JP2012017966A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2012017966A
JP2012017966A JP2010263361A JP2010263361A JP2012017966A JP 2012017966 A JP2012017966 A JP 2012017966A JP 2010263361 A JP2010263361 A JP 2010263361A JP 2010263361 A JP2010263361 A JP 2010263361A JP 2012017966 A JP2012017966 A JP 2012017966A
Authority
JP
Japan
Prior art keywords
heat
heat insulating
wall
heat insulation
wall thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010263361A
Other languages
Japanese (ja)
Other versions
JP5849179B2 (en
Inventor
Katsunori Horii
克則 堀井
Yoshimasa Horio
好正 堀尾
Masashi Yuasa
雅司 湯浅
Shinichi Horii
愼一 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010263361A priority Critical patent/JP5849179B2/en
Publication of JP2012017966A publication Critical patent/JP2012017966A/en
Application granted granted Critical
Publication of JP5849179B2 publication Critical patent/JP5849179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator in which the thickness distribution of a heat insulation wall of a storage compartment is effectively distributed to reduce entering heat, while reducing power consumption.SOLUTION: The refrigerator includes: a heat insulation box 101; a heat insulation door 119 which opens and closes a front face of an opening of the heat insulation box 101; a storage compartment which is formed of the heat insulation box 101 and the heat insulation door 119; a heater which is provided on the front face of the opening of the heat insulation box; a heat insulation partition wall 121 which partitions the storage compartment into a plurality of compartments; and a machine compartment 107 which stores a compressor and is provided below the heat insulation box 101. The thickness of the heat insulation partition wall 121 is set to be greater than the thickness of the thickest portion in the heat insulation wall covering the machine compartment, thereby reducing heat entering through the heat insulation wall and the heat entering from the opening. As a result, the cooling efficiency is improved to reduce the power to be consumed by the refrigerator.

Description

本発明は省エネ効果の高い冷蔵庫に関するものである。   The present invention relates to a refrigerator having a high energy saving effect.

冷蔵庫の消費電力量は一般家庭における電気機器の中でも上位を占めていることは良く知られている。これは、他の電気機器とは異なり、通常24時間連続的に通電されているからである。よって、一般家庭における省電力化(省エネルギー化)のためには、冷蔵庫の省電力化が求められている。   It is well known that the amount of power consumed by refrigerators occupies the top rank among electric appliances in general households. This is because, unlike other electric devices, power is normally continuously supplied for 24 hours. Therefore, in order to save power (energy saving) in ordinary households, it is required to save power in the refrigerator.

冷蔵庫において電力を大きく消費する要因の一つとして、キャビネットの断熱壁を介して外気の熱が侵入(以後、侵入熱)することにより庫内の温度が上昇し、圧縮機の運転が長時間となる、または高い周波数で駆動することが考えられる。したがって、キャビネットの断熱性能が高いほど、外気からの侵入熱が小さくなって庫内の温度上昇が抑えられ、圧縮機の運転時間を短く、または、圧縮機を低い周波数で駆動できるため、省電力化を図ることができる。   One of the factors that greatly consumes power in the refrigerator is that the temperature inside the cabinet rises due to the intrusion of heat from the outside air through the heat insulating wall of the cabinet (hereinafter referred to as intrusion heat), and the compressor is operated for a long time. It is conceivable to drive at a high frequency. Therefore, the higher the heat insulation performance of the cabinet, the smaller the intrusion heat from the outside air, so that the temperature rise in the cabinet can be suppressed, the compressor operation time can be shortened, or the compressor can be driven at a low frequency. Can be achieved.

一般に、キャビネットは、内箱と外箱との間にウレタンフォームなどの断熱材を発泡充填させた構成となっている。単純に断熱材の厚み(断熱壁厚)が大きいほど断熱性能が高くなり、侵入熱を低減するためには断熱壁厚を大きくすることは周知である。特に、キャビネット周囲の温度と貯蔵室内の温度との差が大きい部分ほど、断熱壁厚を大きくすれば侵入熱の低減効果が大きくなり、省電力化を図ることができる。   Generally, the cabinet has a configuration in which a heat insulating material such as urethane foam is foam-filled between an inner box and an outer box. It is well known that the heat insulating performance increases as the thickness of the heat insulating material (heat insulating wall thickness) simply increases, and the heat insulating wall thickness is increased in order to reduce intrusion heat. In particular, the greater the difference between the temperature around the cabinet and the temperature in the storage room, the greater the heat insulation wall thickness, the greater the effect of reducing intrusion heat, and the power can be saved.

一方、一般住宅におけるキッチン自体の広さや厨房機器の大きさがある程度規格化されているため、冷蔵庫を設置する据付けスペースの大きさもある程度限定されている。   On the other hand, since the size of the kitchen itself and the size of kitchen equipment in ordinary houses are standardized to some extent, the size of the installation space for installing the refrigerator is also limited to some extent.

さらに、近年の食変化による冷蔵・冷凍食品の増加や、働く主婦の増加等の社会情勢により、一般の家庭用冷蔵庫の収納容量も大型化する傾向にある。   Furthermore, due to the social situation such as the increase in refrigerated and frozen foods due to recent food changes and the increase in working housewives, the storage capacity of general household refrigerators tends to increase.

そのため、単純に省電力化するために、断熱壁厚を大きくすることはお客様のニーズに反しており、冷蔵庫の外形寸法は大きくせず、なおかつ、収納容量は確保した上で省電力化を図ることが必要である。   Therefore, to simply save power, increasing the insulation wall thickness is against the customer's needs, and does not increase the external dimensions of the refrigerator. It is necessary.

図23は、従来の冷蔵庫の機械室と隣接する貯蔵室の基本構造の縦断面図である。なお、断熱扉は省略している。   FIG. 23 is a longitudinal sectional view of a basic structure of a storage room adjacent to a machine room of a conventional refrigerator. Insulating doors are omitted.

図23に示すように、断熱仕切壁1によって断熱箱体2を複数の貯蔵室に区画しており、それぞれの貯蔵室内には食品を収納するための収納ケース3が設けられている。   As shown in FIG. 23, a heat insulating box 2 is partitioned into a plurality of storage chambers by a heat insulating partition wall 1, and a storage case 3 for storing food is provided in each storage chamber.

また、断熱箱体2の下部背面には圧縮機4などの機器を配置するための機械室5が構成されており、圧縮機4などは運転により発熱するため、機械室5内は断熱箱体2の外部の他の部分よりも高温となる。したがって、貯蔵室内との温度差が大きくなる機械室5を覆う断熱壁厚6は最も大きく設定されている。一方、隣接する貯蔵室同士の断熱であり、断熱箱体2の外部との温度差と比べると小さくなるため、断熱仕切壁1の断熱壁厚は最も小さく設定されている。   In addition, a machine room 5 for arranging devices such as the compressor 4 is formed on the lower rear surface of the heat insulation box 2, and since the compressor 4 and the like generate heat during operation, the machine room 5 has a heat insulation box. It becomes hotter than the other part of 2 outside. Therefore, the heat insulating wall thickness 6 covering the machine room 5 where the temperature difference from the storage room becomes large is set to be the largest. On the other hand, since it is heat insulation between adjacent storage chambers and becomes smaller than the temperature difference from the outside of the heat insulation box 2, the heat insulation wall thickness of the heat insulation partition wall 1 is set to be the smallest.

一般的には、上述のように、冷蔵庫の外形寸法と収納容積の保持を前提として、外部と貯蔵室との温度差によって断熱箱体の断熱壁厚を分布させ、効率よく侵入熱を低減して省
電力化を図っている(例えば、特許文献1参照)。
In general, as described above, on the premise of maintaining the external dimensions and storage volume of the refrigerator, the heat insulation wall thickness of the heat insulation box is distributed by the temperature difference between the outside and the storage room, and the intrusion heat is efficiently reduced. Thus, power saving is achieved (see, for example, Patent Document 1).

特開2006−200774号公報JP 2006-200774 A

しかしながら、前記従来の冷蔵庫では、省電力化の要望を満たすために改善の余地がある。   However, the conventional refrigerator has room for improvement in order to satisfy the demand for power saving.

一般的には、隣接する貯蔵室同士を断熱する断熱仕切壁と貯蔵室の側面断熱壁および底面断熱壁とで形成される前面開口部と断熱扉との間には、冷気が外部に漏れるのを防止するために扉ガスケットが設けられている。これら開口部を形成する断熱仕切壁の前面には、扉ガスケットを密着させるための金属受け部材が貯蔵室内外を渡るように構成されているため、金属受け部材の熱伝導により外気の熱が貯蔵室内に直接的に侵入する。このことから、開口部を構成する断熱仕切壁の壁厚が小さいと、高温の金属受け部材の近傍まで貯蔵室内を循環する冷気の主流が達するため金属受け部材と冷気の熱伝達率が大きくなり、その結果侵入熱が大きくなり、電力を大きく消費する要因の一つとなっている。   Generally, cold air leaks to the outside between the front opening formed by the heat insulating partition wall that insulates adjacent storage chambers, the side heat insulating wall and the bottom heat insulating wall of the storage chamber, and the heat insulating door. A door gasket is provided to prevent this. Since the metal receiving member for tightly attaching the door gasket crosses the outside of the storage chamber on the front surface of the heat insulating partition wall forming these openings, the heat of the outside air is stored by the heat conduction of the metal receiving member. Enter the room directly. For this reason, if the wall thickness of the heat insulating partition wall constituting the opening is small, the main flow of cold air that circulates in the storage chamber reaches the vicinity of the high temperature metal receiving member, so the heat transfer coefficient between the metal receiving member and the cold air increases. As a result, the intrusion heat increases, which is one of the factors that consume a lot of power.

特に、金属受け部に外箱の表面に結露することを防止するために外箱表面を外気より高温にするため(露点以上にするため)の加熱手段を配設した場合には、加熱手段により加熱された外箱の表面を通して冷蔵庫周辺の外気が通常よりも暖められることになる。これにより、外気と貯蔵室内との温度差がより増大することで侵入熱は大きくなり、電力を大きく消費する要因の一つとなっている。   In particular, when a heating means for making the outer box surface higher than the outside air (in order to make the dew point higher) in order to prevent condensation on the surface of the outer box on the metal receiving part, The outside air around the refrigerator is warmed more than usual through the surface of the heated outer box. As a result, the temperature difference between the outside air and the storage chamber further increases, so that the intrusion heat increases, which is one of the factors that consumes a large amount of power.

したがって、冷蔵庫の外形寸法と収納容積の保持を前提とし、断熱壁を介しての熱侵入のみ、すなわち、外気との温度差のみではなく、結露を防止するための加熱手段を配設したような場合においても、適切に開口部からの侵入熱も考慮し、総合的に省電力化を図れるように断熱壁厚を分布させる必要がある。   Therefore, on the premise of maintaining the external dimensions and storage volume of the refrigerator, not only heat intrusion through the heat insulating wall, that is, not only the temperature difference from the outside air, but also a heating means for preventing condensation is arranged. Even in the case, it is necessary to appropriately distribute the heat insulating wall thickness so that power can be saved comprehensively in consideration of intrusion heat from the opening.

前記従来の課題を解決するために、本発明の冷蔵庫は、断熱箱体と、前記断熱箱体の開口部前面を開閉する断熱扉と、前記断熱箱体と前記断熱扉とで形成される貯蔵室と、前記貯蔵室を複数の貯蔵室に区画する断熱仕切壁と、圧縮機を収納する前記断熱箱体の下部に設けられた機械室と、を備え、冷蔵庫の外形寸法と収納容積の保持を前提とし、断熱壁を介しての熱侵入のみ、すなわち外気との温度差のみではなく、結露を防止するための加熱手段を配設したような場合においても、開口部からの侵入熱も考慮し、総合的に省電力化を図れるように断熱壁厚を分布させたものである。   In order to solve the conventional problems, the refrigerator of the present invention is a storage formed by a heat insulating box, a heat insulating door that opens and closes the front surface of the opening of the heat insulating box, and the heat insulating box and the heat insulating door. A storage room, a heat insulating partition wall that divides the storage room into a plurality of storage rooms, and a machine room provided in a lower part of the heat insulating box for storing the compressor, and maintaining the external dimensions and storage volume of the refrigerator As a premise, not only heat intrusion through the heat insulation wall, that is, not only the temperature difference from the outside air, but also the heat intrusion from the opening is taken into account even when heating means to prevent condensation is provided However, the heat insulating wall thickness is distributed so that power saving can be achieved comprehensively.

本発明の冷蔵庫は、外気からの侵入熱を低減して、冷却効率を向上させ、省電力化した冷蔵庫を提供することができる。   The refrigerator of the present invention can provide a refrigerator that reduces the intrusion heat from the outside air, improves the cooling efficiency, and saves power.

本発明の実施の形態1における冷蔵庫の縦断面図The longitudinal cross-sectional view of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の機械室と隣接する貯蔵室の基本構造の縦断面図The longitudinal cross-sectional view of the basic structure of the storage room which adjoins the machine room of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の機械室と隣接する貯蔵室の基本構造の正面図The front view of the basic structure of the storage room adjacent to the machine room of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の機械室と隣接する貯蔵室の断熱扉上部拡大断面図The heat insulation door upper part expanded sectional view of the storage room adjacent to the machine room of the refrigerator in Embodiment 1 of this invention. 一般的な侵入熱量と断熱壁厚の関係図General relationship between heat penetration and insulation wall thickness 本発明の実施の形態1における侵入熱量と断熱壁厚比の関係図Relationship diagram between the amount of intrusion heat and the heat insulation wall thickness ratio in Embodiment 1 of the present invention 本発明の実施の形態2における冷蔵庫の機械室と隣接する貯蔵室の基本構造の縦断面図The longitudinal cross-sectional view of the basic structure of the storage room adjacent to the machine room of the refrigerator in Embodiment 2 of this invention 本発明の実施の形態2における冷蔵庫の機械室と隣接する貯蔵室の基本構造の正面図Front view of basic structure of storage room adjacent to machine room of refrigerator in embodiment 2 of the present invention 本発明の実施の形態2における冷蔵庫の機械室と隣接する貯蔵室の断熱扉下部拡大断面図The heat insulation door lower part expanded sectional view of the storage room adjacent to the machine room of the refrigerator in Embodiment 2 of this invention 本発明の実施の形態2における侵入熱量と断熱壁厚比の関係図Relationship diagram between intrusion heat quantity and heat insulation wall thickness ratio in Embodiment 2 of the present invention 本発明の実施の形態3における冷蔵庫の機械室と隣接する貯蔵室の基本構造の縦断面図The longitudinal cross-sectional view of the basic structure of the storage room adjacent to the machine room of the refrigerator in Embodiment 3 of this invention 本発明の実施の形態3における冷蔵庫の機械室と隣接する貯蔵室の基本構造の正面図Front view of basic structure of storage room adjacent to machine room of refrigerator in embodiment 3 of the present invention 本発明の実施の形態3における冷蔵庫の機械室と隣接する貯蔵室の断熱扉下部拡大断面図The heat insulation door lower part expanded sectional view of the storage room adjacent to the machine room of the refrigerator in Embodiment 3 of this invention 本発明の実施の形態2における侵入熱量と断熱壁厚比の関係図Relationship diagram between intrusion heat quantity and heat insulation wall thickness ratio in Embodiment 2 of the present invention 本発明の実施の形態4における冷蔵庫の機械室と隣接する貯蔵室の基本構造の平面断面図Plan sectional drawing of the basic structure of the storage room adjacent to the machine room of the refrigerator in Embodiment 4 of this invention 本発明の実施の形態4における冷蔵庫の機械室と隣接する貯蔵室の基本構造の正面図Front view of basic structure of storage room adjacent to machine room of refrigerator in embodiment 4 of the present invention 本発明の実施の形態4における冷蔵庫の機械室と隣接する貯蔵室の断熱扉側部拡大断面図The insulated door side part expanded sectional view of the storage room adjacent to the machine room of the refrigerator in Embodiment 4 of this invention 本発明の実施の形態4における侵入熱量と断熱壁厚比の関係図Relationship diagram between intrusion heat quantity and heat insulation wall thickness ratio in Embodiment 4 of the present invention 本発明の実施の形態5における冷蔵庫の機械室と隣接する貯蔵室の基本構造の平面断面図Plan sectional drawing of the basic structure of the storage room adjacent to the machine room of the refrigerator in Embodiment 5 of this invention 本発明の実施の形態5における冷蔵庫の機械室と隣接する貯蔵室の基本構造の正面図Front view of basic structure of storage room adjacent to machine room of refrigerator in embodiment 5 of the present invention 本発明の実施の形態5における冷蔵庫の機械室と隣接する貯蔵室の断熱扉側部拡大断面図The insulated door side part expanded sectional view of the storage room adjacent to the machine room of the refrigerator in Embodiment 5 of this invention 本発明の実施の形態5における侵入熱量と断熱壁厚比の関係図Relationship diagram of intrusion heat quantity and heat insulation wall thickness ratio in Embodiment 5 of the present invention 従来の冷蔵庫の機械室と隣接する貯蔵室の基本構造の縦断面図A longitudinal sectional view of the basic structure of a storage room adjacent to the machine room of a conventional refrigerator

