JP2012017923A - Operation method of municipal waste incineration plant - Google Patents

Operation method of municipal waste incineration plant Download PDF

Info

Publication number
JP2012017923A
JP2012017923A JP2010155906A JP2010155906A JP2012017923A JP 2012017923 A JP2012017923 A JP 2012017923A JP 2010155906 A JP2010155906 A JP 2010155906A JP 2010155906 A JP2010155906 A JP 2010155906A JP 2012017923 A JP2012017923 A JP 2012017923A
Authority
JP
Japan
Prior art keywords
temperature
economizer
exhaust gas
amount
feed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010155906A
Other languages
Japanese (ja)
Other versions
JP5787303B2 (en
Inventor
Yutaka Fukusato
福里  豊
Takahiro Masuda
孝弘 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2010155906A priority Critical patent/JP5787303B2/en
Publication of JP2012017923A publication Critical patent/JP2012017923A/en
Application granted granted Critical
Publication of JP5787303B2 publication Critical patent/JP5787303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Landscapes

  • Incineration Of Waste (AREA)
  • Chimneys And Flues (AREA)

Abstract

PROBLEM TO BE SOLVED: To change exhaust gas temperature of an outlet of an economizer to a temperature determined by a conventional device and its result or higher to enhance power generation efficiency.SOLUTION: In an operation method of a municipal waste incineration plant in which an exhaust gas G exhausted from an incinerator 1 passes through a boiler 2, the economizer 3, a temperature reducing tower 4 and a bag filter 5 in this order to perform heat recovery, temperature adjustment and purification treatment of the exhaust gas G, steam generated from the boiler 2 is introduced to a power generation facility 10 to perform power generation and recovery water obtained by condensing exhaust steam S' exhausted from a steam turbine 10a of the power generation facility 10 is heated and deaerated by a deaerator 13 as boiler supply water W and then supplied to the economizer 3 and the boiler 2, on operation of deaerator 13, the temperature of the exhaust gas G on the outlet side of the economizer 3 is used as an index, the pressure control of the deaerator 13 is performed on the basis of the temperature of the exhaust gas G on the outlet side of the economizer 3 and temperature of the boiler supply water W supplied to the economizer 3 is controlled.

Description

本発明は、家庭や事業所から出る紙類、厨芥類、繊維類、木・竹類、プラスチック類等の都市ごみを焼却する焼却炉から排出された排ガスをボイラ、エコノマイザ、減温塔及びバグフィルタの順に通して排ガスの熱回収、温度調整及び浄化処理を行い、また、ボイラで発生した蒸気を蒸気タービン及び発電機から成る発電設備に導いて発電すると共に、蒸気タービンから排出された排気蒸気を凝縮して得られた復水をボイラ給水として脱気器により加熱及び脱気処理してからエコノマイザ及びボイラへ供給するようにした都市ごみ焼却プラントの運転方法の改良に係り、エコノマイザの出口側の排ガス温度を、従来のバグフィルタ等の装置成り行きで決定される温度(例えば、排ガスのバグフィルタでの通ガス温度により決定される温度や減温塔での減温水の噴霧量により決定される温度)以上に変化させることによって、発電効率の向上を図れるようにすると共に、減温塔に於いて排ガスに必要な減温水量を噴霧しても、バグフィルタの入口に於ける排ガス温度を適切な温度に維持できるようにした都市ごみ焼却プラントの運転方法に関するものである。   The present invention is directed to boilers, economizers, temperature reduction towers and bugs that emit exhaust gas from incinerators that incinerate municipal waste such as paper, cocoons, textiles, wood / bamboo, and plastics from homes and offices. Exhaust steam exhausted from the steam turbine is passed through the filter in order to recover heat, adjust the temperature, and purify the exhaust gas. Also, the steam generated in the boiler is led to a power generation facility consisting of a steam turbine and a generator. Condensate water obtained by condensing water is heated and degassed by a deaerator as boiler feed water, and then supplied to the economizer and boiler. The exhaust gas temperature is determined by the temperature of the conventional bag filter or other device (for example, the temperature determined by the gas passing temperature of the exhaust gas bag filter or (Temperature determined by spraying amount of dewarmed water in the tower), the power generation efficiency can be improved, and even if the amount of dewarmed water necessary for exhaust gas is sprayed in the dewarming tower The present invention relates to a method for operating a municipal waste incineration plant that can maintain an exhaust gas temperature at an entrance of a bag filter at an appropriate temperature.

従来、都市ごみ焼却プラントとしては、例えば、特開2004−309079号公報(特許文献1)や特開2009−162452号公報(特許文献2)、特開2010−048456号公報(特許文献3)に開示されたものが知られている。   Conventionally, as municipal waste incineration plants, for example, in Japanese Patent Application Laid-Open No. 2004-309079 (Patent Document 1), Japanese Patent Application Laid-Open No. 2009-162452 (Patent Document 2), Japanese Patent Application Laid-Open No. 2010-048456 (Patent Document 3). What is disclosed is known.

図3は従来の都市ごみ焼却プラントの一例を示すブロック図であり、当該都市ごみ焼却プラントは、焼却炉100、ボイラ101、発電設備102、エコノマイザ103、減温塔104、バグフィルタ105及び煙突106等から構成されている。   FIG. 3 is a block diagram showing an example of a conventional municipal waste incineration plant. The municipal waste incineration plant includes an incinerator 100, a boiler 101, a power generation facility 102, an economizer 103, a temperature reducing tower 104, a bag filter 105, and a chimney 106. Etc.

前記都市ごみ焼却プラントに於いては、焼却炉100から排出された高温の排ガスをボイラ101及びエコノマイザ103に導いて排ガスから熱回収すると共に、熱回収された排ガスを減温塔104に導いてここで温度調整してからバグフィルタ105に導き、バグフィルタ105で排ガス中の煤塵及び酸性ガス等を除去した後、クリーンになった排ガスを煙突106から大気中へ放出するようになっている。
また、ボイラ101で発生した蒸気を蒸気タービン及び発電機から成る発電設備102へ導いて発電するようになっている。
In the municipal waste incineration plant, the high-temperature exhaust gas discharged from the incinerator 100 is guided to the boiler 101 and the economizer 103 to recover heat from the exhaust gas, and the heat-recovered exhaust gas is guided to the temperature reducing tower 104. After the temperature is adjusted, the air is guided to the bag filter 105. After the dust and acid gas in the exhaust gas are removed by the bag filter 105, the cleaned exhaust gas is discharged from the chimney 106 to the atmosphere.
Further, steam generated in the boiler 101 is led to a power generation facility 102 including a steam turbine and a generator to generate power.

ところで、都市ごみ焼却プラントの計画・設計に於いては、排ガスの熱エネルギーをボイラ101及びエコノマイザ103でできる限り回収し、発電効率を高めるようにしている。
その際、例えば、バグフィルタ105での通ガス温度(例えば、160℃)によりエコノマイザ103の出口側の排ガス温度が決定されている。何故なら、バグフィルタ105は、その耐熱性の限界を考慮に入れる必要があると共に、酸性ガスの除去効率が高くなる温度域で使用されるからである。
By the way, in the planning and design of the municipal waste incineration plant, the thermal energy of the exhaust gas is recovered as much as possible by the boiler 101 and the economizer 103 to increase the power generation efficiency.
At that time, for example, the exhaust gas temperature on the outlet side of the economizer 103 is determined by the gas passing temperature (for example, 160 ° C.) in the bag filter 105. This is because the bag filter 105 needs to take into account its heat resistance limit and is used in a temperature range in which the acid gas removal efficiency is high.

また、都市ごみ焼却プラントに於いては、都市ごみの季節変動や経年変化等によるごみ質の変動要因が大きいため、都市ごみを燃焼時の発熱量から低質ごみ(発熱量の低いごみ)、高質ごみ(発熱量の高いごみ)、基準ごみ(低質ごみの発熱量と高質ごみの発熱量との中間の熱量を有するごみ)に分類し、これらを基に計画・設計が行われているのが通例である。
下記の表1は、都市ごみの各ごみ質に於けるエコノマイザ103の出口側の排ガス温度の一例を示すものである。
In addition, in the municipal waste incineration plant, there are many factors affecting the quality of municipal waste due to seasonal and secular changes in municipal waste. Therefore, municipal waste is heated from the amount of heat generated during combustion to low-quality waste (low-heat generated waste), high The waste is classified into high-quality waste (high-heat generation waste) and standard waste (low-quality waste heat generation waste and high-quality waste heat generation intermediate waste), and planning and design are performed based on these. It is customary.
Table 1 below shows an example of the exhaust gas temperature on the outlet side of the economizer 103 in each municipal waste quality.

Figure 2012017923
Figure 2012017923

表1からも明らかなように、ごみ質によりエコノマイザ103の出口側の排ガス温度に差がある。通常、エコノマイザ103は、基準ごみで必要な熱回収を行えるようにその仕様が決定されているため、ボイラ101への入熱が多い高質ごみではエコノマイザ103出口のガス温度が高くなり、入熱の少ない低質ごみではエコノマイザ103出口のガス温度が低くなる。   As is clear from Table 1, there is a difference in the exhaust gas temperature on the outlet side of the economizer 103 depending on the waste quality. Normally, the specifications of the economizer 103 are determined so that the necessary heat recovery can be performed with the standard waste, so the gas temperature at the outlet of the economizer 103 becomes high in high quality waste with a large heat input to the boiler 101, and the heat input With low-quality waste with little amount, the gas temperature at the outlet of the economizer 103 becomes low.

更に、都市ごみ焼却プラントの計画・設計に於いては、プラントから出る排水(ごみピットからしみだして来るごみピット排水、焼却灰の冷却排水である灰出し排水、ボイラのブロー排水、プラントの洗浄排水等)をプラントに付設した排水処理設備で処理し、この排水処理水をプラント内で再利用し、プラント外へ排出しないようにする排水クローズド条件が要求される事例も多い。
このとき、排水処理水は、エコノマイザ103の出口側の排ガス温度をバグフィルタ105に通ガスできる温度にまで減温するための減温塔104の減温水に用いられている。
Furthermore, in the planning and design of municipal waste incineration plants, wastewater discharged from the plant (waste pit wastewater that oozes out from the waste pit, ash discharge wastewater that cools the incineration ash, blower wastewater from the boiler, and plant cleaning) In many cases, wastewater closed conditions are required to treat wastewater, etc.) in a wastewater treatment facility attached to the plant, reuse this wastewater treatment within the plant, and prevent it from being discharged outside the plant.
At this time, the wastewater treated water is used as the temperature-reduced water of the temperature-reduction tower 104 for reducing the exhaust gas temperature on the outlet side of the economizer 103 to a temperature at which gas can be passed through the bag filter 105.

前記減温水の量には、排水クローズド条件により減温塔104内へ最小限噴霧しなくてはならない量がある。
そのため、都市ごみ焼却プラントに排水クローズド条件を採用した場合には、エコノマイザ103の出口側の排ガス温度が排水クローズド条件を採用しない場合と異なって来る。
The amount of the temperature-reduced water includes a minimum amount that must be sprayed into the temperature-reduction tower 104 under the drainage closed condition.
Therefore, when the wastewater closed condition is adopted in the municipal waste incineration plant, the exhaust gas temperature on the outlet side of the economizer 103 is different from the case where the wastewater closed condition is not adopted.

即ち、都市ごみ焼却プラントに排水クローズド条件を採用した場合には、減温塔104で噴霧しなければならない噴霧水量があるので、エコノマイザ103の出口側の排ガス温度は、排水クローズド条件がない場合に比較して高くしなければならない。
下記の表2は、排水クローズド条件が付与された場合の都市ごみの各ごみ質に於けるエコノマイザ103の出口側の排ガス温度の一例を示すものである。
That is, when the wastewater closed condition is adopted in the municipal waste incineration plant, there is an amount of sprayed water that has to be sprayed in the temperature reducing tower 104. Therefore, the exhaust gas temperature on the outlet side of the economizer 103 is set when there is no drainage closed condition. It must be higher compared.
Table 2 below shows an example of the exhaust gas temperature on the outlet side of the economizer 103 in each municipal waste quality when the drainage closed condition is given.

