JP2012019230A - Plasma etching electrode - Google Patents

Plasma etching electrode Download PDF

Info

Publication number
JP2012019230A
JP2012019230A JP2011201826A JP2011201826A JP2012019230A JP 2012019230 A JP2012019230 A JP 2012019230A JP 2011201826 A JP2011201826 A JP 2011201826A JP 2011201826 A JP2011201826 A JP 2011201826A JP 2012019230 A JP2012019230 A JP 2012019230A
Authority
JP
Japan
Prior art keywords
plasma etching
electrode
etching electrode
silicon wafer
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011201826A
Other languages
Japanese (ja)
Inventor
Makoto Ishii
誠 石井
Takayuki Suzuki
孝幸 鈴木
Yoshimitsu Watanabe
善光 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011201826A priority Critical patent/JP2012019230A/en
Publication of JP2012019230A publication Critical patent/JP2012019230A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a plasma etching electrode capable of preventing etching failures of a silicon wafer to improve a production yield of a semiconductor integrated circuit, and drastically reducing metal contamination of the silicon wafer immediately after starting the use.SOLUTION: A plasma etching electrode is formed of glassy carbon with an Fe contamination amount to a silicon wafer surface being 1×10atoms/cmto 10×10atoms/cm. It is preferred that a thickness of the plasma etching electrode is 3-10 mm.

Description

本発明は半導体ウエハの加工に利用されるプラズマエッチング装置に使用される電極(以下プラズマエッチング電極と称す)に関し、より詳細には反応室に高周波電力が印加され、かつエッチングガスをシャワー状に分散させるためのガス吹き出し穴を有する上部電極と、該電極に対向してシリコンウエハが載置される下部電極とを有する平行平板型プラズマエッチング装置等において前記高周波電力が印加される電極に関する。   The present invention relates to an electrode (hereinafter referred to as a plasma etching electrode) used in a plasma etching apparatus used for processing a semiconductor wafer, and more specifically, a high frequency power is applied to a reaction chamber and an etching gas is dispersed in a shower shape. The present invention relates to an electrode to which the high-frequency power is applied in a parallel plate type plasma etching apparatus or the like having an upper electrode having a gas blowing hole and a lower electrode on which a silicon wafer is placed facing the electrode.

半導体ウエハに素子を形成するために、エッチング処理が行われている。このエッチングを行う装置として、プラズマエッチング装置が用いられている。プラズマエッチング装置は、図1に示されるように、真空容器1内に上部電極2および下部電極3が間隔を置いて設けられており、下部電極3の上に被処理材としてシリコンウエハ4を載置している。上部電極2はバックプレート5とプラズマエッチング電極6とで構成されており、それぞれにエッチングガスを流すためのガス吹き出し穴7が設けられている。   An etching process is performed in order to form elements on a semiconductor wafer. As an apparatus for performing this etching, a plasma etching apparatus is used. In the plasma etching apparatus, as shown in FIG. 1, an upper electrode 2 and a lower electrode 3 are provided in a vacuum container 1 at an interval, and a silicon wafer 4 is mounted on the lower electrode 3 as a material to be processed. It is location. The upper electrode 2 is composed of a back plate 5 and a plasma etching electrode 6, and each is provided with a gas blowing hole 7 for flowing an etching gas.

エッチングガスをガス吹き出し穴7を通してシリコンウエハ4に向かって流しながら、高周波電源8により、上部電極2と下部電極3の間に高周波電力を印加してプラズマ11を形成する。このプラズマによってシリコンウエハ4をエッチングし、所定のパターンの素子を形成するものである。絶縁リング9及びシールドリング10は、アルミナあるいは石英のような絶縁物からなり、シールドリング10は、プラズマエッチング電極6の取付用ビスをプラズマから保護するため、プラズマエッチング電極6の外周部を覆うように設置される。   A plasma 11 is formed by applying a high-frequency power between the upper electrode 2 and the lower electrode 3 by a high-frequency power source 8 while flowing an etching gas toward the silicon wafer 4 through the gas blowing holes 7. The silicon wafer 4 is etched by this plasma to form elements having a predetermined pattern. The insulating ring 9 and the shield ring 10 are made of an insulator such as alumina or quartz, and the shield ring 10 covers the outer periphery of the plasma etching electrode 6 in order to protect the mounting screw for the plasma etching electrode 6 from plasma. Installed.

