JP2012018758A - 走査電子顕微鏡 - Google Patents

走査電子顕微鏡 Download PDF

Info

Publication number
JP2012018758A
JP2012018758A JP2010153539A JP2010153539A JP2012018758A JP 2012018758 A JP2012018758 A JP 2012018758A JP 2010153539 A JP2010153539 A JP 2010153539A JP 2010153539 A JP2010153539 A JP 2010153539A JP 2012018758 A JP2012018758 A JP 2012018758A
Authority
JP
Japan
Prior art keywords
charged particle
image
detector
particle microscope
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010153539A
Other languages
English (en)
Inventor
Masashi Watanabe
真佐志 渡辺
Shigeru Kawamata
茂 川俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2010153539A priority Critical patent/JP2012018758A/ja
Publication of JP2012018758A publication Critical patent/JP2012018758A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】フレーム間演算の積分比率を積分比率の設定テーブルから自動的に設定する事で、オペレーティング時の手動設定が大幅に簡略化し、思考錯誤的なオペレーション時の操作性を改善する。観察箇所を決定する際には、フィルタ係数設定・検出器設定を試料に合わせて手動で切替ながらオペレーションする必要があるという課題があった。
【解決手段】装置による検出器の設置位置、検出系の違い、観察試料の組成に起因する信号の違いをヒストグラムから判定し、フレーム間演算の積分比率を積分比率の設定テーブルから自動的に設定する事で、オペレーティングに最適な観察像を表示する事が可能となり、オペレータによる積分比率の手動設定が大幅に簡略化でき、思考錯誤的なオペレーション時の操作性が改善される。
【選択図】 図5

