JPH1098216A - Manufacturing method of thermoelectric generating device - Google Patents

Manufacturing method of thermoelectric generating device

Info

Publication number
JPH1098216A
JPH1098216A JP8250742A JP25074296A JPH1098216A JP H1098216 A JPH1098216 A JP H1098216A JP 8250742 A JP8250742 A JP 8250742A JP 25074296 A JP25074296 A JP 25074296A JP H1098216 A JPH1098216 A JP H1098216A
Authority
JP
Japan
Prior art keywords
film
nozzle
substrate
thermoelectric
thermoelectric material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8250742A
Other languages
Japanese (ja)
Inventor
Fumio Takagi
富美男 高城
Toshiaki Yamagami
利昭 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP8250742A priority Critical patent/JPH1098216A/en
Publication of JPH1098216A publication Critical patent/JPH1098216A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently manufacture a small-sized thermoelectric generating device with an output power of in the range of several μW to several mW, which can be used in a small-sized electronic equipment such as a wrist watch, a pocket calculator, an electric thermometer, etc. SOLUTION: Fine particles of thermoelectric material are aerosolized in an aerosolization chamber 1, are carried through a carriage pipe 3 to a film- forming chamber, and then are jetted out through a nozzle 6 onto a substrate 7 at high speed, to form a thermoelectric material film 9. By moving the substrate 7 or the nozzle 6 at a constant speed, a stripe pattern wherein p-type films and n-type films are electrically insulated can be formed on the substrate 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、消費電力が数μW
から数mWレベルの小型電子機器、例えば、腕時計、電
卓、電子体温計などの電源として用いられる体温と気温
との温度差を利用した小型熱電発電素子に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates to a small thermoelectric power generation element utilizing a temperature difference between body temperature and air temperature used as a power source for a small electronic device having a power level of several mW to, for example, a wristwatch, a calculator, an electronic thermometer and the like.

【0002】[0002]

【従来の技術】熱電発電素子を電源として用いる電子機
器としては、腕時計に応用する例が考案されている。こ
の熱電発電素子を電源とする腕時計は、腕に接する裏フ
タ部を高温部、表面外周部や腕時計内部の文字盤やムー
ブメントを低温部とし、その間に、p型とn型の熱電材
料を電流に対しては直列に、熱流に対しては並列に接続
した素子を配置し、ゼーベック効果により発生した電圧
を利用するものである。
2. Description of the Related Art As an electronic device using a thermoelectric generator as a power source, an example applied to a wristwatch has been devised. In a wristwatch powered by this thermoelectric power generation element, the back cover in contact with the arm is a high temperature part, and the outer periphery of the surface and the dial and movement inside the wristwatch are low temperature parts, while p-type and n-type thermoelectric materials In this case, elements connected in series for heat flow and those connected in parallel for heat flow are used, and a voltage generated by the Seebeck effect is used.

【0003】熱電材料のゼーベック係数は一般に200μ
V/K程度であり、温度差は1〜3℃程度であるため、
腕時計を駆動するためには、p型とn型の熱電材料を数
百〜数千個直列に接続する必要がある。このように集積
度の高い熱電発電素子を効率よく作製するために、蒸
着、スパッタリング、イオンビーム、スクリーン印刷な
どの方法がすでに考案されており、例えば特開昭52−
20872号公報、特開昭53−31985号公報など
に記載されている。
The Seebeck coefficient of a thermoelectric material is generally 200 μm.
V / K, and the temperature difference is about 1-3 ° C.
To drive a wristwatch, it is necessary to connect hundreds to thousands of p-type and n-type thermoelectric materials in series. Methods such as vapor deposition, sputtering, ion beam, and screen printing have already been devised in order to efficiently manufacture such a highly integrated thermoelectric power generation element.
No. 20872, JP-A-53-31985 and the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
スパッタリングや蒸着法では成膜速度が低く、生産効率
が悪い。膜厚が薄い場合、発電量は小さく小型電子機器
の電源として不十分であった。十分な膜厚を確保するた
めには、スラリー状にしてスクリーン印刷した後、脱
脂、焼結する方法があるが、p型とn型のストライプ状
の膜を同一基板上に形成することが困難である。そのた
め、なんらかのパターン形成の工程を必要とするという
問題があった。また、脱脂が十分でないと不純物が残留
するなどして性能が低下するという問題があった。特
に、室温で性能指数の高いBi2Te3系熱電材料は、融
点が低く十分に脱脂出来ないという問題があった。
However, the conventional sputtering or vapor deposition method has a low film formation rate and poor production efficiency. When the film thickness was small, the amount of power generation was small and was insufficient as a power source for small electronic devices. In order to ensure a sufficient film thickness, there is a method of performing screen printing in a slurry state, followed by degreasing and sintering. However, it is difficult to form p-type and n-type stripe films on the same substrate. It is. Therefore, there is a problem that a certain pattern forming step is required. Further, if the degreasing is not sufficient, there is a problem that the performance is deteriorated due to impurities remaining. In particular, a Bi2Te3-based thermoelectric material having a high figure of merit at room temperature has a problem in that it has a low melting point and cannot be sufficiently degreased.