プラズマエッチング電極6は、使用するに従いプラズマが発生している部分、つまり対向しているシリコンウエハ4とほぼ同じ面積の部分が、プラズマによってエッチングされ消耗する。そこで、ある程度プラズマエッチング電極6が消耗し、エッチング特性(エッチングの間にシリコンウエハ4上に付着した異物粒子等)が規格を外れるとプラズマエッチング電極6の使用を中止し、新たな電極と交換する。   As the plasma etching electrode 6 is used, a portion where plasma is generated, that is, a portion having substantially the same area as the silicon wafer 4 facing the plasma etching electrode 6 is etched and consumed by the plasma. Therefore, if the plasma etching electrode 6 is consumed to some extent and the etching characteristics (foreign particles adhering to the silicon wafer 4 during etching) deviate from the standard, the use of the plasma etching electrode 6 is stopped and replaced with a new electrode. .

従来、特開昭62−109317号公報に記載されているように、炭素粒子の脱落がない、高純度であるという性質を利用して、ガラス状炭素が使用されている。しかしながら、最近の半導体集積回路の高集積化に伴い、シリコンウエハのエッチング後の形状がより高精度に制御されるようになってきたため、半導体集積回路の歩留に影響を及ぼす金属汚染(特にFe汚染)の低減が求められている。これに伴い、プラズマエッチング電極も金属不純物をより少なくすることが要求されている。
この対策として、ガラス状炭素製プラズマエッチング電極をシリコンウエハの洗浄に用いられるRCA洗浄で高純度化することが行われたが、シリコンウエハへの金属汚染、特にプラズマエッチング電極使用開始直後の金属汚染を大幅に改善するまでには至っていない。
Conventionally, as described in JP-A No. 62-109317, glassy carbon has been used by utilizing the property that carbon particles do not fall off and have high purity. However, with the recent high integration of semiconductor integrated circuits, the shape after etching of a silicon wafer has been controlled with higher accuracy, so that metal contamination that affects the yield of semiconductor integrated circuits (especially Fe Reduction of contamination is required. Along with this, the plasma etching electrode is also required to have less metal impurities.
As a countermeasure, the glass-etched carbon plasma etching electrode was purified to high purity by RCA cleaning used for cleaning silicon wafers. Metal contamination of the silicon wafer, particularly metal contamination immediately after the start of use of the plasma etching electrode was performed. Has not yet been improved significantly.

また、現在一般的に行われているプラズマエッチング電極の純度測定方法は下記に示す通りである。
(1)プラズマエッチング電極を灰化した後、その灰をICP−MASSで不純物量を測定する。
(2)プラズマエッチング電極を10%塩酸に浸漬して、表面に付着している金属不純物を抽出した後、抽出液中の金属不純物量をイオンクロマトグラフィで測定する。
Moreover, the purity measuring method of the plasma etching electrode currently generally performed is as follows.
(1) After ashing the plasma etching electrode, the amount of impurities is measured by ICP-MASS of the ash.
(2) The plasma etching electrode is immersed in 10% hydrochloric acid to extract metal impurities adhering to the surface, and then the amount of metal impurities in the extract is measured by ion chromatography.

しかしながら、前記(1)の測定方法では、プラズマエッチング電極のバルクの純度は分かるが、測定感度が低いため、半導体集積回路の製品歩留特に使用直後の歩留との相関が分からなかった。また、前記(2)の測定方法では、表面に付着している不純物量しか測定できない。ところが表面に付着している不純物は、電極取り付け時に行う空放電(ダミーのシリコンウエハを投入してプラズマを発生させること)で容易に除去されるため、シリコンウエハの金属汚染に影響を及ぼさない。そのため製品歩留と不純物量に相関が認められなかった。   However, in the measurement method of (1), the bulk purity of the plasma etching electrode is known, but since the measurement sensitivity is low, the correlation with the product yield of the semiconductor integrated circuit, particularly the yield immediately after use, was not known. In the measurement method (2), only the amount of impurities adhering to the surface can be measured. However, since the impurities adhering to the surface are easily removed by empty discharge (plasma is generated by introducing a dummy silicon wafer) performed when the electrodes are attached, the metal contamination of the silicon wafer is not affected. Therefore, there was no correlation between product yield and impurity content.