Description

本発明は走査形電子顕微鏡(SEM)の像観察を処理する装置に関するものであり、特に、像観察のノイズを低減して画質を向上させる事ができる可能な画像処理装置に関するものである。
図1に、走査形電子顕微鏡の典型的な構成例を示す。図中の1は電子銃であり、電子銃1からの電子線2は収束レンズ3,対物レンズ5の電子光学系制御手段6によって、観察試料8上に細く収束される。また、電子ビーム2は偏向コイル4にビーム走査制御手段7からの走査信号を供給することにより偏向される。観察試料8への電子線の照射に基づいて発生した二次電子・反射電子は検出器9によって検出される。検出器9の検出信号はA/D変換器10によってディジタル信号に変換された後、画像処理装置11に入力後、表示装置12で表示される。
電子顕微鏡の操作者(オペレータ)が所望の試料を観察する場合、操作卓14で操作を行い、表示装置12で観察を行う。一般的には、低い倍率で広い視野を観察し、目的の部位を探し、目的部位が倍率中心にくるよう試料を移動し、倍率を上げていくという操作を行う。走査電子顕微鏡の場合、像観察条件の設定項目が多く、操作が容易とはいえない装置であるため、一般に、何らかのガイダンス機能、あるいは設定の一部を自動化した機能を備えていることが普通である。
例えば、特許文献1には、電子顕微鏡の設定を容易にすべく設けられる誘導機能の例が開示されている。また、特許文献2には、操作性を向上させた電子顕微鏡の構成例が開示されている。当該文献に記載された発明では、低倍率の観察画像上で、拡大観察したい部分を四角枠で選択させ、その後の試料移動制御および倍率制御を自動実行する機能を備えることにより、観察視野の選択を容易化している。
さて、走査形電子顕微鏡の特徴として、電子線の走査から実際に観察像を得るまでに時間がかかるという点があげられる。すなわち、走査形電子顕微鏡の場合、1回の走査で得られる画像はS/Nが良くないため、同じ走査領域を何回か走査して、得られる複数の画像を積算することにより画質を改善(ノイズを低減)する処理が行われるのが普通である。ところが、像観察条件を調整や観察視野をサーチする場合など、指定された像観察条件に対してどのような観察像の画面が得られるかをリアルタイムに確認できず、ある設定条件がどのように観察像の画面に反映されるかを把握することが困難という問題がある。
特許文献1あるいは2に記載された従来技術は、観察箇所が既知か、オペレータが観察したい箇所を決めたことを前提とした観察条件設定手段を示しているが、実際の試料観察時には、観察箇所が既知ではない事が多く、観察条件の設定や観察視野探しなどのオペレーションを思考錯誤的に手動で行う必要がある。
手動による試行錯誤的なオペレーションの場合、オペレータは、観察条件が観察像に及ぼす一般的な効果、例えば、検出器・試料の材質・組成に起因した画像の違いや損傷・汚染についてある程度予測しながらオペレーションを行い、観察箇所を決定する。このような手動での思考錯誤的なオペレーションにおける観察画像の画質改善方法として、特許文献3には、新たな走査により取得された画像に対する積算対象である、以前の走査により取得された画像(画素データの積分として表される)の比率(以下、フィルタ係数と称する)を任意の値に設定可能なフレーム積算アルゴリズムを用いる走査電子顕微鏡が開示されている。この走査電子顕微鏡においては、観察条件の変更を開始した、あるいは変更中であると装置が判断した場合、以前の走査により得られた画像の積分比率をゼロ(すなわち、積算は行わない)に設定することにより画像表示の追従性を向上させ、かつオペレータが観察条件の変更を終了したと装置が判定した場合には、以前の走査により得られた画像の積分比率をゼロではない所定値に設定することにより画質を改善する。これにより、操作性と画質改善効果を両立させたSEMを実現している。
特開2003−303567号公報 特開平09−259807号公報 特公平07−073038号公報
走査電子顕微鏡には、単一の検出器だけではなく複数の検出器が備えられている場合が多い。これらの検出器は、感度や電子光学系での配置位置など、特性がそれぞれ異なっているため、目的とする画像を取得するためには、電子ビームの走査条件やアンプゲインなどの観察条件を個々に調整する必要がある。特許文献3に記載の発明を複数の検出器を持つ走査電子顕微鏡に適用した場合、ある検出器からの出力信号に対しては、上記フィルタ係数が最適化されたフレーム積算アルゴリズムが適用されることになるが、ある検出器に対して定まったフィルタ係数が他の検出器からの出力信号に対しても最適な値とは限らない。検出器の感度は、検出器の種類や取付け位置によって異なるからである。極端な場合、複数の検出器から得られる画像信号を画面上に検出器毎に表示させた場合、ある検出器からの画像信号はまともに表示されるが、ある検出器からの画像信号は画面上に全く表示されないなどということも起こりうる。
