage unit 42. Preferably, the dilution ratio is calculated by dividing the Brix value of the stock solution S by the Brix value of the diluent S ′.

ステップS109において、希釈倍率が所定の適正範囲にあるかどうかを判定する。先に述べたとおり、サンプルの希釈液を用いてサンプルの原液の塩分濃度を測定するため希釈倍率の適正範囲は、好ましくは5〜15倍であり、より好ましくは8〜12倍である。   In step S109, it is determined whether the dilution factor is within a predetermined appropriate range. As described above, the appropriate range of the dilution ratio is preferably 5 to 15 times, more preferably 8 to 12 times in order to measure the salinity of the sample stock solution using the sample diluent.

希釈倍率判定部50により、希釈倍率が適正範囲にないと判定されると、ステップS111において、表示部46によりエラーメッセージが表示され、ステップS103に戻って、希釈倍率の調整が行なわれる。   If the dilution factor determination unit 50 determines that the dilution factor is not within the proper range, an error message is displayed on the display unit 46 in step S111, and the process returns to step S103 to adjust the dilution factor.

希釈倍率が所定の適正範囲に満たない場合、演算制御部40は、希釈濃度が高過ぎることを示すエラーメッセージ(例えば、「HHH」や「High」など)を表示部46に表示させる。それにより、希釈液S’に更に純水を加えて希釈濃度を減ずる必要があることをユーザに知らせることができる。   When the dilution rate is less than the predetermined appropriate range, the calculation control unit 40 causes the display unit 46 to display an error message (for example, “HHH” or “High”) indicating that the dilution concentration is too high. Thereby, it is possible to inform the user that it is necessary to further add pure water to the diluent S ′ to reduce the dilution concentration.

希釈倍率が所定の範囲を越えている場合、演算制御部40は、希釈濃度が低過ぎることを示すエラーメッセージ(例えば、「LLL」や「Low」を表示部46に表示させる。それにより、希釈液S’に原液Sを加えて希釈濃度を増す必要があることをユーザに知らせることができる。   When the dilution factor exceeds the predetermined range, the calculation control unit 40 displays an error message (for example, “LLL” or “Low”) indicating that the dilution concentration is too low. The user can be informed that the stock solution S needs to be added to the liquid S ′ to increase the dilution concentration.

一方、希釈倍率判定部50により、希釈倍率が適正範囲にあると判定されると、希釈倍率は表示部46により表示されると共に、データ記憶部42に格納され、ステップS113に進む。   On the other hand, when the dilution rate determination unit 50 determines that the dilution rate is within the appropriate range, the dilution rate is displayed on the display unit 46 and stored in the data storage unit 42, and the process proceeds to step S113.

ステップS113において、希釈液S’の電気伝導率を測定する。電気伝導率の測定は、ユーザが操作部44で指示することにより開始される。ただし、ステップS109において希釈倍率が適正範囲にないと判定された場合は、ユーザが指示しても電気伝導率の測定は開始されない。これにより、塩分濃度が高いサンプルによって、電極がダメージを受けるのを防止することができる。   In step S113, the electrical conductivity of the diluent S 'is measured. The measurement of electrical conductivity is started when the user gives an instruction using the operation unit 44. However, if it is determined in step S109 that the dilution factor is not in the proper range, the measurement of electrical conductivity is not started even if the user instructs. This can prevent the electrode from being damaged by the sample having a high salt concentration.

希釈倍率が適正範囲にあると判定された後、ユーザにより電気伝導率の測定が指示されると、第1の電極26と第2の電極28の間に交流電圧が印加され、第1の電極26と第2の電極28との間の電流及び電圧が測定される。電気伝導率算定部34は、データ記憶部42に予め記憶された電気伝導率の算定式を用いて、測定した電流及び電圧から希釈液S’の電気伝導率を算定する。算定した希釈液S’の電気伝導率は、データ記憶部42に記憶される。   When it is determined that the dilution ratio is within the appropriate range and the user instructs measurement of electrical conductivity, an alternating voltage is applied between the first electrode 26 and the second electrode 28, and the first electrode The current and voltage between 26 and the second electrode 28 are measured. The electrical conductivity calculator 34 calculates the electrical conductivity of the diluent S ′ from the measured current and voltage using the electrical conductivity calculation formula stored in advance in the data storage unit 42. The calculated electrical conductivity of the diluted solution S ′ is stored in the data storage unit 42.