第1の発明は、断熱箱体と、前記断熱箱体の開口部前面を開閉する断熱扉と、前記断熱箱体と前記断熱扉とで形成される貯蔵室と、前記貯蔵室を複数の貯蔵室に区画する断熱仕切壁と、圧縮機を収納する前記断熱箱体の下部に設けられた機械室と、を備え、前記断熱仕切壁の壁厚を、前記機械室を覆う断熱壁の内で最大となる部分の壁厚より大きくしたことにより、使用する全断熱材の量が一定条件のもと、機械室を覆う断熱壁の断熱材の量を減らして、前記断熱仕切壁前面の開口部において外気の影響を受けて高温となる金属受け部材の近傍に貯蔵室内を循環する冷気の主流との距離を大きくすることができるので、金属受け部材と冷気の熱伝達率が小さくなり、前記断熱仕切壁前面の開口部からの侵入熱を低減でき、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減し、冷却効率を向上させ、省電力化した冷蔵庫を提供することができる。   1st invention is a heat insulation box, the heat insulation door which opens and closes the opening front part of the said heat insulation box, the storage room formed with the said heat insulation box and the said heat insulation door, and the said storage room is stored in several A heat insulating partition wall partitioned into a chamber, and a machine room provided at a lower portion of the heat insulating box housing the compressor, and the wall thickness of the heat insulating partition wall is within the heat insulating wall covering the machine room. By making it larger than the wall thickness of the largest part, the amount of the total heat insulating material to be used is reduced under a constant condition, and the amount of the heat insulating material of the heat insulating wall covering the machine room is reduced. In this case, it is possible to increase the distance between the main flow of the cold air circulating in the storage chamber in the vicinity of the metal receiving member that becomes high temperature due to the influence of the outside air, the heat transfer coefficient of the metal receiving member and the cold air is reduced, and the heat insulation The intrusion heat from the opening on the front of the partition wall can be reduced, and the penetration through the heat insulation wall Comprehensively reduce the heat intrusion from the heat and the openings, the cooling efficiency is improved, it is possible to provide a refrigerator which is power saving.

第2の発明は、断熱箱体と、前記断熱箱体の開口部前面を開閉する断熱扉と、前記断熱箱体と前記断熱扉とで形成される貯蔵室と、前記貯蔵室を複数の貯蔵室に区画する断熱仕切壁と、圧縮機を収納する前記断熱箱体の下部に設けられた機械室と、を備え、前記断熱仕切壁の壁厚を、前記機械室の前後方向に対面する断熱壁の壁厚より大きくしたことによ
り、使用する全断熱材の量が一定条件のもと、機械室の前後方向に対面する断熱壁の断熱材の量を減らして、前記断熱仕切壁前面の開口部において外気の影響を受けて高温となる金属受け部材の近傍に貯蔵室内を循環する冷気の主流との距離を大きくすることができるので、金属受け部材と冷気の熱伝達率が小さくなり、前記断熱仕切壁近傍の開口部からの侵入熱を低減でき、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減し、冷却効率を向上させ、省電力化した冷蔵庫を提供することができる。
2nd invention is a heat insulation box, the heat insulation door which opens and closes the opening front part of the heat insulation box, the storage room formed with the heat insulation box and the heat insulation door, and the storage room is stored in plural A heat insulating partition wall partitioned into a chamber, and a machine room provided at a lower portion of the heat insulating box that houses the compressor, wherein the wall thickness of the heat insulating partition wall faces the front and rear direction of the machine room. By making the wall thickness larger than the wall thickness, the amount of the total heat insulating material to be used is constant, and the amount of the heat insulating wall facing the machine room in the front-rear direction is reduced. Since the distance between the main flow of the cold air circulating in the storage chamber in the vicinity of the metal receiving member that becomes high temperature under the influence of outside air in the section can be increased, the heat transfer coefficient of the metal receiving member and the cold air is reduced, Intrusion heat from the opening near the heat insulation partition wall can be reduced, and Heat entering Te and comprehensively reduce the heat intrusion from the opening, the cooling efficiency is improved, it is possible to provide a refrigerator which is power saving.

第3の発明は、断熱箱体と、前記断熱箱体の開口部前面を開閉する断熱扉と、前記断熱箱体と前記断熱扉とで形成される貯蔵室と、前記貯蔵室を複数の貯蔵室に区画する断熱仕切壁と、圧縮機を収納する前記断熱箱体の下部に設けられた機械室と、を備え、前記断熱仕切壁の壁厚を、前記機械室を覆う断熱壁の内で貫通路を有しない断熱壁の壁厚より大きくしたことにより、使用する全断熱材の量が一定条件のもと、機械室を覆う断熱壁の内で貫通路を有しない断熱壁の断熱材の量を減らして、前記断熱仕切壁前面の開口部において外気の影響を受けて高温となる金属受け部材の近傍に貯蔵室内を循環する冷気の主流との距離を大きくすることができるので、金属受け部材と冷気の熱伝達率が小さくなり、前記断熱仕切壁近傍の開口部からの侵入熱を低減でき、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減し、冷却効率を向上させ、省電力化した冷蔵庫を提供することができる。   3rd invention is a heat insulation box body, the heat insulation door which opens and closes the opening front part of the said heat insulation box body, the storage room formed with the said heat insulation box body and the said heat insulation door, The said storage room is stored in several A heat insulating partition wall partitioned into a chamber, and a machine room provided at a lower portion of the heat insulating box housing the compressor, and the wall thickness of the heat insulating partition wall is within the heat insulating wall covering the machine room. By making it larger than the wall thickness of the heat insulation wall that does not have a through passage, the amount of the total heat insulation to be used is constant, and the heat insulation of the heat insulation wall that does not have a through passage within the heat insulation wall that covers the machine room. By reducing the amount, it is possible to increase the distance from the main stream of the cold air circulating in the storage chamber in the vicinity of the metal receiving member that becomes hot due to the influence of outside air at the opening in the front surface of the heat insulating partition wall. The heat transfer coefficient between the member and the cold air is reduced, and the heat from the opening near the heat insulating partition wall is reduced. Can be reduced heat input, comprehensively reduce the heat intrusion from entering heat and opening through the insulating wall, the cooling efficiency is improved, it is possible to provide a refrigerator which is power saving.

第4の発明は、断熱箱体と、前記断熱箱体の開口部前面を開閉する断熱扉と、前記断熱箱体と前記断熱扉とで形成される貯蔵室と、前記貯蔵室を複数の貯蔵室に区画する断熱仕切壁と、圧縮機を収納する前記断熱箱体の下部に設けられた機械室と、を備え、前記断熱仕切壁の壁厚を、前記機械室の前記貯蔵室内側と対面する断熱壁の壁厚より大きくしたことにより、使用する全断熱材の量が一定条件のもと、機械室の前記貯蔵室内側と対面する断熱壁の断熱材の量を減らして、前記断熱仕切壁前面の開口部において外気の影響を受けて高温となる金属受け部材の近傍に貯蔵室内を循環する冷気の主流との距離を大きくすることができるので、金属受け部材と冷気の熱伝達率が小さくなり、前記断熱仕切壁近傍の開口部からの侵入熱を低減でき、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減し、冷却効率を向上させ、省電力化した冷蔵庫を提供することができる。   4th invention is a heat insulation box body, the heat insulation door which opens and closes the opening part front surface of the said heat insulation box body, the storage room formed with the said heat insulation box body and the said heat insulation door, and the said storage room is stored in several A heat insulating partition wall partitioned into a chamber, and a machine room provided at a lower portion of the heat insulating box that houses the compressor, the wall thickness of the heat insulating partition wall facing the storage chamber side of the machine room By making the wall thickness of the heat insulating wall larger than the wall thickness of the heat insulating wall to be used, the amount of the heat insulating wall facing the storage room side of the machine room is reduced under a constant condition of the amount of the total heat insulating material to be used. The distance between the metal receiving member and the cold air circulating in the storage chamber in the vicinity of the metal receiving member that becomes hot due to the influence of outside air at the opening on the front surface of the wall can be increased. Intrusion heat from the opening near the heat insulating partition wall. Comprehensively reduce the heat intrusion from entering heat and opening through the insulating wall, the cooling efficiency is improved, it is possible to provide a refrigerator which is power saving.

第5の発明は、請求項1から4のいずれか一項に記載の発明において、前記断熱箱体の開口部前面に加熱手段を設けたものであり、加熱手段により加熱された外箱の表面を通して冷蔵庫周辺の外気が通常よりも暖められることになり、外気と貯蔵室内との温度差がより増大することで侵入熱は大きくなるが、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減し、冷却効率を向上させ、省電力化した冷蔵庫を提供することができる。   5th invention provides the heating means in the opening front part of the said heat insulation box in the invention as described in any one of Claim 1 to 4, The surface of the outer box heated by the heating means The outside air around the refrigerator will be warmed more than usual, and the temperature difference between the outside air and the storage chamber will increase and the intrusion heat will increase, but the intrusion heat through the heat insulating wall and the intrusion from the opening will increase. A refrigerator that can reduce heat comprehensively, improve cooling efficiency, and save power can be provided.

第6の発明は、請求項1から5のいずれか一項に記載の発明において、前記貯蔵室は、冷凍室であることにより、低温であり外気と最も温度差が大きくなることとなり、さらに低減効果が大きくなり、冷却効率を向上させ、省電力化した冷蔵庫を提供することができる。   According to a sixth aspect of the present invention, in the invention according to any one of the first to fifth aspects, since the storage room is a freezing room, the temperature is low, and the temperature difference between the outside air and the outside air is the largest, further reducing. It is possible to provide a refrigerator that is more effective, improves cooling efficiency, and saves power.

第7の発明は、請求項1から6のいずれか一項に記載の発明において、前記貯蔵室を形成する底面の断熱壁の壁厚を、前記機械室を覆う断熱壁の内で最大となる部分、または、前記機械室を覆う断熱壁の内で貫通路を有しない断熱壁の壁厚、または、前記機械室の前記貯蔵室内側と対面する断熱壁の壁厚より大きくしたことにより、前記底面前面の開口部において外気の影響を受けて高温となる金属受け部材の近傍に貯蔵室内を循環する冷気の主流との距離を大きくすることができるので、金属受け部材と冷気の熱伝達率が小さくなり、前記底面の断熱壁近傍の開口部からの侵入熱を低減でき、さらに冷却効率を向上させ、省電力化した冷蔵庫を提供することができる。   A seventh invention is the invention according to any one of claims 1 to 6, wherein the wall thickness of the heat insulating wall on the bottom surface forming the storage chamber is maximized among the heat insulating walls covering the machine room. The wall thickness of the insulating wall that does not have a through-passage in the insulating wall that covers the machine room, or the wall thickness of the heat insulating wall that faces the storage chamber side of the machine room, Since the distance from the main stream of the cold air circulating in the storage chamber in the vicinity of the metal receiving member that becomes hot due to the influence of outside air at the opening on the bottom front surface can be increased, the heat transfer coefficient between the metal receiving member and the cold air is increased. It is possible to provide a refrigerator that is reduced in size, can reduce intrusion heat from the opening near the heat insulating wall on the bottom surface, further improves cooling efficiency, and saves power.

第8の発明は、請求項1から7のいずれか一項に記載の発明において、前記貯蔵室を形成する側面の断熱壁の壁厚を、前記機械室を覆う断熱壁の内で最大となる部分、または、前記機械室を覆う断熱壁の内で貫通路を有しない断熱壁の壁厚、または、前記機械室の前記貯蔵室内側と対面する断熱壁の壁厚より大きくしたことにより、前記側面の断熱壁近傍の開口部からの侵入熱を低減でき、さらに冷却効率を向上させ、省電力化した冷蔵庫を提供することができる。   According to an eighth aspect of the present invention, in the invention according to any one of the first to seventh aspects, the wall thickness of the heat insulating wall on the side surface forming the storage chamber is maximized among the heat insulating walls covering the machine room. The wall thickness of the insulating wall that does not have a through-passage in the insulating wall that covers the machine room, or the wall thickness of the heat insulating wall that faces the storage chamber side of the machine room, Intrusion heat from the opening in the vicinity of the heat insulating wall on the side surface can be reduced, and the refrigerator can be provided with improved cooling efficiency and power saving.

以下、本実施の形態について、図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成については同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, the present embodiment will be described with reference to the drawings. The same reference numerals are given to the same configurations as those of the conventional example or the above-described embodiment, and the detailed description thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における冷蔵庫の縦断面図である。図2は、本発明の実施の形態1における冷蔵庫の機械室と隣接する貯蔵室の基本構造の縦断面図である。図3は、本発明の実施の形態1における冷蔵庫の機械室と隣接する貯蔵室の基本構造の正面図である。図4は、本発明の実施の形態1における冷蔵庫の機械室と隣接する貯蔵室の断熱扉上部拡大断面図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of the refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a vertical cross-sectional view of the basic structure of the storage room adjacent to the machine room of the refrigerator according to Embodiment 1 of the present invention. FIG. 3 is a front view of the basic structure of the storage room adjacent to the machine room of the refrigerator according to Embodiment 1 of the present invention. FIG. 4 is an enlarged cross-sectional view of the upper part of the heat insulation door of the storage room adjacent to the machine room of the refrigerator in the first embodiment of the present invention.

図1において、冷蔵庫100の断熱箱体101は、主に鋼板を用いた外箱102と、ABSなどの樹脂で成型された内箱103と、を備え、その内部には例えば硬質発泡ウレタンなどの発泡断熱材が充填されて、周囲と断熱され、断熱仕切壁120、121で複数の貯蔵室104、105、106に区画されている。   In FIG. 1, a heat insulating box 101 of a refrigerator 100 includes an outer box 102 mainly using a steel plate and an inner box 103 molded of a resin such as ABS, and the inside thereof is made of, for example, hard foam urethane or the like. It is filled with foam heat insulating material and insulated from the surroundings, and is partitioned into a plurality of storage chambers 104, 105, 106 by heat insulating partition walls 120, 121.

各貯蔵室は、冷蔵庫本体に回転自在に枢示した断熱扉117、118、119によってその前面開口部を閉塞されている。   Each storage chamber has its front opening closed by heat insulating doors 117, 118, and 119 pivoted to the refrigerator main body.

