JP2012019072A - Solid-state image sensor - Google Patents

Solid-state image sensor Download PDF

Info

Publication number
JP2012019072A
JP2012019072A JP2010155678A JP2010155678A JP2012019072A JP 2012019072 A JP2012019072 A JP 2012019072A JP 2010155678 A JP2010155678 A JP 2010155678A JP 2010155678 A JP2010155678 A JP 2010155678A JP 2012019072 A JP2012019072 A JP 2012019072A
Authority
JP
Japan
Prior art keywords
layer
solid
light
insulating layer
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010155678A
Other languages
Japanese (ja)
Inventor
Takumi Takeda
拓海 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2010155678A priority Critical patent/JP2012019072A/en
Publication of JP2012019072A publication Critical patent/JP2012019072A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a solid-state image sensor which can obtain uniform sensitivity in a light receiving element surface.SOLUTION: The solid-state imaging sensor comprises a wiring layer 3 disposed on the side of irradiation light for imaging of a plurality of light receiving elements 2 including photoelectric conversion elements provided in the vicinity of a surface of a semiconductor substrate 1 on the reception side of the irradiation light for imaging 10 so as to surround the light receiving elements 2 in plan view, an insulation layer 41 covering the light receiving elements 2 and the wiring layer 3 and having a recess, and a planarization layer 51 with a flat surface formed by covering and filling the recess. A refraction index of the insulation layer 41 and a refraction index of the planarization layer 51 are approximated.

Description

本発明は、CCDやCMOS等の光電変換素子を形成した固体撮像素子に関する。   The present invention relates to a solid-state imaging device in which a photoelectric conversion device such as a CCD or a CMOS is formed.

近年、撮像装置は画像の記録、通信、放送の内容の拡大に伴って広く用いられるようになっている。撮像装置として種々の形式のものが提案されているが、小型、軽量で高性能のものが安定して製造されるようになった固体撮像素子を組み込んだ撮像装置が、デジタルカメラやデジタルビデオとして普及してきている。   In recent years, imaging devices have been widely used with the expansion of the contents of image recording, communication, and broadcasting. Various types of image pickup devices have been proposed. An image pickup device incorporating a solid-state image pickup device that has been stably manufactured with a small size, light weight, and high performance can be used as a digital camera or digital video. It has become widespread.

固体撮像素子は、撮影対象物からの光学像を受け、入射した光を電気信号に変換する複数の光電変換素子を有する。光電変換素子の種類はCCD(電荷結合素子)タイプとCMOS(相補型金属酸化物半導体)タイプとに大別される。また、光電変換素子の配列形態から、光電変換素子を1列に配置したリニアセンサー(ラインセンサー)と、光電変換素子を縦横に2次元的に配列させたエリアセンサー(面センサー)との2種類に大別される。いずれのセンサにおいても光電変換素子の数(画素数)が多いほど撮影された画像は精密になる。   The solid-state imaging device has a plurality of photoelectric conversion elements that receive an optical image from a subject and convert incident light into an electrical signal. The types of photoelectric conversion elements are roughly classified into CCD (charge coupled device) type and CMOS (complementary metal oxide semiconductor) type. In addition, there are two types of photoelectric conversion elements: linear sensors (line sensors) in which photoelectric conversion elements are arranged in a row, and area sensors (surface sensors) in which photoelectric conversion elements are two-dimensionally arranged vertically and horizontally. It is divided roughly into. In any sensor, the larger the number of photoelectric conversion elements (number of pixels), the more accurate the captured image.

また、光電変換素子に入射する光の経路に、特定の波長領域の光を選択的に透過する各種のカラーフィルタを設けることで対象物の色情報を得ることを可能としたカラーセンサーも普及している。カラーフィルタの色としては、赤色(R)、緑色(G)、青色(B)の3色からなる3原色系、あるいは、シアン色(C)、マゼンタ色(M)、イエロー色(Y)からなる補色系が一般的である。   In addition, color sensors that can obtain color information of an object by providing various color filters that selectively transmit light in a specific wavelength region in the path of light incident on the photoelectric conversion element are also widespread. ing. As the color of the color filter, three primary colors composed of three colors of red (R), green (G), and blue (B), cyan (C), magenta (M), and yellow (Y) are used. A complementary color system is generally used.