従って、特許文献3に記載の発明においては、画像を取得する検出器を切替える毎に、フィルタ係数の自動設定をやり直さなければならないという問題がある。実際の操作においては、フィルタ係数の設定操作を何回も行うのは煩雑であり、結局、従来の手法と同じように、使用する全ての検出器に対して最適となるようなフィルタ係数の値を、オペレータが試行錯誤的に手動設定せざるを得なかった。
そこで本発明は、複数の検出器を備えた走査電子顕微鏡において、各検出器で得られる画像間の画質ばらつきを均一化することを目的とする。特に、観察条件を変更中であっても、表示される複数検出器からの画像に極端なばらつきが出ないようにすることを目的とする。更には、複数の検出器を備えた走査電子顕微鏡においてフィルタ係数の自動決定機能を実現することを目的とする。
本発明では、複数検出器を備えた走査電子顕微鏡において、各々の検出器から出力される画像信号を画像化する際に、1の検出器の画像信号から形成される画像と、他の検出器からの画像信号から形成される画像とがほぼ同じ画質になるように、前記フィルタ演算の際のフィルタ係数を調整する画像処理手段を備えることにより上記課題を解決する。
別の表現で言えば、上記複数の検出器から出力される画像信号に対してフィルタ演算を実行する演算器が、感度や取付け位置といった各々の検出器の特性の相違を考慮して、上記フィルタ係数の値をフィルタ毎に個別に定めることにより、上記課題を解決する。
なお、複数の検出器それぞれに対応するフィルタのフィルタ係数を定めるための基準値としては、標準試料に対して適当な観察条件で電子線を照射した場合に得られる画像信号を用いることができる。
本発明によれば、複数の検出器から出力される画像信号を画像化して表示する際に、複数の検出器から得られる画像間での極端な画質ばらつきが抑制される。更には、複数の検出器を備えた走査電子顕微鏡においてフィルタ係数の自動決定機能が実現される。
従来の走査電子顕微鏡の構成図である。 本発明における第1の実施例における走査電子顕微鏡の構成図である。 本発明の第1の実施例における画像処理装置11の構成図である。 本発明における第2の実施例における走査電子顕微鏡の構成図である。 本発明における第2の実施例における画像処理装置11の構成図である。 アウトレンズと検出器の構成図である。 シュノーケルレンズと検出器の構成図である。 インレンズと検出器の構成図である。 本発明の第3の実施例における検出系の構成図である。
以下、本発明の実施例を図面を用いて説明する。以下の説明では、本発明の理解のために、具体的な事柄を多数示してあるが、本発明は以下の説明に示した事例への適用に溜まるものではない。また、実施例では、周知の回路がブロック図の形で示してあるが、これは不要な詳細を示して本発明を不明確にするのを避けるためである。
また、ほとんどの場合、信号処理等に関する技術的な詳細は、本発明を理解するために必要ではなく、通常のディジタル回路技術者の技能の範囲であると思われる記述は省略している。
本実施例では、複数の検出器を備えた走査電子顕微鏡におけるフィルタ係数の自動設定機能について説明する。
図2は本発明における第1の実施例における構成図である。ユーザーが表示装置212に表示されたGUIの画面を参照しながら、操作卓214からキーボード,マウス等の入力機器により、所望するスキャンモードを選択し、観察開始の操作を行った場合は、CPU213がこれを認識し、電子光学系制御手段206へ伝える。電子光学系制御手段206はこれを受け、電子銃201からの電子線202を収束レンズ203,対物レンズ205によって、観察試料208上に細く収束されるように制御する。また、電子線走査制御手段207においても、CPU213から設定情報を伝えられる事で、偏向コイル204により、試料台216上の観察用試料208を2次元的走査する。電子線202の走査により、観察用試料208から放出される二次電子,反射電子は、検出器209で検出・増幅され、その検出信号は、A/D変換器210でディジタル信号に変換された後に画像処理装置211に入力される。
図3は、画像処理装置211の構成図の一例でフレーム間演算を行う回路であり、第1の減衰器320,第2の減衰器321,フレームメモリ322,加算器323,積算比率制御手段325などにより構成される。A/D変換器210から入力される画像データDtは、第1の減衰器320においてn倍の利得で減衰され、フレームメモリ322から出力され、かつ第2の減衰器321で(1−n)倍の利得に減衰された後、加算器323において1フレーム前の画像データと加算される。