例えば、貯蔵室104、105、106をそれぞれ冷蔵室、野菜室、冷凍室と仮定した場合、冷蔵室は冷蔵保存のために凍らない温度を下限に通常1℃〜5℃とし、野菜室は冷蔵室と同等もしくは若干高い温度設定の2℃〜7℃としている。冷凍室は冷凍温度帯に設定されており、冷凍保存のために通常−22℃〜−15℃で設定されているが、冷凍保存状態の向上のために、例えば−30℃や−25℃の低温で設定されることもある。   For example, assuming that the storage rooms 104, 105, and 106 are a refrigerated room, a vegetable room, and a freezer room, respectively, the refrigerated room is normally set to 1 ° C to 5 ° C at the lower limit for freezing for refrigeration, and the vegetable room is refrigerated The temperature is set to 2 ° C to 7 ° C, which is the same as or slightly higher than that of the room. The freezer compartment is set in a freezing temperature zone, and is usually set at −22 ° C. to −15 ° C. for frozen storage. For improving the frozen storage state, for example, −30 ° C. or −25 ° C. Sometimes set at low temperatures.

断熱箱体101の最下部の貯蔵室106の背面領域に機械室107を形成し、圧縮機108、水分除去を行うドライヤ(図示せず)等の冷凍サイクルの高圧側構成部品が収納されている。   A machine room 107 is formed in the back region of the lowermost storage room 106 of the heat insulation box 101, and the high pressure side components of the refrigeration cycle such as the compressor 108 and a dryer (not shown) for removing moisture are accommodated. .

図2において、貯蔵室106の背面には冷気を生成する冷却室109が設けられ、その間には、断熱性を有する各室への冷気の搬送風路と、各室と断熱区画するために構成された奥面仕切壁110とが構成されている。冷却室109内には、冷却器111が配設されており、冷却器111の上部空間には強制対流方式により冷却器111で冷却した冷気を貯蔵室104、105、106に送風する冷却ファン112が配置され、冷却器111の下部空間には、冷却時に冷却器111やその周辺に付着する霜や氷を除霜するためのガラス管製のラジアントヒータ113が設けられ、さらにその下部には除霜時に生じる除霜水を受けとめ自重により庫外に排水させるためのドレンパン114が貫通路115に構成され、その下流側の庫外に蒸発皿116が構成されている。   In FIG. 2, a cooling chamber 109 for generating cool air is provided on the back surface of the storage chamber 106, and a cooling air conveyance path to each chamber having heat insulation is provided between the storage chambers 106, and each chamber is configured to be insulated from each other. The rear surface partition wall 110 is configured. A cooler 111 is disposed in the cooling chamber 109, and a cooling fan 112 that blows cool air cooled by the cooler 111 to the storage chambers 104, 105, 106 in the upper space of the cooler 111 by a forced convection method. A radiant heater 113 made of glass tube is provided in the lower space of the cooler 111 to defrost frost and ice adhering to the cooler 111 and its surroundings during cooling. A drain pan 114 for receiving defrosted water generated during frost and draining it out of the warehouse by its own weight is formed in the through passage 115, and an evaporating dish 116 is formed outside the warehouse on the downstream side.

奥面仕切壁110には冷却器111で生成された冷気を冷却ファン112によって貯蔵室106へと供給するための冷気吐出口124と、冷気吐出口124の下方に、貯蔵室106内を循環した冷気を冷却器111へ戻すための冷気吸込み口125と、を設けている
A cool air discharge port 124 for supplying the cool air generated by the cooler 111 to the storage chamber 106 by the cooling fan 112 and the inside of the storage chamber 106 are circulated below the cool air discharge port 124 in the back partition wall 110. A cold air inlet 125 for returning the cold air to the cooler 111 is provided.

また、貯蔵室106内には引き出し機構に保持されて引き出されるとともに、食品類を貯蔵する収納ケースを配置している。本実施の形態では、貯蔵室106内には収納ケースは3つ配置している。具体的には、上段の収納ケース126、中段の収納ケース127、下段の収納ケース128を配置している。   In addition, a storage case for storing foods is arranged in the storage chamber 106 while being held and pulled out by a drawer mechanism. In the present embodiment, three storage cases are arranged in the storage chamber 106. Specifically, an upper storage case 126, a middle storage case 127, and a lower storage case 128 are arranged.

なお、a寸法は貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法である。また、b寸法は断熱仕切壁121の壁厚寸法である。   The dimension a is the thickness of the heat insulating wall where the storage chamber 106 and the machine room 107 face each other in the front-rear direction, or the wall of the heat insulating wall that does not have the through passage 115 in the heat insulating wall covering the storage room 106 and the machine room 107. It is the thickness dimension or the wall thickness dimension of the heat insulating wall where the storage chamber 106 and the machine chamber 107 face each other. The dimension b is the wall thickness dimension of the heat insulating partition wall 121.

図3および図4において、断熱扉119の内面の端部には全周にわたり扉ガスケット122が設けられており(貯蔵室104、貯蔵室105においても同様)、貯蔵室105と貯蔵室106とを区画する外周を樹脂部で構成している断熱仕切壁121の前面に貯蔵室内外に渡るように設けたコ型の金属受け部123と扉ガスケット122とを密着させて冷気が外部に漏れるのを防止している。金属受け部123は水平部と垂直部とを有するコ型とすることにより、水平部が断熱仕切壁121の前面部で適切に支持されるとともに、垂直部が扉ガスケット122との密着状態を保持することができる。これにより、貯蔵室105や貯蔵室106への熱侵入を抑制することができる。   3 and 4, a door gasket 122 is provided over the entire periphery at the end of the inner surface of the heat insulating door 119 (the same applies to the storage chamber 104 and the storage chamber 105), and the storage chamber 105 and the storage chamber 106 are separated from each other. Cold air leaks to the outside by bringing the U-shaped metal receiving portion 123 and the door gasket 122 into close contact with the front surface of the heat-insulating partition wall 121, the outer periphery of which is composed of a resin portion, and extending outside the storage chamber. It is preventing. The metal receiving portion 123 has a horizontal shape and a vertical portion so that the horizontal portion is properly supported by the front surface of the heat insulating partition wall 121 and the vertical portion is in close contact with the door gasket 122. can do. Thereby, the heat penetration | invasion to the storage chamber 105 or the storage chamber 106 can be suppressed.

また、金属受け部123と貯蔵室106との間に熱侵入抑制構造を設けることによりさらに熱侵入を抑制することができる。   Further, by providing a heat intrusion suppressing structure between the metal receiving portion 123 and the storage chamber 106, heat intrusion can be further suppressed.

具体的には、断熱部材130が金属受け部123の下方の直下に設けられている。そして、金属受け部123の水平部が断熱部材130の上部に位置するようにし、断熱仕切壁121の前面部と断熱材130とで挟み込まれた状態としている。これにより、金属受け部123の水平部からの放熱を適切に抑えることができる。なお、この断熱部材130は、断熱仕切壁121の外周を構成している樹脂部で保持されている。   Specifically, the heat insulating member 130 is provided directly below the metal receiving portion 123. And the horizontal part of the metal receiving part 123 is located in the upper part of the heat insulation member 130, and it is set as the state pinched by the front part of the heat insulation partition wall 121, and the heat insulating material 130. FIG. Thereby, the heat radiation from the horizontal part of the metal receiving part 123 can be suppressed appropriately. The heat insulating member 130 is held by a resin portion that forms the outer periphery of the heat insulating partition wall 121.

ここで、b1寸法は金属受け部123とその保持部を含む高さ寸法、b2寸法は断熱部材130とその保持部を含む高さ寸法である。なお、b1寸法は固定である。   Here, the b1 dimension is a height dimension including the metal receiving part 123 and its holding part, and the b2 dimension is a height dimension including the heat insulating member 130 and its holding part. The b1 dimension is fixed.

本実施の形態では、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより断熱仕切壁121の壁厚寸法b(=b1+b2)を大きくしている。   In the present embodiment, the insulation wall thickness dimension in which the storage chamber 106 and the machine room 107 face each other in the front-rear direction, or the insulation wall that does not have the through passage 115 in the insulation wall that covers the storage room 106 and the machine room 107. The wall thickness dimension b (= b1 + b2) of the heat insulating partition wall 121 is made larger than the wall thickness dimension or the wall thickness dimension a of the heat insulating wall where the storage chamber 106 and the machine room 107 face each other.

具体的には、本実施の形態では、貯蔵室106と機械室107との間の断熱壁厚寸法aは60mm、断熱仕切壁121の壁厚寸法bは70mm(b1寸法は49mm、b2寸法は21mm)である。   Specifically, in this embodiment, the heat insulation wall thickness dimension a between the storage chamber 106 and the machine room 107 is 60 mm, and the wall thickness dimension b of the heat insulation partition wall 121 is 70 mm (b1 dimension is 49 mm, b2 dimension is 21 mm).

開口部前面の四辺の金属受け部123は、その端面を各々接するように構成されている。また、断熱仕切壁121の前面の金属受け部123には、金属受け部123の表面や外箱102の表面に結露することを防止するために、金属受け部123の表面や外箱102の表面を外気よりも高温にするため(露点以上にするため)の加熱手段135(ここでは、放熱パイプ)が設けられており、金属受け部123に密着させている。この加熱手段135には冷凍サイクル(図示せず)における高温冷媒パイプを利用しており、その熱によって金属受け部123および外箱102表面を加熱している。
なお、放熱パイプは、本発明における加熱手段の一例である。
The metal receiving portions 123 on the four sides on the front surface of the opening are configured to contact the end surfaces. Further, the metal receiving portion 123 on the front surface of the heat insulating partition wall 121 has a surface of the metal receiving portion 123 or a surface of the outer box 102 in order to prevent condensation on the surface of the metal receiving portion 123 or the surface of the outer box 102. Is provided with a heating means 135 (in this case, a heat radiating pipe) for making the temperature higher than the outside air (in order to make the temperature higher than the dew point), and is in close contact with the metal receiving portion 123. The heating means 135 uses a high-temperature refrigerant pipe in a refrigeration cycle (not shown), and heats the surfaces of the metal receiving portion 123 and the outer box 102 with the heat.
The heat radiating pipe is an example of the heating means in the present invention.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、貯蔵室106内の冷気の流れについて説明する。冷却器111により冷却された冷気は、モータの回転に伴い回転する冷却ファン112により強制的に吐出口124から貯蔵室106内の上段、中段、下段へとそれぞれ吹き出される。吹き出された冷気は、収納ケース126、127、128に吹きつけられて収納されている食品類を冷却する。食品類を冷却した冷気は、矢印に示すように、上段では収納ケース126と断熱仕切壁121との間隙部分、中段では収納ケース126と収納ケース127の間隙部分、下段では収納ケース127と収納ケース128の間隙部分をそれぞれ通って合流し、収納ケース128と内箱底壁との空隙を通って吸込口125より吸い込まれて、冷却器111に戻ってくる風路構成になっている。この時、圧縮機108は内部で昇圧され高温になる冷媒からの熱伝導やモータ損失、機械的損失等による発生で表面が高温になり、その影響で機械室107の温度は周囲の外気に比べて平均で10℃程度高くなる。   First, the flow of cool air in the storage chamber 106 will be described. The cool air cooled by the cooler 111 is forcibly blown from the discharge port 124 to the upper, middle, and lower stages in the storage chamber 106 by the cooling fan 112 that rotates as the motor rotates. The blown-out cool air is blown to the storage cases 126, 127, and 128 to cool the food stored. As shown by the arrows, the cold air that has cooled the foods is the gap between the storage case 126 and the heat insulating partition wall 121 in the upper stage, the gap between the storage case 126 and the storage case 127 in the middle stage, and the storage case 127 and the storage case in the lower stage. The airflow is configured such that the air passes through the gap portions 128, is sucked from the suction port 125 through the gap between the storage case 128 and the inner box bottom wall, and returns to the cooler 111. At this time, the surface of the compressor 108 becomes hot due to heat conduction from the refrigerant that is increased in pressure and heat is generated due to motor loss, mechanical loss, etc., and as a result, the temperature of the machine chamber 107 is higher than that of the surrounding outside air The average is about 10 ° C higher.

上記のように、冷気は貯蔵室106内を循環する際に、貯蔵室内表面と熱交換を行うことで加温される。よって、侵入熱を低減して貯蔵室内表面の温度上昇を防止すれば省電力化を図ることができる。   As described above, when the cold air circulates in the storage chamber 106, it is heated by exchanging heat with the surface of the storage chamber. Therefore, power can be saved by reducing the intrusion heat and preventing the temperature rise on the surface of the storage chamber.

次に、侵入熱について述べる。   Next, intrusion heat will be described.

一般に、侵入熱Q(W)は次式で表される。   Generally, intrusion heat Q (W) is expressed by the following equation.

Q=K*A*ΔT
K=1/(1/αo+L/λ+1/αi)
ここで、Kは熱通過率(W/mK)、Aは熱通過面積(m)、ΔTは貯蔵室内外温度差(K)、αoは貯蔵室外の対流熱伝達率(W/mK)、αiは貯蔵室内の対流熱伝達率(W/mK)、Lは断熱距離(m)、λは断熱部の熱伝導率(W/mK)である。この式から分かるように、断熱距離Lを大きくすることで侵入熱Qを低減できることが分かる。
Q = K * A * ΔT
K = 1 / (1 / αo + L / λ + 1 / αi)
Here, K is the heat transfer rate (W / m 2 K), A is the heat transfer area (m 2 ), ΔT is the temperature difference outside the storage chamber (K), and αo is the convective heat transfer rate outside the storage chamber (W / m). 2 K), αi is the convective heat transfer coefficient (W / m 2 K) in the storage chamber, L is the heat insulation distance (m), and λ is the heat conductivity (W / mK) of the heat insulation part. As can be seen from this equation, it is understood that the intrusion heat Q can be reduced by increasing the heat insulation distance L.

特に、開口部から侵入する熱に関しては、庫外側の外気温度に基づく熱が金属受け部123を通して熱伝導により貯蔵室106内へ移動することで熱侵入する。ここで、金属受け部123が貯蔵室内に渡っている部分まで外気とほぼ同等温度となるため、断熱距離Lすなわち図4のb2寸法の寄与度が非常に高いことが分かる(この時、αoの項は無視)。従来のように、断熱部材130が無く、b2寸法が断熱仕切壁121の外周を構成している樹脂部品の板厚のみの場合では、非常に侵入熱量が多いことが分かる。   In particular, with respect to the heat entering from the opening, the heat based on the outside air temperature outside the warehouse moves into the storage chamber 106 by heat conduction through the metal receiving portion 123 and enters the storage chamber 106. Here, since the temperature of the metal receiving portion 123 reaches almost the same as that of the outside air up to the portion extending into the storage chamber, it can be seen that the contribution of the heat insulation distance L, that is, the dimension b2 in FIG. Ignore the term). It can be seen that there is a large amount of intrusion heat when there is no heat insulating member 130 and the b2 dimension is only the thickness of the resin component constituting the outer periphery of the heat insulating partition wall 121 as in the prior art.

したがって、加熱手段135が備えられている際には、外気より高温となる加熱手段135によって外箱102を通して生じる熱とに起因し、金属受け部123の熱伝導により貯蔵室106内へ移動する熱についてはもちろんのこと、さらに、加熱手段135の熱が金属受け部123の熱伝導により貯蔵室106内へ移動させることで熱侵入する点についても考慮したものである。   Therefore, when the heating means 135 is provided, heat that moves into the storage chamber 106 due to heat conduction of the metal receiving portion 123 due to heat generated through the outer box 102 by the heating means 135 that is higher than the outside air. Of course, it is also considered that the heat of the heating means 135 moves into the storage chamber 106 due to the heat conduction of the metal receiving portion 123 to enter the heat.