特開昭62−109317号公報JP 62-109317 A

本発明は、シリコンウエハのエッチング不良を防止して半導体集積回路の生産歩留、使用開始直後のシリコンウエハの金属汚染を大幅に低減できるプラズマエッチング電極を提供するものである。   The present invention provides a plasma etching electrode capable of preventing the etching failure of a silicon wafer and greatly reducing the production yield of a semiconductor integrated circuit and the metal contamination of the silicon wafer immediately after the start of use.

本発明は、シリコンウエハ表面へのFe汚染量が1×1010atoms/cm〜10×1010atoms/cmであるガラス状炭素からなるプラズマエッチング電極に関する。
また、本発明は、プラズマエッチング電極の厚さが3〜10mmである上記に記載のプラズマエッチング電極に関する。
The present invention relates to a plasma etching electrode made of glassy carbon in which the amount of Fe contamination on a silicon wafer surface is 1 × 10 10 atoms / cm 2 to 10 × 10 10 atoms / cm 2 .
The present invention also relates to the plasma etching electrode as described above, wherein the plasma etching electrode has a thickness of 3 to 10 mm.

本発明のプラズマエッチング電極は、シリコンウエハのエッチング後の金属汚染を防止して半導体集積回路の生産歩留、使用開始直後の生産歩留を大幅に低減できる。
また、本発明のプラズマエッチング電極を用いたプラズマエッチング装置は、シリコンウエハの金属汚染を防止して半導体集積回路の生産歩留、特に新たなプラズマエッチング電極を使用開始した直後の生産歩留を大幅に低減できる。
また、本発明の本発明のプラズマエッチング電極では、シリコンウエハのエッチング後の金属汚染を防止して半導体集積回路の生産歩留を向上できる、特に新たなプラズマエッチング電極を使用開始した直後の生産歩留を大幅に低減できるプラズマエッチング電極を的確に選択できる。
The plasma etching electrode of the present invention can prevent metal contamination after etching a silicon wafer, and can greatly reduce the production yield of a semiconductor integrated circuit and the production yield immediately after the start of use.
In addition, the plasma etching apparatus using the plasma etching electrode of the present invention prevents the metal contamination of the silicon wafer and greatly increases the production yield of the semiconductor integrated circuit, particularly immediately after the start of using the new plasma etching electrode. Can be reduced.
In the plasma etching electrode of the present invention, the metal contamination after etching of the silicon wafer can be prevented and the production yield of the semiconductor integrated circuit can be improved. In particular, the production process immediately after the use of a new plasma etching electrode is started. It is possible to accurately select a plasma etching electrode that can significantly reduce the yield.

本発明のプラズマエッチング電極を用いたプラズマエッチング装置の概略図である。It is the schematic of the plasma etching apparatus using the plasma etching electrode of this invention.

本発明は、シリコンウエハ表面へのFe汚染量が1×1010atoms/cm〜10×1010atoms/cmであるガラス状炭素からなるプラズマエッチング電極である。
プラズマにより消耗する部分がガラス状炭素からなるプラズマエッチング電極において、ガラス状炭素が二次イオン質量分析(SIMS)で測定したFe濃度を1×10counts以下に制御することによって、シリコンウエハの金属汚染を大幅に低減させることがわかった。ここで、SIMSで測定した値が1×10countsを超えると、プラズマエッチングの際、被エッチング材であるシリコンウエハが、電極消耗とともに飛散したFeに汚染されるため、シリコンウエハに形成されている半導体集積回路が不良となってしまう。
二次イオン質量分析(SIMS)で測定したFe濃度は、5×10counts以下とすることが半導体集積回路の生産歩留向上の効果がより高いので、より好ましく、1×10counts以下とすることが特に好ましい。
The present invention is a plasma etching electrode made of glassy carbon in which the amount of Fe contamination on the silicon wafer surface is 1 × 10 10 atoms / cm 2 to 10 × 10 10 atoms / cm 2 .
By controlling the Fe concentration measured by secondary ion mass spectrometry (SIMS) to 1 × 10 3 counts or less in the plasma etching electrode in which the portion consumed by plasma is made of glassy carbon, the metal of the silicon wafer It has been found to significantly reduce contamination. Here, if the value measured by SIMS exceeds 1 × 10 3 counts, the silicon wafer, which is the material to be etched, is contaminated by the scattered Fe as the electrode is consumed during plasma etching. The semiconductor integrated circuit that is present becomes defective.
Secondary ion mass spectrometry (SIMS) Fe concentration measured by, since be 5 × 10 2 counts or less higher effect of production yield improvement of a semiconductor integrated circuit, and more preferably, 1 × 10 2 counts or less and It is particularly preferable to do this.