ここで、加算器323から出力された画像データは、画像処理装置211からそのまま出力されるほか、フレームメモリ322にも格納される。従って、フレームメモリ322には、1フレーム前の画像データが累積的に加算された形で格納されている。よって、フレームメモリ322に格納された画像データは、数学的には積分記号∫Dt−1で表される。ここで、Dt−1は、現在時刻tにおける画像データをDtと表現した場合における1フレーム前の時刻t−1での画像データを示す量である。
加算器323での演算処理は、数学的にはn・Dtと(1−n)・∫Dt−1との加算として表される。したがって、加算後のデータは積分記号∫Dtで表され、フレームメモリ322へ登録されると共に、表示装置212へも出力される。ここで、式中のnは、0から1の間の値を取る係数であり、積算比率と呼ぶことにする。
積分記号∫Dtを、各フレーム時刻の画像データDtと積算比率nを用いて展開すると以下のように表される。
∫Dt=n・Dt+(1−n)・∫Dt−1
=n・Dt+(1−n)・n・Dt−1+n・(1−n)2・Dt−2+・・・
上式を見れば分かる通り、積算比率を示す係数nの値がゼロに近いほどDtの寄与が小さくなり、Dt−1やDt−2といった以前のフレーム時刻の画像データの寄与が大きくなる。つまり、過去のフレーム画像の影響が大きくなる。従って、係数nの値が小さいとノイズの低減効果が大きくなるが、追従性が低下し、その値が大きいとノイズの低減効果は小さくなるが、追従性が向上する。また、n=1であれば、高次の項に含まれる係数(1−n)により過去のフレーム時刻の画像データはキャンセルされるため、フレーム間演算は行われず画質改善は行われない(入力信号がそのまま出力される)。
前記の積算比率の係数nは、CPU213により、電子銃201,電子光学系制御手段206,電子線走査制御手段207の電子光学系設定情報を積算比率制御手段325に伝える事により、積算比率制御手段が有する積算比率の係数nの設定テーブル324から自動的に設定される。
設定テーブル324は、CPU213のメモリ領域に予め格納されている。また、設定テーブル324には、電子銃201,電子光学系制御手段206,電子線走査制御手段207の設定条件(例えば、加速電圧,エミッション電流,倍率,走査速度,使用する検出器等)と、その時の積算比率の係数nの関係が格納されており、CPU213は、設定テーブル324を参照することで、積算比率の係数nを決定することができる。決定された積分比率の係数nは、CPU213により積算比率制御手段325へ伝えられる。
前記積算比率の係数nのテーブル設定は、電子銃201,電子光学系制御手段206,電子線走査制御手段207の設定条件により、予め決められており、観察開始時にオペレータが所望する設定において理想的な追従性と画質改善が得られるように積算比率制御手段により、積算比率の係数nが設定される。これにより、オペレータは、積算比率の係数nの設定については特段の操作を行う事なくオペレーションが可能となる。
図4は本発明の第2の実施例における説明図である。本実施例では、試料台416上に、標準ヒストグラム取得用試料417を備えることを特徴としている。
また、ここ言うヒストグラムとは、標準ヒストグラム取得用試料を電子線402で2次元的に走査することにより、放出される二次電子,反射電子を検出器409で検出・増幅し、信号をA/D変換器410でディジタル信号に変換した後、取得される画像の画素の階調値が画像内にどれだけの度合いで存在しているかを集計したものである。
本実施例における画像処理装置411の構成図の一例を図5に示す。図5のフレーム間演算部は、構成図に示すヒストグラム生成手段524を具備し、フレーム間演算の結果データ∫Dtのヒストグラムを取得することができる。
ヒストグラム生成手段524は、入力されるフレーム間演算の結果データ∫Dtの階調値を1画素単位で入力順に読み取り、読み取った階調値は、ヒストグラム生成手段524のヒストグラム用メモリ527に階調ごとに格納され、各々加算される。528は入力データ∫Dtとヒストグラム用メモリ527によるヒストグラム生成の様子を示したものである。528は入力データ∫Dtの階調が0〜255の256階調のときの例で、1フレームデータ分のヒストグラムを生成したときのもので、入力データ∫Dtに対する0〜256の階調の度合いがN0〜N255で示されている。
また、実施例1で説明したように、積算比率制御手段525は積算比率の係数nの設定テーブルを備えており、CPU413から伝えられる電子光学系の設定条件を参照して積算比率を自動設定する。同時に、積算比率制御手段525には、標準ヒストグラム取得用試料417を用いた場合に取得される理想的なヒストグラムデータが予め格納されている。この理想的ヒストグラムデータの算出時に使用された積算比率nは、電子光学系の条件で自動的に設定されたものである。