固体撮像素子の一般的構造を図2の模式断面図に示す。半導体基板1として一般にシリコンウェハーを用い、ウェハー表面への一般的な半導体プロセス、および配線パターン形成プロセスを繰り返すことにより、多数のチップをウェハー平面に配置した固体撮像素子群が形成される。図2は一つのチップの部分拡大断面を示したものであって、CCDやCMOS等の光電変換素子からなる受光素子2を、半導体基板1の撮像用照射光10を受ける側の表面近傍に規則的な配列状態で設けており、受光素子2上の撮像用照射光側に、平面視で受光素子2を囲むようにアルミニウム等の金属材料を用いた配線層3のパターンを有する。低い位置の受光素子2と、図示されない層間絶縁層を挟んで通常は多層からなる突起形状の配線層3と、を被覆する絶縁層4が、凹部を構成し、前記凹部を被覆および充填して平坦面を形成した平坦化層5を有する。   The general structure of the solid-state image sensor is shown in the schematic cross-sectional view of FIG. A silicon wafer is generally used as the semiconductor substrate 1, and a general semiconductor process on the wafer surface and a wiring pattern forming process are repeated to form a solid-state imaging device group in which a large number of chips are arranged on the wafer plane. FIG. 2 shows a partially enlarged cross-section of one chip. The light receiving element 2 made of a photoelectric conversion element such as a CCD or CMOS is regularly arranged near the surface of the semiconductor substrate 1 on the side receiving the imaging irradiation light 10. The pattern of the wiring layer 3 using a metal material such as aluminum is provided on the side of the imaging light on the light receiving element 2 so as to surround the light receiving element 2 in plan view. An insulating layer 4 that covers the light receiving element 2 at a low position and a wiring layer 3 having a protruding shape that is usually a multilayer sandwiching an interlayer insulating layer (not shown) constitutes a recess, and covers and fills the recess. It has the planarization layer 5 which formed the flat surface.

多くの場合、上記固体撮像素子をカラーセンサーとして使用するために、前記平坦化層5の上に、着色層6を受光素子に一対一対応させた着色画素パターンとして形成し、着色層保護のための保護層7を設ける。また、必要に応じて、撮像のための光の取り込み効率を高め、撮像装置の感度向上に寄与するようにマイクロレンズ(図示せず)を形成する。   In many cases, in order to use the solid-state imaging device as a color sensor, a colored pixel pattern is formed on the planarizing layer 5 in a one-to-one correspondence with the light-receiving element to protect the colored layer. The protective layer 7 is provided. Further, if necessary, a microlens (not shown) is formed so as to increase the light capturing efficiency for imaging and contribute to the improvement of the sensitivity of the imaging device.

前記平坦化層5は、特許文献1に提案されている平滑化層のように、透明性、密着性、耐薬品性に優れていることに加えて、塗布時の表面凹凸に追随し易い傾向が少ない樹脂を塗布して、塗布後の表面の平坦化を得る。具体的には、アクリル系の透明樹脂の材料特性を調整することによって、平坦性と表面凹凸充填性に優れた平坦化層を実現することができる。   Like the smoothing layer proposed in Patent Document 1, the flattening layer 5 tends to follow surface irregularities during coating in addition to excellent transparency, adhesion, and chemical resistance. A resin with a small amount is applied to obtain a flattened surface after application. Specifically, by adjusting the material characteristics of the acrylic transparent resin, it is possible to realize a flattened layer excellent in flatness and surface unevenness filling.

特開平5−70735号公報Japanese Patent Laid-Open No. 5-70735

上述のように、受光素子2上の撮像用照射光側に、平面視で受光素子2を囲むようにアルミニウム等の金属材料を用いた配線層3のパターンを有し、低い位置の受光素子2と、多層からなる突起形状の配線層3と、を被覆する絶縁層4が凹部を構成し、凹部に対応して凸部状に被覆および充填するように形成される層が平坦化層5である。この構造で、凹部を構成する絶縁層4の屈折率と凸部を含む形状に形成される平坦化層5の屈折率とは一般に一致しないので、撮像用照射光10を受ける側の絶縁層4と平坦化層5との境界面は一定のレンズ効果を生じる。例えば、屈折率nが1.45のシリコン酸化膜からなり凹部を構成する絶縁層4に対して、屈折率nが1.55のアクリル系の透明樹脂からなり凸部を構成する平坦化層5は、撮像用照射光10を受ける受光素子2に向けた凸レンズとして機能する。   As described above, the pattern of the wiring layer 3 using a metal material such as aluminum is provided on the light-receiving element 2 on the imaging irradiation light side so as to surround the light-receiving element 2 in a plan view. And the insulating layer 4 that covers the multi-layered projecting wiring layer 3 constitutes a recess, and the layer formed so as to cover and fill the protrusion corresponding to the recess is the planarizing layer 5. is there. In this structure, since the refractive index of the insulating layer 4 constituting the concave portion and the refractive index of the planarizing layer 5 formed in a shape including the convex portion generally do not coincide with each other, the insulating layer 4 on the side that receives the imaging irradiation light 10. And the planarization layer 5 produce a certain lens effect. For example, in contrast to the insulating layer 4 made of a silicon oxide film having a refractive index n of 1.45 and forming a concave portion, the planarizing layer 5 made of an acrylic transparent resin having a refractive index n of 1.55 and forming a convex portion. Functions as a convex lens toward the light receiving element 2 that receives the irradiation light 10 for imaging.