平行平板型のプラズマエッチング装置におけるプラズマエッチング電極の形状は一般に円板状である。本発明において、プラズマにより消耗する部分がガラス状炭素からなるプラズマエッチング電極とは、その円板全体がガラス状炭素からなるもの及びプラズマにより消耗する部分、即ち円板の中央部分(ガス吹き出し穴が設けられている範囲)がガラス状炭素からなり、その外周がその他の材料で構成されるものを含む。   The shape of the plasma etching electrode in the parallel plate type plasma etching apparatus is generally a disc shape. In the present invention, the plasma etching electrode in which the portion consumed by the plasma is made of glassy carbon means that the whole disk is made of glassy carbon and the portion consumed by the plasma, that is, the central portion of the disk (the gas blowing hole is The range provided is made of glassy carbon, and the outer periphery thereof is composed of other materials.

本発明のプラズマエッチング電極を構成するガラス状炭素は、前記特性を満たすものであれば、その原料及び製造法に特に制限はない。
原料として用いられる熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、フラン樹脂、メラミン樹脂、アルキッド樹脂、キシレン樹脂等を挙げることができる。また、これら樹脂の混合物を用いることもできる。これらの中で、フラン樹脂又はフェノール樹脂が好ましい。
If the glassy carbon which comprises the plasma etching electrode of this invention satisfy | fills the said characteristic, there will be no restriction | limiting in particular in the raw material and a manufacturing method.
Examples of the thermosetting resin used as a raw material include a phenol resin, an epoxy resin, an unsaturated polyester resin, a furan resin, a melamine resin, an alkyd resin, and a xylene resin. A mixture of these resins can also be used. Among these, furan resin or phenol resin is preferable.

熱硬化性樹脂の種類に応じて、硬化剤が用いられる。硬化剤としては、硫酸、塩酸、硝酸、リン酸等の無機酸、p−トルエンスルホン酸、メタンスルホン酸等の有機スルホン酸、酢酸、トリクロロ酢酸、トリフロロ酢酸等のカルボン酸等が挙げられる。硬化剤は熱硬化性樹脂に対して0.001〜20重量%使用することが好ましい。
前記熱硬化性樹脂は、必要に応じて前記硬化剤を添加した後、目的とする形状に応じて各種成形方法で成形した後、硬化処理する。この硬化は60〜200℃、より好ましくは70〜100℃の温度で熱処理して行うことが好ましい。
A curing agent is used depending on the type of thermosetting resin. Examples of the curing agent include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid, organic sulfonic acids such as p-toluenesulfonic acid and methanesulfonic acid, and carboxylic acids such as acetic acid, trichloroacetic acid and trifluoroacetic acid. The curing agent is preferably used in an amount of 0.001 to 20% by weight based on the thermosetting resin.
The thermosetting resin is added with the curing agent as necessary, and then molded by various molding methods according to the target shape, and then cured. This curing is preferably performed by heat treatment at a temperature of 60 to 200 ° C., more preferably 70 to 100 ° C.