実施例2では、オペレータが表示装置412に表示されたGUIの画面を参照しながら、操作卓414からキーボード,マウス等の入力機器により、所望の電子光学系の設定を行い、観察開始の操作を行った場合は、CPU413がこれを認識し、電子線走査制御手段407にこれを伝える。電子線走査制御手段407はこれを受けて、標準ヒストグラム取得用試料417を走査するように偏向コイル404を制御し、電子線402の走査を行う。偏向された電子線402が、試料台416上のヒストグラム取得用試料417を2次元的に走査することにより、放出される二次電子,反射電子は、検出器409で検出・増幅された信号は、A/D変換器410でディジタル信号に変換された後に画像処理装置411に入力される。
画像処理装置411には、前記したヒストグラム生成手段524があり、電子光学系の条件により設定された積算比率の係数nによるフレーム間積算後のデータ∫Dtにより、ヒストグラムが生成され、ヒストグラム用データメモリ527へ格納される。格納されたヒストグラムは積算比率制御手段525に伝えられ、積算比率制御手段525に予め格納されている理想的なヒストグラムデータと比較される。
ヒストグラムの比較の指標としては、好適には、標準偏差や相関係数を用いることが好ましいが、これに限られるわけではなく、他の比較方法でも構わない。
比較結果が積算比率制御手段525に予め格納されている理想的なヒストグラムデータと一致していなければ、積算比率制御回路525は、積算比率の係数nを変更し、CPU413に対して、標準ヒストグラム取得用試料417の走査を行うように要求する。
積算比率制御手段525は、ヒストグラム生成手段524でヒストグラムを生成し、積算比率制御手段に予め格納されている理想的なヒストグラムとの一致度を比較する。一致度が所定の閾値に達していなければ、積算比率の係数nを変更して再度ヒストグラムの生成処理を行い、上記の比較および判定動作を一致度が所定の閾値に達するまで繰り返す。一致度としては、ヒストグラムの標準偏差や相関係数などを使用することができる。
一致度が閾値を超えるヒストグラムが取得されると、その時点の積算比率の係数nをオペレータが現在所望している電子光学系の条件における最良の設定値と認識して、その積算比率の係数nが積算比率制御手段525から、CPU413へ伝えられる。伝えられた積算比率の係数nは、CPU413により、設定テーブル526に登録される。
本実施例により、検出器の配置の違い、検出器そのものの特性に起因した信号の検出特性の違いを自動的に補正する事が可能となる。さらに、検出器や電子光学系の特性に装置間の差がある場合や、経年による特性の変化が発生しても、標準ヒストグラム取得用試料417を用いて補正することで、常にオペレータが所望する最良の積算比率の係数nを設定テーブルに登録することが可能となる。
図6,図7,図8は実施例2の効果を説明するのに好適な図4における走査電子顕微鏡の対物レンズ405違いによる、観察試料と検出器の関係を示すために対物レンズ405の部位を詳細に示した図である。
図6は図4の対物レンズ405と観察用試料408の部位を詳細に描いたものである。対物レンズ用コイル600は磁路601に磁力線を発生させ、磁路601のギャップ部分602からの漏れ磁束で電子線609を試料608上に収束させる。ギャップ部分602と磁路601の形状、試料608との位置関係で対物レンズのタイプは分ける事ができる。
図6に示すタイプはアウトレンズと呼ばれるもので、ギャップ部分602と試料608の間には複数の検出器603,604,605を配置できる。対物レンズの直下に配置されている検出器603は、反射電子検出器用であり、環状の半導体型検出器,YAG検出器,ロビンソン型検出器である場合が多い。
検出器604,605は、同じタイプの検出器が用いられることが多く、2次電子・反射電子に対して感度を持ち、発光する蛍光体と光電子増倍管を組み合わせるものが多い。但し、検出器604,605は位置が異なっており、検出する電子量が異なる。
図7は図4の対物レンズ405と観察用試料408の部位を詳細に描いたものである。対物レンズ用コイル700は磁路701に磁力線を発生させ、磁路701のギャップ部分702からの漏れ磁束で電子線709を試料708上に収束させる。ギャップ部分702と磁路701の形状、試料708との位置関係の特徴を持つレンズはシュノーケルレンズと呼ばれている。
シュノーケルレンズでは、ギャップ部分702と試料708の間が狭く、対物レンズ直下に検出器を配置することは難しい。
検出器703,704,705は、蛍光体と光電子増倍管を組み合わせたものである場合が多く、対物レンズの上部にある検出器703は、2次電子を検出しやすく、検出器704,705は反射電子を検出しやすい。また、検出器704,705は配置位置が異なるため、検出する電子量が異なる。
