JP2012016680A - Gas treatment method and gas treatment facility - Google Patents

Gas treatment method and gas treatment facility Download PDF

Info

Publication number
JP2012016680A
JP2012016680A JP2010156717A JP2010156717A JP2012016680A JP 2012016680 A JP2012016680 A JP 2012016680A JP 2010156717 A JP2010156717 A JP 2010156717A JP 2010156717 A JP2010156717 A JP 2010156717A JP 2012016680 A JP2012016680 A JP 2012016680A
Authority
JP
Japan
Prior art keywords
gas
adsorption
desorption
remaining
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010156717A
Other languages
Japanese (ja)
Other versions
JP5256252B2 (en
Inventor
Tomohiro Yuki
智博 結城
Yoshinari Fujisawa
良成 藤澤
Hiroki Ajioka
大樹 鯵岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kankyo Engineering Ltd
Original Assignee
Tsukishima Kankyo Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kankyo Engineering Ltd filed Critical Tsukishima Kankyo Engineering Ltd
Priority to JP2010156717A priority Critical patent/JP5256252B2/en
Publication of JP2012016680A publication Critical patent/JP2012016680A/en
Application granted granted Critical
Publication of JP5256252B2 publication Critical patent/JP5256252B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent moisture adsorption to an adsorption part at low cost, in a pressure swing adsorption method that supplies raw gas to the intermediate part of an adsorption column.SOLUTION: The gas treatment method uses two adsorption columns each having adsorption parts at one and the other ends. In one adsorption column, raw gas is supplied from the intermediate part between the one and the other ends and discharged from the one end so that components in the raw gas are adsorbed by the adsorption part 1a at the one end. In the other adsorption column 2, the components adsorbed by the adsorption parts 2a and 2b are desorbed by desorption gas supplied from the one end and are discharged from the other end. The discharged desorption gas is cooled so that part of the components are separated, and the remaining desorption gas is supplied from the other end of the one adsorption column 1 so that the components in the remaining desorption gas are adsorbed by the adsorption part 1b at the other end. The adsorption/desorption operations in the adsorption columns 1 and 2 are alternated to recover the components in the raw gas. In the gas treatment method, the remaining desorption gas from which a part of the components has been separated is heated and supplied to the one adsorption column 1 from the other end.

Description

本発明は、複数の吸着塔を使用した圧力スイング吸着法(PSA法)を用いて、例えば揮発性有機化合物(VOC)を含有する原ガスからVOCを除去、回収するためのガス処理方法、およびこれに用いるガス処理設備に関するものである。   The present invention relates to a gas processing method for removing and recovering VOC from a raw gas containing, for example, a volatile organic compound (VOC) using a pressure swing adsorption method (PSA method) using a plurality of adsorption towers, and The present invention relates to a gas processing facility used for this.

大気中のVOCのような原ガス中の成分を回収して除去する方法として、例えば特許文献1、2に記載されているように、塔内に活性炭やゼオライト、シリカゲル等の吸着剤が充填された吸着部を有する通常少なくとも2つの吸着塔を用いて、そのうち一部の吸着塔では原ガスを導入して昇圧下または常圧下で上記成分の吸着を行う一方で、他の吸着塔では脱着ガスを導入して常圧下または減圧下で先に吸着した成分を脱着し、これらの吸着塔間でこのような吸着・脱着操作を交互に切り替えて繰り返すPSA法が知られている。   As a method for recovering and removing components in the raw gas such as VOC in the atmosphere, as described in Patent Documents 1 and 2, for example, the column is filled with an adsorbent such as activated carbon, zeolite, or silica gel. In general, at least two adsorption towers having an adsorbing portion are used, and in some of the adsorption towers, the raw gas is introduced to adsorb the above components under elevated pressure or normal pressure, while in the other adsorption towers, the desorption gas is introduced. A PSA method is known in which components previously adsorbed under normal pressure or reduced pressure are desorbed, and such adsorption / desorption operations are alternately switched between these adsorption towers.

そして、さらにこのようなPSA法においては、例えば特許文献3や非特許文献1に記載されているように、上記吸着塔内の一端部側と他端部側とに吸着剤を充填した吸着部を設け、原ガスをこの吸着塔の両端部の間の中間部に供給する圧力スイング式吸着法が知られており、このような圧力スイング式吸着法では、原ガス中のVOC濃度が低い場合でも高倍率で濃縮して、後処理を要しない凝縮液として回収することが可能となり、効率的である。   Further, in such a PSA method, as described in, for example, Patent Document 3 and Non-Patent Document 1, an adsorbing portion in which an adsorbent is packed on one end side and the other end side in the adsorption tower. There is known a pressure swing type adsorption method in which the raw gas is supplied to an intermediate portion between both ends of the adsorption tower. In such a pressure swing type adsorption method, when the VOC concentration in the raw gas is low However, it can be concentrated at a high magnification and recovered as a condensate that does not require post-treatment, which is efficient.

特開2007−240967号公報JP 2007-240967 A 特開2009−050378号公報JP 2009-050378 A 特開2009−078257号公報JP 2009-078257 A

若杉、二元環流型圧力スイング吸着による揮発性有機溶剤の回収「Adsorption News vol.20 No.2(June 2006)」p.10−14Wakasugi, Recovery of Volatile Organic Solvents by Dual Recirculation Pressure Swing Adsorption “Adsorption News vol. 20 No. 2 (June 2006)” p. 10-14

ところで、上記PSA法では、VOC等の成分を脱着した脱着ガスは凝縮器において所定の設定温度にまで冷却されることによりVOC成分および水分が凝縮されて上記凝縮液として分離され、残りの脱着ガスはこの凝縮器の設定温度での飽和蒸気圧に相当する濃度で排出される。そして、こうして排出された残りの脱着ガスは、特許文献1、2に記載されたPSA法では、原ガスに戻されることによりその湿度が低下させられることになる。   By the way, in the PSA method, the desorbed gas from which the components such as VOC are desorbed is cooled to a predetermined set temperature in the condenser to condense the VOC components and moisture and separate as the condensate, and the remaining desorbed gas. Is discharged at a concentration corresponding to the saturated vapor pressure at the set temperature of the condenser. In the PSA method described in Patent Documents 1 and 2, the remaining desorbed gas discharged in this manner is returned to the raw gas to reduce its humidity.

