JP2012017889A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2012017889A
JP2012017889A JP2010154518A JP2010154518A JP2012017889A JP 2012017889 A JP2012017889 A JP 2012017889A JP 2010154518 A JP2010154518 A JP 2010154518A JP 2010154518 A JP2010154518 A JP 2010154518A JP 2012017889 A JP2012017889 A JP 2012017889A
Authority
JP
Japan
Prior art keywords
temperature
expansion valve
air
control
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010154518A
Other languages
Japanese (ja)
Other versions
JP5333365B2 (en
Inventor
Meiji Kojima
明治 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2010154518A priority Critical patent/JP5333365B2/en
Publication of JP2012017889A publication Critical patent/JP2012017889A/en
Application granted granted Critical
Publication of JP5333365B2 publication Critical patent/JP5333365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner suppressing an interference of control over latent heat capacity with control over sensible heat capacity and achieving correct control over temperature and humidity.SOLUTION: This air conditioner 1 includes: a refrigerant circuit 100 connected with a compressor 110, an outdoor heat exchanger 120, an outdoor expansion valve 130, a first indoor expansion valve 140, and a first indoor heat exchanging section 150a; a bypass pipe 200 bypassing the outdoor heat exchanger 120 and outdoor expansion valve 130 and provided with a second indoor heat exchanging section 150b and a second indoor expansion valve 210 in the middle thereof; and a controller 300. The controller 300 performs dehumidification control for controlling the rotational speed of the compressor based on a target evaporation temperature which is set based on a difference between the humidity in an air-conditioned room and the target humidity and which is the target value of the evaporation temperature of a refrigerant passing through the first indoor heat exchanging section 150a, and performs temperature control for controlling the opening of each of the outdoor expansion valve and second indoor expansion valve based on a difference between temperature in the air-conditioned room and the target temperature.

Description

本発明は、再熱除湿運転が可能な空気調和機に関する。   The present invention relates to an air conditioner capable of reheat dehumidification operation.

再熱除湿運転が可能な空気調和機では、室内熱交換器は、再熱除湿運転時に蒸発器として機能する第1室内熱交換部と、再熱器として機能する第2室内熱交換部とから構成されている。図15に再熱除湿運転が可能な従来の空気調和機8の一例を示す。空気調和機8は、圧縮機110、室外熱交換器120、室外膨張弁130、第2室内膨張弁170、室内熱交換器150の第2室内熱交換部150b、第1室内膨張弁140、および室内熱交換器150の第1室内熱交換部150aが、冷媒配管で接続された回路内を冷媒が循環する冷媒回路101を備えている。   In an air conditioner capable of reheat dehumidification operation, the indoor heat exchanger includes a first indoor heat exchange unit that functions as an evaporator and a second indoor heat exchange unit that functions as a reheater during the reheat dehumidification operation. It is configured. FIG. 15 shows an example of a conventional air conditioner 8 capable of reheat dehumidification operation. The air conditioner 8 includes a compressor 110, an outdoor heat exchanger 120, an outdoor expansion valve 130, a second indoor expansion valve 170, a second indoor heat exchange unit 150b of the indoor heat exchanger 150, a first indoor expansion valve 140, and The 1st indoor heat exchange part 150a of the indoor heat exchanger 150 is provided with the refrigerant circuit 101 through which a refrigerant circulates in the circuit connected by refrigerant | coolant piping.

圧縮機110から吐出された高圧の冷媒蒸気は、四方切替弁160によって流路が切替えられる。すなわち、冷房運転時や再熱除湿運転時には、実線で示すように室外熱交換器120に導かれ、暖房運転時には、破線で示すように室内熱交換器150の第1室内熱交換部150aに導かれる。   The flow path of the high-pressure refrigerant vapor discharged from the compressor 110 is switched by the four-way switching valve 160. That is, during cooling operation or reheat dehumidification operation, it is led to the outdoor heat exchanger 120 as shown by a solid line, and during heating operation, it is led to the first indoor heat exchanger 150a of the indoor heat exchanger 150 as shown by a broken line. It is burned.

図16は、図15に示す空気調和機8の再熱除湿運転時の冷凍サイクルを示すモリエル線図(圧力−エンタルピ線図)である。再熱除湿運転時には、室外熱交換器120と第2室内熱交換部150bとが凝縮器として機能し、凝縮能力は、室外熱交換器120で放出する熱量Qcと、第2室内熱交換部150bで放出する熱量Qrとの和となる。すなわち、再熱能力Qrは、凝縮能力全体の一部に限定されることになるから、例えば、冷房負荷が小さく、かつ、除湿が必要な場合等、運転条件によっては再熱能力が不足することになる。   FIG. 16 is a Mollier diagram (pressure-enthalpy diagram) showing a refrigeration cycle during the reheat dehumidifying operation of the air conditioner 8 shown in FIG. During the reheat dehumidifying operation, the outdoor heat exchanger 120 and the second indoor heat exchange unit 150b function as a condenser, and the condensing capacity is the amount of heat Qc released by the outdoor heat exchanger 120 and the second indoor heat exchange unit 150b. It is the sum of the amount of heat Qr released at. That is, since the reheat capacity Qr is limited to a part of the entire condensation capacity, for example, when the cooling load is small and dehumidification is necessary, the reheat capacity may be insufficient depending on the operation conditions. become.

図17は、図15に示す空気調和機8の再熱除湿運転時に、再熱能力が不足している状態を説明するための湿り空気線図である。設定温度Ts、設定相対湿度Hsにおける制御目標を点0で示す。空気調和が行われる前の吸込空気の温度および湿度を点1で示す。吸込空気の温度とTsとの差、すなわち冷房負荷が殆どなく、かつHsよりも吸込空気の湿度が大きい、すなわち除湿が必要な場合を図17は示している。   FIG. 17 is a moist air diagram for explaining a state in which the reheat capability is insufficient during the reheat dehumidifying operation of the air conditioner 8 shown in FIG. 15. A control target at the set temperature Ts and the set relative humidity Hs is indicated by a point 0. The temperature and humidity of the intake air before air conditioning is performed are indicated by point 1. FIG. 17 shows a case where the difference between the temperature of the intake air and Ts, that is, there is almost no cooling load, and the humidity of the intake air is higher than Hs, that is, dehumidification is required.

第1室内熱交換部150aの蒸発能力をQe1に抑えて、前記吸込空気の温度を第2室内熱交換部150bの能力Qr1の範囲内で冷却する場合、該吸込空気は飽和空気線の右側の点2、すなわち露点温度よりも高い温度までしか冷却されないので、該吸込空気を除湿することができない。吹出空気は、第2室内熱交換部150bの能力Qr1だけ加温され、さらに室内温度負荷Qa1によって温度上昇するが、空気調和後の吹出し空気の湿度は点1で変わらないことになる。   When the evaporation capacity of the first indoor heat exchange unit 150a is suppressed to Qe1 and the temperature of the intake air is cooled within the range of the capacity Qr1 of the second indoor heat exchange unit 150b, the intake air is on the right side of the saturated air line. Since it is cooled only to the point 2, that is, the temperature higher than the dew point temperature, the intake air cannot be dehumidified. The blown air is heated by the capacity Qr1 of the second indoor heat exchange unit 150b, and further rises in temperature due to the indoor temperature load Qa1, but the humidity of the blown air after air conditioning does not change at point 1.

一方、除湿を優先して、第1室内熱交換部150aの蒸発能力をQe2まで発揮させて前記吸込空気を飽和空気線上の点2’まで冷却した場合、第2室内熱交換部150bの能力Qr2のみでは再熱能力が不足するので、室内温度負荷Qa2による温度上昇を加算しても目標ポイントである点0まで加温することはできない。この場合は、室温が設定温度Tsよりも低下し続けることになるので、最終的には、圧縮機110を停止させて(サーモオフ)、冷凍サイクルを止める必要がある。   On the other hand, when the dehumidification is prioritized and the evaporation capacity of the first indoor heat exchange unit 150a is exhibited to Qe2 to cool the intake air to the point 2 ′ on the saturated air line, the capacity Qr2 of the second indoor heat exchange unit 150b. Since the reheating capability is insufficient only by heating alone, even if the temperature rise due to the indoor temperature load Qa2 is added, it cannot be heated to the point 0 which is the target point. In this case, since the room temperature continues to decrease below the set temperature Ts, it is necessary to finally stop the compressor 110 (thermo off) and stop the refrigeration cycle.

さらに、現地配管が長い場合には、図16に破線で示すように、室外熱交換器120から室内第1室内膨張弁140に到達するまでの間に、圧力損失ΔPが生じる。そのため、再熱器の能力はQrからQr’へと低下する(当該能力低下量をΔQで示す)。したがって、圧力損失ΔPが発生しない場合と比較して、より大きな冷房負荷でも再熱能力が不足することになる。   Furthermore, when the local piping is long, as indicated by a broken line in FIG. 16, a pressure loss ΔP occurs before reaching the indoor first indoor expansion valve 140 from the outdoor heat exchanger 120. Therefore, the capacity of the reheater decreases from Qr to Qr ′ (the capacity decrease amount is indicated by ΔQ). Therefore, compared with the case where the pressure loss ΔP does not occur, the reheating capability is insufficient even with a larger cooling load.

このような従来の空気調和機の問題点を解決するため、冷媒回路101を循環する冷媒が、室外熱交換器120と室外膨張弁130とをバイパスすることを可能にするバイパス配管202を、室外機38内部に設けた空気調和機9が知られている(特許文献1参照)。図18は、特許文献1に記載の空気調和機9を模式的に示す図である。バイパス配管202の途中には、第2室外膨張弁220が設けられ、第2室外膨張弁220の開度を調節することで、室外熱交換器120へ流入する冷媒と、室外熱交換器120をバイパスして第2室内熱交換部150bに流入する冷媒との割合が調節される。   In order to solve such a problem of the conventional air conditioner, a bypass pipe 202 that allows the refrigerant circulating in the refrigerant circuit 101 to bypass the outdoor heat exchanger 120 and the outdoor expansion valve 130 is provided as an outdoor unit. An air conditioner 9 provided inside the machine 38 is known (see Patent Document 1). FIG. 18 is a diagram schematically showing the air conditioner 9 described in Patent Document 1. As shown in FIG. In the middle of the bypass pipe 202, a second outdoor expansion valve 220 is provided. By adjusting the opening degree of the second outdoor expansion valve 220, the refrigerant flowing into the outdoor heat exchanger 120 and the outdoor heat exchanger 120 are connected. The ratio of the refrigerant that bypasses and flows into the second indoor heat exchange unit 150b is adjusted.

図19は、図18に示す空気調和機9が再熱除湿運転時の冷凍サイクルを示すモリエル線図である。再熱除湿運転時に、室外熱交換器120と第2室内熱交換部150bとが、凝縮器として機能し、凝縮能力は、室外熱交換器120で放出する熱量Qcと、第2室内熱交換部150bで放出する熱量Qrとの和となる点では図16に示す空気調和機8と同じである。しかし、室外熱交換器120へ流入する冷媒と、室外熱交換器120をバイパスしてバイパス配管202に流入する冷媒との割合は調節可能なので、QcとQrとの比率は任意の割合で変更することができる。凝縮能力のすべてを再熱能力Qrとすることも可能である。冷凍サイクルにおいて、凝縮能力は蒸発能力よりも大きいので、蒸発能力Qeに応じた再熱能力Qrを得ることができる。   FIG. 19 is a Mollier diagram showing a refrigeration cycle when the air conditioner 9 shown in FIG. 18 is in a reheat dehumidifying operation. During the reheat dehumidifying operation, the outdoor heat exchanger 120 and the second indoor heat exchanger 150b function as a condenser, and the condensing capacity is the amount of heat Qc released by the outdoor heat exchanger 120 and the second indoor heat exchanger. It is the same as the air conditioner 8 shown in FIG. 16 in that it is the sum of the amount of heat Qr released at 150b. However, since the ratio between the refrigerant flowing into the outdoor heat exchanger 120 and the refrigerant bypassing the outdoor heat exchanger 120 and flowing into the bypass pipe 202 is adjustable, the ratio between Qc and Qr is changed at an arbitrary ratio. be able to. It is also possible to make all of the condensation capacity the reheat capacity Qr. In the refrigeration cycle, the condensing capacity is larger than the evaporating capacity, so that the reheating capacity Qr corresponding to the evaporating capacity Qe can be obtained.

図20は、図18に示す空気調和機9の再熱除湿運転時に、蒸発能力に応じた再熱能力が得られるため、除湿と温度制御とがともに可能となっていることを説明するための湿り空気線図である。設定温度Ts、設定相対湿度Hsにおける制御目標を点0で示す。空気調和が行われる前の吸込空気の温度および湿度を点1で示す。吸込空気の温度とTsとの差、すなわち冷房負荷が殆どなく、かつHsよりも吸込空気の湿度が大きい、すなわち除湿が必要な場合を示していることは、図17と同様である。   FIG. 20 is a diagram for explaining that both dehumidification and temperature control are possible because the reheat capability according to the evaporation capability is obtained during the reheat dehumidifying operation of the air conditioner 9 shown in FIG. It is a wet air diagram. A control target at the set temperature Ts and the set relative humidity Hs is indicated by a point 0. The temperature and humidity of the intake air before air conditioning is performed are indicated by point 1. The difference between the temperature of the intake air and Ts, that is, there is almost no cooling load, and the humidity of the intake air is higher than Hs, that is, the case where dehumidification is necessary is the same as in FIG.

除湿のために前記吸込空気を飽和空気線上の点2まで冷却した場合、第2室内熱交換部150bの能力Qr1によって、室内温度負荷Qa相当分を減じた点3まで温度を上昇させることができる。そして、室内温度負荷Qaによって設定温度Tsまで吹出し空気の温度が上昇する。このように、空気調和機9の構成を採用することで、冷房負荷(顕熱負荷)が殆どなくても、除湿が可能となる。   When the intake air is cooled to the point 2 on the saturated air line for dehumidification, the temperature can be raised to the point 3 where the amount corresponding to the indoor temperature load Qa is reduced by the capacity Qr1 of the second indoor heat exchange unit 150b. . And the temperature of blowing air rises to preset temperature Ts with room temperature load Qa. Thus, by adopting the configuration of the air conditioner 9, dehumidification is possible even when there is almost no cooling load (sensible heat load).

特開平7−294059号公報Japanese Patent Laid-Open No. 7-294059

顕熱能力を増減させることで温度制御がなされ、潜熱能力を増減させることで湿度制御がなされる。圧縮機110の回転数や第1室内膨張弁140(蒸発器電動弁)の開度、第2室外膨張弁220(室外機電動弁)の開度等が、再熱除湿運転時の温度制御と湿度制御とに係わる制御因子となる。   Temperature control is performed by increasing or decreasing the sensible heat capacity, and humidity control is performed by increasing or decreasing the latent heat capacity. The rotational speed of the compressor 110, the opening degree of the first indoor expansion valve 140 (evaporator motorized valve), the opening degree of the second outdoor expansion valve 220 (outdoor motor motorized valve), etc. It becomes a control factor related to humidity control.

図21は、圧縮機110の回転数および第1室内膨張弁140(蒸発器電動弁)の開度と、顕熱能力および潜熱能力との関係を示す図である。圧縮機110の回転数が大きくなると、冷媒回路101内の冷媒循環量が増加し、第1室内熱交換部150a(蒸発器)内部の圧力は低下して蒸発温度が下がるので、顕熱能力と潜熱能力とはともに大きくなる。第1室内膨張弁140(蒸発器電動弁)の開度が大きくなると、蒸発器内の冷媒循環量が増加するので顕熱能力は増加するが、第1室内熱交換部150a(蒸発器)内の冷媒の圧力が増加して蒸発温度が上昇するので、潜熱能力は低下する。   FIG. 21 is a diagram showing the relationship between the rotation speed of the compressor 110 and the opening of the first indoor expansion valve 140 (evaporator motor-operated valve), and the sensible heat capacity and latent heat capacity. As the rotational speed of the compressor 110 increases, the amount of refrigerant circulating in the refrigerant circuit 101 increases, the pressure inside the first indoor heat exchange unit 150a (evaporator) decreases and the evaporation temperature decreases, Both latent heat capacity increases. When the opening degree of the first indoor expansion valve 140 (evaporator motorized valve) increases, the amount of refrigerant circulating in the evaporator increases, so that the sensible heat capacity increases, but in the first indoor heat exchanger 150a (evaporator). Since the refrigerant pressure increases and the evaporation temperature rises, the latent heat capacity decreases.