ステップS115において、希釈液S’の塩分濃度を算定する。塩分濃度算定部52は、データ記憶部42に予め記憶された塩分濃度の算定式を用いて、ステップS113で算定した希釈液S’の電気伝導率から希釈液S’の塩分濃度を算定する。算定した希釈液S’の塩分濃度は、データ記憶部42に記憶される。   In step S115, the salinity of the diluent S 'is calculated. The salinity concentration calculating unit 52 calculates the salinity concentration of the diluent S ′ from the electrical conductivity of the diluent S ′ calculated in step S <b> 113, using the salinity concentration calculation formula stored in advance in the data storage unit 42. The calculated salt concentration of the diluted solution S ′ is stored in the data storage unit 42.

ステップS117において、原液Sの塩分濃度を算定する。塩分濃度算定部52は、希釈倍率と希釈液S’の塩分濃度測定値とをデータ記憶部42から呼び出し、これらを乗算して原液Sの塩分濃度を算定する。算定した原液Sの塩分濃度は、表示部46により表示されると共に、データ記憶部42に記憶される。   In step S117, the salt concentration of the stock solution S is calculated. The salinity concentration calculation unit 52 calls the dilution rate and the measured salt concentration value of the diluent S ′ from the data storage unit 42 and multiplies them to calculate the salt concentration of the stock solution S. The calculated salt concentration of the stock solution S is displayed on the display unit 46 and stored in the data storage unit 42.

各ステップでデータ記憶部42に格納した、原液Sの屈折率及びBrix値、希釈液S’の屈折率及びBrix値、希釈倍率、希釈液S’の電気伝導率及び塩分濃度測定値、原液Sの塩分濃度換算値は、インターフェース36を介して他の装置に伝送することも可能である。   The refractive index and Brix value of the stock solution S, the refractive index and Brix value of the diluent S ′, the dilution factor, the measured electric conductivity and salt concentration of the diluent S ′, and the stock solution S stored in the data storage unit 42 at each step. The converted salinity value can be transmitted to another device via the interface 36.

実施例
図6は、様々なサンプルについて、原液及び希釈液のBrix測定値の比から希釈倍率を算定した場合の原液の塩分濃度換算値を示す。
Example FIG. 6 shows the salt concentration conversion value of the stock solution when the dilution ratio is calculated from the ratio of the Brix measurement values of the stock solution and the diluted solution for various samples.

より詳細には、希釈倍率は、表1における原液のBrix測定値を、同じく表1における希釈濃度10%の希釈液のBrix測定値で除することにより算定した。次いで、上記希釈濃度10%の希釈液の電気伝導率を測定して同希釈液の塩分濃度測定値を算定し、この塩分濃度測定値に希釈倍率を乗じて原液の塩分濃度に換算した。   More specifically, the dilution ratio was calculated by dividing the measured Brix value of the stock solution in Table 1 by the measured Brix value of the diluted solution having a dilution concentration of 10% in Table 1. Subsequently, the electrical conductivity of the diluted solution having the dilution concentration of 10% was measured to calculate the measured salt concentration of the diluted solution, and this salt concentration measured value was multiplied by the dilution factor to convert it to the salt concentration of the stock solution.

図6の実線は、希釈倍率を原液と希釈液のBrix値の比として算定した場合の原液塩分濃度換算値を示し、破線は、従来の方法で、すなわち、希釈濃度が正確に10%であると仮定して希釈倍率を10倍として求めた原液塩分濃度換算値を示す。図示の通り、希釈倍率をBrix値の比として算定した場合でも、重量%比を厳密に測定して希釈液を作成する従来の方法と概ね等しい塩分濃度が得られている。   The solid line in FIG. 6 shows the stock solution salinity conversion value when the dilution ratio is calculated as the ratio of the Brix value of the stock solution and the dilution solution, and the broken line is the conventional method, that is, the dilution concentration is exactly 10%. Assuming that the dilution factor is 10 times, the value converted into the salt concentration of the stock solution is shown. As shown in the figure, even when the dilution ratio is calculated as a ratio of Brix values, a salinity concentration almost equal to the conventional method of preparing a diluted solution by strictly measuring the weight% ratio is obtained.