図8は図4の対物レンズ405と観察用試料408の部位を詳細に描いたものである。対物レンズ用コイル800は磁路801に磁力線を発生させ、磁路801のギャップ部分802からの漏れ磁束で電子線802を観察用試料808上に収束させる。ギャップ部分802と磁路801の形状、試料808との位置関係の特徴を持つレンズはインレンズと呼ばれている。
インレンズは観察用試料808が対物レンズの中に存在するため、検出器803は対物レンズの上部に配置する場合が多い。
また、インレンズでは、観察用試料808を透過した電子805を検出する検出器804がある場合もある。
前記した図6の検出器603,604,605、図7の検出器703,704,705、図8の検出器803,804は、レンズの特性,検出器の特性,検出器の配置に依存した電子量の検出になるため、検出器での電子検出後にどの程度の画像となるかを予想することは難しい。
また、別な要因として、試料の組成に起因して、2次電子・反射電子の放出効率がことなるため、検出器での検出後にどの程度の画像となるかを予想することは難しい。
しかしながら、実施例2によれば、装置により異なる検出系・検出器の設置位置・検出器の特性・試料の組成の違いに起因する電子量の違いによる検出器での検出後の画像の違いを自動的に補正し、オペレーションにとって最適な追従性と画質改善が得られる積算比率の係数nが設定される。これにより、積算比率の係数nについては、特段の操作を行う事なくオペレーションが可能となる。
図9は実施例2における、図4の検出器409,A/D変換器410,画像処理装置411から構成される検出系415を複数の検出器に対応させた第3の実施例のブロック図である。909a〜909nは、n個の検出器であり、910a〜910nは同じくn個のA/D変換器である。911a〜911nは、n個の画像処理装置である。画像処理装置911a〜911nは、前記実施例2の図5で示したフレーム間演算回路,フレームメモリ、積算比率制御手段,ヒストグラム取得手段を具備している。また、n個のフレーム間演算の結果∫Dtは、表示装置912へ出力され、例えば、複数のウィンドウシステムにより、906a〜906nのように複数の画像を同時表示する機能を有している。
本実施例では、検出器の数が非常に多数になった場合の走査電子顕微鏡の構成例について説明する。図9は、任意数n個の検出器を備えた走査電子顕微鏡の検出光学系の構成を示したもので、n個の検出器909a〜909nの各々に、A/D変換器910a〜910nおよび画像処理装置911a〜911nがそれぞれ接続されることにより検出光学系が構成されている。検出器909a〜909nの右側には、電子光学系や試料ステージなど、通常の電子顕微鏡の構成が備わっているが、実施例1,2で説明した内容と大差ないので、説明及び図示は省略する。
画像処理装置911a〜911nには、CPU413が並列に接続されており、当該CPU413により、実施例2で説明した積算比率の係数nの自動補正機能が複数の画像処理装置910a〜910nで実現される。これにより、複数の検出器系に対する自動補正を同時に行い、かつ表示することが可能となる。
実施例3によれば、オペレータは、複数の異なる検出系の像観察において、自動的に補正された、積算比率の係数nにより、オペレーティングにとって、最適な複数の観察像を同時に確認する事ができ、観察箇所を決める事が容易となる。これにより、観察箇所の決定までの時間がより短縮され、試料の汚染・ダメージを軽減する事を可能とする効果がある。
1,201,401 電子銃
2,202,402,609,709,809 電子線
3,203,403 収束レンズ
4,204,404 偏向コイル
5,205 対物レンズ
6,206,406 電子光学系制御手段
7 ビーム走査制御手段
8 観察試料
9,409 検出器
10 電子線走査制御手段
11,211,411,911 画像処理装置
12,212,412,912 表示装置
207,407 偏向制御手段
208,408 観察試料
209,603,604,605,703,704,705,803,909 検出器
210,410,910 A/D変換器
213,413 CPU
214,414 操作卓
320 第1の減衰器
321 第2の減衰器
322 フレームメモリ
323 加算器
324 設定テーブル
325 積分比率制御手段
405 対物レンズ
415 検出器系
416 試料台
417 標準ヒストグラム取得用試料
520,521 減衰器
522 フレームメモリ
523 加算
524 ヒストグラム生成手段
525 積分比率制御手段
526 設定テーブル
527 ヒストグラム用データメモリ
528 ヒストグラム生成の様子
600,700,800 対物レンズ用コイル
601,701,801 磁路
602,702,802 ギャップ部分
708,804,808 試料
805 透過電子
916 表示ウィンドウ