図22は、第2室外膨張弁220(室外機電動弁)の開度と顕熱能力および潜熱能力との関係を示す図である。第2室外膨張弁220(室外機電動弁)の開度を大きくすると、室外熱交換器120に流入する冷媒量が減少し、第2室内熱交換部150b(再熱器)に流入する冷媒量が増加するので、顕熱能力が低下し、潜熱能力が増加する。   FIG. 22 is a diagram illustrating the relationship between the opening degree of the second outdoor expansion valve 220 (outdoor unit motor-operated valve), the sensible heat capacity, and the latent heat capacity. When the opening degree of the second outdoor expansion valve 220 (outdoor unit motor operated valve) is increased, the amount of refrigerant flowing into the outdoor heat exchanger 120 decreases, and the amount of refrigerant flowing into the second indoor heat exchanger 150b (reheater). Increases, the sensible heat capacity decreases and the latent heat capacity increases.

図20に示すような、吸込温度と設定温度との差が小さく顕熱負荷が小さい場合に、吸込湿度と設定湿度との差が大きく除湿が必要なときの制御の一例を以下に示す。まず、潜熱能力を増加させるために圧縮機110の回転数が増やされる。圧縮機110の回転数の上昇に伴い、顕熱能力も増加するので、顕熱能力を低下させるために第1室内膨張弁140(蒸発器電動弁)の開度が減じられる。さらに、第2室外膨張弁220(室外機電動弁)の開度を大きくして、室外熱交換器120への冷媒流量を減らし、凝縮能力Qcを減少させ、第2室内熱交換部150bへの冷媒流量を増加させて再熱能力Qrを増加させる。   An example of control when the difference between the suction humidity and the set humidity is large and dehumidification is required when the difference between the suction temperature and the set temperature is small and the sensible heat load is small as shown in FIG. First, the rotational speed of the compressor 110 is increased to increase the latent heat capability. As the rotational speed of the compressor 110 increases, the sensible heat capacity also increases. Therefore, the opening degree of the first indoor expansion valve 140 (evaporator motor-operated valve) is reduced in order to reduce the sensible heat capacity. Furthermore, the opening degree of the second outdoor expansion valve 220 (outdoor unit motor-operated valve) is increased, the refrigerant flow rate to the outdoor heat exchanger 120 is reduced, the condensation capacity Qc is reduced, and the second indoor heat exchange unit 150b is connected. The reheat capacity Qr is increased by increasing the refrigerant flow rate.

図21および図22に基づいて説明したように、各制御因子の変更は、潜熱能力の変動と顕熱能力の変動との両方に作用する。特許文献1に示すような従来の空気調和機においては、圧縮機の回転数や膨張弁の開度等の制御因子を変更することで、潜熱能力と顕熱能力とを連動させて制御している。そのため、潜熱能力と顕熱能力との制御が干渉して、温度および湿度の制御目標値に実際の数値が近づかないことがあった。本発明は、このような従来の問題点に鑑みてなされたものであり、潜熱能力の制御と顕熱能力の制御との干渉を抑制して、温度および湿度の制御が精度良く行われる空気調和機を提供することを目的とする。   As described based on FIG. 21 and FIG. 22, the change of each control factor affects both the variation in latent heat capability and the variation in sensible heat capability. In the conventional air conditioner as shown in Patent Document 1, the latent heat capacity and the sensible heat capacity are controlled in conjunction with each other by changing control factors such as the rotational speed of the compressor and the opening of the expansion valve. Yes. For this reason, the control of the latent heat capability and the sensible heat capability interfered, and the actual numerical values sometimes did not approach the control target values of temperature and humidity. The present invention has been made in view of such conventional problems, and suppresses interference between the control of latent heat capability and the control of sensible heat capability, and air conditioning in which temperature and humidity control is performed with high accuracy. The purpose is to provide a machine.

本発明の請求項1に係る空気調和機は、再熱除湿運転時に蒸発器として機能する第1室内熱交換部と、再熱器として機能する第2室内熱交換部とを備える室内熱交換器と、圧縮機、室外熱交換器、開度調節可能な室外膨張弁、開度調節可能な第1室内膨張弁、および前記室内熱交換器の第1室内熱交換部が、冷媒配管で接続された回路内を冷媒が循環する冷媒回路と、前記冷媒回路の前記室外熱交換器と前記室外膨張弁とをバイパスし、前記室内熱交換器の第2室内熱交換部と、開度調節可能な第2室内膨張弁とを途中に備える冷媒配管であるバイパス配管と、空気調和が行われる空調室の室温を検出する室温検出部と、 前記空調室の湿度を検出する湿度検出部と、空気調和における目標温度および目標湿度の少なくとも一方を操作者が入力する設定入力部と、前記第1室内熱交換部を通過する冷媒の蒸発温度を検出する蒸発温度検出部と、前記圧縮機、前記室外膨張弁、前記第1室内膨張弁、および前記第2室内膨張弁を制御する制御部と、を備え、前記制御部は、前記湿度検出部が検出した空調室内の湿度と前記目標湿度との差ΔXを算出し、該ΔXに基づいて前記蒸発温度の目標値である目標蒸発温度を設定し、該目標蒸発温度に基づいて圧縮機の回転数を制御する除湿制御を行い、前記室温検出部が検出した空調室内の温度と前記目標温度との差ΔTrを算出し、該ΔTrに基づいて前記第2室内膨張弁の開度を制御する温度制御を行う。   An air conditioner according to claim 1 of the present invention includes an indoor heat exchanger that includes a first indoor heat exchange unit that functions as an evaporator during a reheat dehumidifying operation and a second indoor heat exchange unit that functions as a reheater. And a compressor, an outdoor heat exchanger, an outdoor expansion valve whose opening degree can be adjusted, a first indoor expansion valve whose opening degree can be adjusted, and a first indoor heat exchange part of the indoor heat exchanger are connected by a refrigerant pipe. The bypass circuit bypasses the refrigerant circuit in which the refrigerant circulates in the circuit, the outdoor heat exchanger of the refrigerant circuit, and the outdoor expansion valve, and the opening degree of the indoor heat exchanger is adjustable. A bypass pipe that is a refrigerant pipe provided with a second indoor expansion valve in the middle, a room temperature detector that detects the room temperature of the air-conditioned room in which air conditioning is performed, a humidity detector that detects the humidity of the air-conditioned room, and air conditioning The operator enters at least one of the target temperature and target humidity A setting input unit, an evaporating temperature detecting unit for detecting an evaporating temperature of the refrigerant passing through the first indoor heat exchanging unit, the compressor, the outdoor expansion valve, the first indoor expansion valve, and the second indoor unit A control unit that controls the expansion valve, wherein the control unit calculates a difference ΔX between the humidity in the air-conditioned room detected by the humidity detection unit and the target humidity, and sets the target of the evaporation temperature based on the ΔX. A target evaporation temperature that is a value is set, dehumidification control is performed to control the rotation speed of the compressor based on the target evaporation temperature, and a difference ΔTr between the temperature in the air-conditioned room detected by the room temperature detection unit and the target temperature is calculated. The temperature control for calculating and controlling the opening degree of the second indoor expansion valve based on the ΔTr is performed.

請求項1に係る発明によれば、除湿制御に係る潜熱能力の増減は、前記目標蒸発温度に基づいて前記制御部が圧縮機の回転数を制御することでなされ、温度制御に係る顕熱能力の増減は、前記ΔTrに基づいて前記制御部が前記第2室内膨張弁の開度を制御することでなされる。すなわち、潜熱能力の制御と顕熱能力の制御とを独立して行うことが可能となる。したがって、潜熱能力の制御と顕熱能力の制御との干渉が抑制されて、温度および湿度の制御が精度良く行うことができる。   According to the first aspect of the present invention, the increase or decrease of the latent heat capacity related to the dehumidification control is made by the control unit controlling the rotation speed of the compressor based on the target evaporation temperature, and the sensible heat capacity related to the temperature control. The increase / decrease is performed by the control unit controlling the opening of the second indoor expansion valve based on the ΔTr. That is, it is possible to independently control the latent heat capability and the sensible heat capability. Therefore, the interference between the control of the latent heat capability and the control of the sensible heat capability is suppressed, and the temperature and humidity can be controlled with high accuracy.

本発明の請求項2に係る空気調和機は、請求項1に係る空気調和機において、前記制御部は、前記室温検出部が検出した前記空調室の室温と、前記湿度検出部が検出した前記空調室の湿度から、該空調室内の空気の露点温度を算出し、該空調室内の湿度が前記目標湿度以上であり、かつ、前記蒸発温度検出部が検出した蒸発温度が前記露点温度以上である場合は、前記温度制御よりも前記湿度制御を優先して行う。   The air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect, wherein the control unit detects the room temperature of the air-conditioned room detected by the room temperature detection unit and the humidity detection unit detects the room temperature. The dew point temperature of the air in the air conditioned room is calculated from the humidity of the air conditioned room, the humidity in the air conditioned room is equal to or higher than the target humidity, and the evaporation temperature detected by the evaporation temperature detecting unit is equal to or higher than the dew point temperature. In this case, the humidity control is prioritized over the temperature control.

この請求項2に係る発明によれば、前記制御部は、除湿が必要な場合に、前記蒸発温度検出部が検出した蒸発温度が前記露点温度以上であるときには、前記温度制御よりも前記湿度制御を優先するので、確実に除湿を行うことができる。   According to the second aspect of the present invention, when the dehumidification is necessary, the controller controls the humidity rather than the temperature control when the evaporation temperature detected by the evaporation temperature detector is equal to or higher than the dew point temperature. Therefore, dehumidification can be performed reliably.

本発明の請求項3に係る空気調和機は、請求項1又は2に係る空気調和機において、前記制御部は、前記湿度検出部が検出した空調室内の湿度と前記目標湿度とを絶対湿度に換算し、前記ΔXを絶対湿度で算出する。   The air conditioner according to claim 3 of the present invention is the air conditioner according to claim 1 or 2, wherein the control unit converts the humidity in the air-conditioned room detected by the humidity detection unit and the target humidity to absolute humidity. In conversion, ΔX is calculated as absolute humidity.

この請求項3に係る発明によれば、絶対湿度に基づいて除湿制御を行うので、吸込空気の相対湿度に基づいた除湿制御で発生する不具合を解消できる。相対湿度に基づいた除湿制御では、例えば、設定温度が吸込温度よりも高い場合に、相対湿度で設定されている設定湿度よりも吸込空気の相対湿度が高いが、絶対湿度は、設定温度における絶対湿度よりも低いとき、すなわち本来、加湿が必要なときに除湿運転が行われる。逆に、吸込温度が設定温度よりも高い場合に、設定湿度よりも吸込空気の相対湿度が低いが、絶対湿度は、目標温度における絶対湿度よりも高いとき、すなわち本来、除湿が必要なときであっても、吸込温度が低下して相対湿度が設定湿度を超えるまでは除湿運転が行われない。絶対湿度に基づいて除湿制御を行うことで、不必要な除湿や除湿制御の遅れといった前記の不具合が解消される。   According to the third aspect of the present invention, the dehumidification control is performed based on the absolute humidity, so that the problem that occurs in the dehumidification control based on the relative humidity of the intake air can be solved. In dehumidification control based on relative humidity, for example, when the set temperature is higher than the intake temperature, the relative humidity of the intake air is higher than the set humidity set in the relative humidity, but the absolute humidity is the absolute value at the set temperature. The dehumidifying operation is performed when the humidity is lower, that is, when the humidification is originally necessary. Conversely, when the suction temperature is higher than the set temperature, the relative humidity of the intake air is lower than the set humidity, but the absolute humidity is higher than the absolute humidity at the target temperature, that is, when dehumidification is originally required. Even if it exists, dehumidification operation is not performed until the suction temperature decreases and the relative humidity exceeds the set humidity. By performing dehumidification control based on the absolute humidity, the above-described problems such as unnecessary dehumidification and delay of dehumidification control are solved.

本発明の請求項4に係る空気調和機は、請求項1〜3のいずれか1項に係る空気調和機において、前記制御部は、前記温度制御において、前記第2室内膨張弁の開度が最大である場合は、前記室外膨張弁の開度をも制御対象とし、前記第2室内膨張弁が全閉である場合は、前記圧縮機の回転数をも制御対象とする。   An air conditioner according to a fourth aspect of the present invention is the air conditioner according to any one of the first to third aspects, wherein the controller is configured such that the opening degree of the second indoor expansion valve is the temperature control. When it is the maximum, the opening degree of the outdoor expansion valve is also controlled, and when the second indoor expansion valve is fully closed, the rotation speed of the compressor is also controlled.

この請求項4に係る発明によれば、前記第2室内膨張弁の開度が調節不可能な場合にも、前記室外膨張弁の開度または前記圧縮機の回転数の制御を行うことで、前記温度制御において顕熱能力の制御を行うことができる。   According to the fourth aspect of the present invention, even when the opening degree of the second indoor expansion valve is not adjustable, by controlling the opening degree of the outdoor expansion valve or the rotational speed of the compressor, In the temperature control, the sensible heat capacity can be controlled.

本発明の請求項5に係る空気調和機は、請求項1〜4のいずれか1項に係る空気調和機において、前記温度制御における前記第2室内膨張弁の開度変更量に基づいて、前記空調室内の空気が前記室内熱交換器で当該室内熱交換器内部の冷媒と熱交換されて吹き出される調和空気の吹出温度変化量ΔT1を算出し、予め定められた第1の定数を該ΔT1に乗じた値を、前記湿度制御において算出した前記目標蒸発温度から減ずることで前記目標蒸発温度を補正し、
かつ、前記湿度制御における圧縮機回転数の変更量に基づいて、前記調和空気の吹出温度変化量ΔT2を算出し、予め定められた第2の定数を該ΔT2に乗じた値を、前記温度制御において算出した前記第2室内膨張弁の開度変更量から減ずることで該開度変更量を補正する。
An air conditioner according to a fifth aspect of the present invention is the air conditioner according to any one of the first to fourth aspects, wherein the air conditioner is based on an opening change amount of the second indoor expansion valve in the temperature control. The amount of change in temperature ΔT1 of conditioned air blown out after the air in the air-conditioned room is heat-exchanged with the refrigerant in the indoor heat exchanger by the indoor heat exchanger is calculated, and a predetermined first constant is calculated as ΔT1. The target evaporation temperature is corrected by subtracting the value multiplied by the target evaporation temperature calculated in the humidity control,
Further, based on the change amount of the compressor rotation speed in the humidity control, the temperature change amount ΔT2 of the conditioned air is calculated, and a value obtained by multiplying the ΔT2 by a predetermined second constant is used as the temperature control. The opening change amount is corrected by subtracting from the opening change amount of the second indoor expansion valve calculated in step S2.

この請求項5に係る発明によれば、圧縮機の回転数制御と第2室内膨張弁の開度制御との制御の干渉がさらに抑制されて、温度および湿度の制御がより精度良く行うことができる。なぜならば、圧縮機の回転数制御による湿度制御と、前記室外膨張弁および前記第2室内膨張弁の開度制御による温度制御とを完全に独立させることは困難であるところ、互いの制御の干渉をフィードフォワード制御によって補正することができるからである。   According to the fifth aspect of the present invention, control interference between the rotation speed control of the compressor and the opening control of the second indoor expansion valve is further suppressed, and the temperature and humidity can be controlled more accurately. it can. This is because it is difficult to completely separate the humidity control by the rotational speed control of the compressor and the temperature control by the opening control of the outdoor expansion valve and the second indoor expansion valve. This is because it can be corrected by feedforward control.

本発明の請求項6に係る空気調和機は、請求項1〜5のいずれか1項に係る空気調和機において、前記調和空気の吹出温度を検出する吹出温度検出部をさらに備え、前記制御部は、前記室温検出部が検出した前記空調室内の温度と前記吹出温度との差ΔTfを算出し、該ΔTfと前記ΔTrとに基づいて前記第2室内膨張弁の開度を制御する温度制御を行う。   An air conditioner according to a sixth aspect of the present invention is the air conditioner according to any one of the first to fifth aspects, further comprising a blowing temperature detecting unit that detects a blowing temperature of the conditioned air, and the control unit. Calculates a difference ΔTf between the temperature in the air-conditioned room detected by the room temperature detection unit and the outlet temperature, and performs temperature control for controlling the opening degree of the second indoor expansion valve based on the ΔTf and the ΔTr. Do.