ところが、上記特許文献3や非特許文献1に記載された原ガスを吸着塔の中間部に供給する圧力スイング式吸着法では、こうして排出された残りの脱着ガスは、上記一部の吸着塔にその一端部側から供給されて、この一端部側の吸着部により上記VOC成分等の吸着が行われることになる。そして、このVOC成分の吸着と同時に、上記残りの脱着ガスに含まれている水分も飽和状態のまま吸着部に吸着されてしまう。   However, in the pressure swing adsorption method in which the raw gas described in Patent Document 3 and Non-Patent Document 1 is supplied to the intermediate part of the adsorption tower, the remaining desorbed gas thus discharged is transferred to the partial adsorption tower. The VOC component and the like are adsorbed by the adsorbing portion on the one end side supplied from the one end side. At the same time as the adsorption of the VOC component, the moisture contained in the remaining desorption gas is also adsorbed to the adsorption part in a saturated state.

しかるに、こうして飽和状態の水分が吸着部に吸着されてしまうと、水分の再凝縮により水滴が吸着剤に付着してその細孔を塞ぎ、吸着性能が著しく低下してしまう。従って、吸着剤を交換する頻度が多くなって、これに伴いガス処理設備の運転停止頻度も増加してしまうとともに交換する吸着剤のコストも増大し、非効率的かつ非経済的な結果となる。また、このような水分の吸着を防ぐのに、例えば水分除去塔を設けることなども考えられるが、そのような高価な装置を付設したのでは、やはり設備がコスト高となって経済性が損なわれることが避けられない。   However, if moisture in a saturated state is adsorbed in the adsorption part in this way, water droplets adhere to the adsorbent due to recondensation of the moisture and block the pores, so that the adsorption performance is significantly reduced. Therefore, the frequency of exchanging the adsorbent is increased, and accordingly, the frequency of stopping the gas processing facility is increased and the cost of the adsorbent to be replaced is increased, resulting in an inefficient and uneconomical result. . In order to prevent such adsorption of water, for example, a water removal tower may be provided. However, if such an expensive device is provided, the cost of the equipment is increased and the economy is impaired. Inevitable.

本発明は、このような背景の下になされたもので、上述のような原ガスを吸着塔の中間部に供給する圧力スイング式吸着法における吸着部への水分の吸着を、比較的低コストでありながら確実に防ぐことにより吸着剤の吸着性能低下を防いで、安定したVOC成分等の吸着によるガス処理を長期に亙って連続して行うことが可能なガス処理方法、およびそのためのガス処理設備を提供することを目的としている。   The present invention has been made under such a background, and the adsorption of moisture to the adsorption part in the pressure swing type adsorption method in which the raw gas as described above is supplied to the intermediate part of the adsorption tower is relatively low cost. Gas treatment method capable of continuously performing gas treatment by adsorption of a stable VOC component, etc. over a long period of time, and gas therefor The purpose is to provide treatment facilities.

上記課題を解決して、このような目的を達成するために、本発明のガス処理方法は、塔内の一端部側と他端部側とに吸着部が形成された少なくとも2塔の吸着塔を用いて、このうち一部の吸着塔においては、その一端部と他端部との間の中間部から原ガスを供給して上記一端部側から排出することにより、この一端部側の上記吸着部によって上記原ガス中の成分を吸着する一方、他の吸着塔においては、上記一端部側から供給した脱着ガスにより上記吸着部に吸着された上記成分を脱着して上記他端部側から排出するとともに、この排出された脱着ガスを冷却することにより該脱着ガス中の上記成分の一部を分離して、残りの脱着ガスを上記一部の吸着塔にその上記他端部側から供給することにより、この他端部側の上記吸着部によって上記残りの脱着ガス中の上記成分を吸着し、これら一部の吸着塔と他の吸着塔との吸着・脱着操作を交互に切り替えて上記原ガス中の成分を回収するガス処理方法であって、上記成分の一部を分離した上記残りの脱着ガスを加熱して上記一部の吸着塔に上記他端部側から供給することを特徴とする。   In order to solve the above problems and achieve such an object, the gas treatment method of the present invention provides at least two adsorption towers in which adsorption portions are formed on one end side and the other end side in the tower. In some of these adsorption towers, the raw gas is supplied from the intermediate portion between the one end and the other end and discharged from the one end, thereby the one on the one end. While the component in the raw gas is adsorbed by the adsorption unit, in the other adsorption tower, the component adsorbed on the adsorption unit is desorbed by the desorption gas supplied from the one end side, and the other end side is used. The exhausted desorbed gas is cooled and part of the components in the desorbed gas is separated, and the remaining desorbed gas is supplied to the partial adsorption tower from the other end side. By doing this, the suction part on the other end side A gas treatment method for adsorbing the above components in the desorption gas and recovering the components in the raw gas by alternately switching the adsorption / desorption operations of these partial adsorption towers and other adsorption towers, The remaining desorption gas from which a part of the components has been separated is heated and supplied to the partial adsorption tower from the other end side.

また、本発明のガス処理設備は、このようなガス処理方法に用いるガス処理設備であって、塔内の一端部側と他端部側とに吸着部が形成された少なくとも2塔の上記吸着塔を備え、これらの吸着塔の一端部と他端部との間の中間部には上記原ガスの供給路が接続されるとともに、該吸着塔の一端部側には、上記成分が吸着された原ガスの排出路と上記脱着ガスの供給路とが接続される一方、該吸着塔の他端部側には、上記脱着ガスの排出路と、排出された脱着ガスを冷却することにより該脱着ガス中の上記成分の一部を分離する冷却手段を備えて上記成分の一部が分離した残りの脱着ガスを供給する供給路とが接続されていて、この残りの脱着ガスを供給する供給路には、該残りの脱着ガスを加熱する加熱手段が備えられていることを特徴とする。   Moreover, the gas treatment facility of the present invention is a gas treatment facility used in such a gas treatment method, and the adsorption of at least two towers in which adsorption portions are formed on one end side and the other end side in the tower. The raw gas supply path is connected to an intermediate portion between one end and the other end of these adsorption towers, and the above components are adsorbed on one end of the adsorption tower. The raw gas discharge path and the desorption gas supply path are connected, while the other end of the adsorption tower is connected to the desorption gas discharge path and the discharged desorption gas by cooling. A supply means for supplying the remaining desorption gas, comprising a cooling means for separating a part of the component in the desorption gas and connected to a supply path for supplying the remaining desorption gas from which a part of the component has been separated. The passage is provided with heating means for heating the remaining desorption gas. That.

