JP6520400B2 - Microlens for solid-state imaging device and method of forming microlens for solid-state imaging device - Google Patents

Microlens for solid-state imaging device and method of forming microlens for solid-state imaging device Download PDF

Info

Publication number
JP6520400B2
JP6520400B2 JP2015108352A JP2015108352A JP6520400B2 JP 6520400 B2 JP6520400 B2 JP 6520400B2 JP 2015108352 A JP2015108352 A JP 2015108352A JP 2015108352 A JP2015108352 A JP 2015108352A JP 6520400 B2 JP6520400 B2 JP 6520400B2
Authority
JP
Japan
Prior art keywords
microlens
solid
state imaging
imaging device
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015108352A
Other languages
Japanese (ja)
Other versions
JP2016225392A (en
Inventor
亮平 五来
亮平 五来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2015108352A priority Critical patent/JP6520400B2/en
Publication of JP2016225392A publication Critical patent/JP2016225392A/en
Application granted granted Critical
Publication of JP6520400B2 publication Critical patent/JP6520400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、撮像素子に設けられるオンチップカラーフィルタの上に形成するマイクロレンズおよびその形成方法に関する。   The present invention relates to a microlens formed on an on-chip color filter provided on an imaging device and a method of forming the same.

近年、撮像装置は画像の記録、通信、放送の内容の拡大に伴って広く用いられるようになっている。撮像装置として種々の形式のものが提案されているが、小型、軽量で高性能のものが安定して製造されるようになった固体撮像素子を組み込んだ撮像装置が、デジタルカメラやデジタルビデオとして普及してきている。   In recent years, imaging devices have come to be widely used along with the expansion of the contents of image recording, communication, and broadcasting. Although various types of imaging devices have been proposed as imaging devices, imaging devices incorporating a solid-state imaging device that has been stably manufactured with small size, light weight and high performance have been proposed as digital cameras and digital video. It has become widespread.

固体撮像素子は、撮影対象物からの光学像を受け、入射した光を電気信号に変換する複数の光電変換素子を有する。光電変換素子の種類はCCD(電荷結合素子)タイプとCMOS(相補型金属酸化物半導体)タイプとに大別される。   The solid-state imaging device has a plurality of photoelectric conversion devices that receive an optical image from a photographic subject and convert incident light into an electrical signal. The types of photoelectric conversion elements are roughly classified into CCD (charge coupled device) types and CMOS (complementary metal oxide semiconductor) types.

また、光電変換素子の配列形態から、光電変換素子を1列に配置したリニアセンサー(ラインセンサー)と、光電変換素子を縦横に2次元的に配列されたエリアセンサー(面センサー)との2種類に大別される。   In addition, two types of linear sensors (line sensors) in which the photoelectric conversion elements are arranged in one row and area sensors (surface sensors) in which the photoelectric conversion elements are two-dimensionally arrayed in the vertical and horizontal directions It is divided roughly.

いずれのセンサーにおいても、光電変換素子の数(画素数)が多いほど撮影された画像は緻密になるため、近年では、特に大画素数の固体撮像素子を安価に製造する方法が検討されている。   In any of the sensors, the more the number of photoelectric conversion elements (the number of pixels), the denser the captured image becomes. In recent years, therefore, a method for manufacturing a solid-state image sensor having a large number of pixels at low cost has been studied. .

また、光電変換素子に入射する光の経路に特定の波長の光を透過するカラーフィルタ機能を設けている。そのようにすることで、対象物の色情報を得ることを可能とした単板式のカラーセンサとしてのカラー固体撮像素子も普及している。カラー固体撮像素子は、1個の光電変換素子に対応して特定の着色透明画素による1画素をパターン形成される。   In addition, a color filter function of transmitting light of a specific wavelength is provided in the path of light incident on the photoelectric conversion element. By doing so, a color solid-state imaging device as a single-plate type color sensor capable of obtaining color information of an object is also widely used. In the color solid-state imaging device, one pixel is patterned by a specific colored transparent pixel corresponding to one photoelectric conversion device.