【0005】[0005]

【課題を解決するための手段】本発明は、ガスデポジシ
ョン法により小型熱電発電素子のp型とn型の微細なパ
ターンを効率よく形成することにより上記の課題を解決
するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problem by efficiently forming fine p-type and n-type patterns of a small thermoelectric power generation element by a gas deposition method.

【0006】具体的に本発明の熱電発電素子の製造方法
は、熱電材料の微粒子をガス流にのせてノズルを通して
高速で基板に噴射することにより膜を形成することを特
徴とする。
Specifically, a method of manufacturing a thermoelectric power generation element according to the present invention is characterized in that a film is formed by placing fine particles of a thermoelectric material in a gas stream and jetting the fine particles through a nozzle onto a substrate at a high speed.

【0007】また、成膜の際に基板またはノズルを一定
の速度で移動させることによりパターンを形成するこ
と、および、一定の間隔を保持した複数のノズルを用い
ることによって、ストライプ状のパターンを形成するこ
とを特徴とする。
Further, a pattern is formed by moving a substrate or a nozzle at a constant speed during film formation, and a stripe-like pattern is formed by using a plurality of nozzles which are kept at a constant interval. It is characterized by doing.

【0008】さらに、スリット状のノズルで幅の広い膜
を生成した後、エッチング、レーザー加工、放電加工、
と粒を用いた機械加工によって不要な部分を除去するこ
と、または、成膜の際にp型の熱電材料とn型の熱電材
料の間に絶縁膜をはさみながら膜を多重に積層すること
によってパターンを形成することを特徴とする。
Further, after forming a wide film with a slit-shaped nozzle, etching, laser machining, electric discharge machining,
By removing unnecessary parts by machining using particles and grains, or by stacking multiple layers while sandwiching an insulating film between a p-type thermoelectric material and an n-type thermoelectric material during film formation It is characterized by forming a pattern.

【0009】[0009]

【発明の実施の形態】ガスデポジション法は、加熱、蒸
発させて微粒子を生成するガス中蒸発法と、別の方法で
生成した微粒子を容器に入れてエアロゾル状にするエア
ロゾル法がある。熱電材料のような化合物の微粒子を生
成するには、エアロゾル法が好ましい。以下、エアロゾ
ル法を例に本発明について詳しく説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The gas deposition method includes a gas evaporation method in which fine particles are generated by heating and evaporating, and an aerosol method in which fine particles generated by another method are put into a container and formed into an aerosol. To generate fine particles of a compound such as a thermoelectric material, an aerosol method is preferable. Hereinafter, the present invention will be described in detail using an aerosol method as an example.

【0010】熱電材料はBi2Te3系、PbTe、Si
−Ge、FeSi2、CoSb3系などがあり、不純物を
ドープすることによってp型とn型が作製できる。バル
ク材料または急冷法などで得られた粉末を微粉砕するこ
とにより粒径がサブミクロンレベルの微粒子を作製す
る。
The thermoelectric material is Bi 2 Te 3 , PbTe, Si
—Ge, FeSi 2 , CoSb 3, etc., and p-type and n-type can be manufactured by doping impurities. Fine particles having a submicron level are produced by finely pulverizing a bulk material or a powder obtained by a quenching method or the like.