このようなガス処理設備においては、冷却手段によってVOC等の上記成分の一部が分離した残りの脱着ガスを吸着塔の他端部側に供給する供給路に、この残りのガスを加熱する加熱手段が備えられており、このような設備を用いた本発明のガス処理方法では、かかる加熱手段により上記残りの脱着ガスが加熱されて上記一部の吸着塔に上記他端部側から供給される。従って、この吸着塔に供給される残りの脱着ガスは飽和蒸気圧が上昇して相対湿度は低減されることになる。   In such a gas processing facility, heating that heats the remaining gas to a supply path that supplies the remaining desorption gas from which a part of the above components such as VOC has been separated by the cooling means to the other end side of the adsorption tower. In the gas processing method of the present invention using such equipment, the remaining desorption gas is heated by the heating means and supplied to the partial adsorption tower from the other end side. The Therefore, the remaining desorption gas supplied to the adsorption tower increases in saturated vapor pressure and reduces the relative humidity.

例えば、冷却されて上記成分の一部が分離された残りの脱着ガスの温度が10℃であったとすると、飽和水蒸気圧は1.2kPa(9mmHg)となり、結露寸前の状態であるが、これを30℃まで加熱すれば飽和水蒸気圧4.2kPa(31.7mmHg)となって相対湿度は28%まで低減され、吸着部において結露すなわち再凝縮することはない。このため、該残りの脱着ガス中の水分が再凝縮して吸着剤に付着するのを防ぐことができ、この残りの脱着ガス中のVOC等の成分だけを効率的に吸着させることが可能となる。   For example, if the temperature of the remaining desorption gas after cooling and separation of a part of the above components is 10 ° C., the saturated water vapor pressure is 1.2 kPa (9 mmHg), which is just before the dew condensation. When heated to 30 ° C., the saturated water vapor pressure is 4.2 kPa (31.7 mmHg), the relative humidity is reduced to 28%, and no condensation or recondensation occurs in the adsorption section. For this reason, it is possible to prevent moisture in the remaining desorption gas from recondensing and adhering to the adsorbent, and it is possible to efficiently adsorb only components such as VOC in the remaining desorption gas. Become.

その一方で、この残りの脱着ガスを加熱する上記加熱手段は、上述のように10℃の脱着ガスを30℃程度にまで加熱することが可能なものであればよく、例えば多管式やジャケット式の熱交換器を用いたり、供給路の配管に電気ヒーター(電熱線)を巻いたりスチームトレースを施したりすればよいので、水分除去塔のような高価な設備を要することがない。このため、比較的低コストで、しかしながら確実に吸着剤の性能低下を防止することが可能となる。   On the other hand, the heating means for heating the remaining desorption gas only needs to be able to heat the desorption gas at 10 ° C. to about 30 ° C. as described above. It is only necessary to use a heat exchanger of the type, or to wind an electric heater (heating wire) around the piping of the supply path or to perform steam tracing, so that expensive equipment such as a moisture removal tower is not required. For this reason, it is possible to reliably prevent the performance of the adsorbent from being lowered at a relatively low cost.

また、特許文献3記載のように残りの脱着ガスの加熱手段が備えられていないガス処理設備では、冷却手段(凝集器)により冷却された残りの脱着ガスが他の吸着塔の他端部側にそのまま供給されるため、設備内の熱バランスが不均衡となり、この他の吸着塔の他端部側の吸着剤への供給温度が時間経過とともに低下して、吸着剤を過剰に冷却することになる。一般的には、吸着は温度が低い方が好ましいとされているが、過度に温度が低い場合は脱着操作が困難になるため、本発明のように残りの脱着ガスを加熱した後に一部の吸着塔の他端部側に供給することは、過度の冷却防止の観点からも効果的な手段となる。   Moreover, in the gas processing equipment which is not provided with the heating means of the remaining desorption gas like patent document 3, the remaining desorption gas cooled by the cooling means (coagulator) is the other end part side of another adsorption tower. Since the heat balance in the facility becomes unbalanced, the supply temperature to the adsorbent on the other end side of the other adsorption tower decreases with time, and the adsorbent is cooled excessively. become. In general, it is considered that the lower temperature is preferable for the adsorption, but if the temperature is excessively low, the desorption operation becomes difficult. Supplying to the other end side of the adsorption tower is an effective means from the viewpoint of preventing excessive cooling.

ここで、こうして残りの脱着ガスを加熱する際の加熱温度については、例えば上記他の吸着塔において上記成分を脱着して上記他端部側から排出された脱着ガスを20℃以下に冷却して上記成分の一部を分離する場合には、該成分の一部を分離した上記残りの脱着ガスを冷却後の温度に対して15℃〜40℃の範囲で高い温度となるように加熱して上記一部の吸着塔に上記他端部側から供給するのが望ましい。加熱温度がこれよりも低いと水分の再凝縮による吸着剤への付着を確実に防ぐことができなくなるおそれがある一方、これよりも加熱温度を高くしても再凝縮防止効果はそれほど変わることがない。   Here, with regard to the heating temperature for heating the remaining desorbed gas in this way, for example, the desorbed gas discharged from the other end by desorbing the above components in the other adsorption tower is cooled to 20 ° C. or lower. In the case of separating a part of the above components, the remaining desorption gas from which a part of the components has been separated is heated so as to have a high temperature in the range of 15 ° C. to 40 ° C. with respect to the temperature after cooling. It is desirable to supply the partial adsorption tower from the other end side. If the heating temperature is lower than this, it may not be possible to reliably prevent adhesion of moisture to the adsorbent, but even if the heating temperature is higher than this, the recondensation prevention effect may change so much. Absent.

なお、本発明の発明者らの知見によれば、脱着工程開始直後の脱着ガスには水分があまり含まれず、工程が進むとともにガス中の水分量が増加する傾向にある。そこで、上記ガス処理設備においては、上記加熱手段に、上記残りの脱着ガスの加熱温度を制御する制御手段を備えるなどして、上記ガス処理方法において、上記一部の吸着塔と他の吸着塔との吸着・脱着操作の切り替え後、例えば一定時間経過後に上記成分の一部を分離した上記残りの脱着ガスの加熱量を増大させて加熱温度を上昇させるとともに、次の上記吸着・脱着操作の切替前には上記残りの脱着ガスの加熱を終了するのが、加熱手段に要する加熱エネルギーを低減して省エネルギー化を図るためにも望ましい。   According to the knowledge of the inventors of the present invention, the desorption gas immediately after the start of the desorption process does not contain much moisture, and the amount of moisture in the gas tends to increase as the process proceeds. Therefore, in the gas processing facility, the heating means includes a control means for controlling the heating temperature of the remaining desorption gas. After switching between the adsorption and desorption operations, the heating temperature is increased by increasing the heating amount of the remaining desorption gas from which a part of the components have been separated after a certain period of time, and the next adsorption / desorption operation is performed. It is desirable to end the heating of the remaining desorption gas before switching in order to reduce the heating energy required for the heating means and save energy.