規則的に多数配列することにより、色分解した画像情報を集めることができる。着色透明画素の色としては、赤色(R)、緑色(G)、青色(B)の3色からなる3原色系、あるいは、シアン色(C)、マゼンタ色(M)、イエロー色(Y)からなる補色系が一般的であり、特に3原色系が多く使われている。   By arranging a large number regularly, color separated image information can be collected. The color of the colored transparent pixel is a three-primary color system consisting of three colors of red (R), green (G) and blue (B), or cyan (C), magenta (M) and yellow (Y) Complementary color systems are generally used, and in particular, three primary color systems are widely used.

固体撮像素子に要求される性能で重要な課題の一つに、入射する光への感度を向上させることが挙げられる。小型化した固体撮像素子で撮影した画像の情報量を多くするためには、受光部となる光電変換素子を微細化して高集積化する必要がある。   One of the important issues in the performance required for a solid-state imaging device is to improve the sensitivity to incident light. In order to increase the amount of information of an image captured by a miniaturized solid-state imaging device, it is necessary to miniaturize the photoelectric conversion device to be a light receiving portion to achieve high integration.

しかし、光電変換素子を高集積化した場合、各光電変換素子の面積が小さくなるため、受光部として利用できる面積割合も減ってしまう。そのため、光電変換素子の受光部に取り込める光の量が少なくなり、固体撮像素子の実効的な感度が低下する。   However, when the photoelectric conversion elements are highly integrated, the area of each photoelectric conversion element is reduced, so that the area ratio that can be used as the light receiving unit is also reduced. Therefore, the amount of light that can be taken into the light receiving portion of the photoelectric conversion element is reduced, and the effective sensitivity of the solid-state imaging element is reduced.

このような、微細化した固体撮像素子の感度の低下を防止するための手段として、光電変換素子の受光部に効率良く光を取り込む目的で、受光領域に近い層ほど屈折率が大きい材料で形成された多層(少なくとも2層以上)構造のマイクロレンズとを備え、マイクロレンズに入射した光を、光電変換素子に近づくほど大きな屈折率層で受光領域側に屈折させる提案されており、斜め入射光でも良好に受光することができ、固体撮像素子の感度が向上する(特許文献1)。   As a means for preventing such a decrease in sensitivity of the miniaturized solid-state imaging device, the layer closer to the light receiving region is made of a material having a larger refractive index for the purpose of efficiently taking light into the light receiving portion of the photoelectric conversion device. It has been proposed to include a multi-layered (at least two or more layers) micro lens and to refract light incident on the micro lens to the light receiving area side with a larger refractive index layer as it gets closer to the photoelectric conversion element. However, light can be received well, and the sensitivity of the solid-state imaging device is improved (Patent Document 1).

しかしながら、近年の固体撮像素子は多画素化が進み、数百万画素を超える高精細な固体撮像素子が要求されるようになってきており、2層以上の屈折率の異なる層構成にすると、各層の界面での屈折率の変化が悪影響を起こし、高精細な固体撮像素子に付随するマイクロレンズの感度低下、およびフレアなどのノイズ増加による画質低下が生じてしまう。   However, the solid-state imaging device in recent years has been increased in the number of pixels, and a high-definition solid-state imaging device having more than several million pixels has been required. The change in refractive index at the interface of each layer adversely affects the sensitivity of the microlens attached to the high-definition solid-state imaging device and the image quality degradation due to the increase of noise such as flare.

特開2007−165713号公報JP 2007-165713 A

本発明の目的は、固体撮像素子の高精細化に伴い行われている、屈折率の異なった材料を多層化したマイクロレンズで生じる、感度低下、及びフレアなどのノイズ増加による画質低下を改善した、固体撮像素子用マイクロレンズおよび固体撮像素子用マイクロレンズの形成方法を提供することにある。   SUMMARY OF THE INVENTION The object of the present invention is to improve image quality degradation caused by noise reduction such as sensitivity reduction and flare, which are caused by microlenses in which materials having different refractive indexes are multilayered, which are being carried out with high definition of solid-state imaging devices. It is an object of the present invention to provide a method of forming a microlens for a solid-state imaging device and a microlens for a solid-state imaging device.