Claims (9)

  1. 観察対象試料上に一次荷電粒子線を走査して検出される二次荷電粒子を画像化する走査荷電粒子顕微鏡において、
    前記試料を格納する試料室と、
    前記二次荷電粒子を検出する第1の検出器および第2の検出器を備える荷電粒子光学鏡筒と、
    前記第1の検出器および第2の検出器から出力される出力信号から第1の画像信号および第2の画像信号をそれぞれ生成し、当該第1の画像信号および第2の画像信号に対してフィルタ演算を実行する画像処理手段とを有し、
    当該画像処理手段は、第1の画像信号から形成される画像と前記第2の画像信号から形成される画像とがほぼ同じ画質になるように、前記フィルタ演算の際のフィルタ係数を調整することを特徴とする荷電粒子顕微鏡。
  2. 請求項1に記載の荷電粒子顕微鏡において、
    前記フィルタ係数を前記第1の画像信号および第2の画像信号から形成される画像の倍率に基づき調整することを特徴とする荷電粒子顕微鏡。
  3. 請求項1に記載の荷電粒子顕微鏡において、
    前記画像処理手段は、
    前記フィルタ係数調整前の第1の画像信号から形成される画像と前記第2の画像信号から形成される画像から画質評価のためのヒストグラムを生成し、
    当該ヒストグラムがほぼ同じ値になるように前記フィルタ係数を調整することを特徴とする荷電粒子顕微鏡。
  4. 請求項1に記載の荷電粒子顕微鏡において、
    前記フィルタ条件を設定するためのテーブルを備えることを特徴とする荷電粒子顕微鏡。
  5. 請求項3に記載の荷電粒子顕微鏡において
    前記試料室内にヒストグラム取得用標準試料を備え、
    更に、前記画像処理手段に、当該ヒストグラム取得用標準試料に対して一次荷電粒子線を走査した場合に得られる理想的なヒストグラムデータが格納されたことを特徴とする荷電粒子顕微鏡。
  6. 請求項3に記載の荷電粒子顕微鏡において、
    画質評価のためのヒストグラムとして、前記画像信号を構成する画素の強度データの標準偏差または相関係数を用いることを特徴とする荷電粒子顕微鏡。
  7. 請求項1に記載の荷電粒子顕微鏡において、
    前記第1の検出器および第2の検出器が、2次電子検出器および反射電子検出器であることを特徴とする荷電粒子顕微鏡。
  8. 観察対象試料上に一次荷電粒子線を走査して検出される二次荷電粒子を画像化する走査荷電粒子顕微鏡において、
    前記試料を格納する試料室と、
    前記二次荷電粒子を検出する複数の検出器を備える荷電粒子光学鏡筒と、
    前記複数の検出器から出力される出力信号から、当該複数の検出器に対応する画像信号をそれぞれ生成し、当該各画像信号に対して画質調整のための画素演算を実行する画像処理手段と、
    前記複数の検出器に対応する画像信号から形成される複数の画像がほぼ同じ画質になるように、前記画素演算の条件を調整する手段とを備えることを特徴とする荷電粒子顕微鏡。
  9. 請求項8に記載の荷電粒子顕微鏡において、
    前記画素演算がフレーム間積分であることを特徴とする荷電粒子顕微鏡。
JP2010153539A 2010-07-06 2010-07-06 走査電子顕微鏡 Pending JP2012018758A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010153539A JP2012018758A (ja) 2010-07-06 2010-07-06 走査電子顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010153539A JP2012018758A (ja) 2010-07-06 2010-07-06 走査電子顕微鏡