図5は、一般的な侵入熱量と断熱壁厚の関係を、図6は、本発明の実施の形態1における冷蔵庫の貯蔵室への侵入熱量と断熱壁厚比(b寸法をa寸法で除した値)の関係をそれぞれ示したものである。なお、領域Iはa寸法<b寸法となる領域を示している。   FIG. 5 shows the general relationship between the amount of intrusion heat and the heat insulation wall thickness, and FIG. 6 shows the amount of heat intrusion into the refrigerator storage room and the heat insulation wall thickness ratio (b dimension is divided by a dimension) in Embodiment 1 of the present invention. Are shown respectively. The region I indicates a region where a dimension <b dimension.

図6より、b寸法(b2寸法)を大きくする、すなわち、断熱仕切壁121の断熱壁厚を大きくすると侵入熱量が低下していくが、ある値を境に再び増加しているのが分かる。
これは、外形に対する収納空間の体積割合を示す容積効率が30%〜70%の場合には、冷蔵庫の外形寸法と収納容積を適切に保持することが前提であるため、一方の断熱壁厚を大きくするともう一方の断熱壁厚が小さくなり、図5を用いて説明すると、ある断熱壁厚比の値を超えるとb2寸法を大きくして低減できる開口部からの侵入熱量ΔQ2とa寸法が小さくして増加する断熱壁を介しての侵入熱量ΔQ1との関係がΔQ1>ΔQ2となるからである。
From FIG. 6, it can be seen that when the b dimension (b2 dimension) is increased, that is, the heat insulating wall thickness of the heat insulating partition wall 121 is increased, the amount of intrusion heat decreases, but increases again at a certain value.
This is based on the premise that the external dimensions and storage volume of the refrigerator are appropriately maintained when the volume efficiency indicating the volume ratio of the storage space to the external shape is 30% to 70%. The larger the heat insulation wall thickness becomes, the smaller the heat insulation wall thickness becomes. If the value of a certain heat insulation wall thickness ratio is exceeded, the intrusion heat amount ΔQ2 from the opening that can be reduced by increasing the b2 dimension and the a dimension are small. This is because the relationship with the amount of intrusion heat ΔQ1 through the heat insulating wall that increases is ΔQ1> ΔQ2.

言い換えると、冷蔵庫の外形寸法と収納容積を保持した前提条件の下で侵入熱量が最も小さくなる断熱壁厚比が存在すると言うことであり、その時には図6よりa寸法<b寸法が成り立つことが分かる。   In other words, there is a heat insulation wall thickness ratio that minimizes the amount of intrusion heat under the precondition that the external dimensions and the storage volume of the refrigerator are maintained. At that time, a dimension <b dimension can be established from FIG. I understand.

したがって、本実施の形態のように、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより断熱仕切壁121の壁厚寸法bを大きくすることで、加熱手段135を配設したような場合でも、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減することができる。   Therefore, as in the present embodiment, the insulation wall thickness dimension in which the storage chamber 106 and the machine room 107 face in the front-rear direction, or the through-passage 115 is provided in the heat insulation wall covering the storage room 106 and the machine room 107. The heating means 135 is arranged by making the wall thickness dimension b of the heat insulation partition wall 121 larger than the wall thickness dimension of the heat insulation wall that is not or the wall thickness dimension a of the heat insulation wall where the storage chamber 106 and the machine room 107 face each other. Even in such a case, the intrusion heat through the heat insulating wall and the intrusion heat from the opening can be reduced comprehensively.

以上のように、本実施の形態においては、断熱箱体101と、断熱箱体101の開口部前面を開閉する断熱扉119と、断熱箱体101と断熱扉119とで形成される貯蔵室と、前記断熱箱体の開口部前面に設けられた加熱手段135と、貯蔵室を複数の貯蔵室に区画する断熱仕切壁121と、圧縮機を収納する断熱箱体101の下部に設けられた機械室107と、を備え、断熱仕切壁121の壁厚を、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚、まはた、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚より大きくすることで、加熱手段を配設したような場合でも、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減し、冷却効率を向上させ、省電力化した冷蔵庫を提供することができる。   As described above, in the present embodiment, the heat insulating box body 101, the heat insulating door 119 that opens and closes the front surface of the opening of the heat insulating box body 101, and the storage chamber formed by the heat insulating box body 101 and the heat insulating door 119, The heating means 135 provided in front of the opening of the heat insulating box, the heat insulating partition wall 121 that partitions the storage chamber into a plurality of storage chambers, and the machine provided in the lower portion of the heat insulating box 101 that stores the compressor A heat insulating partition wall 121, a heat insulating wall thickness where the storage chamber 106 and the machine room 107 face each other in the front-rear direction, or a heat insulating wall covering the storage room 106 and the machine room 107. Even in the case where the heating means is provided by making the wall thickness of the heat insulation wall not having the through passage 115 or larger than the wall thickness of the heat insulation wall where the storage chamber 106 and the machine room 107 face each other, the heat insulation is provided. Intrusion heat through walls and through openings The overall reduction, the cooling efficiency is improved, it is possible to provide a refrigerator which is power saving.

また、侵入熱を低減して貯蔵室内表面の温度上昇を防止できるので、冷気が低い温度のまま循環するため貯蔵室106内全体の温度分布を均一に保つことができる。   Further, since the intrusion heat can be reduced and the temperature rise on the surface of the storage chamber can be prevented, the cool air circulates at a low temperature, so that the temperature distribution in the entire storage chamber 106 can be kept uniform.

また、断熱仕切壁121の壁厚は、貯蔵室の奥行き方向に対して必ずしも一定である必要はなく、すなわち、開口部近傍の断熱仕切壁121の壁厚のみ、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚より断熱壁厚を大きくしても、同様の効果を得ることができる。   Further, the wall thickness of the heat insulating partition wall 121 is not necessarily constant in the depth direction of the storage room, that is, only the wall thickness of the heat insulating partition wall 121 near the opening is stored in the storage room 106 and the machine room 107. Is the thickness of the heat insulating wall facing the front-rear direction, or the wall thickness of the heat insulating wall that does not have the through passage 115 in the heat insulating walls covering the storage chamber 106 and the machine chamber 107, or the storage chamber 106 and the machine chamber 107 are facing each other. Even if the heat insulation wall thickness is made larger than the wall thickness of the heat insulation wall, the same effect can be obtained.

なお、本実施の形態で示した断熱壁厚寸法は一例であり、本発明はこの寸法に限られるものではない。   In addition, the heat insulation wall thickness dimension shown in this Embodiment is an example, and this invention is not limited to this dimension.

(実施の形態2)
図7は、本発明の実施の形態2における冷蔵庫の機械室と隣接する貯蔵室の基本構造の縦断面図である。図8は、本発明の実施の形態2における冷蔵庫の機械室と隣接する貯蔵室の基本構造の正面図である。図9は、本発明の実施の形態2における冷蔵庫の機械室と隣接する貯蔵室の断熱扉下部拡大断面図である。
(Embodiment 2)
FIG. 7 is a longitudinal cross-sectional view of the basic structure of a storage room adjacent to the machine room of the refrigerator in Embodiment 2 of the present invention. FIG. 8 is a front view of the basic structure of the storage room adjacent to the machine room of the refrigerator according to Embodiment 2 of the present invention. FIG. 9 is an enlarged sectional view of the lower part of the heat insulation door of the storage room adjacent to the machine room of the refrigerator in the second embodiment of the present invention.

図7に示すように、c寸法は貯蔵室106の底面断熱壁133の断熱壁厚寸法である。   As shown in FIG. 7, the dimension c is the insulation wall thickness dimension of the bottom insulation wall 133 of the storage chamber 106.

図8および9に示すように、底面断熱壁133の前面に貯蔵室内外に渡るように設けた金属受け部123と扉ガスケット122とを密着させて冷気が外部に漏れるのを防止している。   As shown in FIGS. 8 and 9, a metal receiving portion 123 and a door gasket 122 provided so as to cross the outside of the storage chamber are brought into close contact with the front surface of the bottom heat insulating wall 133 to prevent cold air from leaking to the outside.

また、金属受け部123の折り返しフランジ部は断熱箱体101の内部に埋設されている。   Further, the folded flange portion of the metal receiving portion 123 is embedded in the heat insulating box 101.

さらに、金属受け部123と内箱103との間に、金属受け部123表面が外気と接する部分や外箱102の表面に結露することを防止するために加熱手段135(ここでは、放熱パイプ)が配設されており、金属受け部123に密着させている。この加熱手段135には冷凍サイクル(図示せず)における高温冷媒パイプを利用しており、その熱によって金属受け部123および外箱102表面を加熱している。   Further, heating means 135 (herein, a heat radiating pipe) is provided between the metal receiving portion 123 and the inner box 103 in order to prevent the surface of the metal receiving portion 123 from contacting the outside air and the surface of the outer box 102. Is disposed and is in close contact with the metal receiving portion 123. The heating means 135 uses a high-temperature refrigerant pipe in a refrigeration cycle (not shown), and heats the surfaces of the metal receiving portion 123 and the outer box 102 with the heat.

なお、放熱パイプは、本発明における加熱手段の一例である。   The heat radiating pipe is an example of the heating means in the present invention.

また、開口部前面の四辺の金属受け部123は、その端面を各々接するように構成されている。   Further, the metal receiving portions 123 on the four sides on the front surface of the opening are configured so as to contact the end surfaces.

ここで、c1寸法は外箱102の底面から金属受け部123の折り返し先端までの高さ寸法、c2寸法は金属受け部123の折り返しフランジ部先端から貯蔵室106までの高さ寸法、すなわち断熱距離である。なお、c1寸法は固定である。   Here, the c1 dimension is the height dimension from the bottom surface of the outer box 102 to the folded tip of the metal receiving part 123, and the c2 dimension is the height dimension from the folded flange end of the metal receiving part 123 to the storage chamber 106, that is, the heat insulation distance. It is. The c1 dimension is fixed.

本実施の形態では、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより断熱仕切壁121の壁厚寸法b(=b1+b2)を大きく、かつ、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより底面断熱壁133の断熱壁厚寸法c(=c1+c2)を大きくしている。   In the present embodiment, the insulation wall thickness dimension in which the storage chamber 106 and the machine room 107 face each other in the front-rear direction, or the insulation wall that does not have the through passage 115 in the insulation wall that covers the storage room 106 and the machine room 107. The wall thickness dimension b (= b1 + b2) of the heat insulating partition wall 121 is larger than the wall thickness dimension or the wall thickness dimension a of the heat insulating wall where the storage chamber 106 and the machine room 107 face each other, and the storage room 106 and the machine room 107 Is the thickness dimension of the heat insulating wall facing each other in the front-rear direction, or the wall thickness dimension of the heat insulating wall that does not have the through passage 115 in the heat insulating wall covering the storage room 106 and the machine room 107, or the storage room 106 and the machine room 107. The thermal insulation wall thickness dimension c (= c1 + c2) of the bottom thermal insulation wall 133 is made larger than the wall thickness dimension a of the thermal insulation wall facing each other.

具体的には、本実施の形態では、貯蔵室106と機械室107との間の断熱壁厚寸法aは60mm、断熱仕切壁121の壁厚寸法bは70mm(b1寸法は49mm、b2寸法は21mm)、底面断熱壁133の断熱壁厚寸法cは71mm(c1寸法は41mm、c2寸法は30mm)である。   Specifically, in this embodiment, the heat insulation wall thickness dimension a between the storage chamber 106 and the machine room 107 is 60 mm, and the wall thickness dimension b of the heat insulation partition wall 121 is 70 mm (b1 dimension is 49 mm, b2 dimension is 21 mm), the heat insulation wall thickness dimension c of the bottom heat insulation wall 133 is 71 mm (c1 dimension is 41 mm, c2 dimension is 30 mm).

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。なお、実施の形態1と同様である動作、作用についての説明は省略する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. In addition, description about the operation | movement similar to Embodiment 1 and an effect | action is abbreviate | omitted.

実施の形態2においては、貯蔵室内に侵入する熱に関しては、庫外側の外気温度に基づく熱と、外気より高温となる加熱手段135によって外箱102を通して生じる熱とに起因し、金属受け部123の熱伝導により貯蔵室106内へ移動する熱についてはもちろんのこと、さらに、加熱手段135の熱が金属受け部123の熱伝導により貯蔵室106内へ移動させることで熱侵入する点についても考慮したものである。   In the second embodiment, regarding the heat entering the storage chamber, the metal receiving portion 123 is caused by heat based on the outside air temperature outside the warehouse and heat generated through the outer box 102 by the heating means 135 that is higher than the outside air. In addition to the heat that moves into the storage chamber 106 due to the heat conduction of the metal, it is also considered that the heat of the heating means 135 moves into the storage chamber 106 due to the heat conduction of the metal receiving portion 123 and enters. It is a thing.

開口部の底面では、金属受け部123の折り返しフランジ先端まで加熱手段135とほぼ同等温度となるため、断熱距離、すなわち、図9のc2寸法の寄与度が非常に高いことが分かる。従来のように、貯蔵室内外の温度差のみで設定していた底面断熱壁133の壁厚では、c2寸法が小さくなり、すなわち、断熱距離が小さくなり、非常に侵入熱量が多いことが分かる。   At the bottom surface of the opening, the temperature is almost equal to that of the heating means 135 up to the end of the folded flange of the metal receiving portion 123, so that it can be seen that the contribution of the heat insulation distance, that is, the dimension c2 in FIG. It can be seen that the c2 dimension is small in the wall thickness of the bottom heat insulating wall 133 that is set only by the temperature difference between the outside and the inside of the storage chamber as in the prior art, that is, the heat insulating distance is small, and the amount of intrusion heat is very large.

図10は、本発明の実施の形態2における冷蔵庫の貯蔵室への侵入熱量と断熱壁厚比(b寸法とc寸法の平均値をa寸法で除した値)の関係をそれぞれ示したものである。なお、領域Iはa寸法<b寸法、かつa寸法<c寸法となる領域を示している。   FIG. 10 shows the relationship between the amount of heat entering the storage room of the refrigerator and the heat insulation wall thickness ratio (value obtained by dividing the average value of b and c dimensions by the a dimension) in Embodiment 2 of the present invention. is there. Region I indicates a region where a dimension <b dimension and a dimension <c dimension.

これより、断熱壁厚比を大きくすると熱侵入量が低下していくが、ある値を境に再び増加しているのが分かる。つまり、外形に対する収納空間の体積割合を示す容積効率が30%〜70%の場合には、冷蔵庫の外形寸法と収納容積を適切に保持した前提条件の下で侵入熱量が最も小さくなる断熱壁厚比が存在すると言うことであり、その時、a寸法<b寸法、かつa寸法<c寸法が成り立つ。特に、本実施の形態では、加熱手段135を金属受け部123と内箱103との間であって、金属受け部123に密着させるように配設させたことにより、加熱手段135を適切に保持しつつ、c1寸法の距離を短くするとともにdc寸法を長くすることができ、c寸法に対するc1寸法の割合は少なくとも20%を確保することができる。これにより、外気を通して金属受け部123の熱伝導により貯蔵室106内へ移動する熱だけでなく、加熱手段135から生じる金属受け部123を通して貯蔵室106内へ移動する熱を低減することができるため、内部への熱侵入の影響を抑制した状態で、効率的に結露を防止することができるものである。   From this, it can be seen that when the heat insulation wall thickness ratio is increased, the amount of heat penetration decreases, but increases again at a certain value. That is, when the volumetric efficiency indicating the volume ratio of the storage space with respect to the external shape is 30% to 70%, the heat insulating wall thickness that minimizes the amount of intrusion heat under the precondition that the external dimensions and storage volume of the refrigerator are appropriately maintained. That is, a ratio exists, and a dimension <b dimension and a dimension <c dimension hold. In particular, in the present embodiment, the heating means 135 is disposed between the metal receiving portion 123 and the inner box 103 so as to be in close contact with the metal receiving portion 123, thereby appropriately holding the heating means 135. However, the distance of the c1 dimension can be shortened and the dc dimension can be increased, and the ratio of the c1 dimension to the c dimension can be ensured at least 20%. Accordingly, not only heat that moves into the storage chamber 106 due to heat conduction of the metal receiving portion 123 through the outside air, but also heat that moves into the storage chamber 106 through the metal receiving portion 123 generated from the heating means 135 can be reduced. In the state where the influence of heat penetration into the inside is suppressed, dew condensation can be prevented efficiently.