上記の課題を解決するための手段として、請求項1に記載の発明は、固体撮像素子に設けられる入射光を集束するための固体撮像素子用マイクロレンズであって、
前記固体撮像素子が、半導体基板の表面に形成された複数の光電変換素子と、前記光電変換素子のそれぞれの表面に、定められた波長帯域の光を透過させるカラーフィルタを積層した構成であり、
前記固体撮像素子用マイクロレンズが、内心部と外周部で、異なる屈折率を有し、屈折率が、内心部から外周部にかけて連続的に小さくなっており、
前記マイクロレンズが、屈折率が異なる2つ以上の透明樹脂から形成されていることを特徴とする固体撮像素子用マイクロレンズである。
As means for solving the above-mentioned problems, the invention according to claim 1 is a microlens for a solid-state imaging device provided in a solid-state imaging device for focusing incident light,
The solid-state imaging device is configured by laminating a plurality of photoelectric conversion devices formed on the surface of a semiconductor substrate, and a color filter transmitting light of a predetermined wavelength band on each surface of the photoelectric conversion device,
The microlens for a solid-state imaging device has different refractive indexes at the inner core and the outer periphery, and the refractive index is continuously reduced from the inner core to the outer periphery ,
The microlens is a microlens for a solid-state imaging device, wherein the microlens is formed of two or more transparent resins having different refractive indexes .

また、請求項2に記載の発明は、前記マイクロレンズが、屈折率が異なる2つの透明樹脂から形成されていることを特徴とする請求項1に記載の固体撮像素子用マイクロレンズである。
The invention according to claim 2 is the microlens for a solid-state imaging device according to claim 1, characterized in that the microlens is formed of two transparent resins having different refractive indexes.

また、請求項3に記載の発明は、前記マイクロレンズの屈折率が、内心部が1.5以上、外周部が1.4以上であることを特徴とする請求項1または請求項2に記載の固体撮像素子用マイクロレンズである。   The invention according to claim 3 is characterized in that the refractive index of the micro lens is 1.5 or more in the inner core portion and 1.4 or more in the outer peripheral portion. These are microlenses for solid-state imaging devices.

また、請求項4に記載の発明は、前記固体撮像素子用マイクロレンズの形状が、球面形状、放物線形状、正弦波形状のいずれかの形状であることを特徴とする請求項1から3いずれか1項に記載の固体撮像素子用マイクロレンズである。   In the invention according to claim 4, the shape of the microlens for a solid-state imaging device is any one of a spherical shape, a parabola shape, and a sine wave shape. 1 is a microlens for a solid-state imaging device according to item 1.

本発明の固体撮像素子によれば、マイクロレンズ内の屈折率を内心部から外周部にかけて連続的に小さくすることで、高精細な固体撮像素子に付随するマイクロレンズの感度低
下や、フレアなどのノイズ増加による画質低下がなく、集光効率が高く、明るい画像を撮像することが可能な、固体撮像素子用マイクロレンズおよび固体撮像素子用マイクロレンズの形成方法を提供できた。
According to the solid-state imaging device of the present invention, the refractive index in the microlens is continuously reduced from the inner core to the outer periphery, thereby reducing the sensitivity of the microlens attached to the high-definition solid-state imaging device, flare, etc. It has been possible to provide a microlens for a solid-state imaging device and a method for forming a microlens for a solid-state imaging device, capable of capturing a bright image with high light collection efficiency without deterioration in image quality due to increased noise.

