JP2012019205A5 - - Google Patents

Download PDF

Info

Publication number
JP2012019205A5
JP2012019205A5 JP2011124805A JP2011124805A JP2012019205A5 JP 2012019205 A5 JP2012019205 A5 JP 2012019205A5 JP 2011124805 A JP2011124805 A JP 2011124805A JP 2011124805 A JP2011124805 A JP 2011124805A JP 2012019205 A5 JP2012019205 A5 JP 2012019205A5
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
material structure
thermal resistance
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011124805A
Other languages
Japanese (ja)
Other versions
JP2012019205A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2011124805A priority Critical patent/JP2012019205A/en
Priority claimed from JP2011124805A external-priority patent/JP2012019205A/en
Publication of JP2012019205A publication Critical patent/JP2012019205A/en
Publication of JP2012019205A5 publication Critical patent/JP2012019205A5/ja
Pending legal-status Critical Current

Links

Description

開示する一観点からは、複数の熱電変換材料微結晶粒子と、前記複数の熱電変換材料微結晶粒子間の空孔とからなる柱状或いは格子状の熱電変換材料構造体と前記熱電変換材料構造体の一方の端面に設けられた第1の電極と、前記熱電変換材料構造体の他方の端面に設けられた第2の電極とを有する熱電変換素子が提供される。 From one aspect disclosed, a plurality of thermoelectric conversion material fine crystal grains, a columnar or grid thermoelectric conversion material structure and the thermoelectric conversion material structure consisting of pores between the plurality of thermoelectric conversion material microcrystal grains There is provided a thermoelectric conversion element having a first electrode provided on one end surface of the thermoelectric conversion material structure and a second electrode provided on the other end surface of the thermoelectric conversion material structure.

また、開示する別の観点からは、基板に複数の孔を形成する孔形成工程と、前記孔の内部にエアロゾルデポジション法を用いて熱電変換材料を充填して熱電変換材料構造体を形成する充填工程とを有することを特徴とする熱電変換素子の製造方法が提供される。 From another viewpoint to be disclosed, a hole forming step for forming a plurality of holes in the substrate , and a thermoelectric conversion material structure is formed by filling the holes with a thermoelectric conversion material using an aerosol deposition method. A method for manufacturing a thermoelectric conversion element comprising a filling step is provided.