固体撮像素子を微細化して、上記の凹凸の周期が小さくなると、平面視で受光素子2の近傍に配線層3の金属パターンの端部が接近する。撮像時の外部からの入射光が、上記のレンズ効果により、種々の位置で屈折することによって、金属パターンの端部にかかり、端部での光の反射が加わるようになると、受光素子2の面内での金属パターン端部からの位置関係によって受光量の分布が変化し、感度の面内分布が不均一になる。   When the solid-state imaging device is miniaturized and the period of the unevenness is reduced, the end portion of the metal pattern of the wiring layer 3 approaches the light receiving element 2 in a plan view. Incident light from the outside at the time of imaging is refracted at various positions due to the lens effect described above, and is applied to the end portion of the metal pattern, and reflection of light at the end portion is added. The distribution of the amount of received light changes depending on the positional relationship from the end of the metal pattern in the plane, and the in-plane distribution of sensitivity becomes non-uniform.

さらに、前記配線層が多層に形成され、その相互間の位置合わせにずれが生じると、感度の分布に非対称な歪みも生じてしまう。なお、撮像装置の感度向上に寄与するようにマイクロレンズを撮像経路に設けた場合は、外部光をマイクロレンズにより画素単位で集光できるので、上記感度の画素面内分布の影響を比較的小さくすることができる。とは言え、マイクロレンズを用いない簡便な固体撮像素子の感度分布に影響を与える現象であるばかりでなく、固体撮像素子の基本性能上の問題でもあり、撮像装置の性能設計に一定の制約を与えることになる。   Furthermore, when the wiring layers are formed in multiple layers and misalignment occurs between the wiring layers, asymmetric distortion occurs in the sensitivity distribution. Note that when a microlens is provided in the imaging path so as to contribute to the improvement of the sensitivity of the imaging device, external light can be collected on a pixel basis by the microlens, so that the influence of the above-mentioned sensitivity on the pixel surface is relatively small. can do. However, it is not only a phenomenon that affects the sensitivity distribution of a simple solid-state image sensor that does not use a microlens, but also a problem in the basic performance of the solid-state image sensor, and it imposes certain restrictions on the performance design of the imaging device. Will give.

本発明は、前記の問題点に鑑みて提案するものであり、本発明が解決しようとする課題は、受光素子面内の感度が均一に得られる固体撮像素子を提供することである。   The present invention is proposed in view of the above-mentioned problems, and the problem to be solved by the present invention is to provide a solid-state imaging device capable of obtaining uniform sensitivity within the light receiving element plane.

上記の課題を解決するための手段として、請求項1に記載の発明は、撮像用照射光を受ける側の半導体基板の表面近傍に設けた光電変換素子からなる複数の受光素子上の撮像用照射光側に、平面視で受光素子を囲むように配線層を有し、受光素子と配線層とを被覆する絶縁層が凹部を構成し、前記凹部を被覆および充填して平坦面を形成した平坦化層を有する固体撮像素子において、絶縁層と平坦化層との屈折率を近似させたことを特徴とする固体撮像素子である。   As a means for solving the above-mentioned problem, the invention according to claim 1 is directed to an imaging illumination on a plurality of light receiving elements comprising photoelectric conversion elements provided in the vicinity of the surface of the semiconductor substrate on the side receiving the imaging illumination light. A flat surface having a wiring layer on the light side so as to surround the light receiving element in a plan view, an insulating layer covering the light receiving element and the wiring layer forming a recess, and covering and filling the recess In the solid-state imaging device having the planarization layer, the refractive index of the insulating layer and the planarization layer is approximated.

