JP2012015435A - Method for manufacturing nonlinear voltage resistor and lightning element formed of nonlinear voltage resistor - Google Patents

Method for manufacturing nonlinear voltage resistor and lightning element formed of nonlinear voltage resistor Download PDF

Info

Publication number
JP2012015435A
JP2012015435A JP2010152753A JP2010152753A JP2012015435A JP 2012015435 A JP2012015435 A JP 2012015435A JP 2010152753 A JP2010152753 A JP 2010152753A JP 2010152753 A JP2010152753 A JP 2010152753A JP 2012015435 A JP2012015435 A JP 2012015435A
Authority
JP
Japan
Prior art keywords
powder
oxide
zno
compound
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010152753A
Other languages
Japanese (ja)
Inventor
Osami Abe
修実 阿部
Shoya Ohira
翔也 大平
Naoki Adachi
直樹 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan AE Power Systems Corp
Ibaraki University NUC
Original Assignee
Japan AE Power Systems Corp
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan AE Power Systems Corp, Ibaraki University NUC filed Critical Japan AE Power Systems Corp
Priority to JP2010152753A priority Critical patent/JP2012015435A/en
Publication of JP2012015435A publication Critical patent/JP2012015435A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a nonlinear voltage resistor which has high sintered density and small crystal grain size, and to provide a lightning element formed of the nonlinear voltage resistor, which has high V/t and excellent electrical characteristics such as V-I characteristics and capacitance.SOLUTION: The nonlinear voltage resistor is manufactured by the steps of: previously preparing a powder of an oxide by mixing at least a powder of zinc oxide (ZnO), a powder of a cobalt (Co) compound and a powder of an antimony (Sb) compound, reacting the mixture at a heating temperature of 950-1,350°C to produce the oxide containing ZnCoSbO(0≤x≤7), which becomes a grain-growth inhibitor, and pulverizing the oxide; adding the powder of the oxide containing the grain-growth inhibitor as an additive to the powder of the zinc oxide (ZnO) that is a main component and a well-known additive powder made of a compound and mixing them; pressure-molding the mixture in a mold; and then sintering the molded body. The lightning element formed of the nonlinear voltage resistor is formed by providing high insulating layers at side faces and electrodes at the upper face and the lower face of the nonlinear voltage resistor.

Description

本発明は電圧非直線抵抗体の製造方法及び電圧非直線抵抗避雷素子に係り、特に酸化亜鉛(ZnO)を主成分とする電圧非直線抵抗体の製造方法及び電圧非直線抵抗避雷素子に関する。   The present invention relates to a method for manufacturing a voltage non-linear resistor and a voltage non-linear resistance lightning protection device, and more particularly to a method for manufacturing a voltage non-linear resistance mainly composed of zinc oxide (ZnO) and a voltage non-linear resistance lightning protection device.

通常、電力系統では送電線路中に遮断器を設置しており、この遮断器が開閉する際に発生する開閉サージや、落雷に基づく雷サージなどの過電圧を抑制するため、避雷器等の過電圧保護装置が備えられている。過電圧保護装置の主要部品である避雷素子として、最近ではZnOを主成分とするセラミックスの電圧非直線抵抗体が多用されている。   Usually, in the power system, a circuit breaker is installed in the transmission line, and an overvoltage protection device such as a lightning arrester is used to suppress overvoltage such as switching surge generated when the circuit breaker opens and closes, and lightning surge caused by lightning. Is provided. As a lightning protection element, which is a main component of an overvoltage protection device, a ceramic voltage non-linear resistor whose main component is ZnO has been frequently used recently.