必要に応じさらにプラズマエッチング電極板としての所定の加工を行った後、高度に純化された治具及び炉を用い不活性雰囲気中(通常、ヘリウム、アルゴン等の不活性ガスや窒素、水素、ハロゲンガス等の非酸化性ガスの少なくとも一種の気体からなる酸素を含まない雰囲気、又は真空下)において、好ましくは800〜3000℃、より好ましくは1100〜2800℃の温度で焼成炭化する。ついで好ましくは1300〜3500℃の温度で熱処理しガラス状炭素を得ることができる。   If necessary, after further processing as a plasma etching electrode plate, in a inert atmosphere (usually inert gas such as helium and argon, nitrogen, hydrogen, halogen, etc.) using a highly purified jig and furnace In a non-oxidizing gas or other oxygen-free atmosphere or under vacuum), the carbonization is preferably performed at a temperature of 800 to 3000 ° C., more preferably 1100 to 2800 ° C. Then, it is preferably heat treated at a temperature of 1300 to 3500 ° C. to obtain glassy carbon.

SIMSでのFe測定値を上記の範囲内とするための方法は特に制限されないが、プラズマエッチング電極を、界面活性剤を添加したフッ硝酸、濃硫酸、王水等の強酸で洗浄する方法、HClガス雰囲気中で高温の熱処理を行う方法等が挙げられる。   A method for bringing the measured value of Fe by SIMS within the above range is not particularly limited, but a method of cleaning the plasma etching electrode with a strong acid such as hydrofluoric acid, concentrated sulfuric acid, or aqua regia added with a surfactant, HCl Examples include a method of performing a high-temperature heat treatment in a gas atmosphere.

本発明のプラズマエッチング電極の大きさ及び形状としては、特に制限されないが、外径150〜400mm、厚さが3〜10mmの円板形のものが好ましい。電極をプラズマエッチング装置に取付けるための外周部の取付け穴は、8〜24個設けられることが好ましい。エッチングガスをシャワー状に分散させるためのガス吹出し穴は、取付け穴より内周部に設けられることが好ましい。このガス吹出し穴の大きさはエッチング条件等により異なるが穴径で0.3〜2.0mmが好ましく、穴数は100〜3000個が好ましい。穴の加工は、機械加工、放電加工、超音波加工等で行うことができる。   The size and shape of the plasma etching electrode of the present invention are not particularly limited, but a disk-shaped one having an outer diameter of 150 to 400 mm and a thickness of 3 to 10 mm is preferable. It is preferable that 8 to 24 mounting holes on the outer peripheral portion for mounting the electrode to the plasma etching apparatus are provided. It is preferable that the gas blowing holes for dispersing the etching gas in a shower shape are provided in the inner peripheral portion from the mounting holes. The size of the gas blowing hole varies depending on etching conditions and the like, but the hole diameter is preferably 0.3 to 2.0 mm, and the number of holes is preferably 100 to 3000. The hole can be processed by machining, electric discharge machining, ultrasonic machining, or the like.

プラズマエッチング電極の形状とする加工、ガス吹き出し穴の作製は、ガラス状炭素を得た後、放電加工、超音波加工等で行うこともできる。
本発明のプラズマエッチング電極を用いたプラズマエッチング装置は、プラズマエッチング電極として上記のものを使うこと以外は特に制限はない。その装置の一例としては、図1に示し、説明したものが挙げられ、図1において、プラズマエッチング電極6として上記のプラズマエッチング電極を用いればよい。
本発明のプラズマエッチング電極の評価法は、前述のSIMSでFe濃度を測定することにより行うことができる。前述のようにFe濃度が1×10counts以下となるプラズマエッチング電極を得る条件(製造法、洗浄方法など)を選択して、それによりプラズマエッチング電極を製造すれば、シリコンウエハの金属汚染を低減できるプラズマエッチング電極を得ることが可能となる。
The processing for forming the shape of the plasma etching electrode and the production of the gas blowing holes can be performed by electric discharge machining, ultrasonic machining, etc. after obtaining glassy carbon.
The plasma etching apparatus using the plasma etching electrode of the present invention is not particularly limited except that the above-described plasma etching electrode is used. As an example of the apparatus, the apparatus shown and described in FIG. 1 can be cited. In FIG. 1, the above-described plasma etching electrode may be used as the plasma etching electrode 6.
The plasma etching electrode evaluation method of the present invention can be performed by measuring the Fe concentration by the above-mentioned SIMS. As described above, if the conditions (manufacturing method, cleaning method, etc.) for obtaining the plasma etching electrode with an Fe concentration of 1 × 10 3 counts or less are selected and the plasma etching electrode is manufactured thereby, the metal contamination of the silicon wafer can be prevented. It is possible to obtain a plasma etching electrode that can be reduced.