本発明の固体撮像素子用マイクロレンズを用いた固体撮像素子の構成を示した概念断面図である。It is the conceptual sectional view which showed the structure of the solid-state image sensor using the microlens for solid-state image sensors of this invention. 本発明の固体撮像素子用マイクロレンズにおける屈折率分布を示した概念図である。It is the conceptual diagram which showed the refractive index distribution in the microlens for solid-state image sensors of this invention. 本発明の固体撮像素子用マイクロレンズにおける屈折率分布を示した概念図である。It is the conceptual diagram which showed the refractive index distribution in the microlens for solid-state image sensors of this invention. 垂直入射光の光路を示した概念図である。It is a conceptual diagram showing an optical path of perpendicular incidence light. 斜入射光の光路を示した概念図である。It is the conceptual diagram which showed the optical path of oblique incidence light. 本発明の固体撮像素子用マイクロレンズの形成方法を示した概念図である。It is the conceptual diagram which showed the formation method of the microlens for solid-state image sensors of this invention.

以下本発明を実施するための形態を、図面を用いて詳細に説明する。図1は、本発明の実施形態に係る固体撮像素子7の概略断面図であり、マイクロレンズ5内の屈折率の変化を連続的な分布とした固体撮像素子用マイクロレンズの構成を示しており、固体撮像素子は、半導体基板1、光電変換素子2、平坦化層3、カラーフィルタ層4、マイクロレンズ5を具備している。半導体基板1は、光電変換素子2を実装するための基板である。   Hereinafter, modes for carrying out the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a solid-state imaging device 7 according to an embodiment of the present invention, showing a configuration of a microlens for a solid-state imaging device in which changes in refractive index in the microlens 5 are continuously distributed. The solid-state imaging device includes a semiconductor substrate 1, a photoelectric conversion device 2, a flattening layer 3, a color filter layer 4, and a microlens 5. The semiconductor substrate 1 is a substrate for mounting the photoelectric conversion element 2.

光電変換素子2は、マイクロレンズ5を経由して入射した光を電荷に変換する。平坦化層はマイクロレンズの実装面を平坦化する。カラーフィルタ層4は、光電変換素子2に入射する光の経路に特定の波長の光を透過する役割がある。   The photoelectric conversion element 2 converts light incident through the microlens 5 into a charge. The planarization layer planarizes the micro lens mounting surface. The color filter layer 4 has a role of transmitting light of a specific wavelength in the path of light incident on the photoelectric conversion element 2.

このマイクロレンズ5は、屈折率が異なる2つ以上の透明樹脂から形成されるが、その屈折率は、内心部から外周部にかけて連続的に小さくなる分布を持っている。   The microlens 5 is formed of two or more transparent resins different in refractive index, and the refractive index has a distribution that decreases continuously from the inner core to the outer peripheral.

図2は、本発明の、固体撮像素子用マイクロレンズ5の屈折率分布の一例を示しており、内心部から外周部にかけて、連続的に変化する屈折率分布を持っている。   FIG. 2 shows an example of the refractive index distribution of the microlens 5 for a solid-state imaging device according to the present invention, which has a refractive index distribution which continuously changes from the inner core portion to the outer peripheral portion.

図3は、本発明の、固体撮像素子用マイクロレンズ5の屈折率分布の他例を示しているが、両例とも、内心部の屈折率が1.5以上、外周部の屈折率が1.4以上になるように形成されている。   FIG. 3 shows another example of the refractive index distribution of the microlens 5 for a solid-state imaging device of the present invention, but in both examples, the refractive index of the inner core portion is 1.5 or more and the refractive index of the outer peripheral portion is 1 .4 or more.

図4は、垂直入射光の光路を示した概念図であるが、光がマイクロレンズ5に入射し、マイクロレンズ5内を進み、カラーフィルタ層4、平坦化層3を通って光電変換素子2に入る。   FIG. 4 is a conceptual view showing the optical path of the vertically incident light, but the light enters the micro lens 5, travels in the micro lens 5, passes through the color filter layer 4 and the flattening layer 3, and the photoelectric conversion element 2 is to go into.