Figure 2012017923
Figure 2012017923

都市ごみ焼却プラントに排水クローズド条件を採用した場合、エコノマイザ103の設計は、排ガス量が少なく、且つ出口ガス温度が低くなる低質ごみでその仕様を決定する。即ち、低質ごみに於いて減温塔104での減温水量が必要噴霧水量となる排ガス温度にまで減温するエコノマイザ103の設計設備(出口ガス温度210℃)を行う。
このとき、基準ごみに於けるエコノマイザ103の出口側の排ガス温度は表2に示すように225℃と高くなっているので、排水処理水だけでは減温塔104に於いて225℃ある排ガスの温度をバグフィルタ105に通ガスできる温度にまで低下させることできない。
そのため、都市ごみ焼却プラントに排水クローズド条件を採用した場合、高質ごみ時及び基準ごみ時に減温塔104に於いて排水処理水だけでなく、新水も用いた排ガスの減温がなされている。
When the wastewater closed condition is adopted in the municipal waste incineration plant, the design of the economizer 103 determines its specification with low-quality waste with a small amount of exhaust gas and a low outlet gas temperature. That is, the design equipment (exhaust gas temperature 210 ° C.) of the economizer 103 that reduces the temperature of the low-quality waste to the exhaust gas temperature at which the amount of water reduced in the temperature reduction tower 104 becomes the required amount of spray water is performed.
At this time, the exhaust gas temperature on the outlet side of the economizer 103 in the standard waste is as high as 225 ° C. as shown in Table 2, and therefore the exhaust gas temperature of 225 ° C. in the temperature reducing tower 104 with only wastewater treated water. Cannot be lowered to a temperature at which gas can be passed through the bag filter 105.
Therefore, when the wastewater closed condition is adopted in the municipal waste incineration plant, the temperature of the exhaust gas is reduced not only in wastewater treatment water but also in fresh water using high-temperature waste and standard waste in the temperature reduction tower 104. .

熱回収を図るためには、できれば発生頻度の高い基準ごみ時にエコノマイザ103の出口側の排ガス温度をできる限り下げたいが(例えば、220℃としたいが)、この場合、低質ごみ時にエコノマイザ103の出口側の排ガス温度が下がり過ぎ、減温塔104での減温水量が必要噴霧量を下回り、排水クローズド条件が達成できないという問題がある。   In order to recover heat, it is desirable to lower the exhaust gas temperature on the outlet side of the economizer 103 as much as possible during standard waste, which is frequently generated (for example, 220 ° C.). In this case, the outlet of the economizer 103 is used during low-quality waste. There is a problem that the temperature of the exhaust gas on the side is too low, the amount of temperature-reduced water in the temperature-reduction tower 104 is less than the required spray amount, and the drainage closed condition cannot be achieved.

また、近年、都市ごみ焼却プラントに於いては、更なる温暖化対策推進を目的とし、ごみの燃焼に伴い生じるエネルギーのより一層の有効利用を図るため、ごみ発電の高効率化が求められている。
ごみ発電を高効率に行うためには、エコノマイザ103の出口側の排ガス温度を低下させてボイラ101、エコノマイザ103からの排ガスの持ち出し熱量を少なくし、ボイラ101での吸収熱量を多くする必要がある。
In recent years, municipal waste incineration plants have been required to increase the efficiency of waste power generation in order to further promote the effective use of energy generated by the combustion of waste for the purpose of further countermeasures against global warming. Yes.
In order to perform waste power generation with high efficiency, it is necessary to lower the exhaust gas temperature on the outlet side of the economizer 103 to reduce the amount of heat taken out of the exhaust gas from the boiler 101 and the economizer 103, and to increase the amount of heat absorbed by the boiler 101. .

このように、排水クローズド条件を達成するためには、エコノマイザ103の出口側の排ガス温度をある程度高くする必要があるのに対して、ごみ発電の高効率化のためには、エコノマイザ103の出口側の排ガス温度を低くしなければならず、矛盾する問題が生じることになる。   As described above, in order to achieve the drainage closed condition, the exhaust gas temperature on the outlet side of the economizer 103 needs to be raised to some extent, whereas in order to increase the efficiency of waste power generation, the outlet side of the economizer 103 The exhaust gas temperature must be lowered, resulting in contradictory problems.

このような、問題を解決するため、従来に於いては下記の(1)及び(2)の方法が採られている。
(1)プラントから出る排水の発生量を低減させ、減温塔で使用する減温水量そのものを低下させる。
(2)エコノマイザに通ガスする排ガスの一部をバイパスさせてエコノマイザと減温塔との間に導き、排水クローズドの律速条件となる低質ごみ時の排ガス温度の低下を防ぎ、所定の減温水量を確保する(エコバイパス)。
In order to solve such a problem, the following methods (1) and (2) are conventionally employed.
(1) Reduce the amount of generated waste water from the plant and reduce the amount of water used in the temperature reduction tower.
(2) Bypassing a part of the exhaust gas that passes through the economizer and guiding it between the economizer and the cooling tower, it prevents the exhaust gas temperature from being lowered during low-quality waste, which is the rate-limiting condition of the drainage closed, and a predetermined amount of reduced water (Eco-bypass).

しかし、上述した(1)の方法については、排水の発生量を抑制しても、その効果には限度があり、エコノマイザで十分に熱回収を行えるほどの減温水量の削減につながらないのが現状である。
また、(2)の方法については、ごみ質に応じてエコノマイザとバイパスルートの通ガス量を操作し、エコノマイザの出口側の排ガス温度を所定の温度にするものであるが、バイパスルートの設備を新たに追加する必要がある他、バイパスルートを形成するダクトの低温腐食を防ぐためにバイパスルートに常に排ガスの一部を通ガスするか、或いはヒータ等の機器を追加する必要があり、適切なエコノマイザの設計が困難となる。
However, with regard to the method (1) described above, even if the amount of wastewater generated is suppressed, the effect is limited, and the current situation is that it does not lead to a reduction in the amount of temperature-reduced water so that the economizer can sufficiently recover heat. It is.
In the method (2), the gas flow rate between the economizer and the bypass route is controlled according to the waste quality, and the exhaust gas temperature at the exit side of the economizer is set to a predetermined temperature. It is necessary to add a new one, and in order to prevent low temperature corrosion of the duct forming the bypass route, it is necessary to always pass a part of the exhaust gas to the bypass route or to add a heater or other equipment, and an appropriate economizer It becomes difficult to design.

特開2004−309079号公報JP 2004-309079 A 特開2009−162452号公報JP 2009-162452 A 特開2010−048456号公報JP 2010-048456 A

本発明は、このような問題点に鑑みて為されたものであり、その目的は、エコノマイザから排出される排ガスの温度を、エコノマイザ、減温塔、バグフィルタ等の設計ポイント(例えば、低質ごみ時)で設計した装置に於いて、他のごみ質(例えば、基準ごみ時)がその成り行きで決定される温度以上に変化させ、発電効率の向上を図れるようにすると共に、減温塔に於いて排水クローズド条件の達成に必要な減温水量を噴霧しても、バグフィルタの入口に於ける排ガスの温度を適切な温度に維持できるようにした都市ごみ焼却プラントの運転方法を提供することにある。   The present invention has been made in view of such problems. The purpose of the present invention is to determine the temperature of exhaust gas discharged from an economizer by design points (e.g., low-quality garbage) such as an economizer, a temperature reducing tower, and a bag filter. In the equipment designed in (4), other waste quality (for example, at the time of standard waste) is changed beyond the temperature determined by the process, so that the power generation efficiency can be improved and the temperature reduction tower To provide a method for operating a municipal waste incineration plant that can maintain the temperature of the exhaust gas at the bag filter inlet at an appropriate temperature even when sprayed with the amount of reduced water necessary to achieve the closed wastewater condition. is there.

上記目的を達成するために、本発明の請求項1の発明は、都市ごみを焼却する焼却炉から排出された排ガスをボイラ、エコノマイザ、減温塔及びバグフィルタの順に通して排ガスの熱回収、排ガスの温度調整及び排ガスの浄化処理を行い、また、ボイラで発生した蒸気を蒸気タービン及び発電機から成る発電設備に導いて発電すると共に、蒸気タービンから排出された排気蒸気を凝縮して得られた復水をボイラ給水として脱気器により加熱及び脱気処理してからエコノマイザ及びボイラへ供給するようにした都市ごみ焼却プラントの運転方法に於いて、脱気器を運転するに当たり、エコノマイザの出口側の排ガス温度を指標とし、エコノマイザの出口側の排ガス温度に基づいて脱気器の圧力制御を行ってエコノマイザへ供給されるボイラ給水の温度を制御し、エコノマイザの出口側の排ガス温度を、従来の装置成り行きで決定される温度以上に変化させるようにしたことに特徴がある。   In order to achieve the above object, the invention of claim 1 of the present invention is directed to recovering heat of exhaust gas through exhaust gas discharged from an incinerator for incineration of municipal waste in the order of a boiler, an economizer, a temperature reducing tower, and a bag filter. It is obtained by adjusting the temperature of the exhaust gas and purifying the exhaust gas, and also by condensing the exhaust steam discharged from the steam turbine while directing the steam generated in the boiler to the power generation facility consisting of the steam turbine and generator. In the operation method of a municipal waste incineration plant where the condensate is heated and degassed by a deaerator as boiler feed water and then supplied to the economizer and boiler, the economizer outlet is operated when operating the deaerator. Boiler water supplied to the economizer by controlling the pressure of the deaerator based on the exhaust gas temperature on the outlet side of the economizer And controlling the temperature, the exhaust gas temperature at the outlet side of the economizer, is characterized in that so as to vary over temperature determined by the conventional apparatus consequences.

本発明の請求項2の発明は、請求項1の発明に於いて、エコノマイザの出口側の排ガス温度を温度検出器により常時検出し、エコノマイザの出口側の排ガス温度が所定の温度を下回る場合には、脱気器の設定圧力を上げてエコノマイザへ供給されるボイラ給水の温度を上昇させてエコノマイザでの熱交換量を小さくし、また、エコノマイザの出口側の排ガス温度が所定の温度を上回る場合には、脱気器の設定圧力を下げてエコノマイザへ供給されるボイラ給水の温度を低下させてエコノマイザでの熱交換量を大きくするようにしたことに特徴がある。   The invention of claim 2 of the present invention is the invention of claim 1, wherein the exhaust gas temperature at the outlet side of the economizer is always detected by a temperature detector, and the exhaust gas temperature at the outlet side of the economizer is below a predetermined temperature. When the set pressure of the deaerator is increased to raise the temperature of boiler feed water supplied to the economizer to reduce the amount of heat exchange in the economizer, and the exhaust gas temperature on the economizer outlet side exceeds the specified temperature Is characterized in that the set pressure of the deaerator is lowered to lower the temperature of boiler feed water supplied to the economizer to increase the amount of heat exchange in the economizer.

本発明の請求項3の発明は、都市ごみを焼却する焼却炉から排出された排ガスをボイラ、エコノマイザ、減温塔及びバグフィルタの順に通して排ガスの熱回収、排ガスの温度調整及び排ガスの浄化処理を行い、また、ボイラで発生した蒸気を蒸気タービン及び発電機から成る発電設備に導いて発電すると共に、蒸気タービンから排出された排気蒸気を凝縮して得られた復水をボイラ給水として脱気器により加熱及び脱気処理してからエコノマイザ及びボイラへ供給するようにした都市ごみ焼却プラントの運転方法に於いて、脱気器を運転するに当たり、減温塔で使用する減温水量を指標とし、減温塔で使用する減温水量に基づいて脱気器の圧力制御を行ってエコノマイザへ供給されるボイラ給水の温度を制御し、エコノマイザの出口側の排ガス温度を、従来の装置成り行きで決定される温度以上に変化させるようにしたことに特徴がある。   According to the third aspect of the present invention, exhaust gas discharged from an incinerator for incinerating municipal waste is passed through a boiler, an economizer, a temperature reducing tower, and a bag filter in this order to recover heat of the exhaust gas, adjust the temperature of the exhaust gas, and purify the exhaust gas. In addition, the steam generated in the boiler is led to a power generation facility consisting of a steam turbine and a generator to generate power, and the condensate obtained by condensing the exhaust steam discharged from the steam turbine is removed as boiler feed water. In the operation method of the municipal waste incineration plant, which is heated and degassed by the ventilator and then supplied to the economizer and boiler, when operating the deaerator, the amount of dewarmed water used in the cooler tower is an index The temperature of the boiler feed water supplied to the economizer is controlled by controlling the pressure of the deaerator based on the amount of water used in the temperature reducing tower, and the exhaust gas at the outlet side of the economizer is controlled. The temperature, is characterized in that so as to vary over temperature determined by the conventional apparatus consequences.

本発明の請求項4の発明は、請求項3の発明に於いて、減温塔で使用する減温水量が所定量を下回る場合には、脱気器の設定圧力を上げてエコノマイザへ供給されるボイラ給水の温度を上昇させてエコノマイザでの熱交換量を小さくし、また、減温塔で使用する減温水量が所定量を上回る場合には、脱気器の設定圧力を下げてエコノマイザへ供給されるボイラ給水の温度を低下させてエコノマイザでの熱交換量を大きくするようにしたことに特徴がある。   In the invention of claim 4 of the present invention, in the invention of claim 3, when the amount of water to be reduced used in the temperature reducing tower is below a predetermined amount, the set pressure of the deaerator is increased and supplied to the economizer. Increase the boiler feed water temperature to reduce the amount of heat exchange in the economizer, and if the amount of water to be used in the temperature reduction tower exceeds the specified amount, reduce the set pressure of the deaerator to the economizer It is characterized in that the amount of heat exchange in the economizer is increased by lowering the temperature of the boiler feed water supplied.