また、請求項2に記載の発明は、前記絶縁層の屈折率より前記平坦化層の屈折率が0〜0.02以内の範囲で等しいかまたは大きいことを特徴とする請求項1に記載の固体撮像素子である。   The invention according to claim 2 is characterized in that the refractive index of the planarizing layer is equal to or greater than the refractive index of the insulating layer within a range of 0 to 0.02. It is a solid-state image sensor.

また、請求項3に記載の発明は、前記絶縁層がシリコン酸化膜からなることを特徴とする請求項1または2に記載の固体撮像素子である。   The invention according to claim 3 is the solid-state imaging device according to claim 1 or 2, wherein the insulating layer is made of a silicon oxide film.

また、請求項4に記載の発明は、前記絶縁層がシリコン窒化膜からなることを特徴とする請求項1または2に記載の固体撮像素子である。   The invention according to claim 4 is the solid-state imaging element according to claim 1 or 2, wherein the insulating layer is made of a silicon nitride film.

本発明は、受光素子と配線層とを被覆する絶縁層と、絶縁層が構成する凹部を被覆および充填して平坦面を構成する平坦化層と、の屈折率を近似させることによって、受光素子面内の感度が均一に得られる固体撮像素子を提供することができる。   The present invention relates to a light receiving element by approximating the refractive index of an insulating layer that covers the light receiving element and the wiring layer, and a planarizing layer that covers and fills a recess formed by the insulating layer to form a flat surface. It is possible to provide a solid-state imaging device capable of obtaining in-plane sensitivity uniformly.

本発明の固体撮像素子の構成例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structural example of the solid-state image sensor of this invention. 従来の固体撮像素子の構成例を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the structural example of the conventional solid-state image sensor.

本発明を実施するための形態について、以下、図面に従って説明する。
図1は、本発明の固体撮像素子の構成例を説明するための断面模式図である。半導体基板1として一般にシリコンウェハーを用い、ウェハー表面への一般的な半導体プロセス、および配線パターン形成プロセスを繰り返すことにより、多数のチップをウェハー平面に配置した固体撮像素子群が形成されることは、従来と同様である。CCDやCMOS等の光電変換素子からなる受光素子2を、半導体基板1の撮像用照射光10を受ける側の表面近傍に規則的な配列状態で設けており、受光素子2上の撮像用照射光側に、平面視で受光素子2を囲むようにアルミニウム等の金属材料を用いた配線層3のパターンを有する。低い位置の受光素子2と、図示されない層間絶縁層を挟んで通常は多層からなる突起形状の配線層3と、を被覆する絶縁層41が、凹部を構成し、前記凹部を被覆および充填して平坦面を形成した平坦化層51を有することも従来と同様である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view for explaining a configuration example of a solid-state imaging device of the present invention. Generally, a silicon wafer is used as the semiconductor substrate 1, and by repeating a general semiconductor process on the wafer surface and a wiring pattern formation process, a solid-state imaging element group in which a large number of chips are arranged on the wafer plane is formed. It is the same as the conventional one. The light receiving element 2 composed of a photoelectric conversion element such as a CCD or CMOS is provided in a regular arrangement near the surface of the semiconductor substrate 1 on the side receiving the imaging irradiation light 10, and the imaging irradiation light on the light receiving element 2. On the side, a pattern of the wiring layer 3 using a metal material such as aluminum is provided so as to surround the light receiving element 2 in a plan view. An insulating layer 41 that covers the light receiving element 2 at a low position and a wiring layer 3 having a protruding shape that is usually a multilayer sandwiching an interlayer insulating layer (not shown) constitutes a recess, and covers and fills the recess. It is the same as that of the prior art that the flattening layer 51 having a flat surface is formed.

前記絶縁層41は、電気的絶縁性に加えて、透明性、密着性、耐薬品性に優れていることが望ましく、半導体基板1として使用するシリコンの酸化膜や窒化膜を、減圧CVDやプラズマCVD等の通常のプロセスにより形成することができる。   The insulating layer 41 desirably has excellent transparency, adhesion, and chemical resistance in addition to electrical insulation, and a silicon oxide film or nitride film used as the semiconductor substrate 1 is formed by using low pressure CVD or plasma. It can be formed by a normal process such as CVD.