以上説明したように、本発明によれば、原ガスを吸着塔の中間部に供給する圧力スイング式吸着法において、VOC等の成分を分離した残りの脱着ガスを吸着塔に供給する際に、この吸着塔の吸着部における吸着剤への水分の付着による吸着性能の低下を、比較的低コストながら確実に防ぐことができる。これにより長期に亙って吸着剤を交換したりすることなく安定したガス処理を図ることが可能となる。   As described above, according to the present invention, in the pressure swing type adsorption method in which the raw gas is supplied to the intermediate part of the adsorption tower, when the remaining desorption gas from which components such as VOC are separated is supplied to the adsorption tower, It is possible to reliably prevent a decrease in adsorption performance due to moisture adhering to the adsorbent in the adsorption section of the adsorption tower at a relatively low cost. As a result, stable gas treatment can be achieved without replacing the adsorbent over a long period of time.

本発明のガス処理設備の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the gas processing equipment of this invention. 脱着ガスの湿度とVOC成分の吸着量の温度依存性を示す図である。It is a figure which shows the temperature dependence of the humidity of desorption gas, and the adsorption amount of a VOC component.

図1は、本発明のガス処理設備の一実施形態を示すものである。本実施形態のガス処理設備は、2つの吸着塔1、2で交互に原ガス(空気)中のVOC成分の吸着・脱着操作を行うものであり、図1は図中左側の一方の吸着塔(一部の吸着塔)1で原ガス中のVOC成分の吸着を、右側の他方の吸着塔(他の吸着塔)2で吸着済みの成分の脱着を行う場合を示している。   FIG. 1 shows one embodiment of the gas processing facility of the present invention. The gas processing facility of the present embodiment performs adsorption / desorption operation of the VOC component in the raw gas (air) alternately by the two adsorption towers 1 and 2, and FIG. 1 shows one adsorption tower on the left side in the figure. This shows a case where (partial adsorption tower) 1 adsorbs the VOC component in the raw gas, and the other adsorption tower (other adsorption tower) 2 on the right side desorbs the adsorbed component.

吸着塔1、2には、それぞれその塔内の一端部側(図1において上側)と他端部側(図1において下側)とに活性炭やゼオライト、シリカゲル等の吸着剤が充填された吸着部1a、1b、2a、2bが形成されるとともに、これらの吸着部1a、1b、2a、2bの中間部には、それぞれ切替弁3a、3bを介して原ガスの供給路3が接続されている。また、各吸着塔1、2の一端部側には、切替弁4a、4bを備えて上記成分が吸着された原ガスが排ガスとして排出される排出路4と、やはり切替弁5a、5bを備えた脱着ガスの供給路5とが接続されている。   Adsorption towers 1 and 2 are each filled with an adsorbent such as activated carbon, zeolite, or silica gel on one end side (upper side in FIG. 1) and the other end side (lower side in FIG. 1). The parts 1a, 1b, 2a, 2b are formed, and an intermediate part of these adsorbing parts 1a, 1b, 2a, 2b is connected to the supply path 3 of the raw gas via switching valves 3a, 3b, respectively. Yes. Further, on one end side of each adsorption tower 1 and 2, there are provided switching valves 4 a and 4 b, a discharge path 4 through which the raw gas having the above components adsorbed is discharged as exhaust gas, and switching valves 5 a and 5 b. The desorption gas supply path 5 is connected.

さらに、吸着塔1、2の他端部側には、切替弁6a、6bを備えて真空ポンプ7に連結された脱着ガスの排出路6が接続されていて、この排出路6は真空ポンプ7から凝縮器8に接続されており、この凝縮器8によって上記脱着ガスは冷却されてVOC成分の一部が凝縮されて分離させられ、回収タンク9に回収される。一方、分離しきれなかったVOC成分を含んだ残りの脱着ガスは、切替弁10a、10bを備えてそれぞれ吸着塔1、2の他端部側に接続された返送路10を介して該吸着塔1、2内に返送可能とされ、循環させられる。   Further, a desorption gas discharge path 6 provided with switching valves 6 a and 6 b and connected to a vacuum pump 7 is connected to the other end side of the adsorption towers 1 and 2, and the discharge path 6 is connected to the vacuum pump 7. The desorption gas is cooled by the condenser 8, and a part of the VOC component is condensed and separated, and is recovered in the recovery tank 9. On the other hand, the remaining desorbed gas containing the VOC component that could not be separated is supplied to the adsorption tower via the return path 10 provided with the switching valves 10a and 10b and connected to the other ends of the adsorption towers 1 and 2, respectively. It can be returned within 1 and 2, and is circulated.

そして、本実施形態のガス処理設備では、この返送路10に加熱手段11が備えられており、凝縮器8によって冷却された上記残りの脱着ガスは、この加熱手段11によって加熱されて吸着塔1、2の他端部側に供給可能とされている。ここで、この加熱手段11は本実施形態では多管式またはジャケット式の熱交換器であり、これら管やジャケットの内外で上記残りの脱着ガスとこれよりも高温の熱媒とが熱交換を行うことにより、残りの脱着ガスを加熱する。なお、加熱手段11は上記熱交換器のほかに電気ヒーター(電熱線)を用いた加熱手段なども適用できる。   In the gas processing facility of the present embodiment, the return path 10 is provided with a heating unit 11, and the remaining desorbed gas cooled by the condenser 8 is heated by the heating unit 11 to be absorbed in the adsorption tower 1. 2 can be supplied to the other end side. Here, the heating means 11 is a multi-tube or jacket-type heat exchanger in the present embodiment, and the remaining desorption gas and a heat medium having a temperature higher than that exchange heat inside and outside these tubes and jackets. By performing, the remaining desorption gas is heated. The heating means 11 may be a heating means using an electric heater (heating wire) in addition to the heat exchanger.

ところで、上記原ガスの供給路3には、図示はしないが凝縮器を設けることが好ましい。原ガス中の水分を予めこの凝縮器によって冷却することで凝縮させ、分離することで吸着効率を向上させることができる。さらに好ましくは、この原ガスの供給路3の凝縮器の下流側に加熱器を設けることにより相対湿度を低減させ、冷却した原ガスの結露を防止することができる。   By the way, although not shown, the raw gas supply path 3 is preferably provided with a condenser. It is possible to improve the adsorption efficiency by condensing and separating the moisture in the raw gas in advance by cooling with this condenser. More preferably, by providing a heater on the downstream side of the condenser in the raw gas supply path 3, the relative humidity can be reduced and condensation of the cooled raw gas can be prevented.