本発明の請求項5の発明は、都市ごみを焼却する焼却炉から排出された排ガスをボイラ、エコノマイザ、減温塔及びバグフィルタの順に通して排ガスの熱回収、排ガスの温度調整及び排ガスの浄化処理を行い、また、ボイラで発生した蒸気を蒸気タービン及び発電機から成る発電設備に導いて発電すると共に、蒸気タービンから排出された排気蒸気を凝縮して得られた復水をボイラ給水として脱気器により加熱及び脱気処理した後、当該ボイラ給水を脱気器の出口側に設けた給水加熱器により温度制御してからエコノマイザ及びボイラへ供給するようにした都市ごみ焼却プラントの運転方法に於いて、給水加熱器を運転するに当たり、エコノマイザの出口側の排ガス温度を指標とし、エコノマイザの出口側の排ガス温度に基づいて給水加熱器の運転操作を行ってエコノマイザへ供給されるボイラ給水の温度を制御し、エコノマイザの出口側の排ガス温度を、従来の装置成り行きで決定される温度以上に変化させるようにしたことに特徴がある。   According to the fifth aspect of the present invention, exhaust gas discharged from an incinerator for incinerating municipal waste is passed through a boiler, an economizer, a temperature reducing tower, and a bag filter in this order to recover heat of the exhaust gas, adjust the temperature of the exhaust gas, and purify the exhaust gas. In addition, the steam generated in the boiler is led to a power generation facility consisting of a steam turbine and a generator to generate power, and the condensate obtained by condensing the exhaust steam discharged from the steam turbine is removed as boiler feed water. A method for operating a municipal waste incineration plant in which the boiler feed water is heated and degassed by an air vent, and then temperature controlled by a feed water heater provided on the outlet side of the deaerator before being supplied to the economizer and boiler. In operating the feed water heater, the exhaust gas temperature on the exit side of the economizer is used as an index, and the feed water heater is based on the exhaust gas temperature on the exit side of the economizer Controlling the temperature of the boiler feed water supplied to the economizer by performing a driving operation, the exhaust gas temperature at the outlet side of the economizer, is characterized in that so as to vary over temperature determined by the conventional apparatus consequences.

本発明の請求項6の発明は、請求項5の発明に於いて、エコノマイザの出口側の排ガス温度を温度検出器により常時検出し、エコノマイザの出口側の排ガス温度が所定の温度を下回る場合には、給水加熱器の交換熱量を大きくしてエコノマイザへ供給されるボイラ給水の温度を上昇させてエコノマイザでの熱交換量を小さくし、また、エコノマイザの出口側の排ガス温度が所定の温度を上回る場合には、給水加熱器の交換熱量を小さく又はゼロとしてエコノマイザへ供給されるボイラ給水の温度を低下させてエコノマイザでの熱交換量を大きくするようにしたことに特徴がある。   The invention of claim 6 of the present invention is the invention of claim 5, wherein the exhaust gas temperature on the outlet side of the economizer is always detected by a temperature detector, and the exhaust gas temperature on the outlet side of the economizer is below a predetermined temperature. Increases the heat exchange amount of the feed water heater and raises the temperature of boiler feed water supplied to the economizer to reduce the heat exchange amount in the economizer, and the exhaust gas temperature on the outlet side of the economizer exceeds the predetermined temperature In this case, the heat exchange amount in the economizer is increased by lowering the temperature of boiler feed water supplied to the economizer with the exchange heat amount of the feed water heater being reduced or reduced to zero.

本発明の請求項7の発明は、都市ごみを焼却する焼却炉から排出された排ガスをボイラ、エコノマイザ、減温塔及びバグフィルタの順に通して排ガスの熱回収、排ガスの温度調整及び排ガスの浄化処理を行い、また、ボイラで発生した蒸気を蒸気タービン及び発電機から成る発電設備に導いて発電すると共に、蒸気タービンから排出された排気蒸気を凝縮して得られた復水をボイラ給水として脱気器により加熱及び脱気処理した後、当該ボイラ給水を脱気器の出口側に設けた給水加熱器により温度制御してからエコノマイザ及びボイラへ供給するようにした都市ごみ焼却プラントの運転方法に於いて、給水加熱器を運転するに当たり、減温塔で使用する減温水量を指標とし、減温塔で使用する減温水量に基づいて給水加熱器の運転操作を行ってエコノマイザへ供給されるボイラ給水の温度を制御し、エコノマイザの出口側の排ガス温度を、従来の装置成り行きで決定される温度以上に変化させるようにしたことに特徴がある。   According to the seventh aspect of the present invention, exhaust gas discharged from an incinerator for incinerating municipal waste is passed through a boiler, an economizer, a temperature reducing tower, and a bag filter in this order to recover heat of the exhaust gas, adjust the temperature of the exhaust gas, and purify the exhaust gas. In addition, the steam generated in the boiler is led to a power generation facility consisting of a steam turbine and a generator to generate power, and the condensate obtained by condensing the exhaust steam discharged from the steam turbine is removed as boiler feed water. A method for operating a municipal waste incineration plant in which the boiler feed water is heated and degassed by an air vent, and then temperature controlled by a feed water heater provided on the outlet side of the deaerator before being supplied to the economizer and boiler. In operating the feed water heater, the amount of water used in the temperature reduction tower is used as an index, and the water heater is operated based on the amount of water used in the temperature reduction tower. Controlling the temperature of the boiler feed water supplied to the economizer, the exhaust gas temperature at the outlet side of the economizer, is characterized in that so as to vary over temperature determined by the conventional apparatus consequences.

本発明の請求項8の発明は、請求項7の発明に於いて、減温塔で使用する減温水量が所定量を下回る場合には、給水加熱器の交換熱量を大きくしてエコノマイザへ供給されるボイラ給水の温度を上昇させてエコノマイザでの熱交換量を小さくし、また、減温塔で使用する減温水量が所定量を上回る場合には、給水加熱器の交換熱量を小さくしてエコノマイザへ供給されるボイラ給水の温度を低下させてエコノマイザでの熱交換量を大きくするようにしたことに特徴がある。   According to the eighth aspect of the present invention, in the seventh aspect of the present invention, when the amount of the temperature-reduced water used in the temperature-decreasing tower is less than a predetermined amount, the exchange heat amount of the feed water heater is increased and supplied to the economizer. The temperature of the boiler feed water is increased to reduce the amount of heat exchange in the economizer, and if the amount of reduced water used in the temperature reduction tower exceeds the predetermined amount, the amount of heat exchanged in the feed water heater is reduced. It is characterized in that the amount of heat exchange in the economizer is increased by lowering the temperature of boiler feed water supplied to the economizer.

本発明の請求項9の発明は、請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7又は請求項8の発明に於いて、減温塔で噴霧する減温水に都市ごみ焼却プラントから出る排水を処理した排水処理水を使用し、排水処理水の全部を減温塔で使用して排水処理水をプラント外へ排出しないようにした排水クローズド条件を採用したことに特徴がある。   The invention of claim 9 of the present invention is the temperature reducing tower according to claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 7 or claim 8. Wastewater closed water that uses wastewater treated water discharged from municipal waste incineration plant as the temperature-reduced water sprayed in, and uses all of the wastewater treated water in the temperature-decreasing tower so that the wastewater treated water is not discharged outside the plant. It is characterized by adopting conditions.

本発明の請求項1の発明は、焼却炉、ボイラ、エコノマイザ、減温塔、バグフィルタ、発電設備及び脱気器等を備えた都市ごみ焼却プラントの運転方法に於いて、脱気器を運転するに当たり、エコノマイザの出口側の排ガス温度を指標とし、エコノマイザの出口側の排ガス温度に基づいて脱気器の圧力制御を行ってエコノマイザへ供給されるボイラ給水の温度を制御し、エコノマイザの出口側の排ガス温度を、従来の装置成り行きで決定される温度以上に変化させるようにしているため、例えば、都市ごみの低質ごみで必要なエコノマイザの出口側の排ガス温度を決定し、都市ごみの基準ごみ時に従来の装置成り行きで決定されるエコノマイザの出口側の排ガス温度よりも、エコノマイザの出口側の排ガス温度を下げることによって、発電効率の向上を図ることができる。   The invention of claim 1 of the present invention is a method for operating a municipal waste incineration plant equipped with an incinerator, boiler, economizer, temperature reducing tower, bag filter, power generation equipment, deaerator, etc., and operating the deaerator. In doing so, the temperature of the exhaust gas at the outlet side of the economizer is used as an index, the pressure of the deaerator is controlled based on the exhaust gas temperature at the outlet side of the economizer, and the temperature of the boiler feed water supplied to the economizer is controlled. Because the exhaust gas temperature is changed to a temperature that is determined by the conventional system, the exhaust gas temperature on the exit side of the economizer, which is required for low-quality municipal waste, is determined. Power generation efficiency is sometimes reduced by lowering the exhaust gas temperature at the outlet side of the economizer, rather than the exhaust gas temperature at the outlet side of the economizer, which is sometimes determined by the conventional system. It is possible to improve the.

本発明の請求項2の発明は、エコノマイザの出口側の排ガス温度を温度検出器により常時検出し、エコノマイザの出口側の排ガス温度が所定の温度を下回る場合には、脱気器の圧力を上げてエコノマイザへ供給されるボイラ給水の温度を上昇させ、エコノマイザでの熱交換量を小さくしているため、減温塔に於いて排ガスに必要な減温水量を噴霧しても、排ガスの温度をバグフィルタでの必要なガス温度を下回らないようにすることができ、また、エコノマイザの出口側の排ガス温度が所定の温度を上回る場合には、脱気器の圧力を下げてエコノマイザへ供給されるボイラ給水の温度を低下させ、エコノマイザでの熱交換量を大きくするようにしているため、発電量を向上させることができる。   In the invention of claim 2 of the present invention, the exhaust gas temperature on the outlet side of the economizer is always detected by a temperature detector, and when the exhaust gas temperature on the outlet side of the economizer is lower than a predetermined temperature, the pressure of the deaerator is increased. The temperature of the exhaust gas supplied to the economizer is increased to reduce the amount of heat exchange in the economizer. The required gas temperature in the bag filter can be kept below, and if the exhaust gas temperature on the outlet side of the economizer exceeds the specified temperature, the pressure of the deaerator is lowered and supplied to the economizer Since the temperature of boiler feed water is lowered and the amount of heat exchange in the economizer is increased, the amount of power generation can be improved.

本発明の請求項3の発明は、焼却炉、ボイラ、エコノマイザ、減温塔、バグフィルタ、発電設備及び脱気器等を備えた都市ごみ焼却プラントの運転方法に於いて、脱気器を運転するに当たり、減温塔で使用する減温水量を指標とし、減温塔で使用する減温水量に基づいて脱気器の圧力制御を行ってエコノマイザへ供給されるボイラ給水の温度を制御し、エコノマイザの出口側の排ガス温度を、従来の装置成り行きで決定される温度以上に変化させるようにしているため、請求項1の発明と同様に発電効率の向上を図ることができる。   The invention of claim 3 of the present invention is a method for operating a municipal waste incineration plant equipped with an incinerator, boiler, economizer, temperature reducing tower, bag filter, power generation equipment, deaerator, etc. In doing so, the temperature of the boiler water supplied to the economizer is controlled by controlling the pressure of the deaerator based on the amount of water used in the temperature reduction tower as an index, Since the exhaust gas temperature on the outlet side of the economizer is changed to a temperature determined by the state of the conventional device, the power generation efficiency can be improved as in the first aspect of the invention.

本発明の請求項4の発明は、減温塔で使用する減温水量が所定量を下回る場合には、脱気器の圧力を上げてエコノマイザへ供給されるボイラ給水の温度を上昇させ、エコノマイザでの熱交換量を小さくしているため、請求項2の発明と同様に減温塔に於いて排ガスに必要な減温水量を噴霧しても、排ガスの温度をバグフィルタでの必要なガス温度を下回らないようにすることができ、また、減温塔で使用する減温水量が所定量を上回る場合には、脱気器の圧力を下げてエコノマイザへ供給されるボイラ給水の温度を低下させ、エコノマイザでの熱交換量を大きくするようにしているため、発電量を向上させることができる。   According to the invention of claim 4 of the present invention, when the amount of water to be reduced used in the temperature reducing tower is below a predetermined amount, the pressure of the deaerator is increased to increase the temperature of boiler feed water supplied to the economizer, and the economizer The amount of heat exchange in the bag filter is reduced, so that the temperature of the exhaust gas is reduced to the required gas in the bag filter even if sprayed with the amount of reduced temperature water required for the exhaust gas in the temperature reduction tower as in the invention of claim 2. The temperature of the boiler feed water supplied to the economizer can be lowered by reducing the pressure of the deaerator when the amount of water used in the temperature reduction tower exceeds the specified amount. Since the amount of heat exchange in the economizer is increased, the power generation amount can be improved.