以下に本発明の実施例を説明する。
なお本実施例のSIMS測定は、(株)日立製作所製IMA−3型を用いて、1次イオン種:O2+、1次イオン加速電圧:20KV、1次イオン電流:300nAの条件で行った。
測定した点は、ガラス状炭素製電極の中心点と、外周から10mmのところを90度ピッチで4点の合計5点であり、その平均値をもって各電極の値とした。
Examples of the present invention will be described below.
In addition, the SIMS measurement of a present Example was performed on the conditions of primary ion species: O2 + , primary ion acceleration voltage: 20KV, primary ion current: 300nA using Hitachi Ltd. IMA-3 type. .
The measured points were the center point of the glass-like carbon electrode and a total of 5 points of 4 points at a pitch of 90 ° at 10 mm from the outer periphery, and the average value was taken as the value of each electrode.

実施例1〜8
原料樹脂にフェノール樹脂(日立化成工業(株)製、商品名VP−112N)を用い、これに硬化剤としてトリクロロ酢酸8重量%を加え、70℃の加熱下、直径500mmのアルミ製シャーレに注型して樹脂板を得た。この樹脂板を70℃で3日、90℃で3日で加熱硬化した後、1℃/分の昇温速度で最高900℃で焼成炭素化し、次いで昇温速度5℃/分で最高3000℃で熱処理してガラス状炭素を得た。得られたガラス状炭素平板に放電加工によってガス吹き出し穴(穴径0.5mm、ピッチ10mm、個数500個)等を形成した後、ラップ、ポリッシュで表面仕上げしプラズマエッチング電極(外径200mm、厚さ3mm)の形状とした。
次いで濃度26重量%のフッ化水素酸と濃度60重量%の硝酸と界面活性剤(旭硝子製、商品名サーフロンS131)を5:5:1に混合したフッ硝酸に浸漬して超音波洗浄を行った。超音波洗浄時間を30分〜120分の範囲で変えてSIMSで測定して本発明のプラズマエッチング電極を得た。
Examples 1-8
Phenol resin (trade name VP-112N, manufactured by Hitachi Chemical Co., Ltd.) is used as the raw material resin, and 8% by weight of trichloroacetic acid is added to this as a curing agent. Molded to obtain a resin plate. This resin plate was heat-cured at 70 ° C. for 3 days and 90 ° C. for 3 days, and then calcined at a maximum temperature of 900 ° C. at a rate of 1 ° C./min, and then at a maximum rate of 3000 ° C. at a rate of 5 ° C./min. To give glassy carbon. Gas discharge holes (hole diameter: 0.5 mm, pitch: 10 mm, number of 500 pieces) are formed on the obtained glassy carbon flat plate by electric discharge machining, and then surface-finished by lapping and polishing, and a plasma etching electrode (outer diameter: 200 mm, thickness) 3 mm).
Next, ultrasonic cleaning is performed by immersing in hydrofluoric acid in which a concentration of 26% by weight of hydrofluoric acid, a concentration of 60% by weight of nitric acid, and a surfactant (product name: Surflon S131, manufactured by Asahi Glass Co., Ltd.) is mixed 5: 5: 1 It was. The plasma etching electrode of the present invention was obtained by changing the ultrasonic cleaning time in the range of 30 minutes to 120 minutes and measuring with SIMS.

上記のプラズマエッチング電極を図1に示す構成のプラズマエッチング装置に取り付け、反応ガスとしてトリフロロメタン、フッ化メタンを各20SCCM流し、電源周波数400KHz、反応チャンバー内のガス圧0.05Torrの条件でシリコンウエハのエッチング加工を行った。次いでこのシリコンウエハ表面のFe汚染量を全反射型蛍光X線分析装置(テクノス(株)製、型式TREX610T)で測定した。測定結果を表1に示す。   The above-described plasma etching electrode is attached to the plasma etching apparatus having the configuration shown in FIG. 1, and 20 SCCM of trifluoromethane and fluorinated methane are flown as reaction gases, silicon power is supplied under conditions of a power supply frequency of 400 kHz and a gas pressure of 0.05 Torr in the reaction chamber The wafer was etched. Next, the amount of Fe contamination on the surface of the silicon wafer was measured with a total reflection fluorescent X-ray analyzer (manufactured by Technos Co., Ltd., model TREX610T). The measurement results are shown in Table 1.