この請求項6に係る発明によれば、前記温度制御において前記制御部は、前記ΔTrに加えて前記ΔTfにも基づいて前記第2室内膨張弁の開度を制御するので、前記吹出温度を管理することが可能となり、当該温度制御をより精度良く行うことができる。   According to the sixth aspect of the invention, in the temperature control, the control unit controls the opening temperature of the second indoor expansion valve based on the ΔTf in addition to the ΔTr. Thus, the temperature control can be performed with higher accuracy.

本発明の請求項7に係る空気調和機は、請求項1〜6のいずれか1項に係る空気調和機において、前記圧縮機の吸入部に流入する冷媒が含む液冷媒の割合である湿り度を検出する湿り度検出部をさらに備え、前記制御部は、前記湿り度が予め定められた上限値を超えた場合に、前記第2室内膨張弁の開度を減ずる制御を行う。   The air conditioner according to a seventh aspect of the present invention is the air conditioner according to any one of the first to sixth aspects, wherein the wetness is a ratio of the liquid refrigerant contained in the refrigerant flowing into the suction portion of the compressor. A wetness degree detecting unit for detecting the control, and the control unit performs control to reduce the opening degree of the second indoor expansion valve when the wetness degree exceeds a predetermined upper limit value.

この請求項7に係る発明によれば、前記制御部は、前記湿り度が予め定められた上限値を超えた場合に、前記第2室内膨張弁の開度を減ずる制御を行うので、前記温度制御における前記第2室内膨張弁の開度変更に伴い、前記第1室内熱交換部から前記圧縮機の前記吸入部へと向かう冷媒が、液冷媒を含む湿り状態となった場合であっても、当該吸入部における液圧縮を防止することができる。   According to the seventh aspect of the present invention, the controller performs control to reduce the opening of the second indoor expansion valve when the wetness exceeds a predetermined upper limit value. Even when the refrigerant heading from the first indoor heat exchange section to the suction section of the compressor is in a wet state containing liquid refrigerant, as the opening of the second indoor expansion valve is changed in the control. The liquid compression in the suction part can be prevented.

本発明の請求項8に係る空気調和機は、請求項1〜7のいずれか1項に係る空気調和機において、前記室外熱交換器と、前記室外膨張弁は、前記空調室の外部に設置される室外機に収容され、前記圧縮機と、前記第1室内膨張弁と、前記第1室内熱交換部と、前記第2室内熱交換部と、第2室内膨張弁は、前記空調室の内部に設置される室内機に収容され、前記バイパス配管は、前記室内機内で前記冷媒回路から分岐され、前記室内機内で前記冷媒回路に接続される。   An air conditioner according to an eighth aspect of the present invention is the air conditioner according to any one of the first to seventh aspects, wherein the outdoor heat exchanger and the outdoor expansion valve are installed outside the air conditioning chamber. The compressor, the first indoor expansion valve, the first indoor heat exchange unit, the second indoor heat exchange unit, and the second indoor expansion valve are accommodated in the air conditioning chamber. It is accommodated in the indoor unit installed inside, and the bypass pipe is branched from the refrigerant circuit in the indoor unit and connected to the refrigerant circuit in the indoor unit.

請求項8に係る発明によれば、前記圧縮機を室内機に収容することで、前記圧縮機を室外機に収容した場合に室内機と室外機との間に設けることになるバイパス配管を、前記室内機内で前記冷媒回路に接続することができる。したがって、外部配管の本数を少なくすることができるので、空気調和機の据え付け作業性が向上する。さらに、配管長を短くすることができるので、圧力損失および熱損失を抑えることができる。   According to the invention which concerns on Claim 8, when the said compressor is accommodated in an indoor unit, when the said compressor is accommodated in an outdoor unit, bypass piping provided between an indoor unit and an outdoor unit, It can be connected to the refrigerant circuit in the indoor unit. Therefore, since the number of external pipes can be reduced, the installation workability of the air conditioner is improved. Furthermore, since the pipe length can be shortened, pressure loss and heat loss can be suppressed.

本発明に係る空気調和機によれば、圧縮機の回転数制御による除湿制御と、第2室内膨張弁の開度制御による温度制御と、を独立して行うことできる。そのため、両制御の干渉を抑制することが可能となり、温度および湿度の制御を精度良く行うことができる。   According to the air conditioner according to the present invention, the dehumidification control based on the rotation speed control of the compressor and the temperature control based on the opening degree control of the second indoor expansion valve can be performed independently. Therefore, interference between both controls can be suppressed, and temperature and humidity can be controlled with high accuracy.

本発明の実施形態1に係る空気調和機を示す模式図である。It is a schematic diagram which shows the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る空気調和機の機能的な構成を示すブロック図である。It is a block diagram which shows the functional structure of the air conditioner which concerns on Embodiment 1 of this invention. 実施形態1の変形例に係る空気調和機を示す模式図である。It is a schematic diagram which shows the air conditioner which concerns on the modification of Embodiment 1. 本発明の実施形態1に係る空気調和機における除湿制御を示すフローチャートである。It is a flowchart which shows the dehumidification control in the air conditioner which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る空気調和機における温度制御を示すフローチャートである。It is a flowchart which shows the temperature control in the air conditioner which concerns on Embodiment 1 of this invention. 第2室内膨張弁が全開または全閉の場合の温度制御を示すフローチャートである。It is a flowchart which shows temperature control in case a 2nd indoor expansion valve is fully open or fully closed. 本発明の実施形態1に係る空気調和機における再熱除湿運転を説明するための湿り空気線図である。It is a humid air line figure for demonstrating the reheat dehumidification driving | operation in the air conditioner which concerns on Embodiment 1 of this invention. 相対湿度に基づいて湿度制御を行う空気調和機による再熱除湿運転を説明するための湿り空気線図である。It is a humid air line figure for demonstrating the reheat dehumidification operation by the air conditioner which performs humidity control based on relative humidity. 湿度制御におけるフィードフォワード制御による補正を示すフローチャートである。It is a flowchart which shows the correction | amendment by feedforward control in humidity control. 温度制御におけるフィードフォワード制御による補正を示すフローチャートである。It is a flowchart which shows the correction | amendment by feedforward control in temperature control. 本発明の実施形態2に係る空気調和機の機能的な構成を示すブロック図である。It is a block diagram which shows the functional structure of the air conditioner which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る空気調和機における温度制御を示すフローチャートである。It is a flowchart which shows the temperature control in the air conditioner which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る空気調和機の機能的な構成を示すブロック図である。It is a block diagram which shows the functional structure of the air conditioner which concerns on Embodiment 3 of this invention. 本発明の実施形態3に係る空気調和機において、湿り度が予め定められた上限値を超えた場合に、前記第2室内膨張弁の開度を減ずる制御を示すフローチャートである。In the air conditioner according to Embodiment 3 of the present invention, when the wetness exceeds a predetermined upper limit value, it is a flowchart showing a control for reducing the opening of the second indoor expansion valve. 再熱除湿運転が可能な従来の空気調和機の一例を示す模式図である。It is a schematic diagram which shows an example of the conventional air conditioner in which reheat dehumidification operation is possible. 従来の空気調和機の再熱除湿運転時における冷凍サイクルを示すモリエル線図である。It is a Mollier diagram which shows the refrigerating cycle at the time of the reheat dehumidification operation | movement of the conventional air conditioner. 従来の空気調和機の再熱除湿運転時において、再熱能力が不足している状態を説明するための湿り空気線図である。It is a humid air line figure for demonstrating the state where the reheat capability is insufficient at the time of the reheat dehumidification operation of the conventional air conditioner. 再熱除湿運転が可能な従来の空気調和機の他の例を示す模式図である。It is a schematic diagram which shows the other example of the conventional air conditioner in which reheat dehumidification driving | operation is possible. 図18に示す従来の空気調和機の再熱除湿運転時における冷凍サイクルを示すモリエル線図である。It is a Mollier diagram which shows the refrigerating cycle at the time of the reheat dehumidification driving | operation of the conventional air conditioner shown in FIG. 図18に示す従来の空気調和機の再熱除湿運転時において、蒸発能力に応じた再熱能力が得られるため、除湿と温度制御とがともに可能となっていることを説明するための湿り空気線図である。In the reheat dehumidification operation of the conventional air conditioner shown in FIG. 18, since the reheat capability according to the evaporation capability is obtained, the humid air for explaining that both dehumidification and temperature control are possible. FIG. 圧縮機の回転数および第1室内膨張弁(蒸発器電動弁)の開度と、顕熱能力および潜熱能力との関係を示す図である。It is a figure which shows the relationship between the rotation speed of a compressor, the opening degree of a 1st indoor expansion valve (evaporator motor operated valve), sensible heat capability, and latent heat capability. 第2室外膨張弁(室外機電動弁)の開度と顕熱能力および潜熱能力との関係を示す図である。It is a figure which shows the relationship between the opening degree of a 2nd outdoor expansion valve (outdoor unit motor operated valve), sensible heat capability, and latent heat capability.

<実施形態1>
以下、図面に基づいて本発明の実施形態1に係る空気調和機につき詳細に説明する。図1は、本発明の実施形態1に係る空気調和機1を示す模式図である。空気調和機1は、室内機20と、室外機30と、コントローラ300とを備える。室内機20は、空気調和が行われる空調室内に設置され、第1室内膨張弁140、室内熱交換器150、および第2室内膨張弁210を内部に収容する。室外機30は、空調室の外部に設置され、圧縮機110、室外熱交換器120、室外膨張弁130、および四方切替弁160を内部に収容する。
<Embodiment 1>
Hereinafter, an air conditioner according to Embodiment 1 of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing an air conditioner 1 according to Embodiment 1 of the present invention. The air conditioner 1 includes an indoor unit 20, an outdoor unit 30, and a controller 300. The indoor unit 20 is installed in an air conditioning room where air conditioning is performed, and accommodates the first indoor expansion valve 140, the indoor heat exchanger 150, and the second indoor expansion valve 210 therein. The outdoor unit 30 is installed outside the air conditioning room, and accommodates the compressor 110, the outdoor heat exchanger 120, the outdoor expansion valve 130, and the four-way switching valve 160 therein.

室内熱交換器150は、例えば冷媒が流れる冷却管の外側にフィンを取付けたクロスフィン型の空冷式熱交換器であり、再熱除湿運転時に蒸発器として機能する第1室内熱交換部150aと、再熱器として機能する第2室内熱交換部150bとを備える。   The indoor heat exchanger 150 is, for example, a cross-fin type air-cooled heat exchanger in which fins are attached to the outside of a cooling pipe through which a refrigerant flows. The indoor heat exchanger 150 includes a first indoor heat exchanger 150a that functions as an evaporator during reheat dehumidification operation. And a second indoor heat exchange section 150b that functions as a reheater.

圧縮機110、室外熱交換器120、室外膨張弁130、第1室内膨張弁140、および第1室内熱交換部150aは、冷媒配管で接続されて冷媒回路100を構成する。圧縮機から吐出された冷媒は、冷媒回路100を循環する。   The compressor 110, the outdoor heat exchanger 120, the outdoor expansion valve 130, the first indoor expansion valve 140, and the first indoor heat exchange unit 150a are connected by a refrigerant pipe to constitute the refrigerant circuit 100. The refrigerant discharged from the compressor circulates through the refrigerant circuit 100.

冷媒回路100を循環する冷媒は、バイパス配管200によって室外熱交換器120および室外膨張弁130をバイパス可能とされている。バイパス配管200の途中には、第2室内熱交換部150bと、第2室内膨張弁210とが備えられる。   The refrigerant circulating in the refrigerant circuit 100 can bypass the outdoor heat exchanger 120 and the outdoor expansion valve 130 by the bypass pipe 200. In the middle of the bypass pipe 200, a second indoor heat exchange section 150b and a second indoor expansion valve 210 are provided.

圧縮機110は、例えばスクロール型の圧縮機構を備えるスクロール圧縮機である。圧縮機110は、蒸発器(冷房運転時および再熱除湿運転時は第1室内熱交換部150a、暖房運転時は室外熱交換器120)から送られてきた低温・低圧の冷媒蒸気を圧縮して、高温・高圧の冷媒蒸気とする。   The compressor 110 is a scroll compressor provided with, for example, a scroll type compression mechanism. The compressor 110 compresses the low-temperature and low-pressure refrigerant vapor sent from the evaporator (the first indoor heat exchanger 150a during the cooling operation and the reheat dehumidifying operation, and the outdoor heat exchanger 120 during the heating operation). Therefore, use high-temperature and high-pressure refrigerant vapor.

室外熱交換器120は、例えば、冷媒が流れる冷却管の外側にフィンを取付けたクロスフィン型の空冷式熱交換器であり、室外空気と冷媒とを熱交換させる。室外熱交換器120は、冷房運転時および再熱除湿運転時には凝縮器として機能し、暖房運転時には蒸発器として機能する。   The outdoor heat exchanger 120 is, for example, a cross-fin type air-cooled heat exchanger in which fins are attached to the outside of a cooling pipe through which refrigerant flows, and exchanges heat between outdoor air and the refrigerant. The outdoor heat exchanger 120 functions as a condenser during cooling operation and reheat dehumidification operation, and functions as an evaporator during heating operation.

室外膨張弁130は、例えばパルスモータ駆動方式の電子膨張弁であり、自在に開度を調整できる。室外膨張弁130は、冷房運転時および再熱除湿運転時には、凝縮器として機能する室外熱交換器120への冷媒流量を調節し、暖房運転時には蒸発器として機能する室外熱交換器120へ流入する冷媒を絞り膨張させる。   The outdoor expansion valve 130 is a pulse motor drive type electronic expansion valve, for example, and the opening degree can be freely adjusted. The outdoor expansion valve 130 adjusts the refrigerant flow rate to the outdoor heat exchanger 120 that functions as a condenser during cooling operation and reheat dehumidification operation, and flows into the outdoor heat exchanger 120 that functions as an evaporator during heating operation. The refrigerant is squeezed and expanded.

第1室内膨張弁140は、例えばパルスモータ駆動方式の電子膨張弁であり、自在に開度を調整できる。第1室内膨張弁140は、冷房運転時および再熱除湿運転時には、蒸発器として機能する第1室内熱交換部150aへ流入する冷媒を絞り膨張させ、暖房運転時には、凝縮器として機能する第1室内熱交換部150aへの冷媒流量を調節する。   The first indoor expansion valve 140 is a pulse motor drive type electronic expansion valve, for example, and the opening degree can be freely adjusted. The first indoor expansion valve 140 expands and expands the refrigerant flowing into the first indoor heat exchange unit 150a that functions as an evaporator during cooling operation and reheat dehumidification operation, and functions as a condenser during heating operation. The refrigerant | coolant flow volume to the indoor heat exchange part 150a is adjusted.

四方切替弁160は、圧縮機110から吐出された高圧冷媒蒸気の流路を切替える。すなわち、冷房運転時や再熱除湿運転時には、実線で示すように高圧冷媒蒸気を室外熱交換器120に導き、暖房運転時には、破線で示すように前記高圧冷媒蒸気を室内熱交換器150の第1室内熱交換部150aに導く。   The four-way switching valve 160 switches the flow path of the high-pressure refrigerant vapor discharged from the compressor 110. That is, at the time of cooling operation or reheat dehumidification operation, the high-pressure refrigerant vapor is guided to the outdoor heat exchanger 120 as shown by a solid line, and at the time of heating operation, the high-pressure refrigerant vapor is supplied to the indoor heat exchanger 150 as shown by a broken line. 1 It leads to the indoor heat exchange part 150a.