この電圧非直線抵抗体は、ZnOと酸化ビスマス(Bi)を含むZnO−Bi系と、ZnOと酸化プラセオジウム(Pr11)を含むZnO−Pr11系に大別される。前者の電圧非直線抵抗体は、後者のものに比較して均一性の高い素子が得られ易く、また不純物に対して鈍感であるため、製造がし易くて経済的であることから、高電圧用の避雷器に使用することが主流となっている。 This voltage non-linear resistor is large in the ZnO-Bi 2 O 3 system containing ZnO and bismuth oxide (Bi 2 O 3 ) and in the ZnO—Pr 6 O 11 system containing ZnO and praseodymium oxide (Pr 6 O 11 ). Separated. The former voltage non-linear resistor is easy to manufacture and economical because it is easy to obtain a device with high uniformity compared to the latter, and is insensitive to impurities. It is mainly used for lightning arresters.

一般に、前者の電圧非直線抵抗体を用いた避雷素子は、次のように焼結体を製作して用いている。即ち、主成分のZnOに、ビスマス(Bi)、アンチモン(Sb)、コバルト(Co)、マンガン(Mn)、クロム(Cr)、ニッケル(Ni)、珪素(Si)等の酸化物粉末を混合してから、円板状やドーナツ状等の定めた形に成形し、これを高温の焼結炉内で焼結して焼結体を作り、この焼結体の両端面に研磨を施した後、両研磨面に電極を設けて使用する。   Generally, the lightning protection element using the former voltage non-linear resistor is manufactured by using a sintered body as follows. That is, an oxide powder such as bismuth (Bi), antimony (Sb), cobalt (Co), manganese (Mn), chromium (Cr), nickel (Ni), and silicon (Si) is mixed with the main component ZnO. After that, it is molded into a predetermined shape such as a disk shape or a donut shape, and this is sintered in a high-temperature sintering furnace to make a sintered body, and both end faces of this sintered body are polished. In addition, electrodes are provided on both polished surfaces.

近年、省エネルギー或いはCO排出量削減の観点から、送電線での電力損失を低減するために、送電系統電圧の超高圧化が世界的に進められている。このため、避雷器で使われている避雷素子に対しても、超高圧に対応できるようにすることが求められている。 In recent years, in order to reduce power loss in transmission lines from the viewpoint of energy saving or CO 2 emission reduction, ultra high voltage transmission system voltages have been promoted worldwide. For this reason, it is required that the lightning arrester used in the lightning arrester can cope with an ultrahigh voltage.

上記したZnOを主成分とする避雷素子は、多結晶セラミックスの粒界特性を利用しているため、動作開始電圧VXA(電流xAを流した時の素子電圧で、一般的にはxとしては1mA、即ちV1mAが使われる。)は、電極間に存在する粒界数に比例する。 Since the above-described lightning arrester mainly composed of ZnO uses the grain boundary characteristics of polycrystalline ceramics, the operation start voltage V XA (the element voltage when a current xA is passed, generally x is 1 mA, or V 1 mA, is used) is proportional to the number of grain boundaries present between the electrodes.

避雷器を超高圧化に対応させるには、通常に製作した避雷素子を用いると、多くの個数を積層する必要があるから、積層した避雷素子全体が長くなり、収納する容器も大きくしなければならなくなる。したがって、避雷器全体を小型にするためには、単位厚さ当たりの粒界数が多い、即ち粒径が小さくて単位厚さ当たりのV1mA(V1mA/t)が高い避雷素子が求められる。 In order to make the surge arrester compatible with ultra-high voltage, it is necessary to stack a large number of lightning arresters that are normally manufactured. Therefore, the total number of stacked surge arresters must be increased, and the container to be accommodated must be enlarged. Disappear. Therefore, in order to reduce the overall size of the lightning arrester, a lightning arrester having a large number of grain boundaries per unit thickness, that is, a small grain size and a high V 1 mA (V 1 mA / t) per unit thickness is required.