前記平坦化層51は、透明性、密着性、耐薬品性に優れていることに加えて、塗布時の表面凹凸に追随し易い傾向が少ない樹脂を塗布して、塗布後の表面の平坦化を得る。例えば、低分子量で低粘度の材料特性を有するアクリル系透明樹脂を高濃度に調整することによって、平坦性と表面凹凸充填性に優れた平坦化層を実現することができる。   In addition to being excellent in transparency, adhesion, and chemical resistance, the planarizing layer 51 is coated with a resin that is less likely to follow surface irregularities during coating, and the surface after coating is planarized. Get. For example, by adjusting the acrylic transparent resin having low molecular weight and low viscosity material characteristics to a high concentration, it is possible to realize a flattening layer excellent in flatness and surface unevenness filling property.

従来と同様に、上記固体撮像素子をカラーセンサーとして使用するために、前記平坦化層51の上に、着色層6を受光素子に一対一対応させた着色画素パターンとして形成し、着色層保護のための保護層7を設けることができる。また、必要に応じて、撮像のための光の取り込み効率を高め、撮像装置の感度向上に寄与するようにマイクロレンズ(図示せず)を形成することができる。   In order to use the solid-state imaging device as a color sensor, the colored layer 6 is formed on the planarizing layer 51 as a colored pixel pattern corresponding to the light receiving device in a one-to-one correspondence. A protective layer 7 can be provided. Further, if necessary, a microlens (not shown) can be formed so as to increase the light capturing efficiency for imaging and contribute to the improvement of the sensitivity of the imaging device.

前記着色層6に形成する着色画素パターンとしては、例えば、緑色の顔料分散樹脂である感光性ネガ型レジストを塗布し、プレベイク、選択的露光、現像、熱処理の各工程を経て、緑色パターンを形成し、以下、同様の手段を繰り返して、青色パターン、赤色パターンを順次隣接位置に形成し、有効エリア内を埋め尽くすように周期的に配置した3色の着色画素パターンを得ることができる。   As the colored pixel pattern to be formed on the colored layer 6, for example, a photosensitive negative resist, which is a green pigment dispersion resin, is applied, and a green pattern is formed through prebaking, selective exposure, development, and heat treatment steps. Thereafter, the same means is repeated to form a blue pattern and a red pattern in order at adjacent positions, and a three-color colored pixel pattern arranged periodically so as to fill the effective area can be obtained.

前記絶縁層41と前記平坦化層51との境界面が通常はレンズ効果を生じて、境界面での撮像用照射光の屈折により、照射光の光路の一部が金属パターンの端部にかかり、端部での光の反射が加わって、受光素子2の面内での金属パターン端部からの位置関係によって受光量の分布が変化し、感度の面内分布が不均一になる。本発明は、上記の現象を防ぐために、前記絶縁層41と前記平坦化層51との屈折率を近似させて、点線で示す両者の境界面を、光学的な意味では、事実上消滅させることを特徴とする。   The boundary surface between the insulating layer 41 and the planarization layer 51 usually produces a lens effect, and due to the refraction of the imaging irradiation light at the boundary surface, a part of the optical path of the irradiation light is applied to the end of the metal pattern. The reflection of light at the end portion is added, and the distribution of the amount of received light changes depending on the positional relationship from the end portion of the metal pattern in the plane of the light receiving element 2, and the in-plane distribution of sensitivity becomes non-uniform. In order to prevent the above phenomenon, the present invention approximates the refractive indexes of the insulating layer 41 and the planarizing layer 51 and virtually eliminates the interface between the two indicated by the dotted line in an optical sense. It is characterized by.

受光素子2の直上で凹部を構成する絶縁層41と、該凹部を充填して凸部を構成する平坦化層51との関係を一般化すれば、後者の屈折率が前者より大きい場合には、受光素子への撮像用照射光の入射に対して、凸レンズの効果を有し、逆の場合には凹レンズの効果を有する。凹レンズの効果を有する場合は、照射光は拡がり、配線層3の金属パターンの端部にかかり易くなることは明らかであり、好ましくない。また、凸レンズの効果を有する場合であっても、固体撮像素子を微細化して、上記の凹凸の周期が小さくなると、光の屈折の程度により、金属パターンの端部での好ましくない反射を引き起こす。   If the relationship between the insulating layer 41 that forms the concave portion directly above the light receiving element 2 and the planarization layer 51 that fills the concave portion and forms the convex portion, if the refractive index of the latter is larger than the former, It has the effect of a convex lens with respect to the incidence of imaging irradiation light on the light receiving element, and has the effect of a concave lens in the opposite case. In the case of having the effect of a concave lens, it is clear that the irradiation light spreads and tends to be applied to the end of the metal pattern of the wiring layer 3, which is not preferable. Even in the case of having the effect of a convex lens, if the solid-state imaging device is miniaturized and the period of the unevenness is reduced, undesired reflection at the end of the metal pattern is caused by the degree of light refraction.