ここで、実施例1乃至実施例4を含む本発明の実施の形態に関して、以下の付記を開示する。
(付記1)複数の熱電変換材料微結晶粒子と、前記複数の熱電変換材料微結晶粒子間の空孔とからなる柱状或いは格子状の熱電変換材料構造体と前記熱電変換材料構造体の一方の端面に設けられた第1の電極と、前記熱電変換材料構造体の他方の端面に設けられた第2の電極とを有する熱電変換素子。
(付記2)前記熱電変換材料構造体は、高さが50μm乃至500μmであり、水平断面の最短径が5μm乃至100μmであり、且つ、アスペクト比が2以上であることを特徴とする付記1に記載の熱電変換素子。
(付記3)前記熱電変換材料が、金属酸化物半導体からなることを特徴とする付記2または付記3に記載の熱電変換素子。
(付記4)前記熱電変換材料構造体の側壁の少なくとも一部が、電気抵抗及び熱抵抗が前記熱電変換材料の電気抵抗及び熱抵抗より高い補強部材で被覆されることを特徴とする付記1乃至付記3のいずれか1に記載の熱電変換素子。
(付記5)前記補強部材が、電気抵抗及び熱抵抗が前記熱電変換材料の電気抵抗及び熱抵抗より高い補強材料微結晶粒子と、前記複数の補強部材微結晶間の空孔とからなることを特徴とする付記4に記載の熱電変換素子。
(付記6)前記複数の熱電変換材料構造体が互いに導電型の異なった二種類の熱電変換材料構造体からなり、前記熱電変換材料構造体の一方の端面において、一導電型の前記熱電変換材料構造体と反対導電型の前記熱電変換材料構造体を第1の電極で交互に接続するとともに、前記熱電変換材料構造体の他方の端面において、一導電型の前記熱電変換材料構造体と反対導電型の前記熱電変換材料構造体を第2の電極で交互に接続して、前記第1の導電型の熱電変換材料構造体と前記第2の熱電変換材料構造体を交互に直列接続することを特徴とする付記1乃至付記5のいずれか1に記載の熱電変換素子。
(付記7)基板に複数の孔を形成する孔形成工程と、前記孔の内部にエアロゾルデポジション法を用いて熱電変換材料を充填して熱電変換材料構造体を形成する充填工程とを有することを特徴とする熱電変換素子の製造方法。
(付記8)前記熱電変換材料構造体を形成したのち、前記基板の少なくとも一部を除去して前記熱電変換材料構造体の少なくとも一部の側壁を露呈する工程と、前記露呈した熱電変換材料構造体の側壁を、電気抵抗及び熱抵抗が前記熱電変換材料の電気抵抗及び熱抵抗より高い補強材料で被覆する工程とを有することを特徴とする付記7に記載の熱電変換素子の製造方法。
(付記9)前記孔形成工程の前に、前記基板に格子状の開口を形成する開口形成工程と、前記開口の内部にエアロゾルデポジッション法を用いて電気抵抗及び熱抵抗が前記熱電変換材料の電気抵抗及び熱抵抗より高い補強材料を充填して補強部を形成する充填工程とを有し、前記孔形成工程において、格子状に充填された前記補強部の内部に孔を形成することを特徴とする付記7に記載の熱電変換素子の製造方法。
(付記10)前記基板が、シリコン基板、シリコン基板上に絶縁膜を介してシリコン層を設けたシリコン複合基板、或いは、シリコン基板上に有機物層を設けた複合基板のいずれかであることを特徴とする付記7乃至付記9のいずれか1に記載の熱電変換素子の製造方法。
(付記11)前記基板に複数の孔を形成する孔形成工程及び前記孔の内部にエアロゾルデポジション法を用いて熱電変換材料を充填して熱電変換材料構造体を形成する充填工程が、前記基板に複数の第1の孔を形成する第1の孔形成工程及び前記第1の孔の内部に一導電型の熱電変換材料構造体を設ける第1の充填工程と、前記基板の前記一導電型の熱電変換材料構造体の存在しない領域に複数の第2の孔を形成する第2の孔形成工程及び前記第2の孔の内部に反対導電型の熱電変換材料構造体を設ける第2の充填工程と、からなることを特徴とする付記7乃至付記10のいずれか1に記載の熱電変換素子の製造方法。
Here, the following additional notes are disclosed regarding the embodiment of the present invention including Examples 1 to 4.
(Supplementary Note 1) and a plurality of thermoelectric conversion material microcrystalline particles, one of the columnar or grid thermoelectric conversion material structure and the thermoelectric conversion material structure consisting of pores between the plurality of thermoelectric conversion material microcrystal grains A thermoelectric conversion element having a first electrode provided on an end face and a second electrode provided on the other end face of the thermoelectric conversion material structure.
(Supplementary note 2) The supplementary note 1, wherein the thermoelectric conversion material structure has a height of 50 μm to 500 μm, a shortest horizontal cross-sectional diameter of 5 μm to 100 μm, and an aspect ratio of 2 or more. The thermoelectric conversion element as described.
(Additional remark 3) The thermoelectric conversion element of Additional remark 2 or Additional remark 3 characterized by the said thermoelectric conversion material consisting of a metal oxide semiconductor.
(Additional remark 4) At least one part of the side wall of the said thermoelectric conversion material structure is coat | covered with the reinforcing member whose electrical resistance and thermal resistance are higher than the electrical resistance and thermal resistance of the said thermoelectric conversion material, The additional notes 1 thru | or characterized by the above-mentioned. The thermoelectric conversion element according to any one of appendix 3.
(Supplementary Note 5) The reinforcing member is composed of reinforcing material microcrystalline particles whose electrical resistance and thermal resistance are higher than the electrical resistance and thermal resistance of the thermoelectric conversion material, and pores between the plurality of reinforcing member microcrystals. The thermoelectric conversion element according to appendix 4, which is characterized.