一般的には、電気的特性が良好で、しかも機械的強度が高い電圧非直線抵抗体を得るには、結晶粒径が均一でかつ高密度の焼結体を作製する必要がある。しかし、ZnOには或る特定の方向(c軸)に粒成長し易い異常粒成長と呼ばれる性質があり、焼結体の粒径は不均一になり易くなる。その上、ZnO−Bi系電圧非直線抵抗体では、主要添加物のひとつであるBiが、825℃以上で溶けて液相となる。このため、液相焼結に伴う著しい異常粒成長が起こり、一層粒径が不均一になり易い傾向があるから、これに伴い焼結体内部の焼結密度にばらつきが生じやすい傾向もあった。 Generally, in order to obtain a voltage non-linear resistor having good electrical characteristics and high mechanical strength, it is necessary to produce a sintered body having a uniform crystal grain size and a high density. However, ZnO has a property called abnormal grain growth that tends to grow in a specific direction (c-axis), and the sintered body tends to have non-uniform grain sizes. In addition, in the ZnO—Bi 2 O 3 -based voltage nonlinear resistor, Bi 2 O 3, which is one of the main additives, melts at 825 ° C. or more and becomes a liquid phase. For this reason, remarkable abnormal grain growth accompanying liquid phase sintering occurs, and there is a tendency that the particle size tends to become more non-uniform, and accordingly, there is also a tendency that the sintered density inside the sintered body tends to vary. .

上記の理由のため、通常ZnO−Bi系電圧非直線抵抗体には、粒成長抑制作用を有する酸化珪素(SiO)や酸化アンチモン(Sb)を多量添加すると同時に、1100℃以上の温度で焼結して形成されていた。この方法により、現在ではV1mA/t=200〜400V/mmの避雷素子が市販されている。 For the above reason, a ZnO—Bi 2 O 3 system voltage non-linear resistor is usually added with a large amount of silicon oxide (SiO 2 ) or antimony oxide (Sb 2 O 3 ) having a grain growth suppressing action, and at the same time, 1100 It was formed by sintering at a temperature of ℃ or higher. According to this method, a lightning arrester with V 1 mA / t = 200 to 400 V / mm is currently commercially available.

非特許文献1に記載されている如く、Sbが粒成長抑制剤として働く焼結過程の化学反応メカニズムは、次のように考えられている。即ち、ZnOと上記添加物を混合した成形体を焼成すると、ZnOとSbが下記(1)式の反応で、ZnSb12の如く表わされるスピネル粒子を形成する。そして、スピネル粒子が粒界に析出して粒成長過程で粒界移動を妨げ、その結果粒成長が抑制されるというものである。
7ZnO+Sb+O⇒ZnSb12 (1)
一方、SiOが粒成長抑制剤として働く化学反応メカニズムは、次のように考えられている。即ち、ZnOとSiOが(2)式の反応で、ZnSiO粒子を形成し、これが粒成長を抑制する。
2ZnO+SiO⇒ZnSiO (2)
ZnSb12は、いくつかの反応過程を経て950℃以上で生成されるが、その一つの反応過程として、次の(3)式の過程がある。
2ZnBiSb14+17ZnO⇔3ZnSb12+3Bi(3)
この反応過程は、Biの液相を経由する反応であるため、ZnSb12は粒成長がし易い。また、ZnSiOは1050℃付近で生成されるものの、1150℃では非晶質になってしまうから、必ずしも熱的に安定な粒成長抑制剤ではないことは明らかである。
As described in Non-Patent Document 1, the chemical reaction mechanism of the sintering process in which Sb 2 O 3 acts as a grain growth inhibitor is considered as follows. That is, when a molded body in which ZnO and the above additives are mixed is fired, ZnO and Sb 2 O 3 form a spinel particle represented by Zn 7 Sb 2 O 12 by the reaction of the following formula (1). And spinel particle | grains precipitate at a grain boundary and prevent a grain boundary movement in a grain growth process, As a result, grain growth is suppressed.
7ZnO + Sb 2 O 3 + O 2 ⇒Zn 7 Sb 2 O 12 (1)
On the other hand, the chemical reaction mechanism in which SiO 2 acts as a grain growth inhibitor is considered as follows. That is, ZnO and SiO 2 form Zn 2 SiO 4 particles by the reaction of the formula (2), and this suppresses grain growth.
2ZnO + SiO 2 ⇒Zn 2 SiO 4 (2)
Zn 7 Sb 2 O 12 is produced at a temperature of 950 ° C. or higher through several reaction processes. As one of the reaction processes, there is a process of the following formula (3).
2Zn 2 Bi 3 Sb 3 O 14 + 17ZnO⇔3Zn 7 Sb 2 O 12 + 3Bi 2 O 3 (3)
Since this reaction process is a reaction that goes through the liquid phase of Bi 2 O 3 , Zn 7 Sb 2 O 12 tends to grow. Further, although Zn 2 SiO 4 is produced at around 1050 ° C., it becomes amorphous at 1150 ° C., so it is clear that it is not necessarily a thermally stable grain growth inhibitor.