図5は、斜め入射光の光路を示した概念図であるが、斜め入射も垂直入射と同様に、マイクロレンズ5内を進み、カラーフィルタ層4、平坦化層3を通って光電変換素子2に入る。   FIG. 5 is a conceptual view showing an optical path of oblique incident light, but as in the case of oblique incidence also in the case of vertical incidence, the oblique incidence also travels inside the microlens 5 and passes through the color filter layer 4 and the flattening layer 3 to form the photoelectric conversion element 2. to go into.

本実施形態の固体撮像素子7では、上述したマイクロレンズ5の構成により、入射光を効率的に光電変換素子2へ集光することができ、集光効率を高めることができる。   In the solid-state imaging device 7 of the present embodiment, incident light can be efficiently condensed on the photoelectric conversion device 2 by the above-described configuration of the microlens 5, and the condensing efficiency can be enhanced.

上述したマイクロレンズ5の形成方法について説明する。   A method of forming the above-described microlens 5 will be described.

図6は、本発明の実施形態に係るマイクロレンズの形成方法を示した概念図であり、ま
ず、光電変換素子2が表面部に形成された半導体基板1の上に、平坦化層3、カラーフィルタ層4を順次積層形成する。
FIG. 6 is a conceptual view showing a method of forming a microlens according to an embodiment of the present invention. First, on the semiconductor substrate 1 on which the photoelectric conversion element 2 is formed on the surface portion, a planarization layer 3 and color The filter layers 4 are sequentially laminated.

次に、感光性高屈折率透明樹脂8を塗布し(a)、露光、現像を行い、光電変換素子の受光部の上部中心部に第一マイクロレンズ9を形成する(b)。   Next, a photosensitive high refractive index transparent resin 8 is applied (a), exposure and development are performed, and a first microlens 9 is formed in the upper central portion of the light receiving portion of the photoelectric conversion element (b).

さらに、第一マイクロレンズ9上に感光性のある感光性低屈折率透明樹脂10を塗布し(c)、露光、現像を行い、第一マイクロレンズ9の真上に第二マイクロレンズ12を形成する(d))。   Furthermore, the photosensitive low refractive index transparent resin 10 having photosensitivity is coated on the first microlens 9 (c), exposed and developed, and the second microlens 12 is formed right above the first microlens 9 (D)).

ここでマイクロレンズ5に用いる透明樹脂は、熱フローにより屈折率が拡散する材料である。例えば、アクリル系、エポキシ系、アクリルウレタン系、ポリアミド系などである。   Here, the transparent resin used for the micro lens 5 is a material whose refractive index is diffused by heat flow. For example, it is an acrylic type, an epoxy type, an acrylic urethane type, a polyamide type etc.

そして、第一マイクロレンズ9と第二マイクロレンズ12を形成した後に加熱処理することで、第一マイクロレンズ9と第二マイクロレンズ12の屈折率を拡散し、マイクロレンズ5の内心部から外周部にかけて連続的に小さくなるようにする(e)。   After forming the first microlens 9 and the second microlens 12, the refractive index of the first microlens 9 and the second microlens 12 is diffused by heat treatment, and the inner core to the outer periphery of the microlens 5 are diffused. (E) to be continuously smaller.

本発明の固体撮像素子用マイクロレンズ5によれば、マイクロレンズ5内の屈折率を内心部から外周部にかけて連続的に小さくすることで、光の集光効率が高くなり、明るい画像を撮像することが可能となる。   According to the solid-state imaging device microlens 5 of the present invention, the light collection efficiency is increased by continuously reducing the refractive index in the microlens 5 from the inner core to the outer periphery, and a bright image is captured. It becomes possible.

以下、本実施例を説明する。光電変換素子2が表面上部に形成された半導体基板1上に、遮光層、平坦化層3を形成後、赤色(R)、緑色(G)、青色(B)3色のカラーレジストを用い、フォトリソグラフィにより、順次に3色のカラーフィルタ層4を形成する。   Hereinafter, the present embodiment will be described. After forming the light shielding layer and the flattening layer 3 on the semiconductor substrate 1 in which the photoelectric conversion element 2 is formed on the upper surface, a color resist of red (R), green (G) and blue (B) is used. The color filter layers 4 of three colors are sequentially formed by photolithography.