したがって、本実施の形態のように、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより断熱仕切壁121の壁厚寸法bを大きく、かつ、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより底面断熱壁133の断熱壁厚寸法cを大きくすることで、加熱手段を配設したような場合でも、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減することができる。   Therefore, as in the present embodiment, the insulation wall thickness dimension in which the storage chamber 106 and the machine room 107 face in the front-rear direction, or the through-passage 115 is provided in the heat insulation wall covering the storage room 106 and the machine room 107. The wall thickness dimension b of the heat insulating partition wall 121 is larger than the wall thickness dimension of the heat insulating wall that is not, or the wall thickness dimension a of the heat insulating wall where the storage chamber 106 and the machine room 107 face each other, and the storage chamber 106 and the machine room 107 Is the thickness dimension of the heat insulating wall facing each other in the front-rear direction, or the wall thickness dimension of the heat insulating wall that does not have the through passage 115 in the heat insulating wall covering the storage room 106 and the machine room 107, or the storage room 106 and the machine room 107. Even when a heating means is provided by making the heat insulation wall thickness dimension c of the bottom heat insulation wall 133 larger than the wall thickness dimension a of the heat insulation wall facing each other, intrusion heat and opening through the heat insulation wall Low intrusion heat from It can be.

以上のように、本実施の形態においては、断熱箱体101と、断熱箱体101の開口部前面を開閉する断熱扉119と、断熱箱体101と断熱扉119とで形成される貯蔵室と、前記断熱箱体の開口部前面に設けられた加熱手段135と、貯蔵室を複数の貯蔵室に区画する断熱仕切壁121と、圧縮機を収納する断熱箱体101の下部に設けられた機械室107と、を備え、断熱仕切壁121の壁厚、および貯蔵室106の底面断熱壁133の壁厚を、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚より大きくすることで、加熱手段を配設したような場合でも、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減し、冷却効率を向上させ、省電力化した冷蔵庫を提供することができる。   As described above, in the present embodiment, the heat insulating box body 101, the heat insulating door 119 that opens and closes the front surface of the opening of the heat insulating box body 101, and the storage chamber formed by the heat insulating box body 101 and the heat insulating door 119, The heating means 135 provided in front of the opening of the heat insulating box, the heat insulating partition wall 121 that partitions the storage chamber into a plurality of storage chambers, and the machine provided in the lower portion of the heat insulating box 101 that stores the compressor Chamber 107, and the wall thickness of the heat insulating partition wall 121 and the wall thickness of the bottom heat insulating wall 133 of the storage chamber 106, the heat insulating wall thickness where the storage chamber 106 and the machine chamber 107 face each other in the front-rear direction, or storage. Heating by making the wall thickness of the heat insulation wall that does not have the through passage 115 in the heat insulation wall covering the chamber 106 and the machine room 107 or larger than the wall thickness of the heat insulation wall facing the storage room 106 and the machine room 107. Even when means are arranged, Heat entering through the hot wall and comprehensively reduce the heat intrusion from the opening, the cooling efficiency is improved, it is possible to provide a refrigerator which is power saving.

また、侵入熱を低減して貯蔵室内表面の温度上昇を防止できるので、冷気が低い温度のまま循環するため貯蔵室106内全体の温度分布を均一に保つことができる。   Further, since the intrusion heat can be reduced and the temperature rise on the surface of the storage chamber can be prevented, the cool air circulates at a low temperature, so that the temperature distribution in the entire storage chamber 106 can be kept uniform.

また、底面断熱壁133の壁厚は、貯蔵室の奥行き方向に対して必ずしも一定である必要はなく、すなわち、開口部近傍の底面断熱壁133の壁厚のみ、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚より大きくしても、同様の効果を得ることができる。   Further, the wall thickness of the bottom heat insulating wall 133 is not necessarily constant in the depth direction of the storage room, that is, only the wall thickness of the bottom heat insulating wall 133 near the opening is the storage room 106 and the machine room 107. Is the thickness of the heat insulating wall facing the front-rear direction, or the wall thickness of the heat insulating wall that does not have the through passage 115 in the heat insulating walls covering the storage chamber 106 and the machine chamber 107, or the storage chamber 106 and the machine chamber 107 are facing each other. Even if it is larger than the wall thickness of the heat insulation wall, the same effect can be obtained.

なお、本実施の形態で示した断熱壁厚寸法は一例であり、本発明はこの寸法に限られるものではない。   In addition, the heat insulation wall thickness dimension shown in this Embodiment is an example, and this invention is not limited to this dimension.

(実施の形態3)
図11は、本発明の実施の形態3における冷蔵庫の機械室と隣接する貯蔵室の基本構造の縦断面図である。図12は、本発明の実施の形態3における冷蔵庫の機械室と隣接する貯蔵室の基本構造の正面図である。図13は、本発明の実施の形態3における冷蔵庫の機械室と隣接する貯蔵室の断熱扉下部拡大断面図である。
(Embodiment 3)
FIG. 11 is a longitudinal sectional view of a basic structure of a storage room adjacent to the machine room of the refrigerator according to Embodiment 3 of the present invention. FIG. 12 is a front view of the basic structure of the storage room adjacent to the machine room of the refrigerator according to Embodiment 3 of the present invention. FIG. 13 is an enlarged sectional view of the lower part of the heat insulating door of the storage room adjacent to the machine room of the refrigerator in the third embodiment of the present invention.

図11に示すように、c寸法は貯蔵室106の底面断熱壁133の断熱壁厚寸法である。   As shown in FIG. 11, the c dimension is a heat insulation wall thickness dimension of the bottom heat insulation wall 133 of the storage chamber 106.

図12および13に示すように、底面断熱壁133の前面に貯蔵室内外に渡るように設けた金属受け部123と扉ガスケット122とを密着させて冷気が外部に漏れるのを防止している。   As shown in FIGS. 12 and 13, a metal receiving portion 123 and a door gasket 122 provided so as to cross the outside of the storage chamber are brought into close contact with the front surface of the bottom heat insulating wall 133 to prevent cold air from leaking to the outside.

また、金属受け部123の折り返しフランジ部は断熱箱体101の内部に埋設されている。   Further, the folded flange portion of the metal receiving portion 123 is embedded in the heat insulating box 101.

さらに、金属受け部123と内箱103との間に、金属受け部123表面が外気と接する部分や外箱102の表面に結露することを防止するために加熱手段135(ここでは、放熱パイプ)が配設されており、外箱102に密着させている。この加熱手段135には冷凍サイクル(図示せず)における高温冷媒パイプを利用しており、その熱によって金属受け部123および外箱102表面を加熱している。   Further, heating means 135 (herein, a heat radiating pipe) is provided between the metal receiving portion 123 and the inner box 103 in order to prevent the surface of the metal receiving portion 123 from contacting the outside air and the surface of the outer box 102. Is disposed and is in close contact with the outer box 102. The heating means 135 uses a high-temperature refrigerant pipe in a refrigeration cycle (not shown), and heats the surfaces of the metal receiving portion 123 and the outer box 102 with the heat.

なお、放熱パイプは、本発明における加熱手段の一例である。   The heat radiating pipe is an example of the heating means in the present invention.

また、開口部前面の四辺の金属受け部123は、その端面を各々接するように構成されている。   Further, the metal receiving portions 123 on the four sides on the front surface of the opening are configured so as to contact the end surfaces.

ここで、c1寸法は外箱102の底面から金属受け部131の折り返し先端までの高さ寸法、c2寸法は金属受け部123の折り返しフランジ部先端から貯蔵室106までの高さ寸法、すなわち断熱距離である。なお、c1寸法は固定である。   Here, the c1 dimension is the height dimension from the bottom surface of the outer box 102 to the folded tip of the metal receiving part 131, and the c2 dimension is the height dimension from the folded flange part tip of the metal receiving part 123 to the storage chamber 106, that is, the heat insulation distance. It is. The c1 dimension is fixed.

本実施の形態では、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより断熱仕切壁121の壁厚寸法b(=b1+b2)を大きく、かつ、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより底面断熱壁133の断熱壁厚寸法c(=c1+c2)を大きくしている。   In the present embodiment, the insulation wall thickness dimension in which the storage chamber 106 and the machine room 107 face each other in the front-rear direction, or the insulation wall that does not have the through passage 115 in the insulation wall that covers the storage room 106 and the machine room 107. The wall thickness dimension b (= b1 + b2) of the heat insulating partition wall 121 is larger than the wall thickness dimension or the wall thickness dimension a of the heat insulating wall where the storage chamber 106 and the machine room 107 face each other, and the storage room 106 and the machine room 107 Is the thickness dimension of the heat insulating wall facing each other in the front-rear direction, or the wall thickness dimension of the heat insulating wall that does not have the through passage 115 in the heat insulating wall covering the storage room 106 and the machine room 107, or the storage room 106 and the machine room 107. The thermal insulation wall thickness dimension c (= c1 + c2) of the bottom thermal insulation wall 133 is made larger than the wall thickness dimension a of the thermal insulation wall facing each other.

具体的には、本実施の形態では、貯蔵室106と機械室107との間の断熱壁厚寸法aは60mm、断熱仕切壁121の壁厚寸法bは70mm(b1寸法は49mm、b2寸法は21mm)、底面断熱壁133の断熱壁厚寸法cは71mm(c1寸法は41mm、c2寸法は30mm)である。   Specifically, in this embodiment, the heat insulation wall thickness dimension a between the storage chamber 106 and the machine room 107 is 60 mm, and the wall thickness dimension b of the heat insulation partition wall 121 is 70 mm (b1 dimension is 49 mm, b2 dimension is 21 mm), the heat insulation wall thickness dimension c of the bottom heat insulation wall 133 is 71 mm (c1 dimension is 41 mm, c2 dimension is 30 mm).

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。なお、実施の形態1または2と同様である動作、作用についての説明は省略する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. Note that description of operations and actions similar to those in Embodiment 1 or 2 is omitted.

実施の形態3においては、貯蔵室内に侵入する熱に関しては、庫外側の外気温度に基づ
く熱と、外気より高温となる加熱手段135によって外箱102を通して生じる熱とに起因し、金属受け部123の熱伝導により貯蔵室106内へ移動する熱についてはもちろんのこと、さらに、加熱手段135の熱が金属受け部123の熱伝導により貯蔵室106内へ移動させることで熱侵入する点についても考慮したものである。
In the third embodiment, regarding the heat entering the storage chamber, the metal receiving portion 123 is caused by heat based on the outside air temperature outside the warehouse and heat generated through the outer box 102 by the heating means 135 that is higher than the outside air. In addition to the heat that moves into the storage chamber 106 due to the heat conduction of the metal, it is also considered that the heat of the heating means 135 moves into the storage chamber 106 due to the heat conduction of the metal receiving portion 123 and enters. It is a thing.

開口部の底面では、金属受け部123の折り返しフランジ先端まで加熱手段135とほぼ同等温度となるため、断熱距離、すなわち、図13のc2寸法の寄与度が非常に高いことが分かる。従来のように、貯蔵室内外の温度差のみで設定していた底面断熱壁133の壁厚では、c2寸法が小さくなり、すなわち、断熱距離が小さくなり、非常に侵入熱量が多いことが分かる。   At the bottom surface of the opening, the temperature is almost equal to that of the heating means 135 up to the end of the folded flange of the metal receiving portion 123, so that it can be seen that the contribution of the heat insulation distance, that is, the dimension c2 in FIG. It can be seen that the c2 dimension is small in the wall thickness of the bottom heat insulating wall 133 that is set only by the temperature difference between the outside and the inside of the storage chamber as in the prior art, that is, the heat insulating distance is small, and the amount of intrusion heat is very large.

図14は、本発明の実施の形態3における冷蔵庫の貯蔵室への侵入熱量と断熱壁厚比(b寸法とc寸法の平均値をa寸法で除した値)の関係をそれぞれ示したものである。なお、領域Iはa寸法<b寸法、かつa寸法<c寸法となる領域を示している。   FIG. 14 shows the relationship between the amount of heat entering the storage room of the refrigerator and the heat insulation wall thickness ratio (value obtained by dividing the average value of b and c dimensions by the a dimension) in Embodiment 3 of the present invention. is there. Region I indicates a region where a dimension <b dimension and a dimension <c dimension.

これより、断熱壁厚比を大きくすると熱侵入量が低下していくが、ある値を境に再び増加しているのが分かる。つまり、外形に対する収納空間の体積割合を示す容積効率が30%〜70%の場合には、冷蔵庫の外形寸法と収納容積を適切に保持した前提条件の下で侵入熱量が最も小さくなる断熱壁厚比が存在すると言うことであり、その時、a寸法<b寸法、かつa寸法<c寸法が成り立つ。特に、本実施の形態では、加熱手段135を金属受け部123の折り返しフランジ部と外箱102との間であって、外箱に密着させるように配設させたことにより、加熱手段135を適切に保持しつつ、c1寸法の距離を短くするとともにd2寸法を長くすることができ、c寸法に対するc1寸法の割合は少なくとも20%を確保することができる。これにより、外気を通して金属受け部123の熱伝導により貯蔵室106内へ移動する熱だけでなく、加熱手段135から生じる金属受け部123のを通して貯蔵室106内へ移動する熱を低減することができるため、内部への熱侵入の影響を抑制した状態で、より効率的に結露を防止することができるものである。また、加熱手段135を外箱102に密着させているので組み立てが容易で、高精度で寸法を維持することができる。   From this, it can be seen that when the heat insulation wall thickness ratio is increased, the amount of heat penetration decreases, but increases again at a certain value. That is, when the volumetric efficiency indicating the volume ratio of the storage space with respect to the external shape is 30% to 70%, the heat insulating wall thickness that minimizes the amount of intrusion heat under the precondition that the external dimensions and storage volume of the refrigerator are appropriately maintained. That is, a ratio exists, and a dimension <b dimension and a dimension <c dimension hold. In particular, in the present embodiment, the heating means 135 is disposed between the folded flange portion of the metal receiving portion 123 and the outer box 102 so as to be in close contact with the outer box. The distance of the c1 dimension can be shortened and the d2 dimension can be lengthened while being held at the same distance, and the ratio of the c1 dimension to the c dimension can be secured at least 20%. Thereby, not only the heat that moves into the storage chamber 106 due to the heat conduction of the metal receiving portion 123 through the outside air, but also the heat that moves into the storage chamber 106 through the metal receiving portion 123 generated from the heating means 135 can be reduced. Therefore, it is possible to prevent condensation more efficiently in a state where the influence of heat penetration into the inside is suppressed. Further, since the heating means 135 is in close contact with the outer box 102, the assembly is easy and the dimensions can be maintained with high accuracy.

したがって、本実施の形態のように、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより断熱仕切壁121の壁厚寸法bを大きく、かつ、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより底面断熱壁133の断熱壁厚寸法cを大きくすることで、加熱手段を配設したような場合でも、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減することができる。   Therefore, as in the present embodiment, the insulation wall thickness dimension in which the storage chamber 106 and the machine room 107 face in the front-rear direction, or the through-passage 115 is provided in the heat insulation wall covering the storage room 106 and the machine room 107. The wall thickness dimension b of the heat insulating partition wall 121 is larger than the wall thickness dimension of the heat insulating wall that is not, or the wall thickness dimension a of the heat insulating wall where the storage chamber 106 and the machine room 107 face each other, and the storage chamber 106 and the machine room 107 Is the thickness dimension of the heat insulating wall facing each other in the front-rear direction, or the wall thickness dimension of the heat insulating wall that does not have the through passage 115 in the heat insulating wall covering the storage room 106 and the machine room 107, or the storage room 106 and the machine room 107. Even when a heating means is provided by making the heat insulation wall thickness dimension c of the bottom heat insulation wall 133 larger than the wall thickness dimension a of the heat insulation wall facing each other, intrusion heat and opening through the heat insulation wall Low intrusion heat from It can be.