上記の(1)式及び(2)式から、反応が完全に起こるためには、Sbが1モルに対してZnOを7モル、またSiOが1モルに対してZnOを2モル、をそれぞれ必要とする。それ故、粒成長抑制効果を高めるべく、SbやSiOを多量に添加すると、添加分以上のZnOがZnSb12やZnSiOの形成に消費される。これらの形成物は絶縁物であって、電気的には積極的な働きをしないから、多量に焼結体の中に含まれていると、避雷素子の実効面積が大幅に減り、この結果静電容量が低下する等の問題も生じてくる。 From the above formulas (1) and (2), in order for the reaction to occur completely, 7 moles of ZnO per mole of Sb 2 O 3 and 2 moles of ZnO per mole of SiO 2 , Respectively. Therefore, when a large amount of Sb 2 O 3 or SiO 2 is added in order to enhance the effect of suppressing grain growth, more ZnO than the added amount is consumed for forming Zn 7 Sb 2 O 12 and Zn 2 SiO 4 . Since these formations are insulators and do not act positively electrically, if they are contained in a large amount in the sintered body, the effective area of the lightning protection element is greatly reduced. Problems such as a decrease in electric capacity also arise.

周知の如く介在物による粒成長抑制ピニングに関する理論式に、Zenerの式がある。この式は、粒成長抑制剤によって抑えられる粒径Dは、粒成長抑制剤の粒径r及び粒成長抑制剤の添加比率fとから、D∝(r/f)で表される。この理論によれば、得られる粒径Dを小さくしようとする場合には、粒成長抑制剤の粒径rが大きくなると、粒成長抑制剤を多量に添加しなければならなくなる。それ故、ZnO−Bi系電圧非直線抵抗体に対する効果的な粒成長抑制剤は、焼結過程で熱的に安定であって、混合した当初の微粒子状態を保つ物質であることが必要になる。 As is well known, there is a Zener formula as a theoretical formula regarding pinning for suppressing grain growth by inclusions. In this equation, the particle diameter D suppressed by the grain growth inhibitor is represented by D∝ (r / f) from the grain diameter r of the grain growth inhibitor and the addition ratio f of the grain growth inhibitor. According to this theory, when the particle diameter D to be obtained is to be reduced, if the particle diameter r of the grain growth inhibitor increases, a large amount of grain growth inhibitor must be added. Therefore, an effective grain growth inhibitor for a ZnO—Bi 2 O 3 system voltage non-linear resistor is a material that is thermally stable during the sintering process and maintains the initial mixed fine particle state. I need it.

電気特性が良好で、直流負荷やサージに対する信頼性に優れたZnO−Bi系電圧非直線抵抗体を得る製造方法として、特許文献1及び2に記載の方法が提案されている。特許文献1のものは、少なくともBiと酸化チタン(TiO)とSbとの混合粉を450〜850℃で熱処理されて調製した合成粉末を、主成分のZnOに対して添加して製造している。 As a manufacturing method for obtaining a ZnO—Bi 2 O 3 -based voltage non-linear resistor having good electrical characteristics and excellent reliability with respect to a DC load or a surge, methods described in Patent Documents 1 and 2 have been proposed. Patent Document 1 discloses a synthetic powder prepared by heat-treating a mixed powder of at least Bi 2 O 3 , titanium oxide (TiO 2 ), and Sb 2 O 3 at 450 to 850 ° C. with respect to ZnO as a main component. It is manufactured by adding.