上述の事情により、本発明において、前記絶縁層41と前記平坦化層51との屈折率を近似させる場合の詳細をさらに規定すると、前記絶縁層の屈折率より前記平坦化層の屈折率が0〜0.02以内の範囲で等しいかまたは大きいことを特徴とすることがより好ましい。平坦化層51が、受光素子への撮像用照射光の入射に対して、凹レンズの効果を全く有しないので、照射光は拡がらないこと、および、明瞭な凸レンズ効果も有しないこと、により、固体撮像素子を微細化して、上記の凹凸の周期が小さくなっても、金属パターンの端部での好ましくない反射を引き起こすことがない。その結果、受光素子2の面内での金属パターン端部からの位置関係によって受光量の分布が変化するという現象を回避でき、受光素子面内の感度が均一に得られる固体撮像素子を提供することができる。   Due to the above circumstances, in the present invention, when the details of approximating the refractive index of the insulating layer 41 and the planarizing layer 51 are further defined, the refractive index of the planarizing layer is 0 than the refractive index of the insulating layer. More preferably, it is characterized by being equal or larger within a range of .about.0.02. Since the planarization layer 51 has no concave lens effect at all for the incidence of the imaging irradiation light to the light receiving element, the irradiation light does not spread and has no clear convex lens effect. Even if the solid-state imaging device is miniaturized so that the period of the unevenness is reduced, undesired reflection at the end of the metal pattern is not caused. As a result, it is possible to avoid the phenomenon that the distribution of the amount of received light changes depending on the positional relationship from the end of the metal pattern in the plane of the light receiving element 2, and to provide a solid-state imaging element that can obtain uniform sensitivity in the surface of the light receiving element. be able to.

前記絶縁層41は、前述のように、半導体基板1として使用するシリコンの酸化膜や窒化膜を、減圧CVDやプラズマCVD等の通常のプロセスにより形成することができる。シリコン酸化膜は、屈折率1.45程度の膜を得ることができる。シリコン窒化膜は、基板温度等の成膜条件により、膜中の窒素とシリコンとの比が変化し、屈折率1.75〜2.0程度の範囲で光学特性の異なる膜が得られる。   As described above, the insulating layer 41 can be formed of a silicon oxide film or nitride film used as the semiconductor substrate 1 by a normal process such as low pressure CVD or plasma CVD. A silicon oxide film having a refractive index of about 1.45 can be obtained. In the silicon nitride film, the ratio of nitrogen to silicon in the film changes depending on the film forming conditions such as the substrate temperature, and films having different optical characteristics can be obtained in the range of refractive index of about 1.75 to 2.0.

前記平坦化層51として、前述のように、屈折率が1.55のアクリル系の透明樹脂をベースとして用いる場合、上述の絶縁層41の屈折率に応じて、樹脂ベースの屈折率を増減させることが必要である。例えば、シリコン酸化膜を絶縁層41とした場合には、平坦化層の屈折率を、0.08〜0.1減少させる。平坦化層51の屈折率を絶縁層41の屈折率1.45と一致させることが最も望ましいが、元の1.55から0.09減少させて1.46とすることも次に好ましい。   When the planarizing layer 51 is made of an acrylic transparent resin having a refractive index of 1.55 as a base as described above, the refractive index of the resin base is increased or decreased according to the refractive index of the insulating layer 41 described above. It is necessary. For example, when the silicon oxide film is used as the insulating layer 41, the refractive index of the planarizing layer is decreased by 0.08 to 0.1. Although it is most desirable to make the refractive index of the planarization layer 51 coincide with the refractive index of 1.45 of the insulating layer 41, it is also preferable to reduce the original 1.55 to 0.046 to 1.46.

上述の例のように、元の樹脂の屈折率を減少させる方法としては、フッ素を添加する手法が可能である。例えば、低分子量で低粘度の材料特性を有するアクリル系透明樹脂を高濃度に調整することによって得られる透明性、密着性、耐薬品性、および塗布時の表面凹凸に追随しないで、平坦性と表面凹凸充填性に優れた塗布特性を維持したまま、フッ素の有する低屈折率特性を加えるように調整することができる。   As in the above example, as a method of reducing the refractive index of the original resin, a method of adding fluorine is possible. For example, the transparency, adhesion, chemical resistance, and flatness without following the surface irregularities during coating can be obtained by adjusting the acrylic transparent resin having low molecular weight and low viscosity material properties to a high concentration. It can be adjusted to add the low refractive index characteristic of fluorine while maintaining the coating characteristics excellent in surface irregularity filling property.