比較例1〜4
原料樹脂にフェノール樹脂(日立化成工業(株)製、商品名VP−112N)を用い、これに硬化剤としてトリクロロ酢酸8重量%を加え、70℃の加熱下、直径500mmのアルミ製シャーレに注型して4つの樹脂板を得た。この樹脂板を70℃で3日、90℃で3日で加熱硬化した後、1℃/分の昇温速度で最高900℃で焼成炭素化し、次いで昇温速度5℃/分で最高3000℃で熱処理してガラス状炭素を得た。得られたガラス状炭素平板に放電加工によって実施例と同様にガス吹き出し穴等を形成した後、ラップ、ポリッシュで表面仕上げしプラズマエッチング電極の形状とした。次いで塩酸(濃度1重量%、3重量%、7重量%及び10重量%)で30分超音波洗浄した後、さらに純水で30分洗浄した。これをSIMSで測定して本発明の範囲外のプラズマエッチング電極を得た。
Comparative Examples 1-4
Phenol resin (trade name VP-112N, manufactured by Hitachi Chemical Co., Ltd.) is used as the raw material resin, and 8% by weight of trichloroacetic acid is added to this as a curing agent. Molded to obtain four resin plates. This resin plate was heat-cured at 70 ° C. for 3 days and 90 ° C. for 3 days, and then calcined at a maximum temperature of 900 ° C. at a rate of 1 ° C./min, and then at a maximum rate of 3000 ° C. at a rate of 5 ° C./min. To give glassy carbon. Gas discharge holes and the like were formed on the obtained glassy carbon flat plate by electric discharge machining in the same manner as in the example, and then the surface was finished with lapping and polishing to form a plasma etching electrode. Next, ultrasonic cleaning was performed for 30 minutes with hydrochloric acid (concentrations of 1% by weight, 3% by weight, 7% by weight and 10% by weight), followed by further cleaning with pure water for 30 minutes. This was measured by SIMS to obtain a plasma etching electrode outside the scope of the present invention.

上記のプラズマエッチング電極を実施例と同様にプラズマエッチング装置に取り付け、反応ガスとしてトリフロロメタン、フッ化メタンを各20SCCM流し、電源周波数400KHz、反応チャンバー内のガス圧0.05Torrの条件でシリコンウエハのエッチング加工を行った。次いでこのシリコンウエハ表面のFe汚染量を全反射型蛍光X線分析装置(テクノス(株)製、型式TREX610T)で測定した。測定結果を表2に示す。 表1及び表2のFe汚染量の測定結果は、6インチウエハの面内5点の平均値を示す。   The above plasma etching electrode is attached to the plasma etching apparatus in the same manner as in the examples, and 20 SCCM of trifluoromethane and fluorinated methane are flown as reaction gases, a silicon wafer under the conditions of a power supply frequency of 400 kHz and a gas pressure of 0.05 Torr in the reaction chamber. Etching was performed. Next, the amount of Fe contamination on the surface of the silicon wafer was measured with a total reflection fluorescent X-ray analyzer (manufactured by Technos Co., Ltd., model TREX610T). The measurement results are shown in Table 2. The measurement results of the amount of Fe contamination in Tables 1 and 2 show average values of 5 points in a 6-inch wafer.