【0011】図1は、エアロゾル法による熱電材料の成
膜装置の概略図である。
FIG. 1 is a schematic view of an apparatus for forming a thermoelectric material by an aerosol method.

【0012】装置は粉をエアロゾル化するエアロゾル化
室1、成膜室2、その間をつなぐ搬送管3、真空排気用
ポンプ4で構成されている。エアロゾル化室1では、熱
電材料の微粒子5が導入されたガスによって舞い上げら
れてエアロゾル状となる。微粒子はエアロゾル化室1と
成膜室2の圧力差によって、搬送管3に吸い込まれ成膜
室に運ばれ、加速されて搬送管先端のノズル6より高速
で吹き出されて基板7に衝突し、膜を形成する。ガスは
すぐ拡散するが、微粒子は質量が大きいため衝突した部
分にのみ堆積する。ガスは、熱電材料の酸化を防ぐため
に、N2、He、Arなどの不活性ガスが使われる。
The apparatus comprises an aerosolizing chamber 1 for converting powder into aerosol, a film forming chamber 2, a transport pipe 3 connecting them, and a vacuum pump 4. In the aerosolization chamber 1, the thermoelectric material microparticles 5 are sowed by the introduced gas to form an aerosol. Due to the pressure difference between the aerosolization chamber 1 and the film formation chamber 2, the fine particles are sucked into the transfer tube 3 and carried to the film formation chamber, accelerated, blown out at high speed from the nozzle 6 at the end of the transfer tube, and collide with the substrate 7, Form a film. The gas diffuses immediately, but the fine particles are deposited only on the colliding portion due to the large mass. As the gas, an inert gas such as N2, He, or Ar is used to prevent oxidation of the thermoelectric material.

【0013】膜密度が高いほど電気抵抗が低くなるが、
膜密度を制御するためには、圧力差をなるべく大きくす
るとか、ヒータ8によって基板温度を高くしたり、搬送
管やノズルを加熱するといった方法がある。また、微粒
子径を小さくすることも重要である。
The higher the film density, the lower the electrical resistance.
In order to control the film density, there are a method of increasing the pressure difference as much as possible, a method of increasing the substrate temperature by the heater 8, and a method of heating the transfer tube and the nozzle. It is also important to reduce the particle diameter.

【0014】このような微粒子を堆積させた膜はバルク
の材料に比べてフォノンの平均自由工程が小さく熱伝導
率が低いため性能が高い。また、粒界制御のために異種
材料の微粒子と複合化させたり、これらの材料を積層し
て傾斜機能化することも可能で、発電効率を上げるため
に有効である。
The film on which such fine particles are deposited has higher performance because the phonon mean free path is smaller and the thermal conductivity is lower than that of the bulk material. Further, it is possible to form a composite with fine particles of a different material for controlling grain boundaries, or to laminate these materials to provide a gradient function, which is effective for increasing power generation efficiency.

【0015】図2〜図6は、本発明による熱電材料膜生
成の実施例を示す概略図である。図2は、基板7または
ノズル6を一定の速度で移動し線状の熱電材料膜9を形
成するもので、移動速度は、堆積速度と必要な膜厚を考
慮して調整する。この方法によって形成される膜の幅は
ノズル径とほぼ同じかやや大きいが、ノズルと基板の距
離を調整することによって多少の制御が可能である。小
型熱電発電素子の作製のためには幅が数十〜数百μmの
膜が必要であるため、ノズル径もこれと同じぐらいの大
きさにすることが望ましい。ノズルと基板との距離はノ
ズル径の数倍程度、ノズルまたは基板の移動速度は数十
〜数百μm/sとすることが望ましい。成膜速度は条件
によって異なるなるが、数十〜数百μm/s程度であ
り、最終膜厚は数十〜数百μmが望ましい。
FIGS. 2 to 6 are schematic views showing an embodiment of forming a thermoelectric material film according to the present invention. FIG. 2 shows a case where the substrate 7 or the nozzle 6 is moved at a constant speed to form a linear thermoelectric material film 9, and the moving speed is adjusted in consideration of the deposition speed and the required film thickness. The width of the film formed by this method is almost the same as or slightly larger than the diameter of the nozzle, but some control is possible by adjusting the distance between the nozzle and the substrate. Since a film having a width of several tens to several hundreds of μm is required for manufacturing a small thermoelectric power generation element, it is desirable that the nozzle diameter is set to the same size. It is desirable that the distance between the nozzle and the substrate is about several times the diameter of the nozzle, and the moving speed of the nozzle or the substrate is several tens to several hundreds μm / s. The film forming speed varies depending on the conditions, but is about several tens to several hundreds μm / s, and the final film thickness is preferably several tens to several hundreds μm.