Publications (1)

Publication Number Publication Date
JP2012018758A true JP2012018758A (ja) 2012-01-26

Family

ID=45603891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010153539A Pending JP2012018758A (ja) 2010-07-06 2010-07-06 走査電子顕微鏡

Country Status (1)

Country Link
JP (1) JP2012018758A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045746A1 (ja) * 2012-09-19 2014-03-27 株式会社日立ハイテクノロジーズ 荷電粒子顕微鏡システムおよびそれを用いた計測方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045746A1 (ja) * 2012-09-19 2014-03-27 株式会社日立ハイテクノロジーズ 荷電粒子顕微鏡システムおよびそれを用いた計測方法

Similar Documents

Publication Publication Date Title
JP4611755B2 (ja) 走査電子顕微鏡及びその撮像方法
JP4445893B2 (ja) 走査形電子顕微鏡
JP5901549B2 (ja) 計測検査装置
JP4359232B2 (ja) 荷電粒子線装置
US20080283744A1 (en) Charged Particle Beam Device
CN108292577B (zh) 带电粒子射线装置及带电粒子射线装置中的图像处理方法
JP2008123990A (ja) 電子線装置及び電子線装置の動作方法
JP2016025048A (ja) コントラスト・ブライトネス調整方法、及び荷電粒子線装置
US8294118B2 (en) Method for adjusting optical axis of charged particle radiation and charged particle radiation device
JP4408908B2 (ja) 荷電粒子線装置
JP2012018758A (ja) 走査電子顕微鏡
JP2008159574A (ja) 走査型電子顕微鏡
JP2012009289A (ja) コントラスト・ブライトネス調整方法、及び荷電粒子線装置
JP5352261B2 (ja) 走査形電子顕微鏡及びその画像保存フォーマットと画像再編集方法
JP2015032392A (ja) 荷電粒子線装置及びその応用装置
JP4486509B2 (ja) 電子顕微鏡
JP4431624B2 (ja) 荷電粒子線調整方法、及び荷電粒子線装置
JP6518504B2 (ja) 画像処理装置、電子顕微鏡、および画像処理方法
JP7291808B2 (ja) 画像処理システム、画像処理方法
JP5581068B2 (ja) 荷電粒子線装置及び荷電粒子線装置の調整方法
US20230386781A1 (en) Charged Particle Beam Device, Charged Particle Beam System, and Adjustment Method
JP2013251212A (ja) 走査型電子顕微鏡および画像評価方法
US11626266B2 (en) Charged particle beam device
JP2010016002A (ja) 走査形電子顕微鏡
JP3125010B2 (ja) 荷電粒子ビーム装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120517