ここで、この加熱器として、返送路10における上記加熱手段11と同様の熱交換器を用いた場合には、この加熱器と上記返送路10の加熱手段11とを接続して、該加熱器において原ガスを加熱した熱媒を加熱手段11に供給し、その廃熱により上記残りの脱着ガスを加熱可能とするのがより好ましい。   Here, when the same heat exchanger as the heating means 11 in the return path 10 is used as the heater, the heater and the heating means 11 in the return path 10 are connected to each other. It is more preferable that the heating medium in which the raw gas is heated is supplied to the heating means 11 so that the remaining desorption gas can be heated by the waste heat.

このような構成のガス処理設備を用いた本発明のガス処理方法の一実施形態について説明すると、図1の状態では原ガス供給路3の一方の吸着塔1側の切替弁3aが開、他方の吸着塔2側の切替弁3bが閉とされ、以下同様に、排ガスの排出路4の切替弁4aが開、切替弁4bは閉、脱着ガス供給路5の切替弁5aは閉、切替弁5bは開、脱着ガス排出路6の切替弁6aは閉、切替弁6bが開、濃縮ガス返送路10の切替弁10aが開、切替弁10bは閉とされている。   An embodiment of the gas processing method of the present invention using the gas processing facility having such a configuration will be described. In the state of FIG. 1, the switching valve 3a on the one adsorption tower 1 side of the raw gas supply path 3 is opened, while the other The switching valve 3b on the adsorption tower 2 side is closed, and similarly, the switching valve 4a of the exhaust gas discharge path 4 is opened, the switching valve 4b is closed, the switching valve 5a of the desorption gas supply path 5 is closed, and the switching valve. 5b is opened, the switching valve 6a of the desorption gas discharge path 6 is closed, the switching valve 6b is opened, the switching valve 10a of the concentrated gas return path 10 is opened, and the switching valve 10b is closed.

従って、供給路3から供給された原ガスは、上記一方の吸着塔1の中間部から塔内に導入されて一端部側に流れるうちにこの一端部側の吸着部1aにより加圧下もしくは常圧下でVOC等の成分が吸着され、浄化された排ガスとして一部が排出される。一方、残りの排ガスは切換弁5bを経て他方の吸着塔2の一端部側に供給され、吸着部2a、2bに吸着されていた上記成分を真空ポンプ11による減圧下で脱着して該成分を伴い吸着塔2の他端部側の脱着ガス排出路6から排出される。   Accordingly, the raw gas supplied from the supply path 3 is introduced into the tower from the middle part of the one adsorption tower 1 and flows to the one end side while being pressurized or under normal pressure by the adsorption part 1a on the one end side. Thus, a component such as VOC is adsorbed and a part of the purified exhaust gas is discharged. On the other hand, the remaining exhaust gas is supplied to one end portion side of the other adsorption tower 2 through the switching valve 5b, and the above components adsorbed by the adsorption portions 2a and 2b are desorbed under reduced pressure by the vacuum pump 11 to remove the components. Accordingly, the gas is discharged from the desorption gas discharge path 6 on the other end side of the adsorption tower 2.

なお、原ガス中に酸素が含まれている場合には、VOCの濃縮による爆発等の危険性を回避するため、上記他方の吸着塔2の一端部側に供給する脱着ガスに、窒素などの不活性ガスを用いることが好適である。   If the raw gas contains oxygen, the desorption gas supplied to the one end of the other adsorption tower 2 may contain nitrogen or the like in order to avoid dangers such as explosion due to VOC concentration. It is preferable to use an inert gas.

次いで、こうして上記成分を伴った脱着ガスは、真空ポンプ7を経て凝縮器8に供給されて例えば20℃以下、望ましくは0℃〜20℃、さらに望ましくは5℃〜15℃に冷却されることにより、上記成分の一部が凝縮するとともに原ガスに残存していた水分も凝縮して分離され、こうして分離した上記成分と水分は凝縮液として回収タンク9に回収される。なお、冷却温度が0℃を下回ると水分が凍結するおそれがある。一方、こうして凝集液が分離した残りの脱着ガスは、凝縮しなかった残りの成分と水分とともに返送路7を介して上記一方の吸着塔1にその他端部側から供給されて、この他端部側の塔内の吸着部1bにおいて上記残りの成分が吸着される。   Next, the desorption gas with the above components is supplied to the condenser 8 through the vacuum pump 7 and cooled to, for example, 20 ° C. or less, preferably 0 ° C. to 20 ° C., more preferably 5 ° C. to 15 ° C. Thus, a part of the components is condensed and moisture remaining in the raw gas is condensed and separated, and the separated components and moisture are collected in the recovery tank 9 as a condensate. In addition, there exists a possibility that a water | moisture content may freeze when cooling temperature is less than 0 degreeC. On the other hand, the remaining desorption gas from which the flocculated liquid has been separated in this way is supplied from the other end side to the one adsorption tower 1 via the return path 7 together with the remaining components and moisture that have not been condensed. The remaining components are adsorbed in the adsorption section 1b in the side tower.

そして、この残りの脱着ガスが返送されて一方の吸着塔1の他端側から供給される返送路10には上記加熱手段11が備えられていて、こうして吸着塔1に供給される残りの脱着ガスを加熱することにより、その飽和蒸気圧を増大させて相対湿度は低減することができる。このため、凝縮器8によって冷却されることにより結露寸前の状態となった残りの脱着ガス中の水分が、上記一方の吸着塔1の吸着部1b、1aにおいて凝縮して水滴となって吸着剤に付着し、これによりこの一方の吸着塔1における吸着性能が低下するのを防ぐことができる。   The return path 10 to which the remaining desorption gas is returned and supplied from the other end of one adsorption tower 1 is provided with the heating means 11, and thus the remaining desorption supplied to the adsorption tower 1. By heating the gas, the saturated vapor pressure can be increased and the relative humidity can be reduced. For this reason, the water in the remaining desorption gas that has just reached the dew condensation state after being cooled by the condenser 8 is condensed in the adsorption portions 1b, 1a of the one adsorption tower 1 to form water droplets. This can prevent the adsorption performance of the one adsorption tower 1 from being deteriorated.