(Supplementary Note 6) The plurality of thermoelectric conversion material structures are composed of two types of thermoelectric conversion material structures having different conductivity types, and one thermoelectric conversion material is provided on one end face of the thermoelectric conversion material structure. The thermoelectric conversion material structures of the opposite conductivity type to the structure are alternately connected by the first electrodes, and the other end surface of the thermoelectric conversion material structure is opposite to the one conductivity type of the thermoelectric conversion material structure. The thermoelectric conversion material structures of the mold are alternately connected by the second electrodes, and the thermoelectric conversion material structures of the first conductivity type and the second thermoelectric conversion material structures are alternately connected in series. The thermoelectric conversion element according to any one of Supplementary Note 1 to Supplementary Note 5, which is characterized.
(Additional remark 7) It has the hole formation process which forms a some hole in a board | substrate , and the filling process which fills the thermoelectric conversion material inside the said hole using the aerosol deposition method, and forms a thermoelectric conversion material structure. The manufacturing method of the thermoelectric conversion element characterized by these.
(Supplementary note 8) After forming the thermoelectric conversion material structure, removing at least a part of the substrate to expose at least a part of the side wall of the thermoelectric conversion material structure; and the exposed thermoelectric conversion material structure The method of manufacturing a thermoelectric conversion element according to appendix 7, further comprising: covering a side wall of the body with a reinforcing material having an electric resistance and a thermal resistance higher than the electric resistance and thermal resistance of the thermoelectric conversion material.
(Additional remark 9) Before the said hole formation process, the opening formation process which forms a grid | lattice-like opening in the said board | substrate , and the electrical resistance and thermal resistance of the said thermoelectric conversion material are used for the inside of the said opening using the aerosol deposition method. Filling a reinforcing portion with a reinforcing material higher than electrical resistance and thermal resistance to form a reinforcing portion, and in the hole forming step, holes are formed inside the reinforcing portions filled in a lattice shape. The manufacturing method of the thermoelectric conversion element of Additional remark 7.
(Additional remark 10) The said board | substrate is either a silicon substrate, the silicon composite substrate which provided the silicon layer through the insulating film on the silicon substrate, or the composite substrate which provided the organic substance layer on the silicon substrate. The method for manufacturing a thermoelectric conversion element according to any one of appendix 7 to appendix 9.
(Appendix 11) A hole forming step of forming a plurality of holes in the substrate , and a filling step of filling the thermoelectric conversion material into the holes using an aerosol deposition method to form a thermoelectric conversion material structure are performed on the substrate. A first hole forming step of forming a plurality of first holes in the substrate, a first filling step of providing a one-conductivity-type thermoelectric conversion material structure inside the first hole, and the one-conductivity type of the substrate A second hole forming step of forming a plurality of second holes in a region where the thermoelectric conversion material structure does not exist, and a second filling in which a thermoelectric conversion material structure of an opposite conductivity type is provided inside the second hole The method for manufacturing a thermoelectric conversion element according to any one of Supplementary Note 7 to Supplementary Note 10, characterized by comprising the steps of:

Claims (8)

複数の熱電変換材料微結晶粒子と、
前記複数の熱電変換材料微結晶粒子間の空孔
からなる柱状或いは格子状の熱電変換材料構造体と
前記熱電変換材料構造体の一方の端面に設けられた第1の電極と、
前記熱電変換材料構造体の他方の端面に設けられた第2の電極と
を有する熱電変換素子。
A plurality of thermoelectric conversion material microcrystalline particles;
A columnar or lattice-shaped thermoelectric conversion material structure composed of pores between the plurality of thermoelectric conversion material microcrystalline particles ; and a first electrode provided on one end face of the thermoelectric conversion material structure;
The thermoelectric conversion element which has a 2nd electrode provided in the other end surface of the said thermoelectric conversion material structure.
前記熱電変換材料構造体の側壁の少なくとも一部が、電気抵抗及び熱抵抗が前記熱電変換材料の電気抵抗及び熱抵抗より高い補強部材で被覆されることを特徴とする請求項1に記載の熱電変換素子。 2. The thermoelectric device according to claim 1, wherein at least a part of the side wall of the thermoelectric conversion material structure is covered with a reinforcing member having an electrical resistance and a thermal resistance higher than those of the thermoelectric conversion material. Conversion element. 前記補強部材が、
電気抵抗及び熱抵抗が前記熱電変換材料の電気抵抗及び熱抵抗より高い補強材料微結晶粒子と、
前記複数の補強部材微結晶粒子間の空孔
からなることを特徴とする請求項2に記載の熱電変換素子。
The reinforcing member is
Reinforcement material microcrystalline particles having electrical resistance and thermal resistance higher than the electrical resistance and thermal resistance of the thermoelectric conversion material;
The thermoelectric conversion element according to claim 2, comprising holes between the plurality of reinforcing member microcrystalline particles.
前記複数の熱電変換材料構造体が互いに導電型の異なった二種類の熱電変換材料構造体からなり、前記熱電変換材料構造体の一方の端面において、一導電型の前記熱電変換材料構造体と反対導電型の前記熱電変換材料構造体を第1の電極で交互に接続するとともに、前記熱電変換材料構造体の他方の端面において、一導電型の前記熱電変換材料構造体と反対導電型の前記熱電変換材料構造体を第2の電極で交互に接続して、前記第1の導電型の熱電変換材料構造体と前記第2の熱電変換材料構造体を交互に直列接続することを特徴とする請求項1乃至請求項3のいずれか1項に記載の熱電変換素子。   The plurality of thermoelectric conversion material structures are composed of two types of thermoelectric conversion material structures having different conductivity types, and one end surface of the thermoelectric conversion material structure is opposite to the one conductivity type thermoelectric conversion material structure. The thermoelectric conversion material structures of the conductive type are alternately connected by the first electrodes, and the other end face of the thermoelectric conversion material structure is the thermoelectric of the opposite conductivity type to the one type of thermoelectric conversion material structure. The conversion material structures are alternately connected by second electrodes, and the first conductivity type thermoelectric conversion material structures and the second thermoelectric conversion material structures are alternately connected in series. The thermoelectric conversion element according to any one of claims 1 to 3. 基板に複数の孔を形成する孔形成工程と、
前記孔の内部にエアロゾルデポジション法を用いて熱電変換材料を充填して熱電変換材
料構造体を形成する充填工程と
を有することを特徴とする熱電変換素子の製造方法。
A hole forming step of forming a plurality of holes in the substrate ;
A method for manufacturing a thermoelectric conversion element, comprising: a filling step of forming a thermoelectric conversion material structure by filling a thermoelectric conversion material into the hole using an aerosol deposition method.
前記充填工程は、The filling step includes
一導電型の前記熱電変換材料構造体を充填する工程と、Filling the thermoelectric conversion material structure of one conductivity type;
前記一導電型と反対の導電型の前記熱電変換材料構造体を充填する工程とFilling the thermoelectric conversion material structure having a conductivity type opposite to the one conductivity type;
を有することを特徴とする請求項5に記載の熱電変換素子の製造方法。The manufacturing method of the thermoelectric conversion element of Claim 5 characterized by the above-mentioned.
前記熱電変換材料構造体を形成したのち、前記基板の少なくとも一部を除去して前記熱電変換材料構造体の少なくとも一部の側壁を露呈する工程と、
前記露呈した熱電変換材料構造体の側壁を、電気抵抗及び熱抵抗が前記熱電変換材料の電気抵抗及び熱抵抗より高い補強材料で被覆する工程と
を有していることを特徴とする請求項5または請求項6に記載の熱電変換素子の製造方法。
After forming the thermoelectric conversion material structure, removing at least a part of the substrate to expose at least a part of the side wall of the thermoelectric conversion material structure;
6. A step of covering the exposed side wall of the thermoelectric conversion material structure with a reinforcing material whose electric resistance and thermal resistance are higher than the electric resistance and thermal resistance of the thermoelectric conversion material. Or the manufacturing method of the thermoelectric conversion element of Claim 6 .
前記孔形成工程の前に、
前記基板に格子状の開口を形成する開口形成工程と、
前記開口の内部にエアロゾルデポジッション法を用いて電気抵抗及び熱抵抗が前記熱電
変換材料の電気抵抗及び熱抵抗より高い補強材料を充填して補強部を形成する充填工程と
を有し、
前記孔形成工程において、格子状に充填された前記補強部の内部に孔を形成することを
特徴とする請求項5または請求項6に記載の熱電変換素子の製造方法。
Before the hole forming step,
An opening forming step of forming a lattice-like opening in the substrate ;
Filling the inside of the opening with a reinforcing material having an electrical resistance and thermal resistance higher than the electrical resistance and thermal resistance of the thermoelectric conversion material by using an aerosol deposition method; and
In the hole forming step, the manufacturing method of the thermoelectric conversion element according to claim 5 or claim 6, characterized in that to form the interior hole of the reinforcing portion filled in a grid pattern.
JP2011124805A 2010-06-10 2011-06-03 Thermoelectric conversion element and manufacturing method thereof Pending JP2012019205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011124805A JP2012019205A (en) 2010-06-10 2011-06-03 Thermoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010132982 2010-06-10
JP2010132982 2010-06-10
JP2011124805A JP2012019205A (en) 2010-06-10 2011-06-03 Thermoelectric conversion element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012019205A JP2012019205A (en) 2012-01-26
JP2012019205A5 true JP2012019205A5 (en) 2012-05-24