【0016】図3は、ノズル6を複数本同時に使用し一
定間隔をもった熱電材料膜9のパターンを形成するもの
である。小型熱電発電素子はp型とn型の膜を高密度に
並べて形成する必要があるため、このような複数ノズル
の構成によって製造効率が著しく向上する。例えば、ま
ずn型の微粒子を堆積させてストライプ状の膜を形成
し、次にp型の微粒子をn型の膜の間の部分に堆積させ
る。結果としてp型とn型が交互に配列し、かつ互いに
絶縁されたストライプ状の膜が形成できる。また、図4
のようにp型の膜91とn型の膜92の端部が重なるよ
うにパターンを形成するとも可能であり、電気的な接合
も同時に行なうことができる。したがって、膜形成後に
蒸着やメッキなどの方法で電極を形成する必要がない。
FIG. 3 shows a pattern in which a plurality of nozzles 6 are simultaneously used to form a pattern of the thermoelectric material film 9 at a constant interval. Since it is necessary to form p-type and n-type films side by side at a high density in a small thermoelectric power generation element, such a configuration of a plurality of nozzles significantly improves manufacturing efficiency. For example, first, n-type fine particles are deposited to form a striped film, and then p-type fine particles are deposited in a portion between the n-type films. As a result, a striped film in which p-type and n-type are alternately arranged and insulated from each other can be formed. FIG.
It is also possible to form a pattern such that the end portions of the p-type film 91 and the n-type film 92 overlap with each other as described above, and electrical joining can be performed simultaneously. Therefore, it is not necessary to form an electrode by a method such as evaporation or plating after the film is formed.

【0017】図5は、ノズルの口径をスリット状にし小
型熱電発電素子の厚さに相当する数mm幅の膜を形成す
る例を示している。スリットノズル61を用いることに
よって熱電材料の帯状の膜9が形成される。スリット幅
は数十〜数百μmが望ましい。
FIG. 5 shows an example in which the diameter of the nozzle is made into a slit shape, and a film having a width of several mm corresponding to the thickness of the small thermoelectric generator is formed. By using the slit nozzle 61, the strip-shaped film 9 of the thermoelectric material is formed. The slit width is preferably several tens to several hundreds μm.

【0018】その後、エッチング、レーザー加工、放電
加工、と粒を用いた機械加工によって不要な部分を除去
することによって互いに絶縁された膜ができる。
Thereafter, unnecessary portions are removed by etching, laser processing, electric discharge processing, and mechanical processing using grains, thereby forming films insulated from each other.

【0019】図6は、p型熱電材料、絶縁材料、n型熱
電材料の微粒子を順番に堆積させ、p型の膜91、絶縁
膜10、n型の膜92の順に積層した例を示している。
ノズルの動きを制御して絶縁膜10がない部分をもうけ
ておくと、その部分のp型とn型の膜は接合され、電気
的接合が電極を介さずに容易に形成される。したがっ
て、成膜後に蒸着やメッキによって電極を形成する必要
がない。
FIG. 6 shows an example in which fine particles of a p-type thermoelectric material, an insulating material, and an n-type thermoelectric material are sequentially deposited, and a p-type film 91, an insulating film 10, and an n-type film 92 are stacked in this order. I have.
If a portion where the insulating film 10 is not provided by controlling the movement of the nozzle is provided, the p-type and n-type films in that portion are joined, and an electrical junction is easily formed without an electrode. Therefore, there is no need to form electrodes by vapor deposition or plating after film formation.