具体的には、図2に示すように、凝縮器8において冷却された残りの脱着ガスの温度が10℃の場合には、飽和水蒸気圧は1.2kPa(9mmHg)となり、上述のように結露寸前の状態であるが、これを例えば30℃まで加熱すれば飽和水蒸気圧は4.2kPa(31.7mmHg)となって相対湿度は28%まで低減され、全般的に凝縮温度から25℃加熱すると相対湿度は20%程度まで低減する。一方、VOC成分(図2ではトルエン)の飽和吸着量は、10℃から30℃まで加熱しても約10%しか低下せず、たとえ50℃まで加熱しても20%程度しか低下しない。このため、吸着塔1の吸着部1b、1aにおいてこの残りの脱着ガスの水分が再凝縮することはなく、こうして再凝縮した水分の水滴が上述のように吸着剤に付着するのを防ぐことができて、残りの脱着ガス中のVOC等の上記成分だけを効率的に一方の吸着塔1によって吸着することが可能となる。   Specifically, as shown in FIG. 2, when the temperature of the remaining desorption gas cooled in the condenser 8 is 10 ° C., the saturated water vapor pressure is 1.2 kPa (9 mmHg), and dew condensation occurs as described above. For example, if this is heated to 30 ° C, the saturated water vapor pressure will be 4.2 kPa (31.7 mmHg) and the relative humidity will be reduced to 28%. The relative humidity is reduced to about 20%. On the other hand, the saturated adsorption amount of the VOC component (toluene in FIG. 2) decreases only about 10% even when heated from 10 ° C. to 30 ° C., and decreases only about 20% even when heated to 50 ° C. For this reason, the moisture of the remaining desorption gas is not recondensed in the adsorption sections 1b and 1a of the adsorption tower 1, and thus the water droplets of the recondensed water are prevented from adhering to the adsorbent as described above. Thus, only the above-mentioned components such as VOC in the remaining desorption gas can be efficiently adsorbed by one adsorption tower 1.

しかも、この加熱手段11は、後述するように残りの脱着ガスを25℃〜60℃程度にまで加熱するものであればよいので、本実施形態のような熱交換器や電気ヒーター、あるいはスチームトレースなどのような比較的低コストの手段でよい。また、加熱手段11を熱交換器としたときの熱媒も、温水や温風、水蒸気など比較的低廉でガス処理設備で供給し易い熱媒体を利用することができるので、効率的かつ経済的に吸着塔1における吸着剤への水分の付着を防ぐことができる。   In addition, the heating means 11 only needs to heat the remaining desorption gas to about 25 ° C. to 60 ° C. as will be described later, so that the heat exchanger, electric heater, or steam trace as in this embodiment is used. A relatively low-cost means such as Moreover, since the heating medium when the heating means 11 is a heat exchanger can be used, a heating medium such as warm water, warm air, and steam, which is relatively inexpensive and easy to supply with gas processing equipment, can be used efficiently and economically. In addition, adhesion of moisture to the adsorbent in the adsorption tower 1 can be prevented.

ここで、本発明の発明者らは、このようなガス処理設備を用いたガス処理方法についてさらに鋭意研究を重ねた結果、脱着工程開始直後の製品ガス(排ガス)には水分があまり含まれず、工程が進むとともにガス中の水分量が増加する傾向にあるとの知見を得るに至った。そこで、上記加熱手段11では、脱着工程開始時には交換熱量(加熱量)を少なくし、一定時間経過後に交換熱量を増加させることが好適である。このような制御を行うことで、加熱手段11に必要な加熱エネルギーを低減することができ、省エネルギー化に繋がる。   Here, as a result of further earnest research on the gas treatment method using such a gas treatment facility, the inventors of the present invention do not contain much moisture in the product gas (exhaust gas) immediately after the start of the desorption process, It came to the knowledge that there exists a tendency for the moisture content in gas to increase as a process progresses. Therefore, in the heating means 11, it is preferable that the exchange heat amount (heating amount) is reduced at the start of the desorption process and the exchange heat amount is increased after a predetermined time has elapsed. By performing such control, the heating energy required for the heating means 11 can be reduced, leading to energy saving.

具体的には、加熱手段11が本実施形態のように熱交換器である場合、脱着当初は熱媒供給量を少なくし、一定時間経過後に熱媒供給量を増加させればよい。熱媒供給量の調整は、例えばタイマーなどにより時間制御を行うことで実施可能である。また、図1に示すように、返送路10の加熱手段11のガス出口側に温度制御機構12を設けて、返送される上記残りの脱着ガスの温度により加熱手段11への熱媒(図1においては不足分蒸気)の供給量を制御するようにしてもよい。さらに、加熱手段が電気ヒーターである場合には、発熱量(加熱量)をコントロールすることで温度制御を行うことができる。   Specifically, when the heating means 11 is a heat exchanger as in this embodiment, the heat medium supply amount may be reduced at the beginning of desorption and the heat medium supply amount may be increased after a lapse of a certain time. The adjustment of the heating medium supply amount can be performed by performing time control using, for example, a timer. Further, as shown in FIG. 1, a temperature control mechanism 12 is provided on the gas outlet side of the heating means 11 of the return path 10, and the heat medium (FIG. 1) is supplied to the heating means 11 according to the temperature of the remaining desorbed gas to be returned. In this case, the supply amount of the deficient steam) may be controlled. Furthermore, when the heating means is an electric heater, the temperature can be controlled by controlling the heat generation amount (heating amount).

なお、この加熱手段11による上記残りの脱着ガスの加熱温度は、上述のように他方の吸着塔2において上記成分を脱着して排出された脱着ガスを凝縮器8において20℃以下に冷却して上記成分の一部を分離した場合には、冷却後の温度に対して15℃〜40℃の範囲で高い温度となるように加熱するのが望ましい。すなわち、この加熱された残りの脱着ガスの温度が上記範囲を下回る程度であると冷却後の脱着ガスの温度と差が殆どなくて図2に示すように湿度の低減が十分ではなく、吸着塔1における水分の再凝縮を防ぐことができなるなるおそれがある一方、加熱温度が上記範囲を上回るほど高くしても、やはり図2に示すように再凝縮防止効果はそれほど変わることが無く、却って高温の熱源を要することから非効率的である。なお、冷却、加熱される脱着ガスの温度変化の範囲は0℃〜60℃とされるのが望ましく、より確実に水分の再凝縮を防ぐには、冷却温度と加熱温度との差が上記範囲内であって、加熱後の脱着ガスの温度が25℃〜60℃の範囲、より望ましくは30℃〜45℃の範囲とされるのが望ましい。   The heating temperature of the remaining desorption gas by the heating means 11 is such that the desorption gas discharged by desorbing the above components in the other adsorption tower 2 is cooled to 20 ° C. or less in the condenser 8 as described above. When a part of the above components is separated, it is desirable to heat so that the temperature becomes higher in the range of 15 to 40 ° C. than the temperature after cooling. That is, if the temperature of the remaining heated desorption gas is below the above range, there is almost no difference from the temperature of the desorption gas after cooling, and the humidity is not sufficiently reduced as shown in FIG. 1 may not be able to prevent recondensation of moisture, but even if the heating temperature is higher than the above range, the recondensation preventing effect does not change so much as shown in FIG. Inefficient because it requires a high-temperature heat source. The range of temperature change of the desorption gas to be cooled and heated is desirably 0 ° C. to 60 ° C., and the difference between the cooling temperature and the heating temperature is within the above range in order to prevent moisture recondensation more reliably. It is preferable that the temperature of the desorption gas after heating is in the range of 25 ° C to 60 ° C, more preferably in the range of 30 ° C to 45 ° C.