Figure 2012019230
Figure 2012019230

Figure 2012019230
Figure 2012019230

1 真空容器
2 上部電極
3 下部電極
4 シリコンウエハ
5 バックプレート
6 プラズマエッチング電極
7 ガス吹き出し穴
8 高周波電源
9 絶縁リング
10 シールドリング
11 プラズマ
DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Upper electrode 3 Lower electrode 4 Silicon wafer 5 Back plate 6 Plasma etching electrode 7 Gas blowing hole 8 High frequency power supply 9 Insulation ring 10 Shield ring 11 Plasma

Claims (2)

硬化剤を0.001〜20重量%添加した熱硬化性樹脂を成形して硬化処理し、プラズマエッチング電極板としての所定の加工を行った後、不活性雰囲気中において800〜3000℃の温度で焼成炭化し、ついで1300〜3500℃の温度で熱処理したプラズマエッチング電極。   A thermosetting resin added with 0.001 to 20% by weight of a curing agent is molded and cured, subjected to predetermined processing as a plasma etching electrode plate, and then at a temperature of 800 to 3000 ° C. in an inert atmosphere. A plasma etching electrode that is calcined and then heat treated at a temperature of 1300 to 3500 ° C. プラズマエッチング電極の厚さが3〜10mmである請求項1に記載のプラズマエッチング電極。   The plasma etching electrode according to claim 1, wherein the plasma etching electrode has a thickness of 3 to 10 mm.
JP2011201826A 2011-09-15 2011-09-15 Plasma etching electrode Pending JP2012019230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011201826A JP2012019230A (en) 2011-09-15 2011-09-15 Plasma etching electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011201826A JP2012019230A (en) 2011-09-15 2011-09-15 Plasma etching electrode

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008117180A Division JP2008187209A (en) 2008-04-28 2008-04-28 Plasma etching electrode

Publications (1)

Publication Number Publication Date
JP2012019230A true JP2012019230A (en) 2012-01-26

Family

ID=45604178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011201826A Pending JP2012019230A (en) 2011-09-15 2011-09-15 Plasma etching electrode

Country Status (1)

Country Link
JP (1) JP2012019230A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722385A (en) * 1992-02-06 1995-01-24 Toshiba Ceramics Co Ltd Rie electrode and manufacture thereof
JPH09221312A (en) * 1996-02-15 1997-08-26 Tokai Carbon Co Ltd Electrode plate for plasma etching and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722385A (en) * 1992-02-06 1995-01-24 Toshiba Ceramics Co Ltd Rie electrode and manufacture thereof
JPH09221312A (en) * 1996-02-15 1997-08-26 Tokai Carbon Co Ltd Electrode plate for plasma etching and its production

Similar Documents

Publication Publication Date Title
JPH11312646A (en) Protecting member for inner wall of chamber and plasma processor
KR20100099137A (en) High lifetime consumable silicon nitride-silicon dioxide plasma processing components
JP2003136027A (en) Method for cleaning ceramic member for use in semiconductor production apparatus, cleaning agent and combination of cleaning agents
JP2011517368A (en) Method and apparatus for removing polymer from a substrate
JPWO2011083719A1 (en) Silicon wafer surface layer etching method and etching apparatus, and silicon wafer metal contamination analysis method
JP2000058510A (en) Electrode plate for plasma etching
JP2008187209A (en) Plasma etching electrode
JP2012019230A (en) Plasma etching electrode
JP3631368B2 (en) Plasma etching electrode and plasma etching apparatus using the same
JP2006310881A (en) Method for cleaning ceramic component for use in semiconductor manufacturing apparatus
JP2005129963A (en) Plasma etching electrode
JPH06128762A (en) Electrode plate for plasma etching
JPH1161451A (en) Focus ring of plasma etching equipment and plasma etching equipment
JP5713182B2 (en) Silicon electrode plate for plasma etching
JP2000021852A (en) Plasma etching electrode and plasma etching device
JP2002043397A (en) Susceptor
JP2002231698A (en) Focus ring for plasma etching system, and plasma etching system
JP3461120B2 (en) Electrode plate for plasma etching and plasma etching apparatus
JP2000164568A (en) Manufacture of plasma etching electrode
JP4517370B2 (en) Silicon ring for plasma etching equipment
JP4021325B2 (en) Manufacturing method of parts for plasma processing apparatus
JP2001176846A (en) Electrode plate for plasma etching and method of production
JPH05304114A (en) Electrode plate for plasma etching
KR102567556B1 (en) Method for manufacturing a semiconductor device, semiconductor device manufacturing device used therein and parts for the semiconductor device manufacturing device used therein
CN214672495U (en) Plasma etching device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131003