【0020】[0020]

【発明の効果】以上説明したように、本発明の熱電発電
素子の製造方法は以下のような効果を有する。
As described above, the method for manufacturing a thermoelectric generator according to the present invention has the following effects.

【0021】1)材料のロスが少なく成膜速度が速いた
め、短時間で厚い膜が形成でき、スパッタリングや蒸着
で成膜した場合に比べて熱電発電素子の発電量が大きく
なる。
1) Since the material loss is small and the film forming speed is high, a thick film can be formed in a short time, and the amount of power generated by the thermoelectric power generation element is larger than that when the film is formed by sputtering or vapor deposition.

【0022】2)ガスデポジション法によりp型とn型
の膜の微細パターンを同一基板上に容易に形成できるた
め、熱電発電素子の構造が簡略になり、高集積化でき
る。
2) Since fine patterns of p-type and n-type films can be easily formed on the same substrate by the gas deposition method, the structure of the thermoelectric power generation device is simplified and high integration can be achieved.

【0023】3)成膜後、p型とn型の膜を電気的に接
合するために、蒸着やメッキなどで電極を形成する必要
がない。
3) Since the p-type and n-type films are electrically joined after film formation, there is no need to form electrodes by vapor deposition or plating.

【0024】4)成膜後に脱脂や焼結をする必要がな
く、エッチングや機械加工の工程も簡略化できる。
4) There is no need to perform degreasing or sintering after film formation, and the steps of etching and machining can be simplified.

【0025】[0025]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のガスデポジション法による成膜装置の
概略図。
FIG. 1 is a schematic diagram of a film forming apparatus using a gas deposition method of the present invention.

【図2】本発明の1つの熱電材料膜形成方法の概略図。FIG. 2 is a schematic view of one thermoelectric material film forming method of the present invention.

【図3】本発明の1つの熱電材料膜形成方法の概略図。FIG. 3 is a schematic diagram of one thermoelectric material film forming method of the present invention.

【図4】本発明の1つの熱電材料膜形成方法の概略図。FIG. 4 is a schematic view of one thermoelectric material film forming method of the present invention.

【図5】本発明の1つの熱電材料膜形成方法の概略図。FIG. 5 is a schematic diagram of one thermoelectric material film forming method of the present invention.

【図6】本発明の1つの熱電材料膜形成方法の概略図。FIG. 6 is a schematic view of one thermoelectric material film forming method of the present invention.

【符号の説明】[Explanation of symbols]