Family

ID=45604170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011124805A Pending JP2012019205A (en) 2010-06-10 2011-06-03 Thermoelectric conversion element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2012019205A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5672079B2 (en) * 2011-03-08 2015-02-18 富士通株式会社 Manufacturing method of ceramic structure and manufacturing method of thermoelectric conversion element
WO2014064755A1 (en) 2012-10-22 2014-05-01 富士通株式会社 Semiconductor device, method for manufacturing semiconductor device, and electronic thermoelectric power generation device
JP6405604B2 (en) * 2013-07-08 2018-10-17 富士通株式会社 Thermoelectric element and manufacturing method thereof
JP6240514B2 (en) * 2014-01-22 2017-11-29 株式会社アツミテック Thermoelectric conversion module
KR101517784B1 (en) * 2014-03-27 2015-05-06 서울시립대학교 산학협력단 Thermoelectric materials having high figure of merit and manufacturing method thereof
JP6785459B2 (en) * 2016-03-28 2020-11-18 パナソニックIpマネジメント株式会社 Thermoelectric conversion element and thermoelectric conversion module
CN112038478B (en) * 2020-09-15 2023-09-26 上海商皓电子科技有限公司 Manufacturing process of semiconductor refrigeration element and element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2777508B2 (en) * 1991-10-07 1998-07-16 松下電器産業株式会社 Electronic cooling element
JPH1098216A (en) * 1996-09-20 1998-04-14 Seiko Epson Corp Manufacturing method of thermoelectric generating device
JPH10209509A (en) * 1997-01-24 1998-08-07 Ngk Insulators Ltd Thermoelectric transducer and its manufacture
JP3724133B2 (en) * 1997-08-26 2005-12-07 松下電工株式会社 Method for manufacturing thermoelectric conversion module
JP2001210879A (en) * 1999-11-17 2001-08-03 Sumitomo Metal Ind Ltd High-output porous thermoelectric conversion element
JP2003229607A (en) * 2002-02-01 2003-08-15 Hiroshima Pref Gov Thermomodule and method for manufacturing the same
JP4301827B2 (en) * 2003-02-03 2009-07-22 パナソニック株式会社 Thermoelectric module manufacturing method
JP2011129832A (en) * 2009-12-21 2011-06-30 Denso Corp Thermoelectric conversion element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2012019205A5 (en)
JP2009164481A5 (en)
JP2011222938A5 (en)
JP2016535441A5 (en)
JP2007311584A5 (en)
JP2014056925A5 (en)
JP2016213468A5 (en)
US20070268739A1 (en) Nanowire memory device and method of manufacturing the same
JP2011151121A5 (en)
JP2013520844A5 (en)
JP2015032625A5 (en)
JP2012134500A5 (en)
JP2012085239A5 (en)
JP2013093546A5 (en)
JP2008270759A5 (en)
JP2012114148A5 (en)
JP2009194322A5 (en)
JP2006352087A5 (en)
JP2012028795A5 (en)
JP2012096329A5 (en)
JP2008543008A5 (en)
JP2014013810A5 (en)
JP2006524436A5 (en)
JP2011187863A5 (en)
JP2012038996A5 (en)