第2室内膨張弁210は、例えばパルスモータ駆動方式の電子膨張弁であり、自在に開度を調整できる。第2室内膨張弁210は、再熱除湿運転時に、再熱器として機能する第2室内熱交換部150bへの冷媒流量を調節する。図1の例では、第2室内熱交換部150bの下流に第2室内膨張弁210を設けているが、第2室内熱交換部150bの上流に第2室内膨張弁210を設けてもよい。下流に設ける場合は、第2室内熱交換部150b内で凝縮して体積が減少した液冷媒が通過するので膨張弁を小型化することができる。上流に設ける場合は、圧縮機110から吐出されたガス冷媒が通過するので膨張弁を大型化する必要が生じるものの、冷媒流量の制御性を向上させることができる。   The second indoor expansion valve 210 is a pulse motor drive type electronic expansion valve, for example, and the opening degree can be freely adjusted. The second indoor expansion valve 210 adjusts the refrigerant flow rate to the second indoor heat exchange unit 150b that functions as a reheater during the reheat dehumidifying operation. In the example of FIG. 1, the second indoor expansion valve 210 is provided downstream of the second indoor heat exchange unit 150b, but the second indoor expansion valve 210 may be provided upstream of the second indoor heat exchange unit 150b. In the case where it is provided downstream, the liquid refrigerant condensed and reduced in volume in the second indoor heat exchange section 150b passes, so that the expansion valve can be reduced in size. When provided upstream, the gas refrigerant discharged from the compressor 110 passes, so that the expansion valve needs to be enlarged, but the controllability of the refrigerant flow rate can be improved.

図2は、空気調和機1の機能的な構成を示すブロック図である。空気調和機1は、図1で示した構成の他に、室温検出部400、湿度検出部500、および蒸発温度検出部600を備える。   FIG. 2 is a block diagram showing a functional configuration of the air conditioner 1. The air conditioner 1 includes a room temperature detection unit 400, a humidity detection unit 500, and an evaporation temperature detection unit 600 in addition to the configuration shown in FIG.

コントローラ300は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)等からなり、制御部310、設定入力部320、および計時部330を具備するように機能する。制御部310は、圧縮機110の回転数や各膨張弁の開度等を制御することで、空気調和機1の運転を制御する。設定入力部320は、空気調和における目標温度および目標湿度の少なくとも一方をユーザが入力するための入力インタフェイスを備え、当該入力値を制御目標値として設定する。計時部330は、一定周期でクロック信号を発生させるクロック 発信器を備え、このクロック信号を、制御部310に出力する。   The controller 300 includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), and the like, and functions to include a control unit 310, a setting input unit 320, and a time measuring unit 330. The control unit 310 controls the operation of the air conditioner 1 by controlling the rotation speed of the compressor 110, the opening degree of each expansion valve, and the like. The setting input unit 320 includes an input interface for a user to input at least one of a target temperature and a target humidity in air conditioning, and sets the input value as a control target value. The clock unit 330 includes a clock transmitter that generates a clock signal at a constant period, and outputs the clock signal to the control unit 310.

室温検出部400は、例えば、室内機20の図略の吸込口近傍に設置される温度センサであり、吸込空気の温度である吸込温度Tr、すなわち、空調室内の室温を検出する。湿度検出部500は、例えば、室内機20内部に設置される湿度センサであり、吸込空気の相対湿度、すなわち、空調室内の相対湿度を検出する。   The room temperature detection unit 400 is, for example, a temperature sensor installed in the vicinity of an unillustrated suction port of the indoor unit 20, and detects the suction temperature Tr that is the temperature of the suction air, that is, the room temperature in the air-conditioned room. The humidity detection unit 500 is, for example, a humidity sensor installed inside the indoor unit 20 and detects the relative humidity of the intake air, that is, the relative humidity in the air-conditioned room.

蒸発温度検出部600は、再熱除湿運転時に蒸発器として機能する第1室内熱交換部150a内部の冷媒の蒸発温度Teを検出する。例えば、圧縮機110の吸入側に圧力センサを設け、コントローラ300内部のCPUが当該圧力センサによって検出された冷媒ガスの圧力に対応する飽和温度を算出して蒸発温度Teとすることで、当該圧力センサは、前記CPUとともに蒸発温度検出部600として機能することになる。また、例えば、圧縮機110の吸入側、もしくは第1室内熱交換部150aに温度センサを設け、当該温度センサが検出した温度を蒸発温度Teとすることで、当該温度センサを、蒸発温度検出部600として機能させるようにしてもよい。なぜならば、前記温度センサが検出した温度を蒸発温度Teと見なしても実用上は問題ないからである。すなわち、第1室内熱交換部150aから圧縮機111の吸入側へと向かう冷媒が過熱状態にあるときは、前記温度センサが検出した温度は、蒸発温度Teよりも高くなるものの、当該冷媒の過熱度は大きくないので、前記温度センサが検出した温度と蒸発温度Teとは近い値となるからである。   The evaporation temperature detection unit 600 detects the evaporation temperature Te of the refrigerant inside the first indoor heat exchange unit 150a that functions as an evaporator during the reheat dehumidification operation. For example, a pressure sensor is provided on the suction side of the compressor 110, and the CPU inside the controller 300 calculates a saturation temperature corresponding to the pressure of the refrigerant gas detected by the pressure sensor and sets it as the evaporation temperature Te. The sensor functions as the evaporation temperature detector 600 together with the CPU. Further, for example, a temperature sensor is provided on the suction side of the compressor 110 or the first indoor heat exchanging unit 150a, and the temperature detected by the temperature sensor is set as the evaporation temperature Te, so that the temperature sensor is connected to the evaporation temperature detecting unit. You may make it function as 600. FIG. This is because there is no practical problem even if the temperature detected by the temperature sensor is regarded as the evaporation temperature Te. That is, when the refrigerant heading from the first indoor heat exchange section 150a toward the suction side of the compressor 111 is in an overheated state, the temperature detected by the temperature sensor is higher than the evaporation temperature Te, but the refrigerant is overheated. This is because the temperature is not large and the temperature detected by the temperature sensor is close to the evaporation temperature Te.

バイパス配管200によって、冷媒回路100を循環する冷媒が、室外熱交換器120および室外膨張弁130をバイパス可能である点では、図1に示す空気調和機1は、図18に示す特許文献1に記載の従来の空気調和機9と同様であるが、バイパス配管の接続位置およびバイパス配管に設けられる構成要素が異なる。   The air conditioner 1 shown in FIG. 1 is disclosed in Patent Document 1 shown in FIG. 18 in that the refrigerant circulating in the refrigerant circuit 100 can bypass the outdoor heat exchanger 120 and the outdoor expansion valve 130 by the bypass pipe 200. Although it is the same as the conventional air conditioner 9 of description, the connection position of bypass piping and the component provided in bypass piping differ.

空気調和機9では、バイパス配管202は、四方切替弁160と室外熱交換器120との間の冷媒配管から室外機38内部で分岐され、第1室外膨張弁130と第2室内膨張弁170との間の冷媒配管に室外機38内部で接続されている。バイパス配管202の途中には、第2室外膨張弁220が設けられているが、第2室内熱交換部150bは設けられていない。   In the air conditioner 9, the bypass pipe 202 is branched from the refrigerant pipe between the four-way switching valve 160 and the outdoor heat exchanger 120 inside the outdoor unit 38, and the first outdoor expansion valve 130, the second indoor expansion valve 170, The refrigerant pipe is connected to the inside of the outdoor unit 38. The second outdoor expansion valve 220 is provided in the middle of the bypass pipe 202, but the second indoor heat exchange unit 150b is not provided.

空気調和機9では、現地配管が長い場合には、再熱除湿運転時に室外熱交換器120で凝縮された冷媒が、第2室内熱交換部150bまでの配管内で再びガス化して圧力損失が発生し、凝縮能力が低下するので再熱能力も低下する。   In the air conditioner 9, when the local piping is long, the refrigerant condensed in the outdoor heat exchanger 120 during the reheat dehumidification operation is gasified again in the piping up to the second indoor heat exchange section 150b, resulting in a pressure loss. It occurs and the condensation capacity is reduced, so the reheating ability is also reduced.

一方、空気調和機1では、バイパス配管200は、四方切替弁160と室外熱交換器120との間の冷媒配管から室外機30内部で分岐され、第1室外膨張弁130と第1室内膨張弁140との間の冷媒配管に室内機20内部で接続されている。バイパス配管200の途中には、第2室外膨張弁220と第2室内熱交換部150bとが設けられている。   On the other hand, in the air conditioner 1, the bypass pipe 200 is branched from the refrigerant pipe between the four-way switching valve 160 and the outdoor heat exchanger 120 inside the outdoor unit 30, and the first outdoor expansion valve 130 and the first indoor expansion valve are branched. 140 is connected to the refrigerant pipe between the indoor unit 20 and the refrigerant pipe. In the middle of the bypass pipe 200, a second outdoor expansion valve 220 and a second indoor heat exchange unit 150b are provided.

空気調和機1では、圧縮機110から吐出されたガス冷媒が、直接第2室内熱交換部150bに流入するので、空気調和機9とは異なり、第2室内熱交換部150bまでの配管内で冷媒が再びガス化することによる再熱能力の低下は発生しない。   In the air conditioner 1, since the gas refrigerant discharged from the compressor 110 directly flows into the second indoor heat exchange unit 150b, unlike the air conditioner 9, in the pipe to the second indoor heat exchange unit 150b. The reheat capacity is not reduced by the gasification of the refrigerant again.

図3は、実施形態1の変形例に係る空気調和機2を示す模式図である。空気調和機2は、圧縮機110を室内機21に収容することで、バイパス配管201を室内機21内で冷媒回路100から分岐させ、室内機21内で冷媒回路100に接続している。すなわち、空気調和機2では、図1に示す空気調和機1において、室内機20と室外機30との間に外部配管として設けられていたバイパス配管200を、室内機21の内部に配管されるバイパス配管201とすることができる。したがって、バイパス配管は外部配管とならないので、空気調和機1と比較して空気調和機2は据付作業性が向上する。   FIG. 3 is a schematic diagram illustrating an air conditioner 2 according to a modification of the first embodiment. The air conditioner 2 accommodates the compressor 110 in the indoor unit 21, thereby branching the bypass pipe 201 from the refrigerant circuit 100 in the indoor unit 21 and connecting to the refrigerant circuit 100 in the indoor unit 21. That is, in the air conditioner 2, the bypass pipe 200 provided as an external pipe between the indoor unit 20 and the outdoor unit 30 in the air conditioner 1 shown in FIG. 1 is piped inside the indoor unit 21. The bypass pipe 201 can be used. Therefore, since the bypass pipe does not become an external pipe, the air conditioner 2 is improved in installation workability as compared with the air conditioner 1.

また、外部配管となる空気調和機1のバイパス配管200は、室内機20と室外機30との距離が離れている設置条件では、配管長が長くなるが、空気調和機2のバイパス配管201は、室内機21の内部に配管されるので、室内機21と室外機31との距離にかかわらず配管長は一定である。したがって、バイパス配管201が室内機21内部に配管される空気調和機2は、バイパス配管の配管長が長い場合に発生する再熱能力の低下、すなわち、圧縮機110から吐出された高圧・高温のガス冷媒の圧力損失および熱損失による再熱能力の低下を回避することができる。   In addition, the bypass pipe 200 of the air conditioner 1 that is an external pipe has a long pipe length under the installation conditions where the distance between the indoor unit 20 and the outdoor unit 30 is long, but the bypass pipe 201 of the air conditioner 2 is Since the pipe is piped inside the indoor unit 21, the pipe length is constant regardless of the distance between the indoor unit 21 and the outdoor unit 31. Therefore, the air conditioner 2 in which the bypass pipe 201 is piped inside the indoor unit 21 has a reduced reheat capacity that occurs when the bypass pipe has a long pipe length, that is, the high pressure / high temperature discharged from the compressor 110. It is possible to avoid a decrease in reheating capacity due to pressure loss and heat loss of the gas refrigerant.

本発明の実施形態1に係る空気調和機1および2において、除湿制御に係る潜熱能力の増減は、制御部310が圧縮機110の回転数をPI制御することでなされ、温度制御に係る顕熱能力の増減は、制御部310が室外膨張弁130および第2室内膨張弁210の開度をPI制御することでなされる。すなわち、潜熱能力の制御(除湿制御)と顕熱能力の制御(温度制御)とは、同時に行われるものの互いに独立して行われる。   In the air conditioners 1 and 2 according to the first embodiment of the present invention, the increase / decrease in the latent heat capacity related to the dehumidification control is made by the control unit 310 performing PI control on the rotational speed of the compressor 110, and the sensible heat related to the temperature control. The increase / decrease in the capacity is performed by the controller 310 performing PI control on the opening degrees of the outdoor expansion valve 130 and the second indoor expansion valve 210. That is, although the latent heat capability control (dehumidification control) and the sensible heat capability control (temperature control) are performed simultaneously, they are performed independently of each other.

また、制御部310は、空調室内の湿度が前記目標湿度以上、すなわち除湿が必要な場合に、室温検出部400が検出した空調室内の室温と、湿度検出部500が検出した空調室内の湿度と、を用いて空調室内の空気の露点温度Dを算出し、蒸発温度検出部600が検出した蒸発温度Teが露点温度D以上であるときには、温度制御よりも湿度制御を優先して行う。なぜならば、蒸発温度Teを露点温度Dよりも低くしなければ除湿ができないからである。空気調和機1および2における除湿制御について以下に説明する。   In addition, when the humidity in the air-conditioned room is equal to or higher than the target humidity, that is, dehumidification is required, the control unit 310 detects the room temperature in the air-conditioned room detected by the room temperature detecting unit 400 and the humidity in the air-conditioned room detected by the humidity detecting unit 500. , The dew point temperature D of the air in the air-conditioned room is calculated, and when the evaporation temperature Te detected by the evaporation temperature detection unit 600 is equal to or higher than the dew point temperature D, the humidity control is prioritized over the temperature control. This is because dehumidification cannot be performed unless the evaporation temperature Te is lower than the dew point temperature D. Dehumidification control in the air conditioners 1 and 2 will be described below.

図4は、空気調和機1および2における除湿制御を示すフローチャートである。制御部310は、吸込温度と吸込湿度のサンプリング間隔を設定時間とするタイマをスタートする(ステップS1)。このタイマのカウントは計時部330が発生するクロック信号に基づいて行われる。次に制御部310は、設定入力部320によって設定された設定温度Tsおよび設定湿度Hsを検出し(ステップS2)、TsおよびHsに基づいて、目標絶対湿度Xsを算出する。室温検出部400は吸込温度、湿度検出部500は吸込湿度をそれぞれ検出する(ステップS4)。制御部310は、検出された吸込温度および吸込湿度に基づいて、吸込絶対湿度Xおよび露点温度Dを算出し(ステップS5およびステップS6)、XsとXとの差ΔX(=Xs−X)を算出する(ステップS7)。吸込絶対湿度Xが目標絶対湿度Xs以下の場合は(ステップS8でNO)、除湿は不要であるのでステップS1に戻る。吸込絶対湿度Xが目標絶対湿度Xsを上回る場合は(ステップS8でYES)、ΔXに基づいて、制御部310は目標蒸発温度TeSを算出する(ステップS9)。続いて蒸発温度検出部600は、蒸発温度Teを検出する(ステップS10)。制御部310は、TeとDとを比較し(ステップS11)、蒸発温度Teが露点温度D以上の場合は(ステップS11でYES)、温度制御よりも除湿制御を優先させる(ステップS12)。温度制御については、後に詳しく説明する。蒸発温度Teが露点温度D未満の場合は(ステップS11でNO)、ステップS13に進む。   FIG. 4 is a flowchart showing dehumidification control in the air conditioners 1 and 2. Control unit 310 starts a timer having the sampling interval of the suction temperature and the suction humidity as a set time (step S1). The timer count is performed based on a clock signal generated by the timer 330. Next, the control unit 310 detects the set temperature Ts and the set humidity Hs set by the setting input unit 320 (step S2), and calculates the target absolute humidity Xs based on Ts and Hs. The room temperature detector 400 detects the suction temperature, and the humidity detector 500 detects the suction humidity (step S4). Based on the detected suction temperature and suction humidity, control unit 310 calculates suction absolute humidity X and dew point temperature D (steps S5 and S6), and calculates a difference ΔX (= Xs−X) between Xs and X. Calculate (step S7). If the suction absolute humidity X is equal to or lower than the target absolute humidity Xs (NO in step S8), the dehumidification is unnecessary and the process returns to step S1. When the absolute suction humidity X exceeds the target absolute humidity Xs (YES in step S8), the control unit 310 calculates the target evaporation temperature TeS based on ΔX (step S9). Subsequently, the evaporation temperature detection unit 600 detects the evaporation temperature Te (step S10). The controller 310 compares Te and D (step S11), and when the evaporation temperature Te is equal to or higher than the dew point temperature D (YES in step S11), gives priority to dehumidification control over temperature control (step S12). The temperature control will be described in detail later. When the evaporation temperature Te is lower than the dew point temperature D (NO in step S11), the process proceeds to step S13.