1 エアロゾル化室 2 成膜室 3 搬送管 4 真空排気用ポンプ 5 熱電材料 6 ノズル 61 スリットノズル 7 基板 8 ヒーター 9 熱電材料膜 91 p型熱電材料膜 92 n型熱電材料膜 10 絶縁膜 REFERENCE SIGNS LIST 1 aerosolization chamber 2 film formation chamber 3 transport pipe 4 vacuum pump 5 thermoelectric material 6 nozzle 61 slit nozzle 7 substrate 8 heater 9 thermoelectric material film 91 p-type thermoelectric material film 92 n-type thermoelectric material film 10 insulating film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 熱電材料の微粒子をガス流にのせてノズ
ルを通して高速で基板に噴射することにより、膜を形成
することを特徴とする熱電発電素子の製造方法。
1. A method for manufacturing a thermoelectric power generation element, comprising forming a film by placing fine particles of a thermoelectric material in a gas stream and injecting the particles at high speed through a nozzle.
【請求項2】 熱電材料の微粒子を、ノズルを通して高
速で基板に噴射することにより膜を形成する際、基板ま
たはノズルを一定の速度で移動させることによりパター
ンを形成することを特徴とする請求項1記載の熱電発電
素子の製造方法。
2. A pattern is formed by moving a substrate or a nozzle at a constant speed when forming a film by jetting fine particles of a thermoelectric material through a nozzle at a high speed to a substrate. 2. A method for manufacturing the thermoelectric power generation element according to 1.
【請求項3】 熱電材料の微粒子を、一定の間隔を保持
した複数のノズルを通して高速で基板に噴射し、さらに
基板またはノズルを一定の速度で移動させることによっ
て、ストライプ状のパターンを形成することを特徴とす
る請求項1記載の熱電発電素子の製造方法。
3. A stripe-shaped pattern is formed by injecting fine particles of thermoelectric material onto a substrate at a high speed through a plurality of nozzles maintaining a constant interval, and further moving the substrate or the nozzle at a constant speed. The method for producing a thermoelectric generator according to claim 1, wherein
【請求項4】 熱電材料の微粒子を、スリット状のノズ
ルを通して高速で基板に噴射し、さらに基板またはノズ
ルを一定の速度で移動させることによって、幅の広い膜
を形成した後、エッチング、レーザー加工、放電加工、
と粒を用いた機械加工によって不要な部分を除去するこ
とを特徴とする請求項1記載の熱電発電素子の製造方
法。
4. A wide film is formed by spraying fine particles of a thermoelectric material onto a substrate at a high speed through a slit-shaped nozzle, and further moving the substrate or the nozzle at a constant speed, followed by etching and laser processing. , Electrical discharge machining,
2. The method for manufacturing a thermoelectric power generation element according to claim 1, wherein an unnecessary portion is removed by machining using the particles.
【請求項5】 熱電材料の微粒子を、ノズルを通して高
速で基板に噴射することにより膜を形成する際、p型の
熱電材料とn型の熱電材料の間に絶縁膜をはさみながら
膜を多重に積層することを特徴とする請求項1記載の熱
電発電素子の製造方法。
5. When forming a film by spraying fine particles of a thermoelectric material onto a substrate at a high speed through a nozzle, the film is multiplexed while interposing an insulating film between a p-type thermoelectric material and an n-type thermoelectric material. The method for manufacturing a thermoelectric generator according to claim 1, wherein the thermoelectric generator is laminated.
JP8250742A 1996-09-20 1996-09-20 Manufacturing method of thermoelectric generating device Withdrawn JPH1098216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8250742A JPH1098216A (en) 1996-09-20 1996-09-20 Manufacturing method of thermoelectric generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8250742A JPH1098216A (en) 1996-09-20 1996-09-20 Manufacturing method of thermoelectric generating device

Publications (1)

Publication Number Publication Date
JPH1098216A true JPH1098216A (en) 1998-04-14

Family

ID=17212371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8250742A Withdrawn JPH1098216A (en) 1996-09-20 1996-09-20 Manufacturing method of thermoelectric generating device

Country Status (1)

Country Link
JP (1) JPH1098216A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291656A (en) * 2001-04-03 2002-10-08 Inax Corp Lavatory
JP2005262142A (en) * 2004-03-19 2005-09-29 Canon Inc Film forming apparatus and film forming method
WO2011019078A1 (en) * 2009-08-13 2011-02-17 独立行政法人産業技術総合研究所 High-speed manufacturing method for flexible thermoelectric generation devices
JP2012019205A (en) * 2010-06-10 2012-01-26 Fujitsu Ltd Thermoelectric conversion element and manufacturing method thereof
EP2463924A1 (en) * 2010-12-10 2012-06-13 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Deposition of thermoelectric materials by stamping
JP2012121753A (en) * 2010-12-08 2012-06-28 Doshisha Method for producing metal silicide thin film
JP2014082197A (en) * 2012-09-20 2014-05-08 Sekisui Chem Co Ltd Method of producing composite membrane
JP2015140483A (en) * 2014-01-30 2015-08-03 セイコーエプソン株式会社 Exterior component for timepiece, method of manufacturing exterior component for timepiece, and timepiece
KR20210030218A (en) * 2019-09-09 2021-03-17 슈투름 머쉬넨- & 안라겐바우 게엠베하 Coating device and method for metal-coating of workpieces
US11873562B2 (en) 2019-09-09 2024-01-16 Sturm Maschinen—& Anlagenbau Gmbh Coating device and method for metal-coating of workpieces