本発明の請求項5の発明は、焼却炉、ボイラ、エコノマイザ、減温塔、バグフィルタ、発電設備、脱気器及び給水加熱器等を備えた都市ごみ焼却プラントの運転方法に於いて、給水加熱器を運転するに当たり、エコノマイザの出口側の排ガス温度を指標とし、エコノマイザの出口側の排ガス温度に基づいて給水加熱器の運転操作を行ってエコノマイザへ供給されるボイラ給水の温度を制御し、エコノマイザの出口側の排ガス温度を、従来の装置成り行きで決定される温度以上に変化させるようにしているため、請求項1の発明と同様に発電効率の向上を図ることができる。   The invention of claim 5 of the present invention is a method for operating a municipal waste incineration plant comprising an incinerator, a boiler, an economizer, a temperature reducing tower, a bag filter, a power generation facility, a deaerator, a feed water heater and the like. When operating the heater, the exhaust gas temperature at the outlet side of the economizer is used as an index, the temperature of the boiler feed water supplied to the economizer is controlled by operating the feed water heater based on the exhaust gas temperature at the outlet side of the economizer, Since the exhaust gas temperature on the outlet side of the economizer is changed to a temperature determined by the state of the conventional device, the power generation efficiency can be improved as in the first aspect of the invention.

本発明の請求項6の発明は、エコノマイザの出口側の排ガス温度を温度検出器により常時検出し、エコノマイザの出口側の排ガス温度が所定の温度を下回る場合には、給水加熱器の交換熱量を大きくしてエコノマイザへ供給されるボイラ給水の温度を上昇させてエコノマイザでの熱交換量を小さくしているため、減温塔に於いて排ガスに必要な減温水量を噴霧しても、排ガスの温度をバグフィルタでの必要なガス温度を下回らないようにすることができ、また、エコノマイザの出口側の排ガス温度が所定の温度を上回る場合には、給水加熱器の交換熱量を小さく又はゼロとしてエコノマイザへ供給されるボイラ給水の温度を低下させてエコノマイザでの熱交換量を大きくするようにしているため、発電量を向上させることができる。   In the invention of claim 6 of the present invention, the exhaust gas temperature on the outlet side of the economizer is always detected by a temperature detector, and when the exhaust gas temperature on the outlet side of the economizer is lower than a predetermined temperature, the exchange heat amount of the feed water heater is set. Since the boiler feed water temperature supplied to the economizer is increased to reduce the amount of heat exchange in the economizer, even if the amount of dewarmed water required for the exhaust gas is sprayed in the temperature reduction tower, The temperature can be kept below the required gas temperature in the bag filter, and if the exhaust gas temperature at the outlet side of the economizer exceeds the predetermined temperature, the heat exchange amount of the feed water heater is made small or zero Since the temperature of the boiler feed water supplied to the economizer is lowered to increase the amount of heat exchange in the economizer, the power generation amount can be improved.

本発明の請求項7の発明は、焼却炉、ボイラ、エコノマイザ、減温塔、バグフィルタ、発電設備、脱気器及び給水加熱器等を備えた都市ごみ焼却プラントの運転方法に於いて、給水加熱器を運転するに当たり、減温塔で使用する減温水量を指標とし、減温塔で使用する減温水量に基づいて給水加熱器の運転操作を行ってエコノマイザへ供給されるボイラ給水の温度を制御し、エコノマイザの出口側の排ガス温度を、従来の装置成り行きで決定される温度以上に変化させるようにしているため、請求項1の発明と同様に発電効率の向上を図ることができる。   The invention of claim 7 of the present invention is a method for operating a municipal waste incineration plant comprising an incinerator, a boiler, an economizer, a temperature reducing tower, a bag filter, a power generation facility, a deaerator, a feed water heater, etc. The temperature of boiler feed water supplied to the economizer by operating the feed water heater based on the amount of temperature-reduced water used in the temperature-reduction tower, using the temperature-reduced water amount used in the temperature-reduction tower as an index when operating the heater Thus, the exhaust gas temperature on the outlet side of the economizer is changed to a temperature determined by the behavior of the conventional device or more, so that the power generation efficiency can be improved as in the first aspect of the invention.

本発明の請求項8の発明は、減温塔で使用する減温水量が所定量を下回る場合には、給水加熱器の交換熱量を大きくしてエコノマイザへ供給されるボイラ給水の温度を上昇させてエコノマイザでの熱交換量を小さくしているため、減温塔に於いて排ガスに必要な減温水量を噴霧しても、排ガスの温度をバグフィルタでの必要なガス温度を下回らないようにすることができ、また、減温塔で使用する減温水量が所定量を上回る場合には、給水加熱器の交換熱量を小さくしてエコノマイザへ供給されるボイラ給水の温度を低下させてエコノマイザでの熱交換量を大きくするようにしているため、発電量を向上させることができる。   The invention of claim 8 of the present invention increases the temperature of boiler feed water supplied to the economizer by increasing the amount of heat exchanged in the feed water heater when the amount of dewarmed water used in the temperature reducing tower is below a predetermined amount. Because the amount of heat exchange in the economizer is reduced, the temperature of the exhaust gas does not fall below the required gas temperature in the bag filter even if sprayed with the amount of reduced water required for the exhaust gas in the temperature reduction tower. If the amount of water used in the cooling tower exceeds the specified amount, the temperature of boiler feed water supplied to the economizer can be reduced by reducing the exchange heat amount of the feed water heater. Since the amount of heat exchange is increased, the amount of power generation can be improved.

本発明の請求項9の発明は、排水処理水の全てを減温塔での減温水として使用する排水クローズド条件を採用しているため、基準ごみ時、高質ごみ時に減温塔での減温水量が排水処理水量を上回ってその不足分を新水補給する必要がある場合、基準ごみ時、高質ごみ時に脱気器の圧力を下げることによって、又は給水加熱器の交換熱量を小さくすることによって、減温水量を減少させることができ、その結果、新水補給水量を減少させることができると共に、請求項1の発明と同様に発電効率を向上させることができる。   The invention of claim 9 of the present invention employs closed drainage conditions in which all wastewater treated water is used as temperature-reduced water in the temperature-reducing tower, so that it is reduced in the temperature-reduced tower during standard waste and high-quality waste. When the amount of warm water exceeds the amount of wastewater treated water and the shortage needs to be replenished with fresh water, reduce the pressure of the deaerator during standard waste or high-quality waste, or reduce the heat exchange of the feed water heater As a result, the amount of the temperature-reduced water can be reduced. As a result, the amount of fresh water replenished water can be reduced, and the power generation efficiency can be improved as in the first aspect of the invention.

本発明の方法を実施する都市ごみ焼却プラントの一例を示す概略系統図である。It is a schematic system diagram which shows an example of the municipal waste incineration plant which enforces the method of this invention. 本発明の他の方法を実施する都市ごみ焼却プラントの一例を示すブロック図である。It is a block diagram which shows an example of the municipal waste incineration plant which implements the other method of this invention. 従来の都市ごみ焼却プラントの一例を示すブロック図である。It is a block diagram which shows an example of the conventional municipal waste incineration plant.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は本発明の方法を実施する都市ごみ焼却プラントの一例を示す概略系統図を示し、当該都市ごみ焼却プラントは、家庭や事業所から出る都市ごみを焼却する焼却炉1(例えば、ストーカ式焼却炉)と、焼却炉1で発生した高温の排ガスGから熱を回収するボイラ2と、ボイラ2から排出された排ガスGの熱を更に回収するエコノマイザ3と、エコノマイザ3を通過した排ガスGに減温水(排水処理水)を噴霧して排ガスGを冷却する減温塔4と、排ガスG中の煤塵及び酸性ガスを除去するバグフィルタ5と、焼却炉1内の排ガスGを誘引する誘引通風機7と、クリーンになった排ガスGを大気中へ放出する煙突8と、ボイラ2で発生した蒸気を過熱する過熱器9と、過熱器9からの過熱蒸気Sにより駆動されて発電する蒸気タービン10a及び発電機10bから成る発電設備10と、蒸気タービン10aから排出された排気蒸気S′を復水する復水器11と、復水器11からの復水を貯留する復水タンク12と、復水タンク12からの復水を加熱及び脱気処理してエコノマイザ3及びボイラ2へボイラ給水Wとして供給する脱気器13等から構成されており、脱気器13を運転するに当たり、エコノマイザ3の出口側の排ガスG温度を指標とし、エコノマイザ3の出口側の排ガスG温度に基づいて脱気器13の圧力制御を行ってエコノマイザ3へ供給されるボイラ給水Wの温度を制御し、エコノマイザ3の出口側の排ガスG温度を、従来のバグフィルタ5等の装置成り行きで決定される温度(例えば、排ガスGのバグフィルタ5での通ガス温度により決定される温度や減温塔での減温水の噴霧量により決定される温度)以上に変化させ、発電量の向上等を図るようにしたものである。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic system diagram showing an example of a municipal waste incineration plant that implements the method of the present invention. The municipal waste incineration plant is an incinerator 1 (for example, a stoker type) that incinerates municipal waste from homes and business establishments. An incinerator), a boiler 2 for recovering heat from the high-temperature exhaust gas G generated in the incinerator 1, an economizer 3 for further recovering heat of the exhaust gas G discharged from the boiler 2, and an exhaust gas G that has passed through the economizer 3 A temperature reducing tower 4 that cools the exhaust gas G by spraying the temperature-reduced water (waste water treatment water), a bag filter 5 that removes dust and acid gas in the exhaust gas G, and an induced draft that induces the exhaust gas G in the incinerator 1 Machine 7, chimney 8 that discharges clean exhaust gas G into the atmosphere, superheater 9 that superheats steam generated in boiler 2, and steam turbine that is driven by superheated steam S from superheater 9 to generate electricity 10 And a power generation facility 10 including a generator 10b, a condenser 11 for condensing exhaust steam S ′ discharged from the steam turbine 10a, a condensate tank 12 for storing condensate from the condenser 11, and a condenser The condensate from the water tank 12 is heated and degassed, and is composed of an economizer 3 and a deaerator 13 that supplies the boiler 2 as boiler feed water W. When the deaerator 13 is operated, the economizer 3 The temperature of the boiler feed water W supplied to the economizer 3 is controlled by controlling the pressure of the deaerator 13 based on the exhaust gas G temperature on the outlet side, based on the exhaust gas G temperature on the outlet side of the economizer 3. The exhaust gas G temperature at the outlet side is determined by the temperature of the conventional bag filter 5 or the like (for example, the temperature determined by the gas passing temperature of the exhaust gas G through the bag filter 5 or a temperature reducing tower). It is changed to the temperature) or more as determined by the spray amount of reduced hot water is obtained by such improved such power generation amount.

即ち、前記都市ごみ焼却プラントは、エコノマイザ3の出口側の排ガスG温度を常時検出する温度検出器14と、蒸気タービン10aからの抽気蒸気S″(又は図示していないが蒸気タービン10aへ供給される過熱蒸気Sの一部を引き抜いた蒸気)を脱気器13へ供給する蒸気供給管15と、蒸気供給管15に介設され、脱気器13へ供給される抽気蒸気S″(又は過熱蒸気Sの一部を引き抜いた蒸気)の供給量を制御する蒸気量制御弁16と、脱気器13内の圧力を検出し、その検出信号と温度検出器14からの検出信号に基づいて蒸気量制御弁16を制御して脱気器13の圧力を制御する圧力制御器17とを備えており、エコノマイザ3の出口側の排ガスG温度を温度検出器14により常時検出し、エコノマイザ3の出口の排ガスG温度に基づいて脱気器13の圧力制御を行い、当該脱気器13の圧力制御によりエコノマイザ3へ供給されるボイラ給水Wの温度を制御し、エコノマイザ3の出口側の排ガスG温度を制御するようにしている。
尚、脱気器13は、飽和温度で運転されているので、脱気器13の圧力を制御することによって、ボイラ給水Wの温度を制御することができる。
That is, the municipal waste incineration plant is supplied to the temperature detector 14 that constantly detects the exhaust gas G temperature on the outlet side of the economizer 3 and the extracted steam S ″ from the steam turbine 10a (or the steam turbine 10a although not shown). A steam supply pipe 15 for supplying a portion of the superheated steam S extracted to the deaerator 13, and an extracted steam S ″ (or superheater) provided in the steam supply pipe 15 and supplied to the deaerator 13. The steam control valve 16 for controlling the supply amount of steam (a part of the steam S withdrawn) and the pressure in the deaerator 13 are detected, and the steam is detected based on the detection signal and the detection signal from the temperature detector 14. And a pressure controller 17 for controlling the pressure of the deaerator 13 by controlling the amount control valve 16. The exhaust gas G temperature on the outlet side of the economizer 3 is always detected by the temperature detector 14, and the outlet of the economizer 3 is Exhaust gas G temperature The pressure control of the deaerator 13 is performed based on the above, the temperature of the boiler feed water W supplied to the economizer 3 is controlled by the pressure control of the deaerator 13, and the exhaust gas G temperature on the outlet side of the economizer 3 is controlled. I have to.
Since the deaerator 13 is operated at the saturation temperature, the temperature of the boiler feed water W can be controlled by controlling the pressure of the deaerator 13.