制御部310は、TeSとTeとを比較し、圧縮機110の回転数制御の不感帯である例えば0.5℃をTeSに加えた値よりもTeが大きい場合には(ステップS13でYES)、蒸発温度を下げるために、圧縮機110の回転数を増加させる(ステップS14)。TeがTeS+0.5以下の場合に(ステップS13でNO)、TeがTeS±0.5の範囲にある場合には(ステップS15でYES)、Teは目標の範囲内なので、制御部310は、圧縮機110の回転数を維持させる(ステップS16)。TeがTeS−0.5未満の場合には(ステップS15でNO)、蒸発温度Teを上げるために、制御部310は、圧縮機110の回転数を減少させる(ステップS17)。制御部310は、タイマのカウントが終了するまでは(ステップS18でNO)、この状態を維持し、タイマのカウントが終了すると(ステップS18でYES)、ステップS1に戻ってタイマを新たにスタートする。   The control unit 310 compares TeS and Te, and when Te is larger than a value obtained by adding 0.5 ° C., which is a dead zone of the rotation speed control of the compressor 110, to TeS (YES in step S13), In order to lower the evaporation temperature, the rotational speed of the compressor 110 is increased (step S14). When Te is less than or equal to TeS + 0.5 (NO in step S13), if Te is in the range of TeS ± 0.5 (YES in step S15), since Te is within the target range, control unit 310 The rotation speed of the compressor 110 is maintained (step S16). If Te is less than TeS−0.5 (NO in step S15), the controller 310 decreases the rotational speed of the compressor 110 to increase the evaporation temperature Te (step S17). Control unit 310 maintains this state until the timer count ends (NO in step S18). When the timer count ends (YES in step S18), control unit 310 returns to step S1 and newly starts the timer. .

図5は、空気調和機1および2における温度制御を示すフローチャートである。制御部310は、図4に示す湿度制御と同じ設定時間でタイマをスタートする(ステップS101)。温度制御と湿度制御とは同時にスタートしている。次に制御部310は、設定入力部320によって設定された設定温度Tsを検出する(ステップS102)。室温検出部400は吸込温度Trを検出する(ステップS103)。制御部310は、TsとTrとの差ΔTr(=Ts−Tr)を算出する(ステップS104)。   FIG. 5 is a flowchart showing temperature control in the air conditioners 1 and 2. The controller 310 starts a timer with the same set time as the humidity control shown in FIG. 4 (step S101). Temperature control and humidity control are started at the same time. Next, the control unit 310 detects the set temperature Ts set by the setting input unit 320 (step S102). The room temperature detector 400 detects the suction temperature Tr (step S103). The controller 310 calculates a difference ΔTr (= Ts−Tr) between Ts and Tr (step S104).

第2室内膨張弁210の開度制御の不感帯が、例えば0.1℃である場合、ΔTrが0±0.1の範囲にあるときは(ステップS105でYES)、室温は目標の範囲内なので、制御部310は、第2室内膨張弁210の開度を維持する(ステップS106)。ΔTrが0.1よりも大きい場合、すなわち、吸込温度Trが設定温度Tsよりも低い場合には(ステップS107でYES)、再熱器として機能している第2室内熱交換部150bへの冷媒流量を増加させ、第2室内熱交換部150bの再熱能力を増加させて室温を上げるために、制御部310は、第2室内膨張弁210の開度を増加させる(ステップS108)。ΔTrが−0.1よりも小さい場合、すなわち、吸込温度Trが設定温度Tsよりも高い場合には(ステップS107でNO)、第2室内熱交換部150bへの冷媒流量を減少させ、第2室内熱交換部150bの再熱能力を減少させて室温を下げるために、制御部310は、第2室内膨張弁210の開度を減少させる(ステップS109)。制御部310は、タイマのカウントが終了するまでは(ステップS110でNO)、この状態を維持し、タイマのカウントが終了すると(ステップS110でYES)、ステップS101に戻ってタイマを新たにスタートする。   If the dead zone of the opening control of the second indoor expansion valve 210 is, for example, 0.1 ° C., and ΔTr is in the range of 0 ± 0.1 (YES in step S105), the room temperature is within the target range. The control unit 310 maintains the opening degree of the second indoor expansion valve 210 (step S106). When ΔTr is larger than 0.1, that is, when the suction temperature Tr is lower than the set temperature Ts (YES in step S107), the refrigerant to the second indoor heat exchange unit 150b functioning as a reheater. In order to increase the flow rate and increase the reheating capability of the second indoor heat exchange unit 150b to raise the room temperature, the control unit 310 increases the opening of the second indoor expansion valve 210 (step S108). When ΔTr is smaller than −0.1, that is, when the suction temperature Tr is higher than the set temperature Ts (NO in step S107), the refrigerant flow rate to the second indoor heat exchange unit 150b is decreased, and the second In order to reduce the reheat capability of the indoor heat exchange unit 150b and lower the room temperature, the control unit 310 decreases the opening of the second indoor expansion valve 210 (step S109). Control unit 310 maintains this state until the timer count ends (NO in step S110). When the timer count ends (YES in step S110), control unit 310 returns to step S101 to newly start the timer. .

上記の温度制御において、ΔTrが−0.1よりも小さい場合であっても、第2室内膨張弁210が全閉のときは、第2室内熱交換部150bへの冷媒流量を減少させることができないために第2室内熱交換部150bの再熱能力を減少させることができず、逆に、ΔTrが0.1を超える場合であっても、第2室内膨張弁210が全開のときは、第2室内熱交換部150bへの冷媒流量を増加させることができないために第2室内熱交換部150bの再熱能力を増加させることができない。このような場合の温度制御を図6に示す。   In the above temperature control, even when ΔTr is smaller than −0.1, when the second indoor expansion valve 210 is fully closed, the refrigerant flow rate to the second indoor heat exchange section 150b can be reduced. Since it is not possible to reduce the reheat capability of the second indoor heat exchange unit 150b, conversely, even when ΔTr exceeds 0.1, when the second indoor expansion valve 210 is fully open, Since the refrigerant flow rate to the second indoor heat exchange unit 150b cannot be increased, the reheat capability of the second indoor heat exchange unit 150b cannot be increased. FIG. 6 shows the temperature control in such a case.

図6は、第2室内膨張弁210が全開または全閉の場合の温度制御を示すフローチャートである。図5に示すフローチャートとステップ105までは同じであるので、図5のステップ105以降についてのみ図6には示す。   FIG. 6 is a flowchart showing temperature control when the second indoor expansion valve 210 is fully opened or fully closed. Since the flowchart shown in FIG. 5 and step 105 are the same, only step 105 and subsequent steps in FIG. 5 are shown in FIG.

ΔTrが0±0.1の範囲にある場合は(ステップS105でYES)、図5の丸付数字1に進む。ΔTrが0.1よりも大きい場合に(ステップS107でYES)、第2室内膨張弁210が全開のときは(ステップS201でYES)、室外熱交換器120への冷媒流量を減少させることで第2室内熱交換部150bへの冷媒流量を増加させ、第2室内熱交換部150bの再熱能力を増加させて室温を上げるために、室外膨張弁130の開度を減じる(ステップS202)。第2室内膨張弁210が全開でないときは(ステップS201でNO)、図5の丸付数字2に進む。   When ΔTr is in the range of 0 ± 0.1 (YES in step S105), the process proceeds to the circled number 1 in FIG. When ΔTr is larger than 0.1 (YES in step S107), when the second indoor expansion valve 210 is fully opened (YES in step S201), the refrigerant flow rate to the outdoor heat exchanger 120 is decreased to reduce the second indoor expansion valve 210. In order to increase the refrigerant flow rate to the second indoor heat exchange unit 150b and increase the reheat capability of the second indoor heat exchange unit 150b to raise the room temperature, the opening degree of the outdoor expansion valve 130 is decreased (step S202). When the second indoor expansion valve 210 is not fully opened (NO in step S201), the process proceeds to the circled number 2 in FIG.

ΔTrが−0.1よりも小さい場合に(ステップS107でNO)、第2室内膨張弁210が全閉のときは(ステップS203でYES)、顕熱能力を増加させることで室温を下げるために圧縮機110の回転数を増加させる(ステップS204)。第2室内膨張弁210が全閉でないときは(ステップS203でNO)、図5の丸付数字3に進む。制御部310は、タイマのカウントが終了するまでは(ステップS205でNO)、この状態を維持し、タイマのカウントが終了すると(ステップS205でYES)、図5の丸付数字4に戻ってタイマを新たにスタートする。   When ΔTr is smaller than −0.1 (NO in step S107), when second indoor expansion valve 210 is fully closed (YES in step S203), in order to lower the room temperature by increasing the sensible heat capacity The rotation speed of the compressor 110 is increased (step S204). When the second indoor expansion valve 210 is not fully closed (NO in step S203), the process proceeds to the circled numeral 3 in FIG. Control unit 310 maintains this state until the timer count ends (NO in step S205), and when the timer count ends (YES in step S205), it returns to circled number 4 in FIG. A new start.

図7は、上記実施形態の制御がなされる再熱除湿運転を説明するための湿り空気線図である。設定室温をTs、設定相対湿度をHsとしたときの制御目標となるポイント(設定温度Ts、目標絶対湿度Xs)を点0で示す。温度Trおよび絶対湿度Xである空気調和が行われる前の吸込空気の状態を点1で示す。この例では、TrおよびXともに、TsおよびXsよりも高い値となっている。   FIG. 7 is a moist air diagram for explaining the reheat dehumidifying operation in which the control of the above embodiment is performed. A point (set temperature Ts, target absolute humidity Xs) as a control target when the set room temperature is Ts and the set relative humidity is Hs is indicated by a point 0. The state of the intake air before the air conditioning at the temperature Tr and the absolute humidity X is performed is indicated by a point 1. In this example, both Tr and X are higher than Ts and Xs.

除湿制御が開始されて、XとXsとの差ΔXに基づいて、目標蒸発温度TeSが設定され、実際の蒸発温度TeとTeSとの差に応じて、圧縮機110の回転数が増減されると(図4参照)、吸込空気の状態は、温度が低下して点0から飽和空気線上の点aに変化し、飽和空気線上を下降して絶対湿度が低下し、点aから点bへとさらに変化する。   The dehumidification control is started, the target evaporation temperature TeS is set based on the difference ΔX between X and Xs, and the rotation speed of the compressor 110 is increased or decreased according to the difference between the actual evaporation temperature Te and TeS. (See FIG. 4), the state of the intake air changes from the point 0 to the point a on the saturated air line as the temperature decreases, and descends on the saturated air line to decrease the absolute humidity, from the point a to the point b. And further change.

TrとTsとの差ΔTrに基づいて、第2室内膨張弁210の開度が増減され温度制御が行われることで(図5参照)、点bから温度が上昇して点c(点0)へとさらに状態が変化し、吸込空気は調和空気として吹き出され、空調室内の空気は、制御目標値の温度Ts、絶対湿度Xsとされる。   Based on the difference ΔTr between Tr and Ts, the temperature of the second indoor expansion valve 210 is increased and decreased (see FIG. 5), and the temperature rises from point b to point c (point 0). The state further changes, the intake air is blown out as conditioned air, and the air in the air-conditioned room is set to the control target value temperature Ts and absolute humidity Xs.

ここで、室内負荷によって温度および絶対湿度が上昇し、点cから点1に状態が変化した場合を想定する。このとき、PI制御されている圧縮機110および第2室内膨張弁210の制御量が変化して、潜熱能力および顕熱能力がともに増加しているから、以下に説明するように吸込空気の状態変化も異なることになる。   Here, it is assumed that the temperature and absolute humidity increase due to the indoor load, and the state changes from point c to point 1. At this time, since the control amounts of the compressor 110 and the second indoor expansion valve 210 that are PI-controlled are changed and both the latent heat capacity and the sensible heat capacity are increased, the state of the intake air as described below Change will be different.

除湿制御によって、点1の状態の吸込空気は、飽和空気線上の点aの状態に変化したのち、飽和空気線上を下降して絶対湿度が低下し、点bよりもさらに温度および絶対湿度が低いb2の状態へと変化する。そして、温度制御によって、点b2の状態から温度が上昇して点c2の状態へと変化する。点c2から室内負荷によって温度および絶対湿度が上昇し、点1よりも絶対湿度が点0に近い点d2へと変化する。   By the dehumidification control, the intake air in the state of point 1 changes to the state of point a on the saturated air line, and then descends on the saturated air line to lower the absolute humidity, and the temperature and absolute humidity are lower than point b. It changes to the state of b2. And by temperature control, temperature rises from the state of the point b2, and changes to the state of the point c2. The temperature and absolute humidity rise from the point c2 due to the indoor load, and the absolute humidity changes from point 1 to point d2, which is closer to point 0 than point 1.

点d2の状態となった空調室内の空気は、除湿制御によって温度が低下して飽和空気線上の点a2(aよりも絶対湿度が低い)に状態が変化したのち、飽和空気線上を下降して絶対湿度が低下し、点b2の状態よりもさらに温度および絶対湿度が低いb3の状態へと変化する。そして、温度制御によって、点b3の状態から温度が上昇して点c3の状態へと変化する。点c3の状態から室内負荷によって温度および絶対湿度が上昇し、点0と絶対湿度が等しく温度が低い点d3へと変化して除湿制御が完了する。さらに、室内負荷によりd3の状態から点0まで加温されて温度制御が終了する。   The air in the air-conditioned room in the state of the point d2 is lowered on the saturated air line after the temperature is lowered by dehumidification control and the state is changed to the point a2 on the saturated air line (absolute humidity is lower than a). The absolute humidity decreases and changes to a state of b3 where the temperature and absolute humidity are lower than the state of point b2. And by temperature control, temperature rises from the state of the point b3 and changes to the state of the point c3. The temperature and absolute humidity rise from the state of the point c3 due to the indoor load, change to the point d3 where the absolute humidity is equal to the point 0 and the absolute humidity is low, and the dehumidification control is completed. Further, the temperature control is ended by heating from the state of d3 to the point 0 by the indoor load.

本実施形態では、上記に説明した通り、除湿制御に係る潜熱能力の増減は、目標蒸発温度TeSに基づいて制御部310が圧縮機110の回転数を制御することでなされ、温度制御に係る顕熱能力の増減は、ΔTrに基づいて制御部310が室外膨張弁130および第2室内膨張弁210の開度を制御することでなされる。すなわち、潜熱能力の制御と顕熱能力の制御とは独立してなされることになる。したがって、潜熱能力の制御と顕熱能力の制御との干渉が抑制されて、温度および湿度の制御が精度良く行われる。   In the present embodiment, as described above, the increase or decrease in the latent heat capacity related to the dehumidification control is made by the control unit 310 controlling the rotation speed of the compressor 110 based on the target evaporation temperature TeS. The heat capacity is increased or decreased by the control unit 310 controlling the opening degrees of the outdoor expansion valve 130 and the second indoor expansion valve 210 based on ΔTr. That is, the control of the latent heat capability and the control of the sensible heat capability are performed independently. Therefore, the interference between the control of the latent heat capability and the control of the sensible heat capability is suppressed, and the temperature and humidity can be controlled with high accuracy.

また、本実施形態では、上記に説明した通り、制御部310は、蒸発温度検出部600が検出した蒸発温度Teが露点温度D以上である場合は、温度制御よりも湿度制御を優先するので、確実に除湿が行われる。   In the present embodiment, as described above, the control unit 310 gives priority to humidity control over temperature control when the evaporation temperature Te detected by the evaporation temperature detection unit 600 is equal to or higher than the dew point temperature D. Dehumidification is surely performed.

さらに、本実施形態では、上記に説明した通り、制御部310は、温度制御において、第2室内膨張弁210の開度が最大である場合は、室外膨張弁130の開度を制御対象とし、第2室内膨張弁210が全閉である場合は、圧縮機110の回転数を制御対象として
いる。したがって、第2室内膨張弁210の開度が調節不可能な場合にも、温度制御を行うことができる。
Further, in the present embodiment, as described above, the controller 310 controls the opening of the outdoor expansion valve 130 when the opening of the second indoor expansion valve 210 is maximum in the temperature control, When the second indoor expansion valve 210 is fully closed, the number of rotations of the compressor 110 is controlled. Therefore, temperature control can be performed even when the opening degree of the second indoor expansion valve 210 is not adjustable.