図7は、重量%比を厳密に測定して作成した希釈倍率10倍の希釈液について、上記第1の実施例で求めた希釈倍率の誤差を示す。希釈倍率を原液と希釈液のBrix値の比として算定する実施例1における希釈倍率は、9.41〜10.91倍であった。   FIG. 7 shows the error of the dilution factor obtained in the first embodiment with respect to the diluted solution having a dilution rate of 10 times prepared by strictly measuring the weight% ratio. The dilution factor in Example 1 for calculating the dilution factor as the ratio of the Brix value of the stock solution and the diluted solution was 9.41 to 10.91 times.

一方、±0.2gの精度で重量を測定して10倍に希釈した場合の実際の希釈倍率は、8.17〜12.75倍である。±0.1gの精度で重量を測定して10倍に希釈した場合の実際の希釈倍率は、9.00〜11.22倍である。   On the other hand, when the weight is measured with an accuracy of ± 0.2 g and diluted 10 times, the actual dilution factor is 8.17 to 12.75 times. When the weight is measured with an accuracy of ± 0.1 g and diluted 10 times, the actual dilution factor is 9.00 to 11.22 times.

図示の通り、希釈倍率をBrix値の比として算定した第1の実施例では、±0.1gの精度で重量測定により希釈液を作成した場合よりも精度良く希釈倍率が得られることが分かる。したがって、希釈倍率をBrix値の比として算定することにより、±0.1gの精度で重量測定により作成した希釈液を用いるよりも精度良くサンプル原液の塩分濃度を測定できることが分かる。   As shown in the figure, it can be seen that in the first example in which the dilution rate is calculated as the ratio of the Brix value, the dilution rate can be obtained with higher accuracy than when the diluted solution is prepared by weight measurement with an accuracy of ± 0.1 g. Therefore, by calculating the dilution ratio as the ratio of Brix values, it can be seen that the salinity concentration of the sample stock solution can be measured with higher accuracy than using the diluted solution prepared by weight measurement with an accuracy of ± 0.1 g.

上記塩分濃度測定装置及び塩分濃度測定方法によれば、原液及び希釈液の可溶性固形分濃度を示すBrix値から希釈倍率を求められるので、厳密な重量測定による希釈作業が不要であり、塩分濃度の測定を容易に行なうことができる。   According to the salinity concentration measuring apparatus and the salinity concentration measuring method, since the dilution rate can be obtained from the Brix value indicating the soluble solid content concentration of the stock solution and the diluted solution, the dilution work by strict weight measurement is unnecessary, and the salinity concentration Measurement can be performed easily.

希釈液の希釈倍率が所定の範囲にあるか否かを判定できるので、希釈倍率を塩分濃度の測定に適した範囲に容易に調整することができ、それにより塩分濃度を精度よく測定することができる。   Since it can be determined whether or not the dilution ratio of the diluent is within a predetermined range, the dilution ratio can be easily adjusted to a range suitable for the measurement of the salinity concentration, and thereby the salinity concentration can be accurately measured. it can.

原液及び希釈液のBrix測定値の比を希釈倍率とすることにより、全てのサンプルに対して同様に希釈倍率を算定できるので、測定装置及び測定方法をより単純にすることができる。   By setting the ratio of the Brix measurement values of the stock solution and the diluted solution as the dilution rate, the dilution rate can be calculated in the same manner for all the samples, so that the measuring apparatus and the measuring method can be simplified.

以上、本発明の実施形態に係る塩分濃度測定装置及び塩分濃度測定方法を説明したが、本発明はこれに限定されるものではない。例えば、塩分濃度測定装置の各部の構成は同様の機能を有する任意の構成のものに置き換えることができる。   Although the salinity concentration measuring apparatus and the salinity concentration measuring method according to the embodiment of the present invention have been described above, the present invention is not limited to this. For example, the configuration of each part of the salinity concentration measuring device can be replaced with an arbitrary configuration having the same function.