以上のように、本実施の形態においては、断熱箱体101と、断熱箱体101の開口部前面を開閉する断熱扉119と、断熱箱体101と断熱扉119とで形成される貯蔵室と、前記断熱箱体の開口部前面に設けられた加熱手段135と、貯蔵室を複数の貯蔵室に区画する断熱仕切壁121と、圧縮機を収納する断熱箱体101の下部に設けられた機械室107と、を備え、断熱仕切壁121の壁厚、および貯蔵室106の底面断熱壁133の壁厚を、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚より大きくすることで、加熱手段を配設したような場合でも、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減し、冷却効率を向上させ、省電力化した冷蔵庫を提供することができる。   As described above, in the present embodiment, the heat insulating box body 101, the heat insulating door 119 that opens and closes the front surface of the opening of the heat insulating box body 101, and the storage chamber formed by the heat insulating box body 101 and the heat insulating door 119, The heating means 135 provided in front of the opening of the heat insulating box, the heat insulating partition wall 121 that partitions the storage chamber into a plurality of storage chambers, and the machine provided in the lower portion of the heat insulating box 101 that stores the compressor Chamber 107, and the wall thickness of the heat insulating partition wall 121 and the wall thickness of the bottom heat insulating wall 133 of the storage chamber 106, the heat insulating wall thickness where the storage chamber 106 and the machine chamber 107 face each other in the front-rear direction, or storage. Heating by making the wall thickness of the heat insulation wall that does not have the through passage 115 in the heat insulation wall covering the chamber 106 and the machine room 107 or larger than the wall thickness of the heat insulation wall facing the storage room 106 and the machine room 107. Even when means are arranged, Heat entering through the hot wall and comprehensively reduce the heat intrusion from the opening, the cooling efficiency is improved, it is possible to provide a refrigerator which is power saving.

また、侵入熱を低減して貯蔵室内表面の温度上昇を防止できるので、冷気が低い温度のまま循環するため貯蔵室106内全体の温度分布を均一に保つことができる。   Further, since the intrusion heat can be reduced and the temperature rise on the surface of the storage chamber can be prevented, the cool air circulates at a low temperature, so that the temperature distribution in the entire storage chamber 106 can be kept uniform.

また、底面断熱壁133の壁厚は、貯蔵室の奥行き方向に対して必ずしも一定である必要はなく、すなわち、開口部近傍の底面断熱壁133の壁厚のみ、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚より大きくしても、同様の効果を得ることができる。   Further, the wall thickness of the bottom heat insulating wall 133 is not necessarily constant in the depth direction of the storage room, that is, only the wall thickness of the bottom heat insulating wall 133 near the opening is the storage room 106 and the machine room 107. Is the thickness of the heat insulating wall facing the front-rear direction, or the wall thickness of the heat insulating wall that does not have the through passage 115 in the heat insulating walls covering the storage chamber 106 and the machine chamber 107, or the storage chamber 106 and the machine chamber 107 are facing each other. Even if it is larger than the wall thickness of the heat insulation wall, the same effect can be obtained.

なお、本実施の形態で示した断熱壁厚寸法は一例であり、本発明はこの寸法に限られるものではない。   In addition, the heat insulation wall thickness dimension shown in this Embodiment is an example, and this invention is not limited to this dimension.

(実施の形態4)
図15は、本発明の実施の形態4における冷蔵庫の機械室と隣接する貯蔵室の基本構造の平面断面図である。図16は、本発明の実施の形態4における冷蔵庫の機械室と隣接する貯蔵室の基本構造の正面図である。図17は、本発明の実施の形態4における冷蔵庫の機械室と隣接する貯蔵室の断熱扉側部拡大断面図である。
(Embodiment 4)
FIG. 15 is a plan cross-sectional view of the basic structure of the storage room adjacent to the machine room of the refrigerator according to Embodiment 4 of the present invention. FIG. 16 is a front view of the basic structure of the storage room adjacent to the machine room of the refrigerator according to Embodiment 4 of the present invention. FIG. 17 is an enlarged cross-sectional view of the heat insulation door side portion of the storage room adjacent to the machine room of the refrigerator according to Embodiment 4 of the present invention.

図15に示すように、d寸法は貯蔵室106の側面断熱壁134の断熱壁厚寸法である。   As shown in FIG. 15, the dimension d is a heat insulation wall thickness dimension of the side heat insulation wall 134 of the storage chamber 106.

図16および図17に示すように、側面断熱壁134の前面に貯蔵室内外に渡るように外箱102と一体で構成された金属受け部123と扉ガスケット122とを密着させて冷気が外部に漏れるのを防止している。   As shown in FIGS. 16 and 17, the metal gasket 123 and the door gasket 122, which are integrally formed with the outer box 102, are brought into close contact with the front surface of the side heat insulating wall 134 so as to cross the outside of the storage chamber, so that the cold air is exposed outside. Prevents leakage.

また、金属受け部123の折り返しフランジ部は断熱箱体101の内部に埋設されている。   Further, the folded flange portion of the metal receiving portion 123 is embedded in the heat insulating box 101.

さらに、金属受け部123と内箱103との間に、金属受け部123表面が外気と接する部分や外箱102の表面に結露することを防止するために加熱手段135(ここでは、放熱パイプ)が配設されており、金属受け部材123に密着させている。この加熱手段135には冷凍サイクル(図示せず)における高温冷媒パイプを利用しており、その熱によって金属受け部123および外箱102表面を加熱している。   Further, heating means 135 (herein, a heat radiating pipe) is provided between the metal receiving portion 123 and the inner box 103 in order to prevent the surface of the metal receiving portion 123 from contacting the outside air and the surface of the outer box 102. Is disposed and is in close contact with the metal receiving member 123. The heating means 135 uses a high-temperature refrigerant pipe in a refrigeration cycle (not shown), and heats the surfaces of the metal receiving portion 123 and the outer box 102 with the heat.

なお、放熱パイプは、本発明における加熱手段の一例である。   The heat radiating pipe is an example of the heating means in the present invention.

また、開口部前面の四辺の金属受け部123は、その端面を各々接するように構成されている。   Further, the metal receiving portions 123 on the four sides on the front surface of the opening are configured so as to contact the end surfaces.

ここで、d1寸法は外箱102の側面から金属受け部123の折り返しフンラジ先端までの幅寸法、d2寸法は金属受け部123の折り返しフンラジ先端から貯蔵室106までの幅寸法、すなわち断熱距離である。なお、d1寸法は固定である。   Here, the dimension d1 is the width dimension from the side surface of the outer box 102 to the end of the metal funnel 123, and the dimension d2 is the width dimension from the front end of the metal receiver 123 to the storage chamber 106, that is, the heat insulation distance. . The d1 dimension is fixed.

本実施の形態では、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより断熱仕切壁121の壁厚寸法b(=b1+b2)を大きく、かつ貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械
室107とが対面する断熱壁の壁厚寸法aより底面断熱壁133の断熱壁厚寸法c(=c1+c2)を大きく、かつ貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより側面断熱壁134の断熱壁厚寸法d(=d1+d2)を大きくしている。
In the present embodiment, the insulation wall thickness dimension in which the storage chamber 106 and the machine room 107 face each other in the front-rear direction, or the insulation wall that does not have the through passage 115 in the insulation wall that covers the storage room 106 and the machine room 107. The wall thickness dimension b or the wall thickness dimension b (= b1 + b2) of the heat insulating partition wall 121 is larger than the wall thickness dimension a of the heat insulating wall where the storage chamber 106 and the machine room 107 face each other. Is the thickness dimension of the heat insulating wall facing the front-rear direction, or the wall thickness dimension of the heat insulating wall that does not have the through passage 115 in the heat insulating wall covering the storage room 106 and the machine room 107, or the storage room 106 and the machine room 107 The heat insulation wall thickness dimension c (= c1 + c2) of the bottom heat insulation wall 133 is larger than the wall thickness dimension a of the heat insulation wall facing each other, and the heat insulation wall thickness dimension where the storage chamber 106 and the machine room 107 face in the front-rear direction, or Storage room 106 and Heat insulation of the side heat insulation wall 134 from the wall thickness dimension of the heat insulation wall that does not have the through passage 115 in the heat insulation wall covering the machine room 107 or the wall thickness dimension a of the heat insulation wall where the storage room 106 and the machine room 107 face each other. The wall thickness dimension d (= d1 + d2) is increased.

具体的には、本実施の形態では、貯蔵室106と機械室107との間の断熱壁厚寸法aは60mm、断熱仕切壁121の壁厚寸法bは70mm(b1寸法は49mm、b2寸法は21mm)、底面断熱壁133の断熱壁厚寸法cは71mm(c1寸法は41mm、c2寸法は30mm)、側面断熱壁134の断熱壁厚寸法dは65mm(d1寸法は20mm、d2寸法は45mm)である。   Specifically, in this embodiment, the heat insulation wall thickness dimension a between the storage chamber 106 and the machine room 107 is 60 mm, and the wall thickness dimension b of the heat insulation partition wall 121 is 70 mm (b1 dimension is 49 mm, b2 dimension is 21 mm), the heat insulating wall thickness c of the bottom heat insulating wall 133 is 71 mm (c1 is 41 mm, c2 is 30 mm), and the heat insulating wall thickness d of the side heat insulating wall 134 is 65 mm (d1 is 20 mm, d2 is 45 mm). It is.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。なお、実施の形態1または2または3と同様である動作、作用についての説明は省略する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. In addition, description about the operation | movement and effect | action similar to Embodiment 1 or 2 or 3 is abbreviate | omitted.

実施の形態4においては、貯蔵室内に侵入する熱に関しては、庫外側の外気温度に基づく熱と、外気より高温となる加熱手段135によって外箱102を通して生じる熱とに起因し、金属受け部123の熱伝導により貯蔵室106内へ移動する熱についてはもちろんのこと、さらに、加熱手段135の熱が金属受け部123の熱伝導により貯蔵室106内へ移動させることで熱侵入する点についても考慮したものである。   In the fourth embodiment, regarding the heat entering the storage chamber, the metal receiving portion 123 is caused by heat based on the outside air temperature outside the warehouse and heat generated through the outer box 102 by the heating means 135 that is higher than the outside air. In addition to the heat that moves into the storage chamber 106 due to the heat conduction of the metal, it is also considered that the heat of the heating means 135 moves into the storage chamber 106 due to the heat conduction of the metal receiving portion 123 and enters. It is a thing.

開口部の側面では、金属受け部123の折り返しフランジ先端まで加熱手段135とほぼ同等温度となるため、断熱距離、すなわち、図13のd2寸法の寄与度が非常に高いことが分かる。従来のように、貯蔵室内外の温度差のみで設定していた側面断熱壁134の壁厚では、d2寸法が小さくなり、すなわち、断熱距離が小さくなり、非常に侵入熱量が多いことが分かる。   On the side surface of the opening, since the temperature is substantially equal to that of the heating means 135 up to the tip of the folded flange of the metal receiving portion 123, it can be seen that the contribution of the heat insulation distance, that is, the d2 dimension in FIG. It can be seen that, as in the prior art, the wall thickness of the side heat insulating wall 134 set only by the temperature difference between the inside and outside of the storage chamber has a smaller d2 dimension, that is, a smaller heat insulating distance and a very large amount of intrusion heat.

図18は、本発明の実施の形態4における冷蔵庫の貯蔵室への侵入熱量と断熱壁厚比(b寸法、c寸法、d寸法の平均値をa寸法で除した値)の関係をそれぞれ示したものである。なお、領域Iはa寸法<b寸法、かつa寸法<c寸法、かつa寸法<d寸法となる領域を示している。   FIG. 18 shows the relationship between the amount of heat entering the storage room of the refrigerator and the heat insulation wall thickness ratio (values obtained by dividing the average value of b dimension, c dimension, and d dimension by a dimension) in Embodiment 4 of the present invention. It is a thing. The region I indicates a region where a dimension <b dimension, a dimension <c dimension, and a dimension <d dimension.

これより、断熱壁厚比を大きくすると熱侵入量が低下していくが、ある値を境に再び増加しているのが分かる。つまり、外形に対する収納空間の体積割合を示す容積効率が30%〜70%の場合には、冷蔵庫の外形寸法と収納容積を適切に保持した前提条件の下で侵入熱量が最も小さくなる断熱壁厚比が存在すると言うことであり、その時、a寸法<b寸法、かつa寸法<c寸法、かつa寸法<d寸法が成り立つ。特に、本実施の形態では、加熱手段135を金属受け部123と内箱103との間であって、金属受け部123に密着させるように配設させたことにより、加熱手段135を適切に保持しつつ、d1寸法の距離を短くするとともにd2寸法を長くすることができ、d寸法に対するd1寸法の割合は少なくとも20%を確保することができる。これにより、外気を通して金属受け部123の熱伝導により貯蔵室106内へ移動する熱だけでなく、加熱手段135から生じる金属受け部123を通して貯蔵室106内へ移動する熱を低減することができるため、内部への熱侵入の影響を抑制した状態で、効率的に結露を防止することができるものである。   From this, it can be seen that when the heat insulation wall thickness ratio is increased, the amount of heat penetration decreases, but increases again at a certain value. That is, when the volumetric efficiency indicating the volume ratio of the storage space with respect to the external shape is 30% to 70%, the heat insulating wall thickness that minimizes the amount of intrusion heat under the precondition that the external dimensions and storage volume of the refrigerator are appropriately maintained. A ratio <b dimension, a dimension <c dimension, and a dimension <d dimension. In particular, in the present embodiment, the heating means 135 is disposed between the metal receiving portion 123 and the inner box 103 so as to be in close contact with the metal receiving portion 123, thereby appropriately holding the heating means 135. However, the distance of the d1 dimension can be shortened and the d2 dimension can be lengthened, and the ratio of the d1 dimension to the d dimension can be secured at least 20%. Accordingly, not only heat that moves into the storage chamber 106 due to heat conduction of the metal receiving portion 123 through the outside air, but also heat that moves into the storage chamber 106 through the metal receiving portion 123 generated from the heating means 135 can be reduced. In the state where the influence of heat penetration into the inside is suppressed, dew condensation can be prevented efficiently.

したがって、本実施の形態のように、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより断熱仕切壁121の壁厚寸法bを大きく、かつ貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆
う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより底面断熱壁133の断熱壁厚寸法cを大きく、かつ貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより側面断熱壁134の断熱壁厚寸法dを大きくすることで、加熱手段を配設したような場合でも、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減することができる。
Therefore, as in the present embodiment, the insulation wall thickness dimension in which the storage chamber 106 and the machine room 107 face in the front-rear direction, or the through-passage 115 is provided in the heat insulation wall covering the storage room 106 and the machine room 107. The wall thickness dimension b of the heat insulating partition wall 121 is larger than the wall thickness dimension of the heat insulating wall that is not, or the wall thickness dimension a of the heat insulating wall where the storage chamber 106 and the machine room 107 face each other, and the storage room 106 and the machine room 107 Is the thickness dimension of the heat insulating wall facing the front-rear direction, or the wall thickness dimension of the heat insulating wall that does not have the through passage 115 in the heat insulating wall covering the storage room 106 and the machine room 107, or the storage room 106 and the machine room 107 The heat insulation wall thickness dimension c of the bottom heat insulation wall 133 is larger than the wall thickness dimension a of the heat insulation wall facing each other, and the heat insulation wall thickness dimension where the storage chamber 106 and the machine room 107 face each other in the front-rear direction, or the storage chamber 106 Cover the machine room 107 The insulation wall thickness dimension d of the side insulation wall 134 is determined from the wall thickness dimension of the insulation wall without the through passage 115 in the insulation wall or the wall thickness dimension a of the insulation wall where the storage chamber 106 and the machine room 107 face each other. By enlarging, even when the heating means is provided, the intrusion heat through the heat insulating wall and the intrusion heat from the opening can be reduced comprehensively.