前記都市ごみ焼却プラントは、プラントから出る排水をプラントに付設した排水処理設備(図示省略)で処理し、この排水処理水をエコノマイザ3の出口側の排ガスG温度をバグフィルタ5に通ガスできる温度にまで減温するための減温塔4の減温水として再利用し、排水処理水をプラント外へ排出しないようにした排水クローズド条件を採用しても良く、或いは、排水処理水を減温水として減温塔4で必要量だけ使用し、残りの排水処理水をプラント外へ排出するようにしても良い。   The municipal waste incineration plant treats the wastewater discharged from the plant with a wastewater treatment facility (not shown) attached to the plant, and allows the wastewater treatment water to pass the exhaust gas G temperature on the outlet side of the economizer 3 to the bag filter 5. It may be reused as the temperature-reduced water in the temperature-decreasing tower 4 for reducing the temperature to the end, and the wastewater treatment condition may be adopted so that the wastewater treatment water is not discharged out of the plant. Only a necessary amount may be used in the temperature-decreasing tower 4 and the remaining wastewater treated water may be discharged outside the plant.

尚、図1に於いて、18は押込送風機、19は空気予熱器、20は二次空気送風機、21はバーナ、22は灰押出装置、23は蒸発管群、24は減温水噴射ノズル、25は飛灰固化装置、26はアキュムレータ(高圧蒸気溜め)、27は脱気器給水ポンプ、28はボイラ給水ポンプである。   In FIG. 1, 18 is a forced blower, 19 is an air preheater, 20 is a secondary air blower, 21 is a burner, 22 is an ash extrusion device, 23 is an evaporating tube group, 24 is a low-temperature water injection nozzle, 25 Is a fly ash solidifying device, 26 is an accumulator (high pressure steam reservoir), 27 is a deaerator feed pump, and 28 is a boiler feed pump.

而して、上述した都市ごみ焼却プラントによれば、焼却炉1内で発生した高温の排ガスGは、ボイラ2及びエコノマイザ3へ導かれてボイラ2及びエコノマイザ3により順次熱回収され、引き続き減温塔4に送られてここで減温水(排水処理水)の噴霧によりバグフィルタ5の濾布材の耐熱温度までその温度が引き下げられる。   Thus, according to the above-mentioned municipal waste incineration plant, the high-temperature exhaust gas G generated in the incinerator 1 is led to the boiler 2 and the economizer 3 and sequentially recovered by the boiler 2 and the economizer 3, and the temperature is continuously reduced. It is sent to the tower 4 where the temperature is lowered to the heat resistance temperature of the filter cloth material of the bag filter 5 by spraying the dewarmed water (waste water treatment water).

減温塔4内で温度が引き下げられた排ガスGは、バグフィルタ5に導かれてここで排ガスG中の煤塵及び酸性ガスが除去された後、クリーンな排ガスGとなって誘引通風機7を経て煙突8から大気中へ放出されている。   The exhaust gas G whose temperature has been lowered in the temperature reducing tower 4 is guided to the bag filter 5 where dust and acid gas in the exhaust gas G are removed, and then the exhaust gas G becomes clean exhaust gas G. After that, it is discharged from the chimney 8 into the atmosphere.

一方、ボイラ2で発生した蒸気は、過熱器9により過熱され、過熱蒸気Sとなって蒸気タービン10a及び発電機10bから成る発電設備10へ供給されて蒸気タービン10a及び発電機10bを駆動して発電させると共に、蒸気タービン10aから排出されて復水器11で復水された後、復水タンク12に貯留される。
尚、復水タンク12には、図示していないが、不純物が除去された補給水が供給されている。
On the other hand, the steam generated in the boiler 2 is superheated by the superheater 9 and supplied as superheated steam S to the power generation facility 10 including the steam turbine 10a and the generator 10b to drive the steam turbine 10a and the generator 10b. The power is generated and discharged from the steam turbine 10 a and condensed in the condenser 11, and then stored in the condensate tank 12.
Although not shown, the condensate tank 12 is supplied with makeup water from which impurities have been removed.

また、復水タンク12に貯留された復水は、ボイラ2へのボイラ給水Wとして脱気器給水ポンプ27により脱気器13に供給され、ここで蒸気タービン10aからの抽気蒸気S″(又は蒸気タービン10aへ供給される過熱蒸気Sの一部を引き抜いた蒸気)により加熱及び脱気処理されてからボイラ給水ポンプ28によりエコノマイザ3及びボイラ2へ供給されるようになっている。   The condensate stored in the condensate tank 12 is supplied to the deaerator 13 by the deaerator feed water pump 27 as boiler feed water W to the boiler 2, where the extracted steam S "(or from the steam turbine 10a) After being heated and degassed by the steam (a part of the superheated steam S supplied to the steam turbine 10a), it is supplied to the economizer 3 and the boiler 2 by the boiler feed pump 28.

そして、前記都市ごみ焼却プラントの運転に於いては、エコノマイザ3の出口側の排ガスG温度が温度検出器14により常時検出されており、脱気器13を運転するに当たり、エコノマイザ3の出口側の排ガスG温度を指標とし、エコノマイザ3の出口側の排ガスG温度に基づいて脱気器13の圧力制御を行ってエコノマイザ3へ供給されるボイラ給水Wの温度を制御し、エコノマイザ3の出口側の排ガスG温度を、従来のバグフィルタ5等の装置成り行きで決定される温度以上に変化させ、発電量の向上等を図るようにしたものである。   In the operation of the municipal waste incineration plant, the exhaust gas G temperature on the outlet side of the economizer 3 is constantly detected by the temperature detector 14, and when operating the deaerator 13, Using the exhaust gas G temperature as an index, the pressure of the deaerator 13 is controlled based on the exhaust gas G temperature on the outlet side of the economizer 3 to control the temperature of the boiler feed water W supplied to the economizer 3. The exhaust gas G temperature is changed to a temperature determined by the state of the apparatus such as the conventional bag filter 5 to improve the power generation amount.

即ち、前記都市ごみ焼却プラントの運転に於いては、エコノマイザ3の出口側の排ガスG温度を温度検出器14により常時検出し、エコノマイザ3の出口側の排ガスG温度が所定の温度(仕様を決定したエコノマイザ3の出口側の排ガスG温度)を下回る場合、脱気器13の設定圧力を上げてボイラ給水Wの温度を上昇させ、エコノマイザ3の熱交換に於ける対数平均温度差を低くする。
これにより、エコノマイザ3での熱交換量が小さくなり、エコノマイザ3の出口側の排ガスG温度を上昇させることができる。
その結果、減温塔4内で排ガスGに所定の減温水量を噴霧しても、排ガスGの温度をバグフィルタ5での必要なガス温度を下回らないようにすることができる。
That is, in the operation of the municipal waste incineration plant, the temperature of the exhaust gas G on the outlet side of the economizer 3 is always detected by the temperature detector 14, and the temperature of the exhaust gas G on the outlet side of the economizer 3 is determined to be a predetermined temperature (specification is determined). When the temperature is lower than the exhaust gas G temperature on the outlet side of the economizer 3), the set pressure of the deaerator 13 is increased to raise the temperature of the boiler feed water W, and the logarithmic average temperature difference in the heat exchange of the economizer 3 is lowered.
Thereby, the amount of heat exchange in the economizer 3 is reduced, and the exhaust gas G temperature on the outlet side of the economizer 3 can be increased.
As a result, the temperature of the exhaust gas G can be prevented from falling below the required gas temperature in the bag filter 5 even if a predetermined amount of temperature-reduced water is sprayed on the exhaust gas G in the temperature reducing tower 4.

また、エコノマイザ3の出口側の排ガスG温度が所定の温度(仕様を決定したエコノマイザ3の出口側の排ガスG温度)を上回る場合、脱気器13の設定圧力を下げてボイラ給水W温度を低下させ、エコノマイザ3の熱交換に於ける対数平均温度差を高くする。
これにより、排ガスGの熱がより多く回収されて発電出力を向上させることができる。
Further, when the exhaust gas G temperature on the outlet side of the economizer 3 exceeds a predetermined temperature (exhaust gas G temperature on the outlet side of the economizer 3 whose specification has been determined), the set pressure of the deaerator 13 is lowered to lower the boiler feed water W temperature. The logarithmic average temperature difference in the heat exchange of the economizer 3 is increased.
Thereby, more heat of the exhaust gas G can be recovered and the power generation output can be improved.

下記の表3は従来の運転方法により都市ごみ焼却プラントを運転した場合の高質ごみ時及び基準ごみ時に於けるエコノマイザ3の出口側の排ガスG温度、ボイラ2の蒸発量等を示すものである。
即ち、下記の表3は低質ごみ時にエコノマイザ3の出口側の排ガスG温度が210℃となるようにエコノマイザ3を設計し、脱気器13の圧力を0.29MPaに固定した条件下で都市ごみ焼却プラントを運転した場合の高質ごみ時及び基準ごみ時に於けるエコノマイザ3の出口側の排ガスG温度、ボイラ2の蒸発量等を示すものである。
但し、蒸発量、減温水量、バグフィルタ5の入口側ガス量、発電量は、従来時を全て100としたものである。
Table 3 below shows the exhaust gas G temperature at the outlet side of the economizer 3, the amount of evaporation of the boiler 2, etc. during high-quality waste and standard waste when the municipal waste incineration plant is operated by the conventional operation method. .
That is, Table 3 below shows municipal waste under the condition that the economizer 3 is designed so that the exhaust gas G temperature on the outlet side of the economizer 3 becomes 210 ° C. during low-quality waste, and the pressure of the deaerator 13 is fixed at 0.29 MPa. It shows the exhaust gas G temperature at the outlet side of the economizer 3, the amount of evaporation of the boiler 2, etc. during high-quality waste and standard waste when the incineration plant is operated.
However, the amount of evaporation, the amount of reduced temperature water, the amount of gas on the inlet side of the bag filter 5 and the amount of power generation are all set to 100 in the conventional case.

Figure 2012017923
Figure 2012017923

実際、一日当たりの都市ごみの処理量が100tonの焼却炉1を2炉備えた都市ごみ焼却プラントの場合、脱気器13の圧力を0.29MPa(変化なし)とし、基準ごみ時のエコノマイザ3の出口側の排ガスG温度を排水クローズド条件なしのときに200℃、排水クローズド条件ありのときに225℃とすると、減温塔4での減温水量は排水クローズド条件なしのときに1日当たり24ton、排水クローズド条件ありのときに一日当たり16tonとなり、また、排水放流量は排水クローズド条件なしのときに1日当たり8ton、排水クローズド条件ありのときに一日当たり0tonとなり、更に、発電量は排水クローズド条件なしのときに4500kW、排水クローズド条件ありのときに4400kWとなっている。   Actually, in the case of a municipal waste incineration plant equipped with two incinerators 1 with a capacity of 100 tons of municipal waste per day, the pressure of the deaerator 13 is 0.29 MPa (no change), and the economizer 3 at the time of standard waste Assuming that the exhaust gas G temperature at the outlet side is 200 ° C. when there is no drainage closed condition and 225 ° C. when there is a drainage closed condition, the amount of water to be reduced in the temperature reducing tower 4 is 24 tons per day when there is no drainage closed condition. The drainage discharge rate is 16 tons per day when the drainage closed condition is present, the drainage discharge is 8 tons per day when the drainage closed condition is not present, and 0 ton per day when the drainage closed condition is present, and the power generation amount is the drainage closed condition. It is 4500 kW when there is none, and 4400 kW when there is drainage closed condition.

また、下記の表4は本発明の運転方法により都市ごみ焼却プラントを運転した場合の高質ごみ時及び基準ごみ時に於けるエコノマイザ3の出口側の排ガスG温度、ボイラ蒸発量等を示すものであり、脱気器13の圧力を低質ごみ時には0.29MPaと現状のままとし、高質ごみ時及び基準ごみ時に脱気器13の圧力を0.17MPaにまで圧力を下げたものである。   Table 4 below shows the exhaust gas G temperature at the outlet side of the economizer 3, the boiler evaporation amount, etc. at the time of high-quality waste and standard waste when the municipal waste incineration plant is operated by the operation method of the present invention. Yes, the pressure of the deaerator 13 is kept at 0.29 MPa at the time of low quality waste, and the pressure of the deaerator 13 is reduced to 0.17 MPa at the time of high quality waste and standard waste.

Figure 2012017923
Figure 2012017923

表4からも明らかなように、脱気器13の圧力を低質ごみ時には現状のままとし、高質ごみ時及び基準ごみ時に脱気器13の圧力を0.17MPaにまで圧力を下げることで、エコノマイザ3への給水温度が従来の143℃から130℃に低下し、エコノマイザ3での対数平均温度差が大きくなって交換熱量が増加することになる。   As is clear from Table 4, the pressure of the deaerator 13 is kept as it is at the time of low-quality waste, and the pressure of the deaerator 13 is reduced to 0.17 MPa at the time of high-quality waste and reference waste, The water supply temperature to the economizer 3 is lowered from the conventional 143 ° C. to 130 ° C., the logarithmic average temperature difference in the economizer 3 is increased, and the amount of exchange heat is increased.