赤色(R)、緑色(G)、青色(B)各々のカラーフィルタ層の膜厚は、0.5〜0.8μmとし、カラーフィルタ層形成後に、透明樹脂を用いて平坦化層を0.1μmの厚さに形成する。   The film thickness of each of the red (R), green (G) and blue (B) color filter layers is 0.5 to 0.8 μm, and after forming the color filter layers, the planarizing layer is made of 0. It is formed to a thickness of 1 μm.

次に、形成したカラーフィルタ層上に感光性のある高屈折率の透明樹脂材(感光性アクリル樹脂)を膜厚0.6μmで塗布し、露光、現像を行い、光電変換素子の受光部の上部中心部に第一マイクロレンズを形成する。ここでの第一マイクロレンズは高さ0.5μmの半球面形状である。   Next, a photosensitive resin high refractive index transparent resin material (photosensitive acrylic resin) is coated with a film thickness of 0.6 μm on the formed color filter layer, exposed and developed, and the light receiving portion of the photoelectric conversion element A first microlens is formed in the upper center portion. The first microlens here has a hemispherical shape with a height of 0.5 μm.

次に、第一マイクロレンズ上に感光性のある低屈折率の透明樹脂材(感光性アクリル樹脂)を膜厚1.5μmで塗布し、露光、現像を行い、第一マイクロレンズの真上に第二マイクロレンズを形成する。ここでの第二マイクロレンズは高さ1.2μmの半球面形状である。   Next, a photosensitive low refractive index transparent resin material (photosensitive acrylic resin) having a film thickness of 1.5 μm is coated on the first microlens, exposed and developed, and then directly on the first microlens. Form a second microlens. The second microlens here has a hemispherical shape with a height of 1.2 μm.

次いで、第一マイクロレンズと第二マイクロレンズを形成した後、半導体基板を搭載可能なサイズのホットプレートを用いて200℃、300秒の熱フロー処理を行い、実施例1のマイクロレンズ付固体撮像素子を作製した。   Next, after forming the first microlens and the second microlens, heat flow treatment is performed at 200 ° C. for 300 seconds using a hot plate of a size capable of mounting the semiconductor substrate, and solid-state imaging with a microlens of Example 1 A device was produced.

<比較例1>
熱フロー処理を行わない以外は、実施例1と同条件で比較例1のマイクロレンズ付固体撮像素子を作製した。
Comparative Example 1
The microlens attached solid-state imaging device of Comparative Example 1 was produced under the same conditions as Example 1 except that the heat flow treatment was not performed.

<受光効率評価>
実施例1および比較例1のマイクロレンズ付固体撮像素子に、標準光源(光源:キセノンランプ)を照射して、受光効率を測定したところ、比較例1の出力は80.9%(可視領域)であったが、実施例1の出力は86.0%であり、熱フロー処理をおこなったマイクロレンズ付固体撮像素子方が約5%良好な結果であった。
<Light receiving efficiency evaluation>
When the standard light source (light source: xenon lamp) was irradiated to the solid-state imaging device with microlenses of Example 1 and Comparative Example 1 and the light receiving efficiency was measured, the output of Comparative Example 1 was 80.9% (visible region) However, the output of Example 1 was 86.0%, and the heat-flow-treated solid-state imaging device with a microlens had a result that was about 5% better.

<屈折率分布評価>
実施例1および比較例1のマイクロレンズの屈折率分布をエリプソメータによって測定した。実施例1のマイクロレンズは、屈折率が、内心部(1.52)から外周部(1.43)にかけて連続的に小さくなっているが、比較例1は、中心から0.5μmの部分で屈折率が1.51から1.43に変化する境界面があった。
<Refractive index distribution evaluation>
The refractive index profiles of the microlenses of Example 1 and Comparative Example 1 were measured by an ellipsometer. In the micro lens of Example 1, the refractive index decreases continuously from the inner core portion (1.52) to the outer peripheral portion (1.43), but in Comparative Example 1, the refractive index is 0.5 μm from the center There was an interface where the refractive index changed from 1.51 to 1.43.