10 塩分濃度測定装置
12 筐体
14 開口
16 サンプル載置面
18 プリズム
20 光源
22 光検出部
24 可溶性固形分濃度算定部
26 第1の電極
28 第2の電極
34 電気伝導率算定部
36 インターフェース
38 処理回路
40 演算制御部
42 データ記憶部
44 操作部
46 表示部
48 希釈倍率算定部
50 希釈倍率判定部
52 塩分濃度算定部
S サンプルの原液
S’ サンプルの希釈液
DESCRIPTION OF SYMBOLS 10 Salinity concentration measuring apparatus 12 Case 14 Opening 16 Sample mounting surface 18 Prism 20 Light source 22 Light detection part 24 Soluble solid content concentration calculation part 26 First electrode 28 Second electrode 34 Electrical conductivity calculation part 36 Interface 38 Process Circuit 40 Operation control unit 42 Data storage unit 44 Operation unit 46 Display unit 48 Dilution factor calculation unit 50 Dilution factor determination unit 52 Salinity concentration calculation unit S Sample stock solution S 'Sample dilution solution

Claims (8)

サンプルの原液及び希釈液の可溶性固形分濃度を測定する可溶性固形分濃度測定手段と、
前記原液及び前記希釈液の可溶性固形分濃度に基づいて前記希釈液の希釈倍率を算定する希釈倍率算定手段と、
前記希釈液の電気伝導率を測定する電気伝導率測定手段と、
前記希釈倍率及び前記電気伝導率に基づいて前記原液の塩分濃度を算定する塩分濃度算定手段と
を備える、塩分濃度測定装置。
A soluble solids concentration measuring means for measuring the soluble solids concentration of the sample stock solution and the diluted solution;
A dilution ratio calculating means for calculating a dilution ratio of the diluent based on the soluble solid content concentration of the stock solution and the diluent;
Electrical conductivity measuring means for measuring the electrical conductivity of the diluent;
A salinity concentration measuring device comprising: a salinity concentration calculating means for calculating a salinity concentration of the stock solution based on the dilution factor and the electric conductivity.
前記希釈倍率算定手段は、前記原液の可溶性固形分濃度を前記希釈液の可溶性固形分濃度で除することにより前記希釈倍率を算定する、請求項1に記載の塩分濃度測定装置。   The salt concentration measuring apparatus according to claim 1, wherein the dilution rate calculating means calculates the dilution rate by dividing the soluble solid content concentration of the stock solution by the soluble solid content concentration of the diluted solution. 前記塩分濃度算定手段は、前記電気伝導率を前記希釈液の塩分濃度に換算し、前記希釈液の塩分濃度に前記希釈倍率を乗じることにより前記原液の塩分濃度を算定する、請求項1又は2に記載の塩分濃度測定装置。   The salinity concentration calculating means calculates the salinity concentration of the stock solution by converting the electrical conductivity into the salinity concentration of the diluent and multiplying the salt concentration of the diluent by the dilution factor. The salinity concentration measuring apparatus according to 1. 前記希釈倍率が所定の範囲にあるか否か判定する希釈倍率判定手段を更に備え、前記所定の範囲は5〜15倍である、請求項1〜3のいずれか1項に記載の塩分濃度測定装置。   The salt concentration measurement according to any one of claims 1 to 3, further comprising a dilution rate determination means for determining whether or not the dilution rate is in a predetermined range, wherein the predetermined range is 5 to 15 times. apparatus. サンプルの原液の可溶性固形分濃度を測定する工程と、
前記原液を希釈して希釈液を作成する工程と、
前記希釈液の可溶性固形分濃度を測定する工程と、
前記原液及び前記希釈液の可溶性固形分濃度に基づいて前記希釈液の希釈倍率を算定する工程と、
前記希釈液の電気伝導率を測定する工程と、
前記希釈倍率及び前記電気伝導率に基づいて前記原液の塩分濃度を算定する工程と
を含む、塩分濃度測定方法。
Measuring the soluble solids concentration of the sample stock solution;
Diluting the stock solution to create a diluted solution;
Measuring the soluble solids concentration of the diluent;
Calculating the dilution ratio of the diluent based on the soluble solid content concentration of the stock solution and the diluent; and
Measuring the electrical conductivity of the diluent;
Calculating the salt concentration of the stock solution based on the dilution factor and the electrical conductivity.
前記希釈倍率を算定する工程において、前記原液の可溶性固形分濃度を前記希釈液の可溶性固形分濃度で除することにより前記希釈倍率を算定する、請求項5に記載の塩分濃度測定方法。   The salt concentration measurement method according to claim 5, wherein in the step of calculating the dilution rate, the dilution rate is calculated by dividing the soluble solid content concentration of the stock solution by the soluble solid content concentration of the dilution solution. 前記塩分濃度を算定する工程は、
前記電気伝導率を前記希釈液の塩分濃度に換算する工程と、
前記希釈液の塩分濃度に前記希釈倍率を乗算して前記原液の塩分濃度を算定する工程と
を含む、請求項5又は6のいずれか1項に記載の塩分濃度測定方法。
The step of calculating the salinity is
Converting the electrical conductivity into a salt concentration of the diluent;
The salt concentration measuring method according to claim 5, further comprising: multiplying the salt concentration of the diluted solution by the dilution factor to calculate the salt concentration of the stock solution.
前記希釈倍率が所定の範囲にあるか否か判定する工程を更に含み、前記所定の範囲は5〜15倍である、請求項5〜7のいずれか1項に記載の塩分濃度測定方法。   The salt concentration measuring method according to any one of claims 5 to 7, further comprising a step of determining whether or not the dilution ratio is within a predetermined range, wherein the predetermined range is 5 to 15 times.
JP2010166923A 2010-07-26 2010-07-26 Salinity concentration measuring apparatus and salinity concentration measuring method Active JP5044774B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010166923A JP5044774B2 (en) 2010-07-26 2010-07-26 Salinity concentration measuring apparatus and salinity concentration measuring method
CN201110215273.4A CN102495024B (en) 2010-07-26 2011-07-25 Salinity concentration measuring device and salinity concentration measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010166923A JP5044774B2 (en) 2010-07-26 2010-07-26 Salinity concentration measuring apparatus and salinity concentration measuring method