その結果、本発明の運転方法に於いては、高質ごみ時及び基準ごみ時にエコノマイザ3の出口側の排ガスG温度が低下し、蒸発量及び発電量が増加すると共に、減温水量及び排ガスG量が減少することが判る。
尚、本発明の運転方法は、排水クローズド条件の有無にかかわらず、上述した効果が得られる。
As a result, in the operation method of the present invention, the exhaust gas G temperature on the outlet side of the economizer 3 decreases during high-quality waste and standard waste, and the amount of evaporation and power generation increase, while the amount of reduced water and exhaust gas G increase. It can be seen that the amount decreases.
In addition, the operation method of this invention can acquire the effect mentioned above irrespective of the presence or absence of drainage closed conditions.

また、排水クローズド条件を採用した場合、通常高質ごみ時及び基準ごみ時の減温塔4での減温水量は、排水処理水量よりも多くなり、不足分は新水補給されているが、本発明の運転方法によれば、脱気器13の圧力を下げることで、表4に示すように減温塔4での減温水量を従来よりも減少させることができるため、新水補給水量を減少させることができる。
更に、本発明の運転方法によれば、表4に示すようにバグフィルタ5の入口ガス量が僅かに少なくなるため、排ガス処理設備の設備規模を小さくすることができる。
In addition, when the wastewater closed condition is adopted, the amount of dewarmed water in the temperature reducing tower 4 at the time of normal high-quality waste and standard waste is larger than the amount of wastewater treated water, and the deficit is replenished with fresh water. According to the operation method of the present invention, by reducing the pressure of the deaerator 13, the amount of temperature-reduced water in the temperature-decreasing tower 4 can be reduced as compared with the prior art as shown in Table 4, so Can be reduced.
Furthermore, according to the operating method of the present invention, as shown in Table 4, the amount of gas entering the bag filter 5 is slightly reduced, so that the equipment scale of the exhaust gas treatment facility can be reduced.

このように、上述した都市ごみ焼却プラントの運転方法に於いては、エコノマイザ3の出口側の排ガスG温度を、従来の装置成り行きで決定される温度以上に変化させることによって、発電効率の向上を図れると共に、減温塔4に於いて必要な減温水量を噴霧しても、バグフィルタ5の入口に於ける排ガスGの温度を適切な温度に維持することができる。   Thus, in the operation method of the municipal waste incineration plant described above, the power generation efficiency can be improved by changing the exhaust gas G temperature on the outlet side of the economizer 3 to a temperature determined by the state of the conventional apparatus or more. In addition, the temperature of the exhaust gas G at the inlet of the bag filter 5 can be maintained at an appropriate temperature even if a necessary amount of water to be reduced is sprayed in the temperature reducing tower 4.

尚、上述した都市ごみ焼却プラントの運転方法に於いては、高質ごみ時及び基準ごみ時に脱気器13の圧力を下げるようにしたが、他の運転方法に於いては、ごみ発生頻度の高い基準ごみ時に高い発電出力を得るシステムとするために、基準ごみ時に脱気器13の圧力を下げ(例えば、017MPa)、高質ごみ時及び低質ごみ時に脱気器13の圧力を上げ(例えば、0.29MPa)、成り行き値以上にエコノマイザ3の出口側の排ガスG温度を高くする運転を行っても良い。   In the operation method of the municipal waste incineration plant described above, the pressure of the deaerator 13 is lowered at the time of high-quality waste and reference waste, but in other operation methods, the frequency of waste generation is reduced. In order to obtain a system for obtaining a high power generation output at the time of high standard waste, the pressure of the deaerator 13 is reduced (for example, 017 MPa) at the time of standard waste, and the pressure of the deaerator 13 is increased at the time of high quality waste and low quality waste (for example, , 0.29 MPa), the exhaust gas G temperature on the outlet side of the economizer 3 may be increased higher than the expected value.

この場合、基準ごみ時に高い発電出力を得ることができると共に、高質ごみ時に於いてボイラ2の吸収熱量が抑えられ、蒸気タービン10a等の蒸気系の機器の仕様を過大になり過ぎないように設計することができ、且つ低質ごみ時に必要なエコノマイザ3の出口側の排ガスG温度を実現することができる。   In this case, high power generation output can be obtained at the time of standard waste, and the amount of heat absorbed by the boiler 2 can be suppressed at the time of high-quality waste, so that the specifications of the steam system such as the steam turbine 10a are not excessively large. The exhaust gas G temperature on the outlet side of the economizer 3 that can be designed and is required for low-quality waste can be realized.

また、上述した都市ごみ焼却プラントの運転方法に於いては、脱気器13の運転指標をエコノマイザ3の出口側の排ガスG温度としたが、他の運転方法に於いては、減温塔4での減温水量を指標とした脱気器13の圧力操作を行っても良い。このとき、バグフィルタ5入口側の排ガスG温度が一定になるように制御する。   In the operation method of the municipal waste incineration plant described above, the operation index of the deaerator 13 is the exhaust gas G temperature on the outlet side of the economizer 3, but in the other operation methods, the temperature reducing tower 4 The pressure operation of the deaerator 13 may be performed by using the amount of dewarmed water at the index. At this time, the exhaust gas G temperature at the bag filter 5 inlet side is controlled to be constant.

例えば、減温塔4で使用する減温水量が所定量を下回る場合には、脱気器13の圧力を上げてエコノマイザ3へ供給されるボイラ給水Wの温度を上昇させ、エコノマイザ3での熱交換量を小さくする。
これにより、減温塔4に於いて排ガスGに必要な減温水量を噴霧しても、排ガスGの温度をバグフィルタ5での必要なガス温度を下回らないようにすることができる。
For example, when the amount of water to be reduced used in the temperature reducing tower 4 is less than a predetermined amount, the pressure of the deaerator 13 is increased to increase the temperature of the boiler feed water W supplied to the economizer 3, and the heat in the economizer 3 is increased. Reduce the exchange amount.
As a result, even if the temperature-reduced water amount required for the exhaust gas G is sprayed in the temperature reduction tower 4, the temperature of the exhaust gas G can be kept below the required gas temperature in the bag filter 5.

反対に減温塔4で使用する減温水量が所定量を上回る場合には、脱気器13の圧力を下げてエコノマイザ3へ供給されるボイラ給水Wの温度を低下させ、エコノマイザ3での熱交換量を大きくする。
これにより、エコノマイザ3の出口側の排ガスG温度が低下し、発電量を向上させることができる。
On the other hand, when the amount of water to be reduced used in the temperature reducing tower 4 exceeds a predetermined amount, the pressure of the deaerator 13 is lowered to lower the temperature of the boiler feed water W supplied to the economizer 3, and the heat in the economizer 3 is reduced. Increase the amount of exchange.
Thereby, the exhaust gas G temperature on the outlet side of the economizer 3 is lowered, and the power generation amount can be improved.

また、上述した都市ごみ焼却プラントの運転方法に於いては、エコノマイザ3の出口側の排ガスG温度又は減温塔4で使用する減温水量に基づいて脱気器13の圧力制御を行ってエコノマイザ3へ供給されるボイラ給水Wの温度を制御し、エコノマイザ3の出口側の排ガスG温度を変化させるようにしたが、他の運転方法に於いては、エコノマイザ3へ供給されるボイラ給水Wの温度を脱気器13の出口側に設けた給水加熱器6により制御し、エコノマイザ3の出口側の排ガスG温度を変化させるようにしても良い。
例えば、脱気器13の圧力を0.13MPa(このときの脱気器13出口のボイラ給水W温度は130℃)とし、エコノマイザ3へ供給されるボイラ給水Wの温度を130℃としたいときには、給水加熱器6での交換熱量をゼロ(加熱側の流入を止めることでボイラ給水W温度の上昇を防ぐ)とし、エコノマイザ3へ供給されるボイラ給水W温度を143℃としたいときには、給水加熱器6で加温するようにしても良い。
In the operation method of the municipal waste incineration plant described above, the economizer is controlled by controlling the pressure of the deaerator 13 based on the exhaust gas G temperature on the outlet side of the economizer 3 or the amount of the dewarmed water used in the temperature reducing tower 4. 3, the temperature of the exhaust gas G on the outlet side of the economizer 3 is changed to control the temperature of the boiler feed water W supplied to the economizer 3. However, in other operation methods, the boiler feed water W supplied to the economizer 3 The temperature may be controlled by the feed water heater 6 provided on the outlet side of the deaerator 13 to change the exhaust gas G temperature on the outlet side of the economizer 3.
For example, when the pressure of the deaerator 13 is 0.13 MPa (the boiler feed water W temperature at the outlet of the deaerator 13 at this time is 130 ° C.) and the temperature of the boiler feed water W supplied to the economizer 3 is 130 ° C., When the amount of heat exchanged at the feed water heater 6 is zero (to prevent the boiler feed water W temperature from rising by stopping the inflow on the heating side) and the boiler feed water W temperature supplied to the economizer 3 is 143 ° C., the feed water heater 6 may be used for heating.

即ち、上述した方法を実施する都市ごみ焼却プラントは、図2に示す如く、都市ごみを焼却する焼却炉1と、焼却炉1で発生した高温の排ガスGから熱を回収するボイラ2と、ボイラ2から排出された排ガスGの熱を更に回収するエコノマイザ3と、エコノマイザ3を通過した排ガスGに減温水(排水処理水)を噴霧して排ガスGを冷却する減温塔4と、排ガスG中の煤塵及び酸性ガスを除去するバグフィルタ5と、焼却炉1内の排ガスGを誘引する誘引通風機7と、クリーンになった排ガスGを大気中へ放出する煙突8と、ボイラ2からの蒸気により駆動されて発電する蒸気タービン10a及び発電機10bから成る発電設備10と、蒸気タービン10aから排出された排気蒸気S′を復水する復水器(図2では図示省略)と、復水器からの復水を貯留する復水タンク(図2では図示省略)と、復水タンクからの復水を加熱及び脱気処理してエコノマイザ3及びボイラ2へボイラ給水Wとして供給する脱気器13と、脱気器13とエコノマイザ3との間に設けられて脱気器13からエコノマイザ3へ供給されるボイラ給水Wの温度を制御する給水加熱器6等から構成されており、前記給水加熱器6を運転するに当たり、エコノマイザ3の出口側の排ガスG温度を指標とし、エコノマイザ3の出口側の排ガスG温度に基づいて給水加熱器6の運転操作を行ってエコノマイザ3へ供給されるボイラ給水Wの温度を制御し、エコノマイザ3の出口側の排ガスG温度を、従来の装置成り行きで決定される温度以上に変化させ、発電量の向上等を図るようにしたものである。
尚、給水加熱器6には、蒸気タービン10aからの抽気蒸気S″を用いてボイラ給水Wを加温するようにした構造の給水加熱器や還流エコノマイザ等が使用されている。
That is, the municipal waste incineration plant that implements the above-described method includes an incinerator 1 that incinerates municipal waste, a boiler 2 that recovers heat from the high-temperature exhaust gas G generated in the incinerator 1, and a boiler, as shown in FIG. An economizer 3 for further recovering the heat of the exhaust gas G discharged from 2, a temperature reducing tower 4 for spraying dehumidified water (waste water treatment water) onto the exhaust gas G that has passed through the economizer 3, and cooling the exhaust gas G; Bag filter 5 that removes soot and acid gas, an induction fan 7 that induces exhaust gas G in the incinerator 1, a chimney 8 that releases the exhaust gas G that has been cleaned into the atmosphere, and steam from the boiler 2 A power generation facility 10 composed of a steam turbine 10a and a generator 10b driven by a power generator, a condenser (not shown in FIG. 2) for condensing exhaust steam S ′ discharged from the steam turbine 10a, and a condenser From A condensate tank (not shown in FIG. 2) for storing condensate, a deaerator 13 for heating and degassing the condensate from the condensate tank and supplying it to the economizer 3 and the boiler 2 as boiler feed water W; The feed water heater 6 is provided between the deaerator 13 and the economizer 3 and controls the temperature of boiler feed water W supplied from the deaerator 13 to the economizer 3. In operation, the temperature of the boiler feed water W supplied to the economizer 3 by operating the feed water heater 6 based on the exhaust gas G temperature on the exit side of the economizer 3 based on the exhaust gas G temperature on the economizer 3 exit side. And the exhaust gas G temperature on the outlet side of the economizer 3 is changed to a temperature determined by the state of the conventional apparatus to improve the amount of power generation.
The feed water heater 6 uses a feed water heater, a reflux economizer, or the like having a structure in which the boiler feed water W is heated using the extracted steam S ″ from the steam turbine 10a.