以上のように、本実施の形態においては、断熱箱体101と、断熱箱体101の開口部前面を開閉する断熱扉119と、断熱箱体101と断熱扉119とで形成される貯蔵室と、前記断熱箱体の開口部前面に設けられた加熱手段135と、貯蔵室を複数の貯蔵室に区画する断熱仕切壁121と、圧縮機を収納する断熱箱体101の下部に設けられた機械室107と、を備え、断熱仕切壁121の壁厚、および貯蔵室106の底面断熱壁133の壁厚、および貯蔵室106の側面断熱壁134の壁厚を、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚より大きくすることで、加熱手段を配設したような場合でも、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減し、冷却効率を向上させ、省電力化した冷蔵庫を提供することができる。   As described above, in the present embodiment, the heat insulating box body 101, the heat insulating door 119 that opens and closes the front surface of the opening of the heat insulating box body 101, and the storage chamber formed by the heat insulating box body 101 and the heat insulating door 119, The heating means 135 provided in front of the opening of the heat insulating box, the heat insulating partition wall 121 that partitions the storage chamber into a plurality of storage chambers, and the machine provided in the lower portion of the heat insulating box 101 that stores the compressor And the wall thickness of the heat insulating partition wall 121, the wall thickness of the bottom heat insulating wall 133 of the storage chamber 106, and the wall thickness of the side heat insulating wall 134 of the storage chamber 106, the storage chamber 106 and the machine chamber 107. Is the thickness of the heat insulating wall facing the front-rear direction, or the wall thickness of the heat insulating wall that does not have the through passage 115 in the heat insulating walls covering the storage chamber 106 and the machine chamber 107, or the storage chamber 106 and the machine chamber 107 are facing each other. Larger than the wall thickness of the insulation wall Thus, even when a heating means is provided, the intrusion heat through the heat insulating wall and the intrusion heat from the opening are comprehensively reduced, cooling efficiency is improved, and a power-saving refrigerator is provided. be able to.

また、侵入熱を低減して貯蔵室内表面の温度上昇を防止できるので、冷気が低い温度のまま循環するため貯蔵室106内全体の温度分布を均一に保つことができる。   Further, since the intrusion heat can be reduced and the temperature rise on the surface of the storage chamber can be prevented, the cool air circulates at a low temperature, so that the temperature distribution in the entire storage chamber 106 can be kept uniform.

また、側面断熱壁134の壁厚は、貯蔵室の奥行き方向に対して必ずしも一定である必要はなく、すなわち、開口部近傍の側面断熱壁134の壁厚のみ、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚より大きくしても、同様の効果を得ることができる。   Further, the wall thickness of the side heat insulating wall 134 is not necessarily constant with respect to the depth direction of the storage room, that is, only the wall thickness of the side heat insulating wall 134 in the vicinity of the opening is stored in the storage room 106 and the machine room 107. Is the thickness of the heat insulating wall facing the front-rear direction, or the wall thickness of the heat insulating wall that does not have the through passage 115 in the heat insulating walls covering the storage chamber 106 and the machine chamber 107, or the storage chamber 106 and the machine chamber 107 are facing each other. Even if it is larger than the wall thickness of the heat insulation wall, the same effect can be obtained.

なお、本実施の形態で示した断熱壁厚寸法は一例であり、本発明はこの寸法に限られるものではない。   In addition, the heat insulation wall thickness dimension shown in this Embodiment is an example, and this invention is not limited to this dimension.

(実施の形態5)
図19は、本発明の実施の形態5における冷蔵庫の機械室と隣接する貯蔵室の基本構造の平面断面図である。図20は、本発明の実施の形態5における冷蔵庫の機械室と隣接する貯蔵室の基本構造の正面図である。図21は、本発明の実施の形態5における冷蔵庫の機械室と隣接する貯蔵室の断熱扉側部拡大断面図である。
(Embodiment 5)
FIG. 19 is a plan cross-sectional view of the basic structure of the storage room adjacent to the machine room of the refrigerator in the fifth embodiment of the present invention. FIG. 20 is a front view of the basic structure of the storage room adjacent to the machine room of the refrigerator in the fifth embodiment of the present invention. FIG. 21 is an enlarged sectional view of a heat insulating door side part of a storage room adjacent to the machine room of the refrigerator in the fifth embodiment of the present invention.

図19に示すように、d寸法は貯蔵室106の側面断熱壁134の断熱壁厚寸法である。   As shown in FIG. 19, the dimension d is a heat insulation wall thickness dimension of the side heat insulation wall 134 of the storage chamber 106.

図20および図21に示すように、側面断熱壁134の前面に貯蔵室内外に渡るように外箱102と一体で構成された金属受け部123と扉ガスケット122とを密着させて冷気が外部に漏れるのを防止している。   As shown in FIGS. 20 and 21, the metal gasket 123 integrally formed with the outer box 102 and the door gasket 122 are brought into close contact with the front surface of the side heat insulating wall 134 so as to cross the outside of the storage chamber, so that cold air is exposed to the outside. Prevents leakage.

また、金属受け部123の折り返しフランジ部は断熱箱体101の内部に埋設されている。   Further, the folded flange portion of the metal receiving portion 123 is embedded in the heat insulating box 101.

さらに、金属受け部123の折り返しフランジ部と外箱102との間に、金属受け部123表面が外気と接する部分や外箱102の表面に結露することを防止するために加熱手
段135(ここでは、放熱パイプ)が配設されており、外箱102に密着させている。この加熱手段135には冷凍サイクル(図示せず)における高温冷媒パイプを利用しており、その熱によって金属受け部123および外箱102表面を加熱している。
Further, in order to prevent the surface of the metal receiving part 123 from contacting the outside air or the surface of the outer box 102 between the folded flange part of the metal receiving part 123 and the outer box 102, heating means 135 (here, , A heat radiating pipe) is provided and is in close contact with the outer box 102. The heating means 135 uses a high-temperature refrigerant pipe in a refrigeration cycle (not shown), and heats the surfaces of the metal receiving portion 123 and the outer box 102 with the heat.

なお、放熱パイプは、本発明における加熱手段の一例である。   The heat radiating pipe is an example of the heating means in the present invention.

また、開口部前面の四辺の金属受け部123は、その端面を各々接するように構成されている。   Further, the metal receiving portions 123 on the four sides on the front surface of the opening are configured so as to contact the end surfaces.

ここで、d1寸法は外箱102の側面から金属受け部123の折り返しフンラジ先端までの幅寸法、d2寸法は金属受け部123の折り返しフンラジ先端から貯蔵室106までの幅寸法、すなわち断熱距離である。なお、d1寸法は固定である。   Here, the dimension d1 is the width dimension from the side surface of the outer box 102 to the end of the metal funnel 123, and the dimension d2 is the width dimension from the front end of the metal receiver 123 to the storage chamber 106, that is, the heat insulation distance. . The d1 dimension is fixed.

本実施の形態では、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより断熱仕切壁121の壁厚寸法b(=b1+b2)を大きく、かつ貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより底面断熱壁133の断熱壁厚寸法c(=c1+c2)を大きく、かつ貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより側面断熱壁134の断熱壁厚寸法d(=d1+d2)を大きくしている。   In the present embodiment, the insulation wall thickness dimension in which the storage chamber 106 and the machine room 107 face each other in the front-rear direction, or the insulation wall that does not have the through passage 115 in the insulation wall that covers the storage room 106 and the machine room 107. The wall thickness dimension b or the wall thickness dimension b (= b1 + b2) of the heat insulating partition wall 121 is larger than the wall thickness dimension a of the heat insulating wall where the storage chamber 106 and the machine room 107 face each other. Is the thickness dimension of the heat insulating wall facing the front-rear direction, or the wall thickness dimension of the heat insulating wall that does not have the through passage 115 in the heat insulating wall covering the storage room 106 and the machine room 107, or the storage room 106 and the machine room 107 The heat insulation wall thickness dimension c (= c1 + c2) of the bottom heat insulation wall 133 is larger than the wall thickness dimension a of the heat insulation wall facing each other, and the heat insulation wall thickness dimension where the storage chamber 106 and the machine room 107 face in the front-rear direction, or Storage room 106 and Heat insulation of the side heat insulation wall 134 from the wall thickness dimension of the heat insulation wall that does not have the through passage 115 in the heat insulation wall covering the machine room 107 or the wall thickness dimension a of the heat insulation wall where the storage room 106 and the machine room 107 face each other. The wall thickness dimension d (= d1 + d2) is increased.

具体的には、本実施の形態では、貯蔵室106と機械室107との間の断熱壁厚寸法aは60mm、断熱仕切壁121の壁厚寸法bは70mm(b1寸法は49mm、b2寸法は21mm)、底面断熱壁133の断熱壁厚寸法cは71mm(c1寸法は41mm、c2寸法は30mm)、側面断熱壁134の断熱壁厚寸法dは65mm(d1寸法は20mm、d2寸法は45mm)である。   Specifically, in this embodiment, the heat insulation wall thickness dimension a between the storage chamber 106 and the machine room 107 is 60 mm, and the wall thickness dimension b of the heat insulation partition wall 121 is 70 mm (b1 dimension is 49 mm, b2 dimension is 21 mm), the heat insulating wall thickness c of the bottom heat insulating wall 133 is 71 mm (c1 is 41 mm, c2 is 30 mm), and the heat insulating wall thickness d of the side heat insulating wall 134 is 65 mm (d1 is 20 mm, d2 is 45 mm). It is.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。なお、実施の形態1または2または3または4と同様である動作、作用についての説明は省略する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. In addition, description about the operation | movement and effect | action similar to Embodiment 1 or 2 or 3 or 4 is abbreviate | omitted.

実施の形態5においては、貯蔵室内に侵入する熱に関しては、庫外側の外気温度に基づく熱と、外気より高温となる加熱手段135によって外箱102を通して生じる熱とに起因し、金属受け部123の熱伝導により貯蔵室106内へ移動する熱についてはもちろんのこと、さらに、加熱手段135の熱が金属受け部123の熱伝導により貯蔵室106内へ移動させることで熱侵入する点についても考慮したものである。   In the fifth embodiment, regarding the heat entering the storage chamber, the metal receiving portion 123 is caused by heat based on the outside air temperature outside the warehouse and heat generated through the outer box 102 by the heating means 135 that is higher than the outside air. In addition to the heat that moves into the storage chamber 106 due to the heat conduction of the metal, it is also considered that the heat of the heating means 135 moves into the storage chamber 106 due to the heat conduction of the metal receiving portion 123 and enters. It is a thing.

開口部側面では、金属受け部123の折り返しフランジ先端まで加熱手段135とほぼ同等温度となるため、断熱距離、すなわち、図17のd2寸法の寄与度が非常に高いことが分かる。従来のように、貯蔵室内外の温度差のみで設定していた側面断熱壁134の壁厚では、d2寸法が小さくなり、すなわち、断熱距離が小さくなり、非常に侵入熱量が多いことが分かる。   On the side surface of the opening, since the temperature is substantially equal to that of the heating means 135 up to the end of the folded flange of the metal receiving portion 123, it can be seen that the contribution of the heat insulation distance, that is, the d2 dimension in FIG. It can be seen that, as in the prior art, the wall thickness of the side heat insulating wall 134 set only by the temperature difference between the inside and outside of the storage chamber has a smaller d2 dimension, that is, a smaller heat insulating distance and a very large amount of intrusion heat.

図22は、本発明の実施の形態5における冷蔵庫の貯蔵室への侵入熱量と断熱壁厚比(b寸法、c寸法、d寸法の平均値をa寸法で除した値)の関係をそれぞれ示したものである。なお、領域Iはa寸法<b寸法、かつa寸法<c寸法、かつa寸法<d寸法となる領域を示している。   FIG. 22 shows the relationship between the amount of heat entering the storage room of the refrigerator and the heat insulation wall thickness ratio (the value obtained by dividing the average value of b dimension, c dimension, and d dimension by a dimension) in Embodiment 5 of the present invention. It is a thing. The region I indicates a region where a dimension <b dimension, a dimension <c dimension, and a dimension <d dimension.

これより、断熱壁厚比を大きくすると熱侵入量が低下していくが、ある値を境に再び増加しているのが分かる。つまり、外形に対する収納空間の体積割合を示す容積効率が30%〜70%の場合には、冷蔵庫の外形寸法と収納容積を適切に保持した前提条件の下で侵入熱量が最も小さくなる断熱壁厚比が存在すると言うことであり、その時、a寸法<b寸法、かつa寸法<c寸法、かつa寸法<d寸法が成り立つ。特に、本実施の形態では、加熱手段135を金属受け部123の折り返しフランジ部と外箱102との間であって、外箱に密着させるように配設させたことにより、加熱手段135を適切に保持しつつ、d1寸法の距離を短くするとともにd2寸法を長くすることができ、d寸法に対するd1寸法の割合は少なくとも20%を確保することができる。これにより、外気を通して金属受け材123の熱伝導により貯蔵室106内へ移動する熱だけでなく、加熱手段135から生じる金属受け部123を通して貯蔵室106内へ移動する熱を低減することができるため、内部への熱侵入の影響を抑制した状態で、より効率的に結露を防止することができるものである。また、加熱手段135を外箱102に密着させているので組み立てが容易で、高精度で寸法を維持することができる。   From this, it can be seen that when the heat insulation wall thickness ratio is increased, the amount of heat penetration decreases, but increases again at a certain value. That is, when the volumetric efficiency indicating the volume ratio of the storage space with respect to the external shape is 30% to 70%, the heat insulating wall thickness that minimizes the amount of intrusion heat under the precondition that the external dimensions and storage volume of the refrigerator are appropriately maintained. A ratio <b dimension, a dimension <c dimension, and a dimension <d dimension. In particular, in the present embodiment, the heating means 135 is disposed between the folded flange portion of the metal receiving portion 123 and the outer box 102 so as to be in close contact with the outer box. The distance d1 can be shortened and the dimension d2 can be lengthened, while the ratio of the dimension d1 to the dimension d can be at least 20%. Accordingly, not only heat that moves into the storage chamber 106 due to heat conduction of the metal receiving material 123 through the outside air, but also heat that moves into the storage chamber 106 through the metal receiving portion 123 generated from the heating means 135 can be reduced. In the state where the influence of heat penetration into the inside is suppressed, dew condensation can be prevented more efficiently. Further, since the heating means 135 is in close contact with the outer box 102, the assembly is easy and the dimensions can be maintained with high accuracy.