Publications (2)

Publication Number Publication Date
JP2012026912A true JP2012026912A (en) 2012-02-09
JP5044774B2 JP5044774B2 (en) 2012-10-10

Family

ID=45780003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010166923A Active JP5044774B2 (en) 2010-07-26 2010-07-26 Salinity concentration measuring apparatus and salinity concentration measuring method

Country Status (2)

Country Link
JP (1) JP5044774B2 (en)
CN (1) CN102495024B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150096A1 (en) * 2012-04-05 2013-10-10 Fresenius Medical Care Deutschland Gmbh Method and device for determining the composition of medical liquids as regards their proportion of electrolytes and non-electrolytes
CN103630514A (en) * 2013-11-05 2014-03-12 杭州陆恒生物科技有限公司 Multifunctional digital display refractometer
JP2017181304A (en) * 2016-03-30 2017-10-05 三井造船環境エンジニアリング株式会社 Solution analysis system
CN109073579A (en) * 2016-03-30 2018-12-21 三井易艾斯环境工程有限公司 Liquor analysis system
CN113466176A (en) * 2021-06-28 2021-10-01 华南师范大学 Method for detecting metal ions in aqueous solution based on refractive index change rate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249655B2 (en) * 1983-05-19 1990-10-30 Nippon Seikosho Kk
JPH07167756A (en) * 1993-12-14 1995-07-04 Mitsubishi Heavy Ind Ltd Liquid automatic dilution device
JPH11258191A (en) * 1998-03-09 1999-09-24 Japan Organo Co Ltd Method and apparatus for measurement of concentration of carbonic acid
JP2004085263A (en) * 2002-08-23 2004-03-18 Sharp Corp Automatic diluting apparatus for metal aquious solution
JP2004150923A (en) * 2002-10-30 2004-05-27 Atago:Kk Refractometer
JP2006349450A (en) * 2005-06-15 2006-12-28 Atago:Kk Concentration measuring device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU647593A1 (en) * 1975-08-11 1979-02-15 Всесоюзный научно-исследовательский и проектный институт галургии Method of automatic determining of potassium content in salts
GB2062223A (en) * 1979-10-30 1981-05-20 Hamill B J Measurement of solute concentration using dilution
JP3610858B2 (en) * 2000-01-20 2005-01-19 住友金属工業株式会社 Acid concentration meter and acid concentration measurement method
JP2007003414A (en) * 2005-06-24 2007-01-11 Arkray Inc Cartridge for analyzer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0249655B2 (en) * 1983-05-19 1990-10-30 Nippon Seikosho Kk
JPH07167756A (en) * 1993-12-14 1995-07-04 Mitsubishi Heavy Ind Ltd Liquid automatic dilution device
JPH11258191A (en) * 1998-03-09 1999-09-24 Japan Organo Co Ltd Method and apparatus for measurement of concentration of carbonic acid
JP2004085263A (en) * 2002-08-23 2004-03-18 Sharp Corp Automatic diluting apparatus for metal aquious solution
JP2004150923A (en) * 2002-10-30 2004-05-27 Atago:Kk Refractometer
JP2006349450A (en) * 2005-06-15 2006-12-28 Atago:Kk Concentration measuring device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013150096A1 (en) * 2012-04-05 2013-10-10 Fresenius Medical Care Deutschland Gmbh Method and device for determining the composition of medical liquids as regards their proportion of electrolytes and non-electrolytes
CN104271173A (en) * 2012-04-05 2015-01-07 弗雷森纽斯医疗护理德国有限责任公司 Method and device for determining the composition of medical liquids as regards their proportion of electrolytes and non-electrolytes