上述した都市ごみ焼却プラントの運転に於いては、エコノマイザ3の出口側の排ガスG温度を温度検出器(図2では図示省略)により常時検出し、エコノマイザ3の出口側の排ガスG温度が所定の温度を下回る場合、給水加熱器6が自動制御されて給水加熱器6の交換熱量を大きくし、エコノマイザ3へ供給されるボイラ給水Wの温度を上昇させ、エコノマイザ3の熱交換に於ける対数平均温度差を低くする。このとき、脱気器13は、圧力を固定した状態で運転されている。
これにより、エコノマイザ3での熱交換量が小さくなり、エコノマイザ3の出口側の排ガスG温度を上昇させることができる。
その結果、減温塔4内で排ガスGに所定の減温水量を噴霧しても、排ガスGの温度をバグフィルタ5での必要なガス温度を下回らないようにすることができる。
In the operation of the above-mentioned municipal waste incineration plant, the exhaust gas G temperature on the outlet side of the economizer 3 is always detected by a temperature detector (not shown in FIG. 2), and the exhaust gas G temperature on the outlet side of the economizer 3 is predetermined. When the temperature falls below the temperature, the feed water heater 6 is automatically controlled to increase the exchange heat amount of the feed water heater 6, the temperature of the boiler feed water W supplied to the economizer 3 is increased, and the logarithmic average in the heat exchange of the economizer 3 Reduce the temperature difference. At this time, the deaerator 13 is operated with the pressure fixed.
Thereby, the amount of heat exchange in the economizer 3 is reduced, and the exhaust gas G temperature on the outlet side of the economizer 3 can be increased.
As a result, the temperature of the exhaust gas G can be prevented from falling below the required gas temperature in the bag filter 5 even if a predetermined amount of temperature-reduced water is sprayed on the exhaust gas G in the temperature reducing tower 4.

また、エコノマイザ3の出口側の排ガスG温度が所定の温度を上回る場合、給水加熱器6が自動制御されて給水加熱器6の交換熱量を小さく又はゼロとし、エコノマイザ3へ供給されるボイラ給水Wの温度を低下させ、エコノマイザ3の熱交換に於ける対数平均温度差を高くする。このとき、脱気器13は、圧力を固定した状態で運転されている。
これにより、排ガスGの熱がより多く回収されて発電出力を向上させることができる。
In addition, when the exhaust gas G temperature on the outlet side of the economizer 3 exceeds a predetermined temperature, the boiler feed water W supplied to the economizer 3 is automatically controlled by the feed water heater 6 to make the exchange heat amount of the feed water heater 6 small or zero. The logarithm average temperature difference in the heat exchange of the economizer 3 is increased. At this time, the deaerator 13 is operated with the pressure fixed.
Thereby, more heat of the exhaust gas G can be recovered and the power generation output can be improved.

尚、上述した都市ごみ焼却プラントの運転方法に於いては、給水加熱器6の運転指標をエコノマイザ3の出口側の排ガスG温度としたが、他の運転方法に於いては、減温塔4での減温水量を指標とした給水加熱器6の運転操作を行っても良い。このとき、バグフィルタ5入口側の排ガスG温度が一定になるように制御する。   In the operation method of the municipal waste incineration plant described above, the operation index of the feed water heater 6 is the exhaust gas G temperature on the outlet side of the economizer 3, but in other operation methods, the temperature reducing tower 4 The operation of the feed water heater 6 may be performed using the amount of the temperature-reduced water at the index. At this time, the exhaust gas G temperature at the bag filter 5 inlet side is controlled to be constant.

例えば、減温塔4で使用する減温水量が所定量を下回る場合には、給水加熱器6の交換熱量を大きくしてエコノマイザ3へ供給されるボイラ給水Wの温度を上昇させ、エコノマイザ3での熱交換量を小さくする。
これにより、減温塔4に於いて排ガスGに必要な減温水量を噴霧しても、排ガスGの温度をバグフィルタ5での必要なガス温度を下回らないようにすることができる。
For example, when the amount of water to be reduced used in the temperature reducing tower 4 is less than a predetermined amount, the exchange heat amount of the feed water heater 6 is increased to increase the temperature of the boiler feed water W supplied to the economizer 3, and the economizer 3 Reduce the amount of heat exchange.
As a result, even if the temperature-reduced water amount required for the exhaust gas G is sprayed in the temperature reduction tower 4, the temperature of the exhaust gas G can be kept below the required gas temperature in the bag filter 5.

反対に減温塔4で使用する減温水量が所定量を上回る場合には、給水加熱器6の交換熱量を小さくしてエコノマイザ3へ供給されるボイラ給水Wの温度を低下させ、エコノマイザ3での熱交換量を大きくする。
これにより、エコノマイザ3の出口側の排ガスG温度が低下し、発電量を向上させることができる。
On the other hand, when the amount of water to be reduced used in the temperature reducing tower 4 exceeds a predetermined amount, the temperature of the boiler feed water W supplied to the economizer 3 is lowered by reducing the exchange heat amount of the feed water heater 6, and the economizer 3 Increase the amount of heat exchange.
Thereby, the exhaust gas G temperature on the outlet side of the economizer 3 is lowered, and the power generation amount can be improved.

尚、上述した都市ごみ焼却プラントの各運転方法に於いては、脱気器13及び給水加熱器6の運転指標をエコノマイザ3の出口側の排ガスG温度又は減温塔4での減温水量としたが、他の運転方法に於いては、エコノマイザ3の出口側の排ガスG温度が推定される他の指標、例えば、ボイラ蒸発量、ごみ量、ごみ質等を用いた脱気器13の圧力操作や給水加熱器6の運転操作を行うようにしても良い。   In each operation method of the municipal waste incineration plant described above, the operation index of the deaerator 13 and the feed water heater 6 is defined as the exhaust gas G temperature at the outlet side of the economizer 3 or the amount of dewarmed water in the dewarming tower 4. However, in other operation methods, the pressure of the deaerator 13 using other indicators for estimating the exhaust gas G temperature on the outlet side of the economizer 3, for example, boiler evaporation amount, dust amount, dust quality, etc. You may make it perform operation and driving | operation operation of the feed water heater 6. FIG.

1は焼却炉、2はボイラ、3はエコノマイザ、4は減温塔、5はバグフィルタ、6は給水加熱器、10は発電設備、10aは蒸気タービン、10bは発電機、13は脱気器、14は温度検出器、Sは過熱蒸気、S′は排気蒸気、Wはボイラ給水。   1 is an incinerator, 2 is a boiler, 3 is an economizer, 4 is a temperature reducing tower, 5 is a bag filter, 6 is a feed water heater, 10 is a power generation facility, 10a is a steam turbine, 10b is a generator, and 13 is a deaerator. , 14 is a temperature detector, S is superheated steam, S 'is exhaust steam, and W is boiler feed water.

Claims (9)