また、シリコン窒化膜を絶縁層41として、絶縁層の屈折率1.75の場合、平坦化層51の屈折率を1.75〜1.77に調整することが適当である。前例と同様に、屈折率が1.55のアクリル系の透明樹脂をベースとして用いる場合、平坦化層51の屈折率を0.2増加させて絶縁層41の屈折率1.75と一致させることが最も望ましいが、元の1.55から0.21増加させて1.76とすることも次に好ましい。   When the silicon nitride film is the insulating layer 41 and the refractive index of the insulating layer is 1.75, it is appropriate to adjust the refractive index of the planarizing layer 51 to 1.75 to 1.77. As in the previous example, when an acrylic transparent resin having a refractive index of 1.55 is used as a base, the refractive index of the planarizing layer 51 is increased by 0.2 to match the refractive index of the insulating layer 41 of 1.75. Is most desirable, but it is also preferable to increase the original 1.55 by 0.21 to 1.76.

上述の例のように、元の樹脂の屈折率を増加させる方法としては、光散乱損失を生じない高屈折率の微粒子セラミックスを添加する手法が可能である。例えば、低分子量で低粘度の材料特性を有するアクリル系透明樹脂を高濃度に調整することによって得られる透明性、密着性、耐薬品性、および塗布時の表面凹凸に追随しないで、平坦性と表面凹凸充填性に優れた塗布特性を維持したまま、光散乱損失を生じない高屈折率の微粒子セラミックスの有する高屈折率特性を加えるように調整することができる。   As a method of increasing the refractive index of the original resin as in the above-described example, a technique of adding fine refractive index ceramics that does not cause light scattering loss is possible. For example, the transparency, adhesion, chemical resistance, and flatness without following the surface irregularities during coating can be obtained by adjusting the acrylic transparent resin having low molecular weight and low viscosity material properties to a high concentration. It can be adjusted to add the high refractive index characteristics of the high refractive index fine-particle ceramics that do not cause light scattering loss while maintaining the coating characteristics excellent in surface irregularity filling properties.

前記光散乱損失を生じない高屈折率の微粒子セラミックスとしては、酸化チタン、酸化ジルコニウム、酸化クロム、酸化亜鉛、等の種々の金属酸化物を微粒子化して使用することが可能であるが、元の樹脂への添加適性は詳細な条件に依存するので、最適化する必要がある。   As the high-refractive-index fine-particle ceramics that do not cause light scattering loss, various metal oxides such as titanium oxide, zirconium oxide, chromium oxide, and zinc oxide can be used as fine particles. Since the suitability for addition to the resin depends on detailed conditions, it must be optimized.

1・・・半導体基板
2・・・受光素子
3・・・配線層
4、41・・・絶縁層
5、51・・・平坦化層
6・・・着色層
7・・・保護層
10・・撮像用照射光
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate 2 ... Light receiving element 3 ... Wiring layer 4, 41 ... Insulating layer 5, 51 ... Flattening layer 6 ... Colored layer 7 ... Protective layer 10 ... Imaging light

Claims (4)

撮像用照射光を受ける側の半導体基板の表面近傍に設けた光電変換素子からなる複数の受光素子上の撮像用照射光側に、平面視で受光素子を囲むように配線層を有し、受光素子と配線層とを被覆する絶縁層が凹部を構成し、前記凹部を被覆および充填して平坦面を形成した平坦化層を有する固体撮像素子において、絶縁層と平坦化層との屈折率を近似させたことを特徴とする固体撮像素子。   A wiring layer is provided on the plurality of light-receiving elements on the plurality of light-receiving elements including photoelectric conversion elements provided in the vicinity of the surface of the semiconductor substrate on the side receiving the irradiation light for image pickup so as to surround the light-receiving elements in a plan view. In a solid-state imaging device having a flattening layer in which an insulating layer covering the element and the wiring layer forms a concave portion and a flat surface is formed by covering and filling the concave portion, the refractive index of the insulating layer and the flattening layer is A solid-state imaging device characterized by being approximated. 前記絶縁層の屈折率より前記平坦化層の屈折率が0〜0.02以内の範囲で等しいかまたは大きいことを特徴とする請求項1に記載の固体撮像素子。   2. The solid-state imaging device according to claim 1, wherein a refractive index of the planarizing layer is equal to or greater than a refractive index of the insulating layer within a range of 0 to 0.02. 前記絶縁層がシリコン酸化膜からなることを特徴とする請求項1または2に記載の固体撮像素子。   The solid-state imaging device according to claim 1, wherein the insulating layer is made of a silicon oxide film. 前記絶縁層がシリコン窒化膜からなることを特徴とする請求項1または2に記載の固体撮像素子。   The solid-state imaging device according to claim 1, wherein the insulating layer is made of a silicon nitride film.
JP2010155678A 2010-07-08 2010-07-08 Solid-state image sensor Pending JP2012019072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010155678A JP2012019072A (en) 2010-07-08 2010-07-08 Solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010155678A JP2012019072A (en) 2010-07-08 2010-07-08 Solid-state image sensor