また、本実施形態のガス処理設備では、この残りの脱着ガスを加熱する加熱手段11が熱交換器とされていて、上述のように原ガスの供給路3に加熱器として同様の熱交換器を用いた場合に、この加熱器としての熱交換器と上記加熱手段11としての熱交換器を接続することにより、供給路3において原ガスを加熱した熱媒を加熱手段14に供給して残りの脱着ガスを加熱することができる。すなわち、原ガスの加熱器の廃熱を利用して残りの脱着ガスを加熱することができるので、より効率的かつ経済的に吸着塔1における吸着性能の低下を防止することが可能となる。   Further, in the gas processing facility of the present embodiment, the heating means 11 for heating the remaining desorbed gas is a heat exchanger, and a similar heat exchanger is used as a heater in the raw gas supply path 3 as described above. Is used, the heat exchanger as the heater and the heat exchanger as the heating means 11 are connected, so that the heating medium that has heated the raw gas in the supply path 3 is supplied to the heating means 14 and remains. The desorption gas can be heated. That is, since the remaining desorption gas can be heated using the waste heat of the heater of the raw gas, it is possible to prevent the adsorption performance in the adsorption tower 1 from being lowered more efficiently and economically.

なお、図1に示した状態において一方の吸着塔1における原ガス中の上記成分の吸着と他方の吸着塔2における成分の脱着とが終了したなら、上記切替弁3a〜6a、10a、3b〜6b、10bの開閉を逆に切り替えて、一方の吸着塔1で脱着を、他方の吸着塔2で吸着を行う。そして、このときにも、凝縮器8から切替弁10bを経て他方の吸着塔2の他端部側に接続されることになる上記返送路10には加熱手段11が備えられていて、この他方の吸着塔2に供給される残りの脱着ガスを加熱することができるので、当該他方の吸着塔2における吸着剤への水分の付着を防止し、また、吸着剤を過度に冷却させることなく、効率的なガス処理を経済的に行うことが可能となる。   When the adsorption of the component in the raw gas in one adsorption tower 1 and the desorption of the component in the other adsorption tower 2 are completed in the state shown in FIG. 1, the switching valves 3a to 6a, 10a, 3b to Switching between 6b and 10b is reversed, and desorption is performed in one adsorption tower 1 and adsorption is performed in the other adsorption tower 2. At this time, the return path 10 to be connected from the condenser 8 through the switching valve 10b to the other end of the other adsorption tower 2 is provided with a heating means 11, and the other Since the remaining desorption gas supplied to the adsorption tower 2 can be heated, it is possible to prevent moisture from adhering to the adsorbent in the other adsorption tower 2, and without excessively cooling the adsorbent, Efficient gas processing can be performed economically.

1、2 吸着塔
1a、1b、2a、2b 吸着部
3 原ガスの供給路
4 排ガスの排出路
5 脱着ガスの供給路
6 脱着ガスの排出路
7 真空ポンプ
8 凝縮器(冷却手段)
9 回収タンク
10 残りの脱着ガスの返送路
11 加熱手段
3a〜6a、10a、3b〜6b、10b 切替弁
DESCRIPTION OF SYMBOLS 1, 2 Adsorption tower 1a, 1b, 2a, 2b Adsorption part 3 Source gas supply path 4 Exhaust gas discharge path 5 Desorption gas supply path 6 Desorption gas discharge path 7 Vacuum pump 8 Condenser (cooling means)
DESCRIPTION OF SYMBOLS 9 Recovery tank 10 Return path of remaining desorption gas 11 Heating means 3a-6a, 10a, 3b-6b, 10b Switching valve

Claims (5)

塔内の一端部側と他端部側とに吸着部が形成された少なくとも2塔の吸着塔を用いて、 このうち一部の吸着塔においては、その一端部と他端部との間の中間部から原ガスを供給して上記一端部側から排出することにより、この一端部側の上記吸着部によって上記原ガス中の成分を吸着する一方、
他の吸着塔においては、上記一端部側から供給した脱着ガスにより上記吸着部に吸着された上記成分を脱着して上記他端部側から排出するとともに、
この排出された脱着ガスを冷却することにより該脱着ガス中の上記成分の一部を分離して、残りの脱着ガスを上記一部の吸着塔にその上記他端部側から供給することにより、この他端部側の上記吸着部によって上記残りの脱着ガス中の上記成分を吸着し、
これら一部の吸着塔と他の吸着塔との吸着・脱着操作を交互に切り替えて上記原ガス中の成分を回収するガス処理方法であって、
上記成分の一部を分離した上記残りの脱着ガスを加熱して上記一部の吸着塔に上記他端部側から供給することを特徴とするガス処理方法。
Using at least two adsorption towers in which adsorption parts are formed on one end side and the other end side in the tower, and in some of these adsorption towers, there is a gap between the one end part and the other end part. While supplying the raw gas from the intermediate part and discharging it from the one end part side, the component in the raw gas is adsorbed by the adsorption part on the one end part side,
In other adsorption towers, the desorbed gas supplied from the one end side desorbs the components adsorbed on the adsorption section and discharges them from the other end side,
By cooling the discharged desorption gas, a part of the component in the desorption gas is separated, and the remaining desorption gas is supplied to the partial adsorption tower from the other end side, By adsorbing the components in the remaining desorption gas by the adsorption part on the other end side,
A gas processing method for recovering components in the raw gas by alternately switching the adsorption / desorption operation between these partial adsorption towers and other adsorption towers,
A gas treatment method, wherein the remaining desorption gas from which a part of the components has been separated is heated and supplied to the partial adsorption tower from the other end side.
上記他の吸着塔において上記成分を脱着して上記他端部側から排出された脱着ガスを20℃以下に冷却して上記成分の一部を分離するとともに、該成分の一部を分離した上記残りの脱着ガスを冷却後の温度に対して15℃〜40℃の範囲で高い温度となるように加熱して上記一部の吸着塔に上記他端部側から供給することを特徴とする請求項1に記載のガス処理方法。   In the other adsorption tower, the component is desorbed and the desorption gas discharged from the other end side is cooled to 20 ° C. or lower to separate part of the component, and part of the component is separated. The remaining desorption gas is heated so as to have a high temperature in the range of 15 ° C to 40 ° C with respect to the temperature after cooling, and is supplied to the partial adsorption tower from the other end side. Item 4. The gas treatment method according to Item 1. 上記一部の吸着塔と他の吸着塔との吸着・脱着操作の切り替え後に、上記成分の一部を分離した上記残りの脱着ガスの加熱量を増大させるとともに、次の上記吸着・脱着操作の切替前に上記残りの脱着ガスの加熱を終了することを特徴とする請求項1または請求項2に記載のガス処理方法。   After switching the adsorption / desorption operation between the partial adsorption tower and the other adsorption tower, the heating amount of the remaining desorption gas from which a part of the component is separated is increased, and the next adsorption / desorption operation is performed. 3. The gas processing method according to claim 1, wherein heating of the remaining desorption gas is terminated before switching. 請求項1から請求項3のいずれか一項に記載のガス処理方法に用いるガス処理設備であって、塔内の一端部側と他端部側とに吸着部が形成された少なくとも2塔の上記吸着塔を備え、これらの吸着塔の一端部と他端部との間の中間部には上記原ガスの供給路が接続されるとともに、該吸着塔の一端部側には、上記成分が吸着された原ガスの排出路と上記脱着ガスの供給路とが接続される一方、該吸着塔の他端部側には、上記脱着ガスの排出路と、排出されたこの脱着ガスを冷却することにより該脱着ガス中の上記成分の一部を分離する冷却手段を備えて上記成分の一部が分離した残りの脱着ガスを供給する供給路とが接続されていて、この残りの脱着ガスを供給する供給路に、該残りの脱着ガスを加熱する加熱手段が備えられていることを特徴とするガス処理設備。   It is a gas processing equipment used for the gas processing method according to any one of claims 1 to 3, and at least two towers in which adsorption parts are formed on one end side and the other end side in the tower. The adsorbing tower is provided, and the raw gas supply path is connected to an intermediate portion between one end and the other end of the adsorbing tower, and the component is disposed on one end of the adsorbing tower. The adsorbed raw gas discharge path and the desorption gas supply path are connected, and the desorption gas discharge path and the discharged desorption gas are cooled at the other end of the adsorption tower. A cooling means for separating a part of the component in the desorption gas is connected to a supply path for supplying the remaining desorption gas from which a part of the component has been separated. The supply passage is provided with a heating means for heating the remaining desorption gas. Gas processing facilities to be. 上記加熱手段は、上記残りの脱着ガスの加熱温度を制御する制御手段を備えていることを特徴とする請求項4に記載のガス処理設備。   The gas processing facility according to claim 4, wherein the heating means includes a control means for controlling a heating temperature of the remaining desorption gas.
JP2010156717A 2010-07-09 2010-07-09 Gas processing method and gas processing equipment Active JP5256252B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010156717A JP5256252B2 (en) 2010-07-09 2010-07-09 Gas processing method and gas processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010156717A JP5256252B2 (en) 2010-07-09 2010-07-09 Gas processing method and gas processing equipment