都市ごみを焼却する焼却炉から排出された排ガスをボイラ、エコノマイザ、減温塔及びバグフィルタの順に通して排ガスの熱回収、排ガスの温度調整及び排ガスの浄化処理を行い、また、ボイラで発生した蒸気を蒸気タービン及び発電機から成る発電設備に導いて発電すると共に、蒸気タービンから排出された排気蒸気を凝縮して得られた復水をボイラ給水として脱気器により加熱及び脱気処理してからエコノマイザ及びボイラへ供給するようにした都市ごみ焼却プラントの運転方法に於いて、脱気器を運転するに当たり、エコノマイザの出口側の排ガス温度を指標とし、エコノマイザの出口側の排ガス温度に基づいて脱気器の圧力制御を行ってエコノマイザへ供給されるボイラ給水の温度を制御し、エコノマイザの出口側の排ガス温度を、従来の装置成り行きで決定される温度以上に変化させるようにしたことを特徴とする都市ごみ焼却プラントの運転方法。   The exhaust gas discharged from the incinerator that incinerates municipal waste is passed through the boiler, economizer, temperature reduction tower, and bag filter in this order to recover the heat of the exhaust gas, adjust the temperature of the exhaust gas, and purify the exhaust gas. The steam is led to a power generation facility consisting of a steam turbine and a generator to generate power, and the condensate obtained by condensing exhaust steam discharged from the steam turbine is heated and degassed by a deaerator as boiler feed water. In the operation method of the municipal waste incineration plant that supplies to the economizer and boiler, the exhaust gas temperature at the outlet side of the economizer is used as an index when operating the deaerator, and it is based on the exhaust gas temperature at the outlet side of the economizer. The pressure of the deaerator is controlled to control the boiler feed water temperature supplied to the economizer, and the exhaust gas temperature on the outlet side of the economizer The method of operating MSW incineration plant, characterized in that so as to vary over temperature determined by the come of the device consequences. 請求項1に記載の都市ごみ焼却プラントの運転方法に於いて、エコノマイザの出口側の排ガス温度を温度検出器により常時検出し、エコノマイザの出口側の排ガス温度が所定の温度を下回る場合には、脱気器の設定圧力を上げてエコノマイザへ供給されるボイラ給水の温度を上昇させてエコノマイザでの熱交換量を小さくし、また、エコノマイザの出口側の排ガス温度が所定の温度を上回る場合には、脱気器の設定圧力を下げてエコノマイザへ供給されるボイラ給水の温度を低下させてエコノマイザでの熱交換量を大きくするようにしたことを特徴とする都市ごみ焼却プラントの運転方法。   In the operation method of the municipal waste incineration plant according to claim 1, when the exhaust gas temperature on the outlet side of the economizer is always detected by a temperature detector, and the exhaust gas temperature on the outlet side of the economizer is lower than a predetermined temperature, When the set pressure of the deaerator is increased to raise the temperature of boiler feed water supplied to the economizer to reduce the amount of heat exchange in the economizer, and when the exhaust gas temperature on the economizer outlet side exceeds the specified temperature A method for operating a municipal waste incineration plant, characterized in that the set pressure of the deaerator is lowered to lower the temperature of boiler feed water supplied to the economizer to increase the amount of heat exchange in the economizer. 都市ごみを焼却する焼却炉から排出された排ガスをボイラ、エコノマイザ、減温塔及びバグフィルタの順に通して排ガスの熱回収、排ガスの温度調整及び排ガスの浄化処理を行い、また、ボイラで発生した蒸気を蒸気タービン及び発電機から成る発電設備に導いて発電すると共に、蒸気タービンから排出された排気蒸気を凝縮して得られた復水をボイラ給水として脱気器により加熱及び脱気処理してからエコノマイザ及びボイラへ供給するようにした都市ごみ焼却プラントの運転方法に於いて、脱気器を運転するに当たり、減温塔で使用する減温水量を指標とし、減温塔で使用する減温水量に基づいて脱気器の圧力制御を行ってエコノマイザへ供給されるボイラ給水の温度を制御し、エコノマイザの出口側の排ガス温度を、従来の装置成り行きで決定される温度以上に変化させるようにしたことを特徴とする都市ごみ焼却プラントの運転方法。   The exhaust gas discharged from the incinerator that incinerates municipal waste is passed through the boiler, economizer, temperature reduction tower, and bag filter in this order to recover the heat of the exhaust gas, adjust the temperature of the exhaust gas, and purify the exhaust gas. The steam is led to a power generation facility consisting of a steam turbine and a generator to generate power, and the condensate obtained by condensing exhaust steam discharged from the steam turbine is heated and degassed by a deaerator as boiler feed water. In the operation method of the municipal waste incineration plant that supplies to the economizer and the boiler from the operation, when operating the deaerator, the amount of water used in the temperature reduction tower is used as an index, and the temperature reduction water used in the temperature reduction tower The pressure of the deaerator is controlled based on the amount to control the temperature of boiler feed water supplied to the economizer, and the exhaust gas temperature at the outlet side of the economizer The method of operating MSW incineration plant, characterized in that in the so varied over temperature determined. 請求項3に記載の都市ごみ焼却プラントの運転方法に於いて、減温塔で使用する減温水量が所定量を下回る場合には、脱気器の設定圧力を上げてエコノマイザへ供給されるボイラ給水の温度を上昇させてエコノマイザでの熱交換量を小さくし、また、減温塔で使用する減温水量が所定量を上回る場合には、脱気器の設定圧力を下げてエコノマイザへ供給されるボイラ給水の温度を低下させてエコノマイザでの熱交換量を大きくするようにしたことを特徴とする都市ごみ焼却プラントの運転方法。   In the operation method of the municipal waste incineration plant according to claim 3, when the amount of water to be reduced used in the temperature reduction tower is lower than a predetermined amount, the boiler supplied to the economizer by raising the set pressure of the deaerator If the temperature of the water supply is raised to reduce the amount of heat exchange in the economizer, and if the amount of dewarmed water used in the temperature-decreasing tower exceeds the specified amount, the set pressure of the deaerator is lowered and supplied to the economizer. The operation method of the municipal waste incineration plant characterized in that the heat exchange amount in the economizer is increased by lowering the temperature of the boiler feed water. 都市ごみを焼却する焼却炉から排出された排ガスをボイラ、エコノマイザ、減温塔及びバグフィルタの順に通して排ガスの熱回収、排ガスの温度調整及び排ガスの浄化処理を行い、また、ボイラで発生した蒸気を蒸気タービン及び発電機から成る発電設備に導いて発電すると共に、蒸気タービンから排出された排気蒸気を凝縮して得られた復水をボイラ給水として脱気器により加熱及び脱気処理した後、当該ボイラ給水を脱気器の出口側に設けた給水加熱器により温度制御してからエコノマイザ及びボイラへ供給するようにした都市ごみ焼却プラントの運転方法に於いて、給水加熱器を運転するに当たり、エコノマイザの出口側の排ガス温度を指標とし、エコノマイザの出口側の排ガス温度に基づいて給水加熱器の運転操作を行ってエコノマイザへ供給されるボイラ給水の温度を制御し、エコノマイザの出口側の排ガス温度を、従来の装置成り行きで決定される温度以上に変化させるようにしたことを特徴とする都市ごみ焼却プラントの運転方法。   The exhaust gas discharged from the incinerator that incinerates municipal waste is passed through the boiler, economizer, temperature reduction tower, and bag filter in this order to recover the heat of the exhaust gas, adjust the temperature of the exhaust gas, and purify the exhaust gas. After the steam is led to a power generation facility consisting of a steam turbine and a generator to generate electric power, and the condensed water obtained by condensing the exhaust steam discharged from the steam turbine is heated and degassed by a deaerator as boiler feed water In the operation method of the municipal waste incineration plant in which the temperature of the boiler feed water is controlled by the feed water heater provided on the outlet side of the deaerator and then supplied to the economizer and the boiler, the feed water heater is operated. Using the exhaust gas temperature at the outlet side of the economizer as an index, the economizer is operated by operating the feed water heater based on the exhaust gas temperature at the outlet side of the economizer The operation method of the municipal waste incineration plant, characterized in that the temperature of the boiler feed water supplied to the engine is controlled so that the exhaust gas temperature on the exit side of the economizer is changed to a temperature determined by the behavior of the conventional equipment or more. . 請求項5に記載の都市ごみ焼却プラントの運転方法に於いて、エコノマイザの出口側の排ガス温度を温度検出器により常時検出し、エコノマイザの出口側の排ガス温度が所定の温度を下回る場合には、給水加熱器の交換熱量を大きくしてエコノマイザへ供給されるボイラ給水の温度を上昇させてエコノマイザでの熱交換量を小さくし、また、エコノマイザの出口側の排ガス温度が所定の温度を上回る場合には、給水加熱器の交換熱量を小さく又はゼロとしてエコノマイザへ供給されるボイラ給水の温度を低下させてエコノマイザでの熱交換量を大きくするようにしたことを特徴とする都市ごみ焼却プラントの運転方法。   In the operation method of the municipal waste incineration plant according to claim 5, when the exhaust gas temperature on the outlet side of the economizer is always detected by a temperature detector, and the exhaust gas temperature on the outlet side of the economizer is lower than a predetermined temperature, When the exchange heat quantity of the feed water heater is increased to increase the boiler feed water temperature supplied to the economizer to reduce the heat exchange quantity at the economizer, and the exhaust gas temperature on the economizer outlet side exceeds the specified temperature The operation method of the municipal waste incineration plant characterized in that the heat exchange amount in the economizer is increased by reducing the temperature of boiler feed water supplied to the economizer with the exchange heat amount of the feed water heater being reduced or reduced to zero. . 都市ごみを焼却する焼却炉から排出された排ガスをボイラ、エコノマイザ、減温塔及びバグフィルタの順に通して排ガスの熱回収、排ガスの温度調整及び排ガスの浄化処理を行い、また、ボイラで発生した蒸気を蒸気タービン及び発電機から成る発電設備に導いて発電すると共に、蒸気タービンから排出された排気蒸気を凝縮して得られた復水をボイラ給水として脱気器により加熱及び脱気処理した後、当該ボイラ給水を脱気器の出口側に設けた給水加熱器により温度制御してからエコノマイザ及びボイラへ供給するようにした都市ごみ焼却プラントの運転方法に於いて、給水加熱器を運転するに当たり、減温塔で使用する減温水量を指標とし、減温塔で使用する減温水量に基づいて給水加熱器の運転操作を行ってエコノマイザへ供給されるボイラ給水の温度を制御し、エコノマイザの出口側の排ガス温度を、従来の装置成り行きで決定される温度以上に変化させるようにしたことを特徴とする都市ごみ焼却プラントの運転方法。   The exhaust gas discharged from the incinerator that incinerates municipal waste is passed through the boiler, economizer, temperature reduction tower, and bag filter in this order to recover the heat of the exhaust gas, adjust the temperature of the exhaust gas, and purify the exhaust gas. After the steam is led to a power generation facility consisting of a steam turbine and a generator to generate electric power, and the condensed water obtained by condensing the exhaust steam discharged from the steam turbine is heated and degassed by a deaerator as boiler feed water In the operation method of the municipal waste incineration plant in which the temperature of the boiler feed water is controlled by the feed water heater provided on the outlet side of the deaerator and then supplied to the economizer and the boiler, the feed water heater is operated. The amount of water used in the temperature reduction tower is used as an index, and the water heater is operated based on the amount of water used in the temperature reduction tower and supplied to the economizer. Ira feed water to control the temperature, the exhaust gas temperature at the outlet side of the economizer, the method of operating MSW incineration plant, characterized in that so as to vary over temperature determined by the conventional apparatus consequences. 請求項7に記載の都市ごみ焼却プラントの運転方法に於いて、減温塔で使用する減温水量が所定量を下回る場合には、給水加熱器の交換熱量を大きくしてエコノマイザへ供給されるボイラ給水の温度を上昇させてエコノマイザでの熱交換量を小さくし、また、減温塔で使用する減温水量が所定量を上回る場合には、給水加熱器の交換熱量を小さくしてエコノマイザへ供給されるボイラ給水の温度を低下させてエコノマイザでの熱交換量を大きくするようにしたことを特徴とする都市ごみ焼却プラントの運転方法。   In the operation method of the municipal waste incineration plant according to claim 7, when the amount of water to be reduced used in the temperature reduction tower is lower than a predetermined amount, the exchange heat amount of the feed water heater is increased and supplied to the economizer. Increase the boiler feed water temperature to reduce the amount of heat exchange in the economizer, and if the amount of dewarmed water used in the temperature reduction tower exceeds the specified amount, reduce the amount of heat exchanged in the water heater to the economizer. A method of operating a municipal waste incineration plant, characterized in that the temperature of boiler feed water supplied is lowered to increase the amount of heat exchange in the economizer. 請求項1、請求項2、請求項3、請求項4、請求項5、請求項6、請求項7又は請求項8に記載の都市ごみ焼却プラントの運転方法に於いて、減温塔で噴霧する減温水に都市ごみ焼却プラントから出る排水を処理した排水処理水を使用し、排水処理水の全部を減温塔で使用して排水処理水をプラント外へ排出しないようにした排水クローズド条件を採用したことを特徴とする都市ごみ焼却プラントの運転方法。   A method for operating a municipal waste incineration plant according to claim 1, claim 2, claim 3, claim 4, claim 5, claim 6, claim 7 or claim 8, wherein said spraying is performed in a temperature reducing tower. The wastewater treatment conditions are such that the wastewater treated from the municipal waste incineration plant is used as the dewarmed water, and all the wastewater treated water is used in the temperature reduction tower so that the wastewater treated water is not discharged outside the plant. A method of operating a municipal waste incineration plant, characterized by adoption.
JP2010155906A 2010-07-08 2010-07-08 Operation method of municipal waste incineration plant Active JP5787303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010155906A JP5787303B2 (en) 2010-07-08 2010-07-08 Operation method of municipal waste incineration plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010155906A JP5787303B2 (en) 2010-07-08 2010-07-08 Operation method of municipal waste incineration plant

Publications (2)

Publication Number Publication Date
JP2012017923A true JP2012017923A (en) 2012-01-26
JP5787303B2 JP5787303B2 (en) 2015-09-30

Family

ID=45603311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010155906A Active JP5787303B2 (en) 2010-07-08 2010-07-08 Operation method of municipal waste incineration plant

Country Status (1)

Country Link
JP (1) JP5787303B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013102A (en) * 2012-07-04 2014-01-23 Takuma Co Ltd Device and method for treating combustion exhaust gas in refuse incineration treatment facility
CN105464727A (en) * 2015-12-31 2016-04-06 重庆科技学院 Boiler power generation system utilizing rubbish gasification and incineration synthesis gas
JP6241525B1 (en) * 2016-09-16 2017-12-06 栗田工業株式会社 Wastewater recovery method and apparatus for incineration plant adopting wastewater closed system
CN109351754A (en) * 2018-10-29 2019-02-19 广东天源环境科技有限公司 A kind of method and solid waste treatment system of solid waste processing
CZ308268B6 (en) * 2019-04-11 2020-04-01 Vysoká Škola Báňská-Technická Univerzita Ostrava Steam boiler for combusting waste
JP7137244B1 (en) 2021-03-24 2022-09-14 株式会社プランテック Exhaust heat recovery system and exhaust heat recovery method for waste treatment facility

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224201A (en) * 1982-06-23 1983-12-26 三井造船株式会社 Waste-heat recovery device
JPS61107006A (en) * 1984-10-25 1986-05-24 ウエスチングハウス エレクトリック コ−ポレ−ション Suction lift predicting controller for boiler feed pump
JPH08166105A (en) * 1994-12-12 1996-06-25 Kubota Corp Deaeration structure
JP2002206701A (en) * 2001-01-04 2002-07-26 Babcock Hitachi Kk Exhaust gas heat recovering device and method
JP2009162452A (en) * 2008-01-09 2009-07-23 Takuma Co Ltd Operating method for waste disposal facility with power generation facility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58224201A (en) * 1982-06-23 1983-12-26 三井造船株式会社 Waste-heat recovery device
JPS61107006A (en) * 1984-10-25 1986-05-24 ウエスチングハウス エレクトリック コ−ポレ−ション Suction lift predicting controller for boiler feed pump
JPH08166105A (en) * 1994-12-12 1996-06-25 Kubota Corp Deaeration structure
JP2002206701A (en) * 2001-01-04 2002-07-26 Babcock Hitachi Kk Exhaust gas heat recovering device and method
JP2009162452A (en) * 2008-01-09 2009-07-23 Takuma Co Ltd Operating method for waste disposal facility with power generation facility

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013102A (en) * 2012-07-04 2014-01-23 Takuma Co Ltd Device and method for treating combustion exhaust gas in refuse incineration treatment facility
CN105464727A (en) * 2015-12-31 2016-04-06 重庆科技学院 Boiler power generation system utilizing rubbish gasification and incineration synthesis gas
JP6241525B1 (en) * 2016-09-16 2017-12-06 栗田工業株式会社 Wastewater recovery method and apparatus for incineration plant adopting wastewater closed system
JP2018043218A (en) * 2016-09-16 2018-03-22 栗田工業株式会社 Waste water recovery method and device of incineration plant adopting waste water closed system
CN109351754A (en) * 2018-10-29 2019-02-19 广东天源环境科技有限公司 A kind of method and solid waste treatment system of solid waste processing
CZ308268B6 (en) * 2019-04-11 2020-04-01 Vysoká Škola Báňská-Technická Univerzita Ostrava Steam boiler for combusting waste
JP7137244B1 (en) 2021-03-24 2022-09-14 株式会社プランテック Exhaust heat recovery system and exhaust heat recovery method for waste treatment facility
JP2022147907A (en) * 2021-03-24 2022-10-06 株式会社プランテック Exhaust heat recovery system and exhaust heat recovery method for waste treatment facility

Also Published As

Publication number Publication date
JP5787303B2 (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5787303B2 (en) Operation method of municipal waste incineration plant
JP6034154B2 (en) Waste heat recovery equipment, waste heat recovery method and waste treatment furnace
JP5457880B2 (en) Waste heat power generation method and waste heat power generation system
JP5769066B2 (en) Heat recovery system from incinerator exhaust gas
JP6487513B2 (en) Waste treatment facility
WO2017110848A1 (en) Waste heat power generation system
JP6301676B2 (en) Waste treatment facility
JP5060313B2 (en) Operation method of waste treatment facility with power generation equipment
JPH09203305A (en) Power generating system utilizing waste incinerating heat
JP5995685B2 (en) Waste heat recovery equipment
JP2012189297A (en) Boiler equipment and control method for outlet gas temperature therefor
JP5142817B2 (en) Operation method of condensate system in steam power plant
JP6552762B1 (en) Combined plant and excess heat recovery method for combined plant
JP6103347B2 (en) Boiler forced cooling method after fire extinguishing of boiler in power generation equipment
JP2017155613A (en) Trash power generating system
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP4823998B2 (en) Waste power generation method
KR20200145132A (en) Recovery of vacuum-circulated condensate in closed circuit and boiler water supply system
JP6564427B2 (en) Operation method of once-through boiler in refuse incinerator and power generation system using the same
JP5807903B2 (en) Heat recovery utilization method and heat recovery utilization system of intermittent operation type waste incineration facility
KR102139099B1 (en) Apparatus for reducing white smoke of cooling tower and method for reducing white smoke of tower using the same
JP2769271B2 (en) Garbage incineration equipment
CN116592354A (en) Urban household garbage power generation system and operation method
JP3218175B2 (en) Exhaust gas treatment equipment
JP2002081613A (en) Condensate recovering mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140722

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150206

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150722

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150722

R150 Certificate of patent or registration of utility model

Ref document number: 5787303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250