評価結果を表1に示す。   The evaluation results are shown in Table 1.

本発明の、熱フロー処理を施し、屈折率を内心部から外周部にかけて連続的に小さくしたマイクロレンズを用い付固体撮像素子は、受光効率が向上しており、高感度化を図ることができた。   In the solid-state imaging device according to the present invention, the light receiving efficiency is improved by using the micro lens in which the heat flow processing is performed and the refractive index is continuously reduced from the inner core to the outer peripheral, and high sensitivity can be achieved. The

1・・・半導体基板
2・・・光電変換素子
3・・・平坦化層
4・・・カラーフィルタ層
5・・・マイクロレンズ
6・・・光路
7・・・固体撮像素子
8・・・感光性高屈折率透明樹脂
9・・・第一マイクロレンズ
10・・・感光性低屈折率透明樹脂
11・・・露光光
12・・・第二マイクロレンズ
DESCRIPTION OF SYMBOLS 1 ... semiconductor substrate 2 ... photoelectric conversion element 3 ... planarization layer 4 ... color filter layer 5 ... micro lens 6 ... optical path 7 ... solid-state image sensor 8 ... photosensitivity High refractive index transparent resin 9 ... First micro lens 10 ... Photosensitive low refractive index transparent resin 11 ... Exposure light 12 ... Second micro lens

Claims (4)

固体撮像素子上に設けられ、入射光を集束するための固体撮像素子用マイクロレンズであって、
前記固体撮像素子が、半導体基板の表面に形成された複数の光電変換素子と、前記光電変換素子のそれぞれの表面に、定められた波長帯域の光を透過させるカラーフィルタを積層した構成であり、
前記固体撮像素子用マイクロレンズが、内心部と外周部で、異なる屈折率を有し、屈折率が、内心部から外周部にかけて連続的に小さくなっており、
前記マイクロレンズが、屈折率が異なる2つ以上の透明樹脂から形成されていることを特徴とする固体撮像素子用マイクロレンズ。
A microlens for a solid-state imaging device provided on a solid-state imaging device for focusing incident light, comprising:
The solid-state imaging device is configured by laminating a plurality of photoelectric conversion devices formed on the surface of a semiconductor substrate, and a color filter transmitting light of a predetermined wavelength band on each surface of the photoelectric conversion device,
The microlens for a solid-state imaging device has different refractive indexes at the inner core and the outer periphery, and the refractive index is continuously reduced from the inner core to the outer periphery ,
The microlens for a solid-state imaging device, wherein the microlens is formed of two or more transparent resins different in refractive index .
前記マイクロレンズが、屈折率の異なる2つの透明樹脂から形成されていることを特徴とする請求項1に記載の固体撮像素子用マイクロレンズ。 The microlens for a solid-state imaging device according to claim 1, wherein the microlens is formed of two transparent resins having different refractive indexes. 前記マイクロレンズの屈折率が、内心部が1.5以上、外周部が1.4以上であることを特徴とする請求項1又は請求項2に記載の固体撮像素子用マイクロレンズ。   The microlens for a solid-state imaging device according to claim 1 or 2, wherein the refractive index of the microlens is 1.5 or more in the inner core portion and 1.4 or more in the outer peripheral portion. 前記固体撮像素子用マイクロレンズの形状が、球面形状、放物線形状、正弦波形状のいずれかの形状であることを特徴とする請求項1から3のいずれか1項に記載の固体撮像素子用マイクロレンズ。
The micro-lens for a solid-state imaging device according to any one of claims 1 to 3, wherein the shape of the micro-lens for a solid-state imaging device is any one of a spherical shape, a parabola shape, and a sine wave shape. lens.
JP2015108352A 2015-05-28 2015-05-28 Microlens for solid-state imaging device and method of forming microlens for solid-state imaging device Active JP6520400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015108352A JP6520400B2 (en) 2015-05-28 2015-05-28 Microlens for solid-state imaging device and method of forming microlens for solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015108352A JP6520400B2 (en) 2015-05-28 2015-05-28 Microlens for solid-state imaging device and method of forming microlens for solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2016225392A JP2016225392A (en) 2016-12-28
JP6520400B2 true JP6520400B2 (en) 2019-05-29