また、特許文献2のものは、ZnO粉末と、BiとSbとを混合し、400〜700℃の範囲の熱処理を施して得たBiとSbの合成粉末をつくり、添加物として特定の金属酸化物の中から選ばれる少なくとも二つ以上を合成粉末に添加し、加圧成形した後焼結して製造している。 Also, in Patent Document 2, and ZnO powder were mixed with Bi 2 O 3 and Sb 2 O 3, Bi 2 O 3 of the Sb 2 O 3 obtained by heat treatment in the range of 400 to 700 ° C. A synthetic powder is produced, and at least two or more selected from specific metal oxides as additives are added to the synthetic powder, pressed, sintered, and then manufactured.

特許第3313533号公報Japanese Patent No. 3313533 特開平10−308302号公報JP-A-10-308302

松岡道雄編 「日本が生んだ世界的発明酸化亜鉛バリスタ」 オーム社 pp.43(2009)Michio Matsuoka “Globally Invented Zinc Oxide Varistor Born in Japan” Ohm Company pp. 43 (2009)

特許文献1及び2に記載された製造方法では、予めBi、Sb、TiOを450〜850℃で反応させ、或いは予めBi、Sbを400〜700℃で反応させて、BiSbOやBiSbOを合成するため、低温で焼結体を緻密化できる。しかし、使用するBiSbOやBiSbOそのもの自体には、粒成長抑制剤としての効果がないから、V1mA/tが前者では380V/mm程度、後者では440V/mm程度が最大である。 In the production methods described in Patent Documents 1 and 2, Bi 2 O 3 , Sb 2 O 3 , and TiO 2 are reacted in advance at 450 to 850 ° C., or Bi 2 O 3 and Sb 2 O 3 are previously reacted in 400 to 700. ℃ in reacted, to synthesize BiSbO 4 and Bi 3 SbO 7, can be densified sintered body at a low temperature. However, since BiSbO 4 and Bi 3 SbO 7 itself used have no effect as a grain growth inhibitor, V 1 mA / t is about 380 V / mm in the former and about 440 V / mm in the latter.

したがって、特許文献1及び2の製造方法で製造したZnO−Bi系電圧非直線抵抗体では、現在要求されているような超高圧対応の避雷素子のV1mA/tに対しては不十分なものとなってしまっていた。 Therefore, the ZnO—Bi 2 O 3 system voltage non-linear resistor manufactured by the manufacturing methods of Patent Documents 1 and 2 is not suitable for V 1 mA / t of a lightning arrester for ultra-high voltage as currently required. It was enough.

本発明の目的は、主成分のZnOに対して、粒成長抑制剤となる酸化物の添加量を低くしても、焼結密度が高くて結晶粒径の小さな電圧非直線抵抗体が得られる電圧非直線抵抗体の製造方法を提供することにある。   The object of the present invention is to obtain a voltage non-linear resistor having a high sintering density and a small crystal grain size even if the amount of oxide as a grain growth inhibitor is reduced relative to the main component ZnO. The object is to provide a method of manufacturing a voltage non-linear resistor.

本発明の他の目的は、V1mA/tが高く、V−I特性や静電容量等の電気的な特性が良好な電圧非直線抵抗避雷素子を提供することにある。 Another object of the present invention is to provide a voltage non-linear resistance lightning arrester having a high V 1 mA / t and good electrical characteristics such as VI characteristics and capacitance.