US9274073B2 (en) 2012-04-05 2016-03-01 Fresenius Medical Care Deutschland Gmbh Method and apparatus for determining the composition of medical liquids with regard to their fraction of electrolytes and non-electrolytes
CN104271173B (en) * 2012-04-05 2018-06-29 弗雷森纽斯医疗护理德国有限责任公司 For determining the method and apparatus of the ratio of electrolyte and non-electrolyte in medicinal liquid composition
CN103630514A (en) * 2013-11-05 2014-03-12 杭州陆恒生物科技有限公司 Multifunctional digital display refractometer
JP2017181304A (en) * 2016-03-30 2017-10-05 三井造船環境エンジニアリング株式会社 Solution analysis system
CN109073579A (en) * 2016-03-30 2018-12-21 三井易艾斯环境工程有限公司 Liquor analysis system
CN113466176A (en) * 2021-06-28 2021-10-01 华南师范大学 Method for detecting metal ions in aqueous solution based on refractive index change rate
CN113466176B (en) * 2021-06-28 2022-10-21 华南师范大学 Method for detecting metal ions in aqueous solution based on refractive index change rate

Also Published As

Publication number Publication date
CN102495024B (en) 2015-03-11
CN102495024A (en) 2012-06-13
JP5044774B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5044774B2 (en) Salinity concentration measuring apparatus and salinity concentration measuring method
US20230273144A1 (en) Systems and methods for electrochemical hematocrit determination by alternate current impedance phase angle determinations
RU2013116993A (en) METHOD FOR MEASURING ANALYTES AND SYSTEM WITH HEMATOCRIT COMPENSATION
CN109450528A (en) A kind of the measurement of power loss circuit and method of optical module
CN111537487B (en) Temperature compensation method and device of optical oxygen sensor
JP2015021952A5 (en)
CN207331070U (en) Copper concentration management system
CN103226094A (en) Optical measurement device and optical measurement method
JP2012042313A5 (en)
JP2008191159A (en) Method and apparatus for analyzing and apparatus for managing concentration of component of system which makes specific gravity and concentration of component vary
JP2008203129A (en) Salinity concentration meter
CN103398946B (en) A kind of color of liquid with reference transmission method pick-up unit
WO2014061242A1 (en) Coordinate input device, electronic calculation device and coordinate input method
JP2010243452A (en) Method and instrument for continuously measuring concentration of peracetic acid
CN107817225B (en) Method for measuring oil content in water
JP6111534B2 (en) Optical measuring device and control method
Dutt Awasthi et al. A low-cost, colorimeter-based portable device, for rapid, on-spot determination of fluoride in water
KR20080097011A (en) Apparatus for measuring salt level of food
TW200741400A (en) Method for monitoring component concentration of dying solution
KR20140036470A (en) Method for measuring sugar content using fruit electrochemical cell
JP2013148376A (en) Measuring device
CN204142837U (en) Portable online resistance conductance detector
JP2002296209A (en) Concentration measuring system for composite solution
CN104111252B (en) A kind of novel ammonia gas-sensing electrode
RU2606190C2 (en) METHOD AND DEVICE TO DETERMINE pH VALUE OF SOLUTION

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5044774

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250