ところで、上記実施形態に係る空気調和機1および2は、図4および図7に基づいて上記に説明した通り、相対湿度ではなく絶対湿度に基づいて湿度制御を行っている。相対湿度に基づいて湿度制御を行う場合の問題点、および絶対湿度に基づいて湿度制御を行う場合の利点を、以下に説明する。   By the way, the air conditioners 1 and 2 which concern on the said embodiment are performing humidity control not based on relative humidity but absolute humidity as demonstrated above based on FIG. 4 and FIG. A problem in the case of performing humidity control based on the relative humidity and an advantage in the case of performing humidity control based on the absolute humidity will be described below.

図8は、相対湿度に基づいて湿度制御を行う空気調和機による再熱除湿運転を説明するための湿り空気線図である。設定室温をTs、設定相対湿度をHsとしたときの制御目標となるポイントを点0で示す。吸込空気の状態が、設定温度Tsよりも温度が低く絶対湿度が点0と等しい状態、すなわち、温度が設定温度Tsよりも低く相対湿度が設定相対湿度Hsよりも高い状態を点1(温度Tr1、絶対湿度X1=Xs)に示す。吸込空気の状態が、設定温度Tsよりも温度が高く絶対湿度も点0よりも高いが、相対湿度は設定相対湿度Hsよりも低い状態を点2(温度Tr2、絶対湿度X2)に示す。   FIG. 8 is a wet air diagram for explaining a reheat dehumidifying operation by an air conditioner that performs humidity control based on relative humidity. A point that is a control target when the set room temperature is Ts and the set relative humidity is Hs is indicated by a point 0. The state of the intake air is a state where the temperature is lower than the set temperature Ts and the absolute humidity is equal to the point 0, that is, a state where the temperature is lower than the set temperature Ts and the relative humidity is higher than the set relative humidity Hs. , Absolute humidity X1 = Xs). The state of the intake air is higher than the set temperature Ts and the absolute humidity is higher than the point 0, but the relative humidity is lower than the set relative humidity Hs at a point 2 (temperature Tr2, absolute humidity X2).

吸込空気の状態が点1にある場合は、相対湿度に基づいて湿度制御を行う空気調和機では、相対湿度がHsよりも高いために除湿が必要と判断する。その結果、吸込空気を露点未満に冷却して除湿をし(点1から点a)、再熱器で過熱することになる(点aから点b)。再熱のみが必要であるにもかかわらず不要な除湿がされる結果、相対湿度は設定相対湿度Hsよりも低くなってしまう。   When the state of the intake air is at point 1, the air conditioner that performs humidity control based on the relative humidity determines that dehumidification is necessary because the relative humidity is higher than Hs. As a result, the intake air is cooled below the dew point to dehumidify (from point 1 to point a) and overheated by the reheater (from point a to point b). As a result of unnecessary dehumidification, although only reheating is required, the relative humidity becomes lower than the set relative humidity Hs.

吸込空気の状態が点2にある場合は、相対湿度に基づいて湿度制御を行う空気調和機では、温度制御によって空調室の室温がTr2からTr2’に低下するまでは、相対湿度がHsよりも低いために除湿が不要と判断する。したがって、除湿運転の開始が遅れてしまうので、湿度がHsに到達するまでに時間がかかることになる。   When the state of the intake air is at point 2, in an air conditioner that performs humidity control based on relative humidity, the relative humidity is higher than Hs until the room temperature of the air-conditioned room is reduced from Tr2 to Tr2 ′ by temperature control. It is judged that dehumidification is unnecessary because it is low. Accordingly, since the start of the dehumidifying operation is delayed, it takes time until the humidity reaches Hs.

一方、絶対湿度に基づいて湿度制御を行う空気調和機1および2では、吸込空気の状態が点1にある場合は、除湿は行われず、吸込空気の状態が点2にある場合は、温度制御と同時に湿度制御もなされるので、従来の空気調和機よりも湿度がHsに到達するまでの時間が短縮される。すなわち、不必要な除湿や除湿制御の遅れといった、相対湿度に基づいて湿度制御を行う空気調和機の不具合が解消される。   On the other hand, in the air conditioners 1 and 2 that perform humidity control based on absolute humidity, when the state of the intake air is at point 1, no dehumidification is performed, and when the state of the intake air is at point 2, temperature control is performed. At the same time, the humidity control is performed, so that the time until the humidity reaches Hs is shortened as compared with the conventional air conditioner. That is, problems of the air conditioner that performs humidity control based on relative humidity, such as unnecessary dehumidification and delay of dehumidification control, are solved.

実施形態1に係る空気調和機1および2において、圧縮機110の回転数の増減による潜熱能力の制御(除湿制御)と、室外膨張弁130および第2室内膨張弁210の開度の増減による顕熱能力の制御(温度制御)とは、互いに独立して行われる。しかしながら、圧縮機110の回転数の増減は、顕熱能力にも影響を及ぼし、室外膨張弁130および第2室内膨張弁210の開度の増減は、潜熱能力にも影響を及ぼす。したがって、潜熱能力の制御(除湿制御)と顕熱能力の制御(温度制御)とを、完全に独立させるのは困難である。そのため、互いの制御の干渉は、空気調和機1および2において、フィードフォワード制御によって補正されている。   In the air conditioners 1 and 2 according to the first embodiment, the latent heat capacity control (dehumidification control) by increasing / decreasing the rotation speed of the compressor 110 and the manifestation by increasing / decreasing the opening degrees of the outdoor expansion valve 130 and the second indoor expansion valve 210 are demonstrated. Control of heat capacity (temperature control) is performed independently of each other. However, an increase or decrease in the rotational speed of the compressor 110 also affects the sensible heat capacity, and an increase or decrease in the opening degree of the outdoor expansion valve 130 and the second indoor expansion valve 210 also affects the latent heat capacity. Therefore, it is difficult to make the control of the latent heat capability (dehumidification control) and the control of the sensible heat capability (temperature control) completely independent. Therefore, the mutual interference of control is corrected by feedforward control in the air conditioners 1 and 2.

湿度制御および温度制御におけるフィードフォワード制御による補正について、図9および図10に基づいて説明する。   Correction by feedforward control in humidity control and temperature control will be described with reference to FIGS. 9 and 10.

図9は、湿度制御におけるフィードフォワード制御による補正を示すフローチャートである。第2室内膨張弁210の開度が変更されると(ステップS301でYES)、制御部310は、変更前後の第2室内膨張弁210の開度に基づいて再熱量の変化量ΔQrを算出する(ステップS302)。ΔQrに基づいて、制御部310は、吹出温度Tfの変化量ΔT1を算出する(ステップS303)。制御部310は、目標絶対湿度Xsと吸込絶対湿度Xとの差ΔXに基づいて算出されていた目標蒸発温度TeSから(図4ステップS8参照)、予め定められた定数C1をΔT1に乗じた値を減じてTeSを補正する(ステップS304)。この補正値を、目標蒸発温度TeSとして再設定して、制御部310が図4のフローチャートに示す除湿制御を行うことで、温度制御における第2室内膨張弁210の開度変更によって生じる除湿制御のずれを防止することができる。   FIG. 9 is a flowchart showing correction by feedforward control in humidity control. When the opening degree of second indoor expansion valve 210 is changed (YES in step S301), control unit 310 calculates reheat amount change amount ΔQr based on the opening degree of second indoor expansion valve 210 before and after the change. (Step S302). Based on ΔQr, control unit 310 calculates change amount ΔT1 of blowing temperature Tf (step S303). The control unit 310 calculates a value obtained by multiplying ΔT1 by a predetermined constant C1 from the target evaporation temperature TeS calculated based on the difference ΔX between the target absolute humidity Xs and the suction absolute humidity X (see step S8 in FIG. 4). Is subtracted to correct TeS (step S304). The correction value is reset as the target evaporation temperature TeS, and the controller 310 performs the dehumidification control shown in the flowchart of FIG. Deviation can be prevented.

図10は、温度制御におけるフィードフォワード制御による補正を示すフローチャートである。圧縮機110の回転数が変更されると(ステップS401でYES)、制御部310は、圧縮機110の回転数変更前後に蒸発温度検出部600が検出した蒸発温度Teに基づいて蒸発温度の変化量ΔTeを算出する(ステップS402)。ΔTeに基づいて、制御部310は、吹出温度Tfの変化量ΔT2を算出する(ステップS403)。制御部310は、設定温度Tsと吸込温度Trとの差ΔTrに基づいて算出されていた第2室内膨張弁210の開度から(図5ステップS104〜ステップ109参照)、予め定められた定数C1をΔT2に乗じた値を減じて第2室内膨張弁210の開度を補正する(ステップS404)。この補正値を、第2室内膨張弁210の開度として再設定して、制御部310が図5のフローチャートに示す温度制御を行うことで、湿度制御における圧縮機110の回転数変更によって生じる温度制御のずれを防止することができる。   FIG. 10 is a flowchart showing correction by feedforward control in temperature control. When the rotation speed of the compressor 110 is changed (YES in step S401), the control unit 310 changes the evaporation temperature based on the evaporation temperature Te detected by the evaporation temperature detection unit 600 before and after the rotation speed change of the compressor 110. The amount ΔTe is calculated (step S402). Based on ΔTe, control unit 310 calculates change amount ΔT2 of blowing temperature Tf (step S403). The control unit 310 determines a predetermined constant C1 from the opening of the second indoor expansion valve 210 calculated based on the difference ΔTr between the set temperature Ts and the suction temperature Tr (see step S104 to step 109 in FIG. 5). The value obtained by multiplying ΔT2 by 1 is subtracted to correct the opening of the second indoor expansion valve 210 (step S404). The correction value is reset as the opening degree of the second indoor expansion valve 210, and the control unit 310 performs the temperature control shown in the flowchart of FIG. 5 so that the temperature generated by the rotation speed change of the compressor 110 in the humidity control. Control deviation can be prevented.

<実施形態2>
図11は、本発明の実施形態2に係る空気調和機3の機能的な構成を示すブロック図である。空気調和機3は、実施形態1に係る空気調和機1または2の構成に加えて、吹出温度検出部700をさらに備える。吹出温度検出部700は、例えば、室内機20の図略の吹出口近傍に設置される温度センサであり、室内熱交換器150で室内熱交換器150内の冷媒と熱交換されて吹き出された前記空調室内の空気である調和空気の吹出温度Tfを検出する。空気調和機3は、前記温度制御において、制御部310が、吹出温度Tfと吸込温度Trとの差ΔTfを算出し、設定温度Tsと吸込温度Trとの差ΔTrのみならず、ΔTfにも基づいて第2室内膨張弁210の開度を制御する点で、空気調和機1および2とは異なる。
<Embodiment 2>
FIG. 11 is a block diagram showing a functional configuration of the air conditioner 3 according to Embodiment 2 of the present invention. In addition to the configuration of the air conditioner 1 or 2 according to the first embodiment, the air conditioner 3 further includes an outlet temperature detection unit 700. The blowing temperature detection unit 700 is, for example, a temperature sensor installed in the vicinity of an unillustrated air outlet of the indoor unit 20, and is blown out by heat exchange with the refrigerant in the indoor heat exchanger 150 by the indoor heat exchanger 150. The temperature Tf of the conditioned air that is the air in the air-conditioned room is detected. In the air conditioner 3, in the temperature control, the control unit 310 calculates the difference ΔTf between the blowing temperature Tf and the suction temperature Tr, and based on not only the difference ΔTr between the set temperature Ts and the suction temperature Tr but also ΔTf. Thus, the air conditioners 1 and 2 are different in that the opening degree of the second indoor expansion valve 210 is controlled.

空調室内の室温(吸込温度Tr)が設定温度Tsを下回る場合、当該室温を上昇させて設定温度Tsとするためには、制御部310は、設定温度Tsよりも高い吹出温度Tfで調和空気を吹き出させる必要がある。すなわち、吹出温度Tf、設定温度Ts、および吸込温度Trの三者の関係は、Tf>Ts>Trとなる。逆に、空調室内の室温が設定温度Tsを上回る場合、当該室温を低下させて設定温度Tsとするためには、制御部310は、設定温度Tsよりも低い吹出温度Tfで調和空気を吹き出させる必要がある。すなわち、吹出温度Tf、設定温度Ts、および吸込温度Trの三者の関係は、Tf<Ts<Trとなる。   When the room temperature (suction temperature Tr) in the air-conditioned room is lower than the set temperature Ts, in order to raise the room temperature to the set temperature Ts, the control unit 310 generates conditioned air at a blow-off temperature Tf higher than the set temperature Ts. Need to blow out. In other words, the relationship between the blowout temperature Tf, the set temperature Ts, and the suction temperature Tr is Tf> Ts> Tr. On the other hand, when the room temperature in the air-conditioned room exceeds the set temperature Ts, the control unit 310 causes the conditioned air to be blown out at a blowing temperature Tf lower than the set temperature Ts in order to lower the room temperature to the set temperature Ts. There is a need. That is, the relationship between the blowout temperature Tf, the set temperature Ts, and the suction temperature Tr is Tf <Ts <Tr.

しかしながら、前記温度制御において、空調室内の室温が設定温度Tsを下回る場合(ΔTr>0.1)に、ΔTfがΔTrよりも極端に大きくなったり、空調室内の室温が設定温度Tsを上回る場合(ΔTr<−0.1)に、ΔTfがΔTrよりも極端に小さくなったりすることは好ましくない。なぜならば、前記温度制御においてオーバーシュートが発生するおそれがあるからである。   However, in the temperature control, when the room temperature in the air-conditioned room is lower than the set temperature Ts (ΔTr> 0.1), ΔTf becomes extremely larger than ΔTr, or the room temperature in the air-conditioned room exceeds the set temperature Ts ( It is not preferable that ΔTf is extremely smaller than ΔTr when ΔTr <−0.1). This is because overshoot may occur in the temperature control.

このようなオーバーシュートを防ぐために、制御部310は、空調室内の室温が設定温度Tsを下回る場合に、ΔTfとΔTrとの差が予め定められた閾値Th1を上回るときには、ΔTrに基づいて算出した第2膨張弁210の開度増加量を少なくする補正を行い、空調室内の室温が設定温度Tsを上回る場合に、ΔTfとΔTrとの差が予め定められた閾値Th2を下回るときには、ΔTrに基づいて算出した第2膨張弁210の開度減少量を少なくする補正を行う。   In order to prevent such an overshoot, the control unit 310 calculates based on ΔTr when the difference between ΔTf and ΔTr exceeds a predetermined threshold Th1 when the room temperature in the air-conditioned room is lower than the set temperature Ts. When the room temperature in the air-conditioned room is corrected to reduce the amount of increase in the opening degree of the second expansion valve 210 and exceeds the set temperature Ts, when the difference between ΔTf and ΔTr is below a predetermined threshold Th2, it is based on ΔTr. Correction for reducing the opening reduction amount of the second expansion valve 210 calculated in the above is performed.

図12は、空気調和機3における前記温度制御を示すフローチャートである。なお、図5に示す実施形態1に係る空気調和機1または2における前記温度制御と同一のステップについては同一の符号を付し、必要がない限り説明を省略する。   FIG. 12 is a flowchart showing the temperature control in the air conditioner 3. In addition, the same code | symbol is attached | subjected about the step same as the said temperature control in the air conditioner 1 or 2 which concerns on Embodiment 1 shown in FIG. 5, and description is abbreviate | omitted unless it is required.

空気調和機3における前記温度制御においては、ステップS101からステップS104までの間に、吹出温度検出部700が吹出温度Tfを検出するステップS501が追加され。ステップS104とステップS105との間に、吹出温度Tfと吸込温度Trとの差ΔTfを制御部310が算出するステップS502が追加されている。   In the temperature control in the air conditioner 3, step S501 in which the blowing temperature detecting unit 700 detects the blowing temperature Tf is added between step S101 and step S104. Between step S104 and step S105, step S502 in which the control unit 310 calculates a difference ΔTf between the blowing temperature Tf and the suction temperature Tr is added.