本発明の電圧非直線抵抗体の製造方法は、少なくとも酸化亜鉛(ZnO)粉末とコバルト(Co)化合物粉末とアンチモン(Sb)化合物粉末とを混合し、前記混合物を950℃から1350℃の加熱温度で反応させてZn7−xCoxSb2O12(0≦x≦7)を含む酸化物を作製し、前記酸化物を微粉化して予め準備し、主成分の酸化亜鉛(ZnO)粉末と電圧非直線性を発現するのに必要な化合物の形の添加物粉末に、前記Zn7−xCoxSb2O12(0≦x≦7)を含む酸化物の粉末を添加物として混合し、前記混合物を金型にて加圧成形し、前記成形体を焼結することを特徴としている。 The method for producing a voltage non-linear resistor according to the present invention comprises mixing at least a zinc oxide (ZnO) powder, a cobalt (Co) compound powder, and an antimony (Sb) compound powder, and heating the mixture at a heating temperature of 950 ° C. to 1350 ° C. To produce an oxide containing Zn 7-x CoxSb 2 O 12 (0 ≦ x ≦ 7), finely pulverize the oxide and prepare in advance, and voltage non-linearity with the main component zinc oxide (ZnO) powder. An oxide powder containing Zn 7-x CoxSb 2 O 12 (0 ≦ x ≦ 7) is mixed as an additive to the additive powder in the form of a compound necessary for expression, and the mixture is pressed with a mold. It is characterized by molding and sintering the molded body.

好ましくは、前記酸化亜鉛(ZnO)粉末とコバルト(Co)化合物粉末とアンチモン(Sb)化合物粉末とを混合するとき、ビスマス(Bi)化合物粉末、珪素(Si)化合物粉末、ホウ素(B)化合物粉末のうち少なくとも一つを添加したことを特徴としている。   Preferably, when the zinc oxide (ZnO) powder, cobalt (Co) compound powder and antimony (Sb) compound powder are mixed, bismuth (Bi) compound powder, silicon (Si) compound powder, boron (B) compound powder It is characterized by adding at least one of them.

更に好ましくは、前記化合物粉末に更にマンガン(Mn)化合物粉末、クロム(Cr)化合物粉末、ニッケル(Ni)化合物粉末を添加して混合したことを特徴としている。   More preferably, a manganese (Mn) compound powder, a chromium (Cr) compound powder, and a nickel (Ni) compound powder are further added to and mixed with the compound powder.

また、本発明の電圧非直線抵抗体の製造方法は、少なくとも酸化亜鉛(ZnO)粉末とコバルト(Co)化合物粉末とアンチモン(Sb)化合物粉末とを混合し、前記混合物を950℃から1350℃の加熱温度で反応させてZn7−xCoxSb2O12(0≦x≦7)を含む酸化物を作製し、前記酸化物を微粉化して予め準備し、主成分の酸化亜鉛(ZnO)粉末に、酸化ビスマス(Bi)粉末、酸化コバルト(Co)粉末、酸化マンガン(MnO)粉末、酸化アンチモン(Sb)粉末、酸化クロム(Cr)粉末、酸化珪素(SiO)粉末を電圧非直線性が発現するのに必要な配合比で添加すると共に、これらとの重量比で前記Zn7−xCoxSb2O12(0≦x≦7)を含む酸化物を0.01から0.2を添加して混合し、前記混合物を金型にて加圧成形し、前記成形体を焼結することを特徴としている。 The method for manufacturing a voltage non-linear resistor according to the present invention includes mixing at least zinc oxide (ZnO) powder, cobalt (Co) compound powder, and antimony (Sb) compound powder, and mixing the mixture at 950 ° C. to 1350 ° C. An oxide containing Zn 7-x CoxSb 2 O 12 (0 ≦ x ≦ 7) is prepared by reacting at a heating temperature, the oxide is finely pulverized and prepared in advance, and the main component zinc oxide (ZnO) powder is added to bismuth oxide. (Bi 2 O 3 ) powder, cobalt oxide (Co 3 O 4 ) powder, manganese oxide (MnO 2 ) powder, antimony oxide (Sb 2 O 3 ) powder, chromium oxide (Cr 2 O 3 ) powder, silicon oxide (SiO 2 ) 2) with powder a voltage nonlinearity added at the mixing ratio necessary for expression, oxide including the weight ratio of these Zn 7-x CoxSb2O12 (0 ≦ x ≦ 7) And mixed by adding 0.01 to 0.2, the mixture was pressure-molded at a mold, is characterized by sintering the compact.