Publications (2)

Publication Number Publication Date
JP2012016680A true JP2012016680A (en) 2012-01-26
JP5256252B2 JP5256252B2 (en) 2013-08-07

Family

ID=45602328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010156717A Active JP5256252B2 (en) 2010-07-09 2010-07-09 Gas processing method and gas processing equipment

Country Status (1)

Country Link
JP (1) JP5256252B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254218A (en) * 1985-05-02 1986-11-12 ザ・ビ−オ−シ−・グル−プ・ピ−エルシ− Separation of gas mixture
JPH04265105A (en) * 1990-10-25 1992-09-21 Union Carbide Ind Gases Technol Corp Duplex adsorbing method
JP2005262001A (en) * 2004-03-16 2005-09-29 Toshiba Plant Systems & Services Corp Carbon dioxide separating and recovering system
JP2009078257A (en) * 2007-09-27 2009-04-16 Tsukishima Kankyo Engineering Ltd Gas treatment method and gas treatment facility
JP2009247962A (en) * 2008-04-03 2009-10-29 Syst Enji Service Kk Method of cleaning large quantity of exhaust gas containing thin volatile hydrocarbon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61254218A (en) * 1985-05-02 1986-11-12 ザ・ビ−オ−シ−・グル−プ・ピ−エルシ− Separation of gas mixture
JPH04265105A (en) * 1990-10-25 1992-09-21 Union Carbide Ind Gases Technol Corp Duplex adsorbing method
JP2005262001A (en) * 2004-03-16 2005-09-29 Toshiba Plant Systems & Services Corp Carbon dioxide separating and recovering system
JP2009078257A (en) * 2007-09-27 2009-04-16 Tsukishima Kankyo Engineering Ltd Gas treatment method and gas treatment facility
JP2009247962A (en) * 2008-04-03 2009-10-29 Syst Enji Service Kk Method of cleaning large quantity of exhaust gas containing thin volatile hydrocarbon

Also Published As

Publication number Publication date
JP5256252B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP6575050B2 (en) Carbon dioxide recovery method and recovery apparatus
KR101401813B1 (en) Method and device for separating carbon dioxide from an exhaust gas of a fossil fired power plant
JP4922804B2 (en) Method for dehydration of hydrous organic compounds
JP2008007378A (en) Method for recovering gaseous ammonia and recovering device therefor
JP2010172804A5 (en)
JP2018115828A (en) Recovery method and recovery device for carbon dioxide
KR101722295B1 (en) A method for drying a wet co2 rich gas stream from an oxy-combustion process
AU2019369728B2 (en) Carbon dioxide separation recovery system and method
CN116059784A (en) Method and system for capturing carbon dioxide in flue gas by pressure swing adsorption
JP5822299B2 (en) Propane purification method and purification system
CN215539629U (en) Industrial organic waste gas treatment system
KR20150093697A (en) Organic solvent-containing gas processing system
JP3571672B2 (en) Method for enriching carbon dioxide in flue gas
US7294173B2 (en) Method and system for desorption and recovery of desorbed compounds
JP6897884B2 (en) Organic solvent recovery system
KR100845518B1 (en) Method and apparatus for separating Krypton gas and Xenon gas
JP5628051B2 (en) Solvent recovery system
JP5256252B2 (en) Gas processing method and gas processing equipment
JP2012081411A (en) Solvent dehydrator
JP2011092871A (en) Organic solvent recovery system
JP5510110B2 (en) Organic solvent recovery system
JP3544860B2 (en) Pretreatment device in air separation unit
JP6067369B2 (en) Adsorbent regeneration device, adsorbent regeneration method, carbon dioxide purification device, and carbon dioxide purification method
JP6067368B2 (en) Adsorbent regeneration device, adsorbent regeneration method, carbon dioxide purification device, and carbon dioxide purification method
WO2023145721A1 (en) Co2 recovery method and co2 recovery device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Ref document number: 5256252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250