ステップS104で制御部310が算出したΔTrが0.1よりも大きい場合、すなわち、吸込温度Trが設定温度Tsよりも低い場合には(ステップS107でYES)、制御部310は、ΔTrに基づいて第2室内膨張弁210の開度増加量を算出する(ステップS503)。ΔTfとΔTrとの差が予め定められた閾値Th1を上回るときには(ステップS504でYES)、制御部310は、ステップS503で算出した第2膨張弁210の開度増加量を少なくする補正を行い(ステップS505)、補正後の開度増加量で第2室内膨張弁210の開度を増加させる(ステップS108)。一方ΔTfとΔTrとの差が予め定められた閾値Th1以下のときには(ステップS504でNO)、制御部310は、ステップS503で算出した第2膨張弁210の開度増加量で第2室内膨張弁210の開度を増加させる(ステップS108)。   If ΔTr calculated by control unit 310 in step S104 is greater than 0.1, that is, if suction temperature Tr is lower than set temperature Ts (YES in step S107), control unit 310 determines based on ΔTr. An opening increase amount of the second indoor expansion valve 210 is calculated (step S503). When the difference between ΔTf and ΔTr exceeds a predetermined threshold Th1 (YES in step S504), control unit 310 performs correction to reduce the opening increase amount of second expansion valve 210 calculated in step S503 ( In step S505, the opening degree of the second indoor expansion valve 210 is increased by the corrected opening degree increase amount (step S108). On the other hand, when the difference between ΔTf and ΔTr is equal to or smaller than a predetermined threshold Th1 (NO in step S504), control unit 310 uses the second opening amount of second expansion valve 210 calculated in step S503 as the second indoor expansion valve. The opening degree of 210 is increased (step S108).

ΔTrが−0.1よりも小さい場合、すなわち、吸込温度Trが設定温度Tsよりも高い場合には(ステップS107でNO)、制御部310は、ΔTrに基づいて第2室内膨張弁210の開度減少量を算出する(ステップS506)。ΔTfとΔTrとの差が予め定められた閾値Th2を下回るときには(ステップS507でYES)、制御部310は、ステップS503で算出した第2膨張弁210の開度減少量を少なくする補正を行い(ステップS507)、補正後の開度減少量で第2室内膨張弁210の開度を減少させる(ステップS109)。一方ΔTfとΔTrとの差が予め定められた閾値Th2以上のときには(ステップS507でNO)、制御部310は、ステップS506で算出した第2膨張弁210の開度減少量で第2室内膨張弁210の開度を減少させる(ステップS108)。   When ΔTr is smaller than −0.1, that is, when suction temperature Tr is higher than set temperature Ts (NO in step S107), control unit 310 opens second indoor expansion valve 210 based on ΔTr. The degree of decrease is calculated (step S506). When the difference between ΔTf and ΔTr falls below a predetermined threshold Th2 (YES in step S507), control unit 310 performs a correction to reduce the opening reduction amount of second expansion valve 210 calculated in step S503 ( Step S507), the opening degree of the second indoor expansion valve 210 is decreased by the corrected opening degree reduction amount (Step S109). On the other hand, when the difference between ΔTf and ΔTr is equal to or greater than a predetermined threshold Th2 (NO in step S507), control unit 310 uses the second opening valve 210 to reduce the second indoor expansion valve based on the opening reduction amount of second expansion valve 210 calculated in step S506. The opening degree of 210 is decreased (step S108).

ステップS105、ステップS108、ステップS109以降の動作は、図5に示す実施形態1に係る空気調和機1または2における前記温度制御と同様である。   Operations after Step S105, Step S108, and Step S109 are the same as the temperature control in the air conditioner 1 or 2 according to Embodiment 1 shown in FIG.

実施形態2に係る空気調和機3によれば、前記温度制御において制御部310は、設定温度Tsと吸込温度Trとの差ΔTrに加えて、吹出温度Tfと吸込温度Trとの差ΔTfにも基づいて第2室内膨張弁210の開度を制御するので、吹出温度Tfを管理することが可能となり、当該温度制御をより精度良く行うことができる。   According to the air conditioner 3 according to the second embodiment, in the temperature control, the control unit 310 also calculates the difference ΔTf between the blowing temperature Tf and the suction temperature Tr in addition to the difference ΔTr between the set temperature Ts and the suction temperature Tr. Since the opening degree of the second indoor expansion valve 210 is controlled based on this, the blow-out temperature Tf can be managed, and the temperature control can be performed with higher accuracy.

<実施形態3>
図13は、本発明の実施形態3に係る空気調和機4の機能的な構成を示すブロック図である。空気調和機4は、実施形態1に係る空気調和機1または2の構成に加えて、湿り度検出部800をさらに備える。湿り度検出部800は、圧縮機110の吸入部に流入する冷媒が含む液冷媒の割合である湿り度を検出する。例えば、圧縮機110の吐出側に温度センサを設け、当該温度センサが検出した吐出ガス冷媒の温度(過熱度)に基づいて、コントローラ300内部の前記CPUが前記湿り度を算出することで、当該温度センサは、当該CPUとともに湿り度検出部800として機能することになる。制御部310は、前記湿り度が予め定められた上限値を超えた場合に、第2室内膨張弁210の開度を減ずる制御(以下、湿り制御という)を行う。
<Embodiment 3>
FIG. 13 is a block diagram showing a functional configuration of the air conditioner 4 according to Embodiment 3 of the present invention. The air conditioner 4 further includes a wetness detection unit 800 in addition to the configuration of the air conditioner 1 or 2 according to the first embodiment. The wetness detection unit 800 detects the wetness that is the ratio of the liquid refrigerant contained in the refrigerant flowing into the suction unit of the compressor 110. For example, a temperature sensor is provided on the discharge side of the compressor 110, and the CPU inside the controller 300 calculates the wetness based on the temperature (superheat degree) of the discharge gas refrigerant detected by the temperature sensor. The temperature sensor functions as the wetness detection unit 800 together with the CPU. The control unit 310 performs control (hereinafter referred to as wetness control) to reduce the opening degree of the second indoor expansion valve 210 when the wetness degree exceeds a predetermined upper limit value.

図14は、空気調和機4における湿り制御を示すフローチャートである。制御部310は、前記湿度制御および前記温度制御と同じ設定時間でタイマをスタートする(ステップS501)。前記湿り制御は、前記温度制御および前記湿度制御と同時にスタートしている。次に湿り度検出部800は、圧縮機110の吸入部の湿り度を検出する(ステップS502)。当該湿り度が上限値以下であるときは(ステップS503でNO)、当該湿り度は許容範囲内なので、ステップS501に戻る。前記湿り度が上限値を超えるときは(ステップS503でYES)、ステップS504に進んで、制御部310は、第2室内膨張弁210の開度を減じる。制御部310は、タイマのカウントが終了するまでは(ステップS505でNO)、この状態を維持し、タイマのカウントが終了すると(ステップS505でYES)、ステップS501に戻ってタイマを新たにスタートする。   FIG. 14 is a flowchart showing wetness control in the air conditioner 4. The controller 310 starts a timer with the same set time as the humidity control and the temperature control (step S501). The wetness control is started simultaneously with the temperature control and the humidity control. Next, the wetness detection unit 800 detects the wetness of the suction unit of the compressor 110 (step S502). If the wetness is less than or equal to the upper limit value (NO in step S503), the wetness is within the allowable range, so the process returns to step S501. When the wetness exceeds the upper limit value (YES in step S503), the process proceeds to step S504, and the control unit 310 decreases the opening of the second indoor expansion valve 210. Control unit 310 maintains this state until the timer count ends (NO in step S505). When the timer count ends (YES in step S505), control unit 310 returns to step S501 to newly start the timer. .

実施形態3に係る空気調和機4によれば、制御部310は、前記湿り度が予め定められた上限値を超えた場合に、前記湿り制御によって第2室内膨張弁210の開度を減ずるので、前記温度制御における第2室内膨張弁210の開度変更に伴い、圧縮機110の前記吸入部が湿り状態となった場合であっても、当該吸入部における液圧縮を防止することができる。   According to the air conditioner 4 according to the third embodiment, the control unit 310 reduces the opening degree of the second indoor expansion valve 210 by the wetness control when the wetness degree exceeds a predetermined upper limit value. Even when the suction portion of the compressor 110 becomes wet with the change in the opening of the second indoor expansion valve 210 in the temperature control, liquid compression in the suction portion can be prevented.

以上、本発明の実施形態1〜3に係る空気調和機1〜4について説明したが、本発明はこれらの実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で種々変更、改良等が可能であり、例えば次のような変形実施形態を取ることもできる。   As described above, the air conditioners 1 to 4 according to the first to third embodiments of the present invention have been described. However, the present invention is not limited to these embodiments, and various modifications and improvements can be made without departing from the spirit of the present invention. For example, the following modified embodiment can be adopted.

(1)上記実施形態では、第2室内膨張弁210を全開とする場合に、第2室内膨張弁210を全開とした後に室外膨張弁130の制御を行っているが、両膨張弁を同時に制御して、第2室内熱交換部150bに流入する冷媒量を変更してもよい。   (1) In the above embodiment, when the second indoor expansion valve 210 is fully opened, the outdoor expansion valve 130 is controlled after the second indoor expansion valve 210 is fully opened, but both expansion valves are controlled simultaneously. And you may change the refrigerant | coolant amount which flows in into the 2nd indoor heat exchange part 150b.

(2)上記実施形態では、バイパス配管200は、第1室外膨張弁130と第1室内膨張弁140との間の冷媒配管に接続されているが、バイパス配管200を、第1室内膨張弁140と第1室内熱交換部150aとの間の冷媒配管に接続してもよい。この構成によれば、第2室内熱交換部150bで凝縮された冷媒は、室外熱交換器120で凝縮された高圧液冷媒が流れる冷媒配管ではなく、当該高圧液冷媒が第1室内膨張弁140で絞り膨張されて圧力が低下した状態の冷媒が流れる冷媒配管へ流入する。そのため、第2室内熱交換部150bの入口と出口とにおける冷媒の圧力差を大きくすることができるので、第2室内熱交換部150b内部の冷媒流量を増加させることができる。したがって、第2室内熱交換部150bの再熱能力を増加させることができる。   (2) In the above embodiment, the bypass pipe 200 is connected to the refrigerant pipe between the first outdoor expansion valve 130 and the first indoor expansion valve 140, but the bypass pipe 200 is connected to the first indoor expansion valve 140. And a refrigerant pipe between the first indoor heat exchanger 150a. According to this configuration, the refrigerant condensed in the second indoor heat exchange unit 150b is not the refrigerant pipe through which the high-pressure liquid refrigerant condensed in the outdoor heat exchanger 120 flows, but the high-pressure liquid refrigerant is the first indoor expansion valve 140. And flows into the refrigerant pipe through which the refrigerant in a state where the pressure is reduced due to the expansion of the flow. Therefore, since the pressure difference of the refrigerant | coolant in the inlet_port | entrance and exit of the 2nd indoor heat exchange part 150b can be enlarged, the refrigerant | coolant flow rate inside the 2nd indoor heat exchange part 150b can be increased. Therefore, the reheat capability of the second indoor heat exchange unit 150b can be increased.

(3)上記実施形態3に係る空気調和機4は、上記実施形態1に係る空気調和機1または2の構成に湿り度検出部800を加えて構成されているが、上記実施形態2に係る空気調和機3の構成に湿り度検出部800を加えて構成することも可能である。   (3) Although the air conditioner 4 which concerns on the said Embodiment 3 adds the wetness degree detection part 800 to the structure of the air conditioner 1 or 2 which concerns on the said Embodiment 1, it concerns on the said Embodiment 2. It is also possible to add a wetness detection unit 800 to the configuration of the air conditioner 3.

(4)上記実施形態では、圧縮機110をスクロール圧縮機としているが、圧縮機の圧縮機構はスクロール型に限定されるものではなく、例えばロータリー圧縮機のようなスクロール圧縮機とは異なる圧縮機構を備える圧縮機であってもよい。   (4) In the above embodiment, the compressor 110 is a scroll compressor, but the compression mechanism of the compressor is not limited to the scroll type, and a compression mechanism different from a scroll compressor such as a rotary compressor, for example. It may be a compressor provided with.

1〜4 空気調和機
20、21 室内機
30、31 室外機
100 冷媒回路
110 圧縮機
120 室外熱交換器
130 室外膨張弁
140 第1室内膨張弁
150 室内熱交換器
150a 第1室内熱交換部
150b 第2室内熱交換部
200、201 バイパス配管
210 第2室内膨張弁
300 コントローラ
310 制御部
320 設定入力部
400 温度検出部
500 湿度検出部
600 蒸発温度検出部
700 吹出温度検出部
800 湿り度検出部
1-4 Air Conditioner 20, 21 Indoor Unit 30, 31 Outdoor Unit 100 Refrigerant Circuit 110 Compressor 120 Outdoor Heat Exchanger 130 Outdoor Expansion Valve 140 First Indoor Expansion Valve 150 Indoor Heat Exchanger 150a First Indoor Heat Exchanger 150b Second indoor heat exchange section 200, 201 Bypass piping 210 Second indoor expansion valve 300 Controller 310 Control section 320 Setting input section 400 Temperature detection section 500 Humidity detection section 600 Evaporation temperature detection section 700 Blowing temperature detection section 800 Wetness detection section

Claims (8)