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002291656A (en) * 2001-04-03 2002-10-08 Inax Corp Lavatory
JP2005262142A (en) * 2004-03-19 2005-09-29 Canon Inc Film forming apparatus and film forming method
JP4593947B2 (en) * 2004-03-19 2010-12-08 キヤノン株式会社 Film forming apparatus and film forming method
WO2011019078A1 (en) * 2009-08-13 2011-02-17 独立行政法人産業技術総合研究所 High-speed manufacturing method for flexible thermoelectric generation devices
JP2012019205A (en) * 2010-06-10 2012-01-26 Fujitsu Ltd Thermoelectric conversion element and manufacturing method thereof
JP2012121753A (en) * 2010-12-08 2012-06-28 Doshisha Method for producing metal silicide thin film
FR2968598A1 (en) * 2010-12-10 2012-06-15 Commissariat Energie Atomique DEPOSIT OF THERMOELECTRIC MATERIALS BY PRINTING
EP2463924A1 (en) * 2010-12-10 2012-06-13 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Deposition of thermoelectric materials by stamping
JP2014082197A (en) * 2012-09-20 2014-05-08 Sekisui Chem Co Ltd Method of producing composite membrane
JP2015140483A (en) * 2014-01-30 2015-08-03 セイコーエプソン株式会社 Exterior component for timepiece, method of manufacturing exterior component for timepiece, and timepiece
KR20210030218A (en) * 2019-09-09 2021-03-17 슈투름 머쉬넨- & 안라겐바우 게엠베하 Coating device and method for metal-coating of workpieces
JP2021042469A (en) * 2019-09-09 2021-03-18 シュトゥルム マシーネン ウント アラゲンバウ ゲゼルシャフト ミット ベシュレンクテル ハフツングSturm Maschinen− & Anlagenbau GmbH Coating device and method for subjecting workpiece to metal coating
US11873562B2 (en) 2019-09-09 2024-01-16 Sturm Maschinen—& Anlagenbau Gmbh Coating device and method for metal-coating of workpieces

Similar Documents

Publication Publication Date Title
CN1820380B (en) Thermoelectric conversion element and method of manufacturing the same, and thermoelectric conversion device using the element
US6127619A (en) Process for producing high performance thermoelectric modules
US7915144B2 (en) Methods for forming thermotunnel generators having closely-spaced electrodes
EP2534707B1 (en) Thermoelectric conversion element and producing method thereof
JP6067586B2 (en) Thermoelectric element using nanostructured bulk material and thermoelectric module including the same
JPH1098216A (en) Manufacturing method of thermoelectric generating device
JPH09107129A (en) Semiconductor device and its manufacturing method
JP2003133600A (en) Thermoelectric conversion member and manufacturing method therefor
CN101483218B (en) Thermoelectric battery manufacturing method
CA1232363A (en) Thermoelectric generator and method for the fabrication thereof
US20080057611A1 (en) Method of manufacturing a thin-film thermo-electric generator
KR101470393B1 (en) Segmented thermoelectric material including diffusion barrier and fabrication method thereof
JP5468088B2 (en) Thin film thermoelectric generator and manufacturing method thereof
US20170218494A1 (en) Plasma coating of thermoelectric active material with nickel and tin
JPWO2014167697A1 (en) Thermoelectric conversion element
JPH028466B2 (en)
US20100269879A1 (en) Low-cost quantum well thermoelectric egg-crate module
JP2006190916A (en) Method for forming junction electrode in thermionic element and porous thermionic element
JP6561666B2 (en) Thermoelectric conversion element and manufacturing method thereof
US11665964B2 (en) Method for manufacturing thermoelectric conversion element and thermoelectric conversion element
JPH0669549A (en) Thermoelectric device
KR101136518B1 (en) Method for forming ohmic contact of nanowire, and seebeck coefficient measuring method for the nanowire thereof
US20240130236A1 (en) Method for manufacturing a thermoelectric structure
JPH09107130A (en) Thermoelectric conversion device and its manufacturing method
US20240130237A1 (en) Method for metallising a thermoelectric structure

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20031202