Family

ID=57746681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015108352A Active JP6520400B2 (en) 2015-05-28 2015-05-28 Microlens for solid-state imaging device and method of forming microlens for solid-state imaging device

Country Status (1)

Country Link
JP (1) JP6520400B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109616486A (en) * 2018-11-23 2019-04-12 德淮半导体有限公司 Imaging sensor and its manufacturing method
JPWO2020122032A1 (en) * 2018-12-13 2021-10-28 凸版印刷株式会社 Manufacturing method of solid-state image sensor and solid-state image sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347719A (en) * 1986-08-14 1988-02-29 Canon Inc Optical sensor
JP3012500B2 (en) * 1995-11-20 2000-02-21 日本板硝子株式会社 Method for manufacturing flat lens array
US7317579B2 (en) * 2005-08-11 2008-01-08 Micron Technology, Inc. Method and apparatus providing graded-index microlenses
JP2007165713A (en) * 2005-12-15 2007-06-28 Fujifilm Corp Solid-state imaging element and manufacturing method thereof
US7701636B2 (en) * 2008-03-06 2010-04-20 Aptina Imaging Corporation Gradient index microlenses and method of formation
JP5434252B2 (en) * 2009-05-14 2014-03-05 ソニー株式会社 Solid-state imaging device, manufacturing method thereof, and electronic apparatus
US9128218B2 (en) * 2011-12-29 2015-09-08 Visera Technologies Company Limited Microlens structure and fabrication method thereof

Also Published As

Publication number Publication date
JP2016225392A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP6141024B2 (en) Imaging apparatus and imaging system
US9131100B2 (en) Solid-state imaging device with lens, method of manufacturing solid-state imaging device with lens, and electronic apparatus
JP5421207B2 (en) Solid-state imaging device
US20160033688A1 (en) Double-lens structures and fabrication methods thereof
JP2013021168A (en) Solid-state imaging device, manufacturing method of solid-state imaging device, and electronic apparatus
RU2554292C2 (en) Image sensor and imager
JP2011077410A (en) Solid-state imaging device
US10170516B2 (en) Image sensing device and method for fabricating the same
US20180269247A1 (en) Solid-state imaging device and method of manufacturing the same
TW201608712A (en) Image sensing device and method for fabricating the same
JP2013012518A (en) Solid state imaging device
JP2016025334A (en) Solid state image pickup device and camera module
KR100720461B1 (en) Image sensor and method of manufacturing the same
JP6520400B2 (en) Microlens for solid-state imaging device and method of forming microlens for solid-state imaging device
JP2011243885A (en) Solid-state imaging device and method of manufacturing the same
JP2011243749A (en) Solid state image pickup device and manufacturing method thereof
JP2007047569A (en) Microlens device, solid state image pickup element, display device, and electronic information equipment
JP2018082002A (en) Solid state imaging device and electronic apparatus
JP6911353B2 (en) Manufacturing method of solid-state image sensor
JP2008244225A (en) Solid-state imaging apparatus, gray scale mask, color filter and microlens
JP2017098321A (en) Solid state image sensor and electronic apparatus
US20220059593A1 (en) Imaging element and imaging apparatus
JP6801230B2 (en) Solid-state image sensor and electronic equipment
JP2009267000A (en) Solid-state image pickup element
JP2007019424A (en) Solid state image sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6520400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250