再熱除湿運転時に蒸発器として機能する第1室内熱交換部(150a)と、再熱器として機能する第2室内熱交換部(150b)とを備える室内熱交換器(150)と、
圧縮機(110)、室外熱交換器(120)、開度調節可能な室外膨張弁(130)、開度調節可能な第1室内膨張弁(140)、および前記室内熱交換器(150)の第1室内熱交換部(150a)が、冷媒配管で接続された回路内を冷媒が循環する冷媒回路(100)と、
前記冷媒回路(100)の前記室外熱交換器(120)と前記室外膨張弁(130)とをバイパスし、前記室内熱交換器(150)の第2室内熱交換部(150b)と、開度調節可能な第2室内膨張弁(210)とを途中に備える冷媒配管であるバイパス配管(200、201)と、
空気調和が行われる空調室の室温を検出する室温検出部(400)と、
前記空調室の湿度を検出する湿度検出部(500)と、
空気調和における目標温度および目標湿度の少なくとも一方を操作者が入力する設定入力部(320)と、
前記第1室内熱交換部(150a)を通過する冷媒の蒸発温度を検出する蒸発温度検出部(600)と、
前記圧縮機(110)、前記室外膨張弁(130)、前記第1室内膨張弁(140)、および前記第2室内膨張弁(210)を制御する制御部(310)と、を備え、
前記制御部(310)は、
前記湿度検出部(500)が検出した空調室内の湿度と前記目標湿度との差ΔXを算出し、該ΔXに基づいて前記蒸発温度の目標値である目標蒸発温度を設定し、該目標蒸発温度に基づいて圧縮機(110)の回転数を制御する除湿制御を行い、
前記室温検出部(400)が検出した空調室内の温度と前記目標温度との差ΔTrを算出し、該ΔTrに基づいて前記第2室内膨張弁(210)の開度を制御する温度制御を行う空気調和機。
An indoor heat exchanger (150) including a first indoor heat exchange section (150a) that functions as an evaporator during reheat dehumidification operation, and a second indoor heat exchange section (150b) that functions as a reheater;
The compressor (110), the outdoor heat exchanger (120), the outdoor expansion valve (130) whose opening is adjustable, the first indoor expansion valve (140) whose opening is adjustable, and the indoor heat exchanger (150) A refrigerant circuit (100) in which the first indoor heat exchange section (150a) circulates in the circuit connected by the refrigerant pipe;
Bypassing the outdoor heat exchanger (120) and the outdoor expansion valve (130) of the refrigerant circuit (100), the second indoor heat exchanger (150b) of the indoor heat exchanger (150), and the opening degree A bypass pipe (200, 201) which is a refrigerant pipe provided with an adjustable second indoor expansion valve (210) in the middle;
A room temperature detector (400) for detecting the room temperature of the air-conditioned room where the air conditioning is performed;
A humidity detector (500) for detecting the humidity of the air-conditioned room;
A setting input unit (320) for an operator to input at least one of a target temperature and a target humidity in air conditioning;
An evaporation temperature detection unit (600) for detecting the evaporation temperature of the refrigerant passing through the first indoor heat exchange unit (150a);
A controller (310) for controlling the compressor (110), the outdoor expansion valve (130), the first indoor expansion valve (140), and the second indoor expansion valve (210),
The control unit (310)
A difference ΔX between the humidity in the air-conditioned room detected by the humidity detection unit (500) and the target humidity is calculated, a target evaporation temperature that is a target value of the evaporation temperature is set based on the ΔX, and the target evaporation temperature Dehumidification control to control the rotation speed of the compressor (110) based on
A difference ΔTr between the temperature in the air-conditioned room detected by the room temperature detection unit (400) and the target temperature is calculated, and temperature control is performed to control the opening degree of the second indoor expansion valve (210) based on the ΔTr. Air conditioner.
前記制御部(310)は、前記室温検出部(400)が検出した前記空調室の室温と、前記湿度検出部(500)が検出した前記空調室の湿度から、該空調室内の空気の露点温度を算出し、該空調室内の湿度が前記目標湿度以上であり、かつ、前記蒸発温度検出部(600)が検出した蒸発温度が前記露点温度以上である場合は、前記温度制御よりも前記湿度制御を優先して行う請求項1に記載の空気調和機。   The control unit (310) determines the dew point temperature of the air in the air-conditioned room from the room temperature of the air-conditioned room detected by the room temperature detector (400) and the humidity of the air-conditioned room detected by the humidity detector (500). When the humidity in the air-conditioned room is equal to or higher than the target humidity and the evaporation temperature detected by the evaporation temperature detection unit (600) is equal to or higher than the dew point temperature, the humidity control is performed rather than the temperature control. The air conditioner according to claim 1, which is performed with priority. 前記制御部(310)は、前記湿度検出部(500)が検出した空調室内の湿度と前記目標湿度とを絶対湿度に換算し、前記ΔXを絶対湿度で算出する請求項1又は2に記載の空気調和機。   3. The control unit (310) according to claim 1, wherein the control unit (310) converts the humidity in the air-conditioned room detected by the humidity detection unit (500) and the target humidity into an absolute humidity, and calculates the ΔX as an absolute humidity. Air conditioner. 前記制御部(310)は、前記温度制御において、前記第2室内膨張弁(210)の開度が最大である場合は、前記室外膨張弁(130)の開度をも制御対象とし、前記第2室内膨張弁(210)が全閉である場合は、前記圧縮機(110)の回転数をも制御対象とする請求項1〜3のいずれか1項に記載の空気調和機。   In the temperature control, when the opening degree of the second indoor expansion valve (210) is the maximum, the control unit (310) also controls the opening degree of the outdoor expansion valve (130), and The air conditioner according to any one of claims 1 to 3, wherein when the two-indoor expansion valve (210) is fully closed, the number of rotations of the compressor (110) is also controlled. 前記制御部(310)は、
前記温度制御における前記第2室内膨張弁(210)の開度変更量に基づいて、前記空調室内の空気が前記室内熱交換器(150)で当該室内熱交換器(150)内部の冷媒と熱交換されて吹き出される調和空気の吹出温度変化量ΔT1を算出し、予め定められた第1の定数を該ΔT1に乗じた値を、前記湿度制御において算出した前記目標蒸発温度から減ずることで前記目標蒸発温度を補正し、
かつ、前記湿度制御における圧縮機(110)回転数の変更量に基づいて、前記調和空気の吹出温度変化量ΔT2を算出し、予め定められた第2の定数を該ΔT2に乗じた値を、前記温度制御において算出した前記第2室内膨張弁(210)の開度変更量から減ずることで該開度変更量を補正する請求項1〜4のいずれか1項に記載の空気調和機。
The control unit (310)
Based on the degree of opening change of the second indoor expansion valve (210) in the temperature control, the air in the air-conditioned room is heated by the indoor heat exchanger (150) with the refrigerant and heat inside the indoor heat exchanger (150). By calculating the blowing temperature change amount ΔT1 of the conditioned air that is exchanged and blown, and subtracting a value obtained by multiplying the predetermined first constant by ΔT1 from the target evaporation temperature calculated in the humidity control, Correct the target evaporation temperature,
And based on the change amount of the compressor (110) rotation speed in the humidity control, the conditioned air blowing temperature change amount ΔT2 is calculated, and a value obtained by multiplying the ΔT2 by a predetermined second constant is The air conditioner according to any one of claims 1 to 4, wherein the opening change amount is corrected by subtracting from the opening change amount of the second indoor expansion valve (210) calculated in the temperature control.
前記調和空気の吹出温度を検出する吹出温度検出部(700)をさらに備え、
前記制御部(310)は、前記室温検出部(400)が検出した前記空調室内の温度と前記吹出温度との差ΔTfを算出し、該ΔTfと前記ΔTrとに基づいて前記第2室内膨張弁(210)の開度を制御する温度制御を行う請求項1〜5のいずれか1項に記載の空気調和機。
An air temperature detector (700) for detecting the air temperature of the conditioned air;
The control unit (310) calculates a difference ΔTf between the temperature in the air-conditioned room detected by the room temperature detection unit (400) and the blowing temperature, and the second indoor expansion valve based on the ΔTf and the ΔTr. The air conditioner according to any one of claims 1 to 5, wherein temperature control for controlling the opening degree of (210) is performed.
前記圧縮機(110)の吸入部に流入する冷媒が含む液冷媒の割合である湿り度を検出する湿り度検出部(800)をさらに備え、
前記制御部(310)は、前記湿り度が予め定められた上限値を超えた場合に、前記第2室内膨張弁(210)の開度を減ずる制御を行う請求項1〜6のいずれか1項に記載の空気調和機。
A wetness degree detection unit (800) that detects a wetness degree that is a ratio of the liquid refrigerant contained in the refrigerant flowing into the suction part of the compressor (110);
The said control part (310) performs control which reduces the opening degree of a said 2nd indoor expansion valve (210), when the said wetness degree exceeds the predetermined upper limit. The air conditioner described in the paragraph.
前記室外熱交換器(120)と、前記室外膨張弁(130)は、前記空調室の外部に設置される室外機(31)に収容され、
前記圧縮機(110)と、前記第1室内膨張弁(140)と、前記第1室内熱交換部(150a)と、前記第1室内熱交換部(150b)と、第2室内膨張弁(210)は、前記空調室の内部に設置される室内機(21)に収容され、
前記バイパス配管(201)は、前記室内機(21)内で前記冷媒回路(100)から分岐され、前記室内機(21)内で前記冷媒回路(100)に接続される請求項1〜7のいずれか1項に記載の空気調和機。
The outdoor heat exchanger (120) and the outdoor expansion valve (130) are accommodated in an outdoor unit (31) installed outside the air conditioning room,
The compressor (110), the first indoor expansion valve (140), the first indoor heat exchange unit (150a), the first indoor heat exchange unit (150b), and the second indoor expansion valve (210 ) Is housed in an indoor unit (21) installed inside the air conditioning room,
The bypass pipe (201) is branched from the refrigerant circuit (100) in the indoor unit (21) and connected to the refrigerant circuit (100) in the indoor unit (21). The air conditioner of any one of Claims.
JP2010154518A 2010-07-07 2010-07-07 Air conditioner Active JP5333365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010154518A JP5333365B2 (en) 2010-07-07 2010-07-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010154518A JP5333365B2 (en) 2010-07-07 2010-07-07 Air conditioner

Publications (2)

Publication Number Publication Date
JP2012017889A true JP2012017889A (en) 2012-01-26
JP5333365B2 JP5333365B2 (en) 2013-11-06

Family

ID=45603277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010154518A Active JP5333365B2 (en) 2010-07-07 2010-07-07 Air conditioner

Country Status (1)

Country Link
JP (1) JP5333365B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221671A (en) * 2012-04-16 2013-10-28 Daikin Industries Ltd Air conditioner
CN103486689A (en) * 2013-09-11 2014-01-01 广东美的制冷设备有限公司 Air conditioner control method and device
WO2014132433A1 (en) * 2013-03-01 2014-09-04 三菱電機株式会社 Air conditioning device
JP2016050708A (en) * 2014-08-29 2016-04-11 株式会社Nttファシリティーズ Air conditioning device
CN106152263A (en) * 2015-04-07 2016-11-23 大金工业株式会社 Air conditioning system and control method thereof
CN106568224A (en) * 2016-11-02 2017-04-19 珠海格力电器股份有限公司 Air-conditioning system and air-conditioning control method
WO2018037545A1 (en) * 2016-08-25 2018-03-01 三菱電機株式会社 Air conditioning device, air conditioning method, and program
CN109237672A (en) * 2018-08-22 2019-01-18 青岛海尔空调电子有限公司 Air conditioner and control method for air conditioner
US10203122B2 (en) 2014-07-04 2019-02-12 Mitsubishi Electric Corporation Air-conditioning and ventilation apparatus
CN109373529A (en) * 2018-09-20 2019-02-22 青岛海尔(胶州)空调器有限公司 Air conditioner and its control method
WO2020087701A1 (en) * 2018-10-31 2020-05-07 珠海格力电器股份有限公司 Dehumidification control method and apparatus of air conditioning system, and air conditioner
CN112254271A (en) * 2020-09-30 2021-01-22 青岛海尔空调器有限总公司 Method and device for solving problem of reverse air suction of air conditioner and air conditioner
JPWO2021214930A1 (en) * 2020-04-23 2021-10-28
WO2022209446A1 (en) * 2021-03-29 2022-10-06 パナソニックIpマネジメント株式会社 Ventilator with humidity control function
JP2022172986A (en) * 2021-05-07 2022-11-17 ダイキン工業株式会社 Indoor unit for air conditioner
WO2024012002A1 (en) * 2022-07-11 2024-01-18 海尔(深圳)研发有限责任公司 Air conditioner control method, system, and related device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588272B (en) * 2015-09-29 2018-05-18 海信(广东)空调有限公司 A kind of air-conditioning draught fan control method and device
CN106918125A (en) * 2015-12-24 2017-07-04 珠海格力电器股份有限公司 Machine leaving air temp control method in a kind of reheat dehumidification system
CN111396993A (en) * 2020-03-30 2020-07-10 广东美的制冷设备有限公司 Three-pipe air conditioning system, reheating and dehumidifying method and computer readable storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01222137A (en) * 1988-02-29 1989-09-05 Daikin Ind Ltd Air conditioning device
JPH01160275U (en) * 1987-12-24 1989-11-07
JPH0682122A (en) * 1992-09-07 1994-03-22 Daikin Ind Ltd Refrigerating apparatus
JPH07139848A (en) * 1993-06-01 1995-06-02 Hitachi Ltd Air conditioner
JP2006029598A (en) * 2004-07-12 2006-02-02 Mitsubishi Electric Corp Air conditioner, and its control method
JP2007078242A (en) * 2005-09-14 2007-03-29 Mitsubishi Electric Corp Air conditioner
JP2009014322A (en) * 2007-07-09 2009-01-22 Mitsubishi Electric Corp Air conditioner
JP2010133589A (en) * 2008-12-03 2010-06-17 Panasonic Corp Air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01160275U (en) * 1987-12-24 1989-11-07
JPH01222137A (en) * 1988-02-29 1989-09-05 Daikin Ind Ltd Air conditioning device
JPH0682122A (en) * 1992-09-07 1994-03-22 Daikin Ind Ltd Refrigerating apparatus
JPH07139848A (en) * 1993-06-01 1995-06-02 Hitachi Ltd Air conditioner
JP2006029598A (en) * 2004-07-12 2006-02-02 Mitsubishi Electric Corp Air conditioner, and its control method
JP2007078242A (en) * 2005-09-14 2007-03-29 Mitsubishi Electric Corp Air conditioner
JP2009014322A (en) * 2007-07-09 2009-01-22 Mitsubishi Electric Corp Air conditioner
JP2010133589A (en) * 2008-12-03 2010-06-17 Panasonic Corp Air conditioner

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2857767A4 (en) * 2012-04-16 2016-03-16 Daikin Ind Ltd Air conditioner
US9513041B2 (en) 2012-04-16 2016-12-06 Daikin Industries, Ltd. Air conditioner
JP2013221671A (en) * 2012-04-16 2013-10-28 Daikin Industries Ltd Air conditioner
WO2014132433A1 (en) * 2013-03-01 2014-09-04 三菱電機株式会社 Air conditioning device
CN103486689A (en) * 2013-09-11 2014-01-01 广东美的制冷设备有限公司 Air conditioner control method and device
CN103486689B (en) * 2013-09-11 2016-03-02 广东美的制冷设备有限公司 The control method of air-conditioner and device
US10203122B2 (en) 2014-07-04 2019-02-12 Mitsubishi Electric Corporation Air-conditioning and ventilation apparatus
JP2016050708A (en) * 2014-08-29 2016-04-11 株式会社Nttファシリティーズ Air conditioning device
CN106152263A (en) * 2015-04-07 2016-11-23 大金工业株式会社 Air conditioning system and control method thereof
JPWO2018037545A1 (en) * 2016-08-25 2019-06-20 三菱電機株式会社 AIR CONDITIONER, AIR CONDITIONING METHOD, AND PROGRAM
WO2018037545A1 (en) * 2016-08-25 2018-03-01 三菱電機株式会社 Air conditioning device, air conditioning method, and program
CN106568224A (en) * 2016-11-02 2017-04-19 珠海格力电器股份有限公司 Air-conditioning system and air-conditioning control method
CN109237672A (en) * 2018-08-22 2019-01-18 青岛海尔空调电子有限公司 Air conditioner and control method for air conditioner
CN109237672B (en) * 2018-08-22 2021-06-22 青岛海尔空调电子有限公司 Air conditioner and control method for air conditioner
CN109373529A (en) * 2018-09-20 2019-02-22 青岛海尔(胶州)空调器有限公司 Air conditioner and its control method
WO2020087701A1 (en) * 2018-10-31 2020-05-07 珠海格力电器股份有限公司 Dehumidification control method and apparatus of air conditioning system, and air conditioner
JPWO2021214930A1 (en) * 2020-04-23 2021-10-28
CN115398158A (en) * 2020-04-23 2022-11-25 日立江森自控空调有限公司 Air conditioning system and control method
CN112254271A (en) * 2020-09-30 2021-01-22 青岛海尔空调器有限总公司 Method and device for solving problem of reverse air suction of air conditioner and air conditioner
CN112254271B (en) * 2020-09-30 2022-01-21 青岛海尔空调器有限总公司 Method and device for solving problem of reverse air suction of air conditioner and air conditioner
WO2022209446A1 (en) * 2021-03-29 2022-10-06 パナソニックIpマネジメント株式会社 Ventilator with humidity control function
JP2022172986A (en) * 2021-05-07 2022-11-17 ダイキン工業株式会社 Indoor unit for air conditioner
WO2024012002A1 (en) * 2022-07-11 2024-01-18 海尔(深圳)研发有限责任公司 Air conditioner control method, system, and related device

Also Published As

Publication number Publication date
JP5333365B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5333365B2 (en) Air conditioner
US8020395B2 (en) Air conditioning apparatus
US10107533B2 (en) Air-conditioning apparatus with subcooling heat exchanger
US8522568B2 (en) Refrigeration system
EP3312528B1 (en) Air conditioner
US9857088B2 (en) Air-conditioning apparatus
WO2016158938A1 (en) Air conditioner
JP2008232508A (en) Water heater
JP5535504B2 (en) Multi-type air conditioner
WO2016194098A1 (en) Air-conditioning device and operation control device
JP2007255750A (en) Freezer
JP2019086251A (en) Control device of multi-type air conditioning device, multi-type air conditioning device, control method of multi-type air conditioning device, and control program of multi-type air conditioning device
JP2008224210A (en) Air conditioner and operation control method of air conditioner
JP7374633B2 (en) Air conditioners and air conditioning systems
JP2008151394A (en) Air conditioner
JP2005291553A (en) Multiple air conditioner
US20190120513A1 (en) Air-conditioning apparatus
JP6918221B2 (en) Air conditioner
JP4391188B2 (en) Air conditioner
KR101303239B1 (en) Air conditioner and method for controlling the same
WO2020065731A1 (en) Air conditioning device
JP2019011950A (en) Air conditioner
WO2021214816A1 (en) Refrigeration cycle device, air conditioner, and cooling device
KR100812780B1 (en) Heat-pump having inverter-type compressor for preventing heating overload and control method of the same
WO2022234860A1 (en) Air-conditioning device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5333365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151