したがって、本実施の形態のように、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより断熱仕切壁121の壁厚寸法bを大きく、かつ貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより底面断熱壁133の断熱壁厚寸法cを大きく、かつ貯蔵室106と機械室107とが前後方向に対面する断熱壁厚寸法、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚寸法、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚寸法aより側面断熱壁134の断熱壁厚寸法dを大きくすることで、加熱手段を配設したような場合でも、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減することができる。   Therefore, as in the present embodiment, the insulation wall thickness dimension in which the storage chamber 106 and the machine room 107 face in the front-rear direction, or the through-passage 115 is provided in the heat insulation wall covering the storage room 106 and the machine room 107. The wall thickness dimension b of the heat insulating partition wall 121 is larger than the wall thickness dimension of the heat insulating wall that is not, or the wall thickness dimension a of the heat insulating wall where the storage chamber 106 and the machine room 107 face each other, and the storage room 106 and the machine room 107 Is the thickness dimension of the heat insulating wall facing the front-rear direction, or the wall thickness dimension of the heat insulating wall that does not have the through passage 115 in the heat insulating wall covering the storage room 106 and the machine room 107, or the storage room 106 and the machine room 107 The heat insulation wall thickness dimension c of the bottom heat insulation wall 133 is larger than the wall thickness dimension a of the heat insulation wall facing each other, and the heat insulation wall thickness dimension where the storage chamber 106 and the machine room 107 face each other in the front-rear direction, or the storage chamber 106 Cover the machine room 107 The insulation wall thickness dimension d of the side insulation wall 134 is determined from the wall thickness dimension of the insulation wall without the through passage 115 in the insulation wall or the wall thickness dimension a of the insulation wall where the storage chamber 106 and the machine room 107 face each other. By enlarging, even when the heating means is provided, the intrusion heat through the heat insulating wall and the intrusion heat from the opening can be reduced comprehensively.

以上のように、本実施の形態においては、断熱箱体101と、断熱箱体101の開口部前面を開閉する断熱扉119と、断熱箱体101と断熱扉119とで形成される貯蔵室と、前記断熱箱体の開口部前面に設けられた加熱手段135と、貯蔵室を複数の貯蔵室に区画する断熱仕切壁121と、圧縮機を収納する断熱箱体101の下部に設けられた機械室107と、を備え、断熱仕切壁121の壁厚、および貯蔵室106の底面断熱壁133の壁厚、および貯蔵室106の側面断熱壁134の壁厚を、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚より大きくすることで、加熱手段を配設したような場合でも、断熱壁を介しての侵入熱および開口部からの侵入熱を総合的に低減し、冷却効率を向上させ、省電力化した冷蔵庫を提供することができる。   As described above, in the present embodiment, the heat insulating box body 101, the heat insulating door 119 that opens and closes the front surface of the opening of the heat insulating box body 101, and the storage chamber formed by the heat insulating box body 101 and the heat insulating door 119, The heating means 135 provided in front of the opening of the heat insulating box, the heat insulating partition wall 121 that partitions the storage chamber into a plurality of storage chambers, and the machine provided in the lower portion of the heat insulating box 101 that stores the compressor And the wall thickness of the heat insulating partition wall 121, the wall thickness of the bottom heat insulating wall 133 of the storage chamber 106, and the wall thickness of the side heat insulating wall 134 of the storage chamber 106, the storage chamber 106 and the machine chamber 107. Is the thickness of the heat insulating wall facing the front-rear direction, or the wall thickness of the heat insulating wall that does not have the through passage 115 in the heat insulating walls covering the storage chamber 106 and the machine chamber 107, or the storage chamber 106 and the machine chamber 107 are facing each other. Larger than the wall thickness of the insulation wall Thus, even when a heating means is provided, the intrusion heat through the heat insulating wall and the intrusion heat from the opening are comprehensively reduced, cooling efficiency is improved, and a power-saving refrigerator is provided. be able to.

また、侵入熱を低減して貯蔵室内表面の温度上昇を防止できるので、冷気が低い温度のまま循環するため貯蔵室106内全体の温度分布を均一に保つことができる。   Further, since the intrusion heat can be reduced and the temperature rise on the surface of the storage chamber can be prevented, the cool air circulates at a low temperature, so that the temperature distribution in the entire storage chamber 106 can be kept uniform.

また、側面断熱壁134の壁厚は、貯蔵室の奥行き方向に対して必ずしも一定である必要はなく、すなわち、開口部近傍の側面断熱壁134の壁厚のみ、貯蔵室106と機械室107とが前後方向に対面する断熱壁厚、または、貯蔵室106と機械室107を覆う断熱壁の内で貫通路115を有しない断熱壁の壁厚、または、貯蔵室106と機械室107とが対面する断熱壁の壁厚より大きくしても、同様の効果を得ることができる。   Further, the wall thickness of the side heat insulating wall 134 is not necessarily constant with respect to the depth direction of the storage room, that is, only the wall thickness of the side heat insulating wall 134 in the vicinity of the opening is stored in the storage room 106 and the machine room 107. Is the thickness of the heat insulating wall facing the front-rear direction, or the wall thickness of the heat insulating wall that does not have the through passage 115 in the heat insulating walls covering the storage chamber 106 and the machine chamber 107, or the storage chamber 106 and the machine chamber 107 are facing each other. Even if it is larger than the wall thickness of the heat insulation wall, the same effect can be obtained.

なお、本実施の形態で示した断熱壁厚寸法は一例であり、本発明はこの寸法に限られるものではない。   In addition, the heat insulation wall thickness dimension shown in this Embodiment is an example, and this invention is not limited to this dimension.

以上のように、本発明にかかる冷蔵庫は、家庭用又は業務用冷蔵庫もしくは野菜専用庫に対しても適用できる。   As described above, the refrigerator according to the present invention can be applied to a household or commercial refrigerator or a vegetable storage.

100 冷蔵庫
101 断熱箱体
104、105、106 貯蔵室
107 機械室
108 圧縮機
115 貫通路
117、118、119 断熱扉
120、121 断熱仕切壁
133 底面断熱壁
134 側面断熱壁
135 加熱手段
DESCRIPTION OF SYMBOLS 100 Refrigerator 101 Heat insulation box 104, 105, 106 Storage room 107 Machine room 108 Compressor 115 Through passage 117, 118, 119 Heat insulation door 120, 121 Heat insulation partition wall 133 Bottom heat insulation wall 134 Side heat insulation wall 135 Heating means

Claims (8)

断熱箱体と、前記断熱箱体の開口部前面を開閉する断熱扉と、前記断熱箱体と前記断熱扉とで形成される貯蔵室と、前記貯蔵室を複数の貯蔵室に区画する断熱仕切壁と、圧縮機を収納する前記断熱箱体の下部に設けられた機械室と、を備え、前記断熱仕切壁の壁厚を、前記機械室を覆う断熱壁の内で最大となる部分の壁厚より大きくした冷蔵庫。 A heat insulating box, a heat insulating door that opens and closes the front surface of the opening of the heat insulating box, a storage chamber formed by the heat insulating box and the heat insulating door, and a heat insulating partition that partitions the storage chamber into a plurality of storage chambers. A wall and a machine room provided in a lower part of the heat insulation box that houses the compressor, and the wall of the heat insulation partition wall that has the largest wall thickness among the heat insulation walls covering the machine room Refrigerator larger than thickness. 断熱箱体と、前記断熱箱体の開口部前面を開閉する断熱扉と、前記断熱箱体と前記断熱扉とで形成される貯蔵室と、前記貯蔵室を複数の貯蔵室に区画する断熱仕切壁と、圧縮機を収納する前記断熱箱体の下部に設けられた機械室と、を備え、前記断熱仕切壁の壁厚を、前記機械室の前後方向に対面する断熱壁の壁厚より大きくした冷蔵庫。 A heat insulating box, a heat insulating door that opens and closes the front surface of the opening of the heat insulating box, a storage chamber formed by the heat insulating box and the heat insulating door, and a heat insulating partition that partitions the storage chamber into a plurality of storage chambers. A wall and a machine room provided in a lower part of the heat insulation box that houses the compressor, and a wall thickness of the heat insulation partition wall is larger than a wall thickness of the heat insulation wall facing the machine room in the front-rear direction. Refrigerator. 断熱箱体と、前記断熱箱体の開口部前面を開閉する断熱扉と、前記断熱箱体と前記断熱扉とで形成される貯蔵室と、前記貯蔵室を複数の貯蔵室に区画する断熱仕切壁と、圧縮機を収納する前記断熱箱体の下部に設けられた機械室と、を備え、前記断熱仕切壁の壁厚を、前記機械室を覆う断熱壁の内で貫通路を有しない断熱壁の壁厚より大きくした冷蔵庫。 A heat insulating box, a heat insulating door that opens and closes the front surface of the opening of the heat insulating box, a storage chamber formed by the heat insulating box and the heat insulating door, and a heat insulating partition that partitions the storage chamber into a plurality of storage chambers. A wall and a machine room provided in a lower part of the heat insulation box that houses the compressor, and the wall thickness of the heat insulation partition wall is insulated without a through passage in the heat insulation wall covering the machine room. Refrigerator larger than wall thickness. 断熱箱体と、前記断熱箱体の開口部前面を開閉する断熱扉と、前記断熱箱体と前記断熱扉とで形成される貯蔵室と、前記貯蔵室を複数の貯蔵室に区画する断熱仕切壁と、圧縮機を収納する前記断熱箱体の下部に設けられた機械室と、を備え、前記断熱仕切壁の壁厚を、前記機械室の前記貯蔵室内側と対面する断熱壁の壁厚より大きくした冷蔵庫。 A heat insulating box, a heat insulating door that opens and closes the front surface of the opening of the heat insulating box, a storage chamber formed by the heat insulating box and the heat insulating door, and a heat insulating partition that partitions the storage chamber into a plurality of storage chambers. A wall and a machine room provided at a lower part of the heat insulation box for storing the compressor, and the wall thickness of the heat insulation partition wall facing the storage chamber side of the machine room A larger refrigerator. 前記断熱箱体の開口部前面に加熱手段を設けた請求項1から4のいずれか一項に記載の冷蔵庫。 The refrigerator as described in any one of Claim 1 to 4 which provided the heating means in the opening part front surface of the said heat insulation box. 前記貯蔵室は、冷凍室である請求項1から5のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 5, wherein the storage room is a freezing room. 前記貯蔵室を形成する底面断熱壁の壁厚を、前記機械室を覆う断熱壁の内で最大となる部分、または、前記機械室の前後方向に対面する断熱壁の壁厚、または、前記機械室を覆う断熱壁の内で貫通路を有しない断熱壁の壁厚、または、前記機械室の前記貯蔵室内側と対面する断熱壁の壁厚、より大きくした請求項1から6のいずれかに記載の冷蔵庫。 The wall thickness of the bottom heat insulating wall forming the storage room is the largest part of the heat insulating wall covering the machine room, or the wall thickness of the heat insulating wall facing the machine room in the front-rear direction, or the machine The wall thickness of the heat insulation wall which does not have a through-passage in the heat insulation wall which covers a chamber, or the wall thickness of the heat insulation wall which faces the said storage chamber inside of the said machine room, It made larger in any one of Claim 1 to 6 The refrigerator described. 前記貯蔵室を形成する側面断熱壁の壁厚を、前記機械室を覆う断熱壁の内で最大となる部分、または、前記機械室の前後方向に対面する断熱壁の壁厚、または、前記機械室を覆う断熱壁の内で貫通路を有しない断熱壁の壁厚、または、前記機械室の前記貯蔵室内側と対面する断熱壁の壁厚、より大きくした請求項1から7のいずれかに記載の冷蔵庫。 The wall thickness of the side heat insulation wall forming the storage room is the largest part of the heat insulation wall covering the machine room, or the wall thickness of the heat insulation wall facing the machine room in the front-rear direction, or the machine The wall thickness of the heat insulation wall which does not have a through-passage in the heat insulation wall which covers a chamber, or the wall thickness of the heat insulation wall which faces the said storage chamber side of the said machine room, or larger in any one of Claim 1 to 7 The refrigerator described.
JP2010263361A 2009-12-18 2010-11-26 refrigerator Active JP5849179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010263361A JP5849179B2 (en) 2009-12-18 2010-11-26 refrigerator

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2009287128 2009-12-18
JP2009287128 2009-12-18
JP2010123975 2010-05-31
JP2010123975 2010-05-31
JP2010129747 2010-06-07
JP2010129747 2010-06-07
JP2010129748 2010-06-07
JP2010129748 2010-06-07
JP2010263361A JP5849179B2 (en) 2009-12-18 2010-11-26 refrigerator

Publications (2)

Publication Number Publication Date
JP2012017966A true JP2012017966A (en) 2012-01-26
JP5849179B2 JP5849179B2 (en) 2016-01-27

Family

ID=45603347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010263361A Active JP5849179B2 (en) 2009-12-18 2010-11-26 refrigerator

Country Status (1)

Country Link
JP (1) JP5849179B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046351B2 (en) * 1984-05-18 1985-10-15 松下冷機株式会社 insulation box body
JPS6127082U (en) * 1984-07-23 1986-02-18 三菱電機株式会社 freezer
JPH02203184A (en) * 1989-01-30 1990-08-13 Hitachi Ltd Freezing refrigerator
JPH05280859A (en) * 1992-03-30 1993-10-29 Hitachi Ltd Box-shaped body for refrigerator
JPH06101957A (en) * 1992-09-21 1994-04-12 Toshiba Corp Refrigerator
JPH1038452A (en) * 1996-07-19 1998-02-13 Fujitsu General Ltd Refrigerator
JPH11264649A (en) * 1998-03-19 1999-09-28 Fujitsu General Ltd Refrigerator
JP2001280834A (en) * 2000-03-30 2001-10-10 Toshiba Corp Partition structure of refrigerator
JP2003121066A (en) * 2001-10-11 2003-04-23 Matsushita Refrig Co Ltd Refrigerator and manufacturing method of refrigerator
JP2006038454A (en) * 2005-10-18 2006-02-09 Toshiba Corp Refrigerator
US20060086126A1 (en) * 2004-10-25 2006-04-27 Maytag Corporation Convertible refrigerator/freezer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046351B2 (en) * 1984-05-18 1985-10-15 松下冷機株式会社 insulation box body
JPS6127082U (en) * 1984-07-23 1986-02-18 三菱電機株式会社 freezer
JPH02203184A (en) * 1989-01-30 1990-08-13 Hitachi Ltd Freezing refrigerator
JPH05280859A (en) * 1992-03-30 1993-10-29 Hitachi Ltd Box-shaped body for refrigerator
JPH06101957A (en) * 1992-09-21 1994-04-12 Toshiba Corp Refrigerator
JPH1038452A (en) * 1996-07-19 1998-02-13 Fujitsu General Ltd Refrigerator
JPH11264649A (en) * 1998-03-19 1999-09-28 Fujitsu General Ltd Refrigerator
JP2001280834A (en) * 2000-03-30 2001-10-10 Toshiba Corp Partition structure of refrigerator
JP2003121066A (en) * 2001-10-11 2003-04-23 Matsushita Refrig Co Ltd Refrigerator and manufacturing method of refrigerator
US20060086126A1 (en) * 2004-10-25 2006-04-27 Maytag Corporation Convertible refrigerator/freezer
JP2006038454A (en) * 2005-10-18 2006-02-09 Toshiba Corp Refrigerator

Also Published As

Publication number Publication date
JP5849179B2 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
EP2557380B1 (en) Refrigerator
JP6405523B2 (en) refrigerator
JP5957684B2 (en) refrigerator
EP3674629A1 (en) Refrigerator having auxiliary cooling device
JP2010038528A (en) Refrigerator
JP5229147B2 (en) refrigerator
WO2014045576A1 (en) Refrigerator
JP2013050237A (en) Refrigerator and freezer
JP2013019623A (en) Refrigerator
JP2007064597A (en) Refrigerator
JP2012127629A (en) Cooling storage cabinet
CN107270613B (en) refrigerator with a door
JP2001012841A (en) Refrigerator
JP5849179B2 (en) refrigerator
WO2011036870A1 (en) Refrigerator
JP5434431B2 (en) refrigerator
JP2014085060A (en) Refrigerator
JP5985942B2 (en) Refrigerator
JP5510077B2 (en) refrigerator
JP5909623B2 (en) refrigerator
JP5401866B2 (en) refrigerator
WO2012169573A1 (en) Refrigerator
JP6035506B2 (en) refrigerator
CN102692111B (en) Freezer
JP2013185731A (en) Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20131212

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140729

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150629

R151 Written notification of patent or utility model registration

Ref document number: 5849179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151