Publications (1)

Publication Number Publication Date
JP2012019072A true JP2012019072A (en) 2012-01-26

Family

ID=45604107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010155678A Pending JP2012019072A (en) 2010-07-08 2010-07-08 Solid-state image sensor

Country Status (1)

Country Link
JP (1) JP2012019072A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206571A (en) * 1990-11-30 1992-07-28 Sony Corp Solid-state image sensing device
JPH0818025A (en) * 1994-06-30 1996-01-19 Nec Corp Solid image pickup element
JPH11103037A (en) * 1997-09-29 1999-04-13 Sony Corp Solid-state image-pickup element
JP2004179629A (en) * 2002-11-14 2004-06-24 Sony Corp Solid state image sensor and its manufacturing method
JP2004253630A (en) * 2003-02-20 2004-09-09 Seiko Epson Corp Solid state imaging device
JP2010016242A (en) * 2008-07-04 2010-01-21 Canon Inc Photoelectric conversion device, imaging system, and method of manufacturing photoelectric conversion device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04206571A (en) * 1990-11-30 1992-07-28 Sony Corp Solid-state image sensing device
JPH0818025A (en) * 1994-06-30 1996-01-19 Nec Corp Solid image pickup element
JPH11103037A (en) * 1997-09-29 1999-04-13 Sony Corp Solid-state image-pickup element
JP2004179629A (en) * 2002-11-14 2004-06-24 Sony Corp Solid state image sensor and its manufacturing method
JP2004253630A (en) * 2003-02-20 2004-09-09 Seiko Epson Corp Solid state imaging device
JP2010016242A (en) * 2008-07-04 2010-01-21 Canon Inc Photoelectric conversion device, imaging system, and method of manufacturing photoelectric conversion device

Similar Documents

Publication Publication Date Title
US9131100B2 (en) Solid-state imaging device with lens, method of manufacturing solid-state imaging device with lens, and electronic apparatus
CN105190891B (en) Solid-state imaging device and its manufacturing method and electronic equipment
US9087761B2 (en) Solid-state imaging device including an on-chip lens with two inorganic films thereon
US7791659B2 (en) Solid state imaging device and method for producing the same
US8969776B2 (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus having an on-chip micro lens with rectangular shaped convex portions
US20090111208A1 (en) Colors only process to reduce package yield loss
JP2011077410A (en) Solid-state imaging device
CN104241306A (en) Solid-state imaging apparatus, method of manufacturing the same, camera, imaging device, and imaging apparatus
JP2007181209A (en) Image sensor and manufacturing method thereof
JP6175964B2 (en) Imaging device, imaging apparatus, and manufacturing apparatus and method
JP2013012518A (en) Solid state imaging device
JP2011243749A (en) Solid state image pickup device and manufacturing method thereof
KR101348254B1 (en) Infrared pass filter and CMOS image sensor having the same
JP2013118295A (en) Method of manufacturing solid state image sensor, solid state image sensor, and electronic information apparatus
JP2018110147A (en) Solid state imaging device and manufacturing method thereof
JP6520400B2 (en) Microlens for solid-state imaging device and method of forming microlens for solid-state imaging device
JP2012019072A (en) Solid-state image sensor
JP2006216904A (en) Color solid state image sensor and method of fabricating the same
JP2007019424A (en) Solid state image sensor
KR20010061056A (en) Method for fabricating image sensor with improved light sensitivity
JP2009170585A (en) Solid-state imaging apparatus
US20220278157A1 (en) Solid-state imaging device and method of producing the same
JP5353356B2 (en) Solid-state imaging device and manufacturing method thereof
JP2011165923A (en) Color solid-state imaging element, and method of manufacturing the same
JP2010258466A (en) Solid-state imaging apparatus and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141216