更に、本発明の電圧非直線抵抗体形避雷素子は、前記Zn7−xCoxSb2O12(0≦x≦7)を含む酸化物の粉末を添加して製造した電圧非直線抵抗体は、側面に高絶縁層を施すと共に、上下面にそれぞれ電極を設けて構成したことを特徴とする。 Furthermore, the voltage non-linear resistor type lightning arrester of the present invention is manufactured by adding an oxide powder containing Zn 7-x CoxSb 2 O 12 (0 ≦ x ≦ 7). In addition to applying layers, electrodes are provided on the upper and lower surfaces, respectively.

本発明の電圧非直線抵抗体の製造方法によれば、主成分のZnO粉末と化合物の形の添加物粉末に、粒成長抑制剤(Zn7−xCoSb12)を含む酸化物を添加するものであるから、微粒子状態であっても焼成工程全般にわたって粒成長抑制剤が熱的に安定に存在できる。このため、混合物の焼結中に微粒子が成形体の緻密化、及び粒成長過程で粒界移動の抑制粒子とてして働くから、焼結密度が高くて結晶粒径の小さな焼結体を得ることができる。しかも、予め準備した粒成長抑制剤を含む酸化物は、微粒子化して用いるため、従来から知られているものに比べて、主成分ZnOに対しての添加量を低く抑えることができる利点がある。 According to the method for producing a voltage nonlinear resistor of the present invention, an oxide containing a grain growth inhibitor (Zn 7-x Co x Sb x O 12 ) in an additive powder in the form of a main component ZnO powder and a compound. Therefore, even in the fine particle state, the grain growth inhibitor can be present thermally and stably throughout the firing process. For this reason, the fine particles work as densification of the compact during the sintering of the mixture, and act as particles for suppressing grain boundary migration during the grain growth process, so a sintered compact with a high sintering density and a small crystal grain size can be obtained. Obtainable. In addition, since the oxide containing a grain growth inhibitor prepared in advance is used in the form of fine particles, there is an advantage that the amount of addition to the main component ZnO can be suppressed lower than that conventionally known. .

また、本発明の如く電圧非直線抵抗体を用いて避雷素子を構成すると、V1mA/tが高く、かつV−I特性や静電容量等の電気的特性が良好な電圧非直線抵抗避雷素子を作製でき、超高圧用の避雷器等の過電圧保護装置を小型にすることができる。 Further, when a lightning protection element is configured using a voltage nonlinear resistor as in the present invention, the voltage nonlinear resistance lightning protection element has a high V 1 mA / t and good electrical characteristics such as VI characteristics and capacitance. And an overvoltage protection device such as a lightning arrester for ultra-high voltage can be reduced in size.

(a)から(b)は、本発明の一実施例である電圧非直線抵抗体の製造方法を示す工程図である。(A) to (b) are process diagrams showing a method for manufacturing a voltage non-linear resistor according to an embodiment of the present invention. 本発明の一実施例の電圧非直線抵抗避雷素子を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the voltage non-linear resistance lightning arrester of one Example of this invention.

以下、本発明の電圧非直線抵抗体の製造方法及び電圧非直線抵抗避雷素子を、図1及び図2を用いて説明する。この電圧非直線抵抗体の製造方法では、大きく区分すると図1(a)の粒成長抑制剤を作製して準備する工程S1と、図1(b)の電圧非直線抵抗体を製造する工程S2からなっている。   Hereinafter, a method for manufacturing a voltage non-linear resistor and a voltage non-linear resistance lightning arrester according to the present invention will be described with reference to FIGS. In this voltage non-linear resistor manufacturing method, when roughly divided, a step S1 for preparing and preparing the grain growth inhibitor of FIG. 1 (a) and a step S2 for manufacturing the voltage non-linear resistor of FIG. 1 (b). It is made up of.

粒成長抑制剤の作製のため図1(a)の工程S1に示す如く、まず粒成長抑制剤の作製のため、最初に所定の割合のZnO粉末とSb粉末とCo粉末とを、加水してボールミル等の混合破砕手段を用いて混合粉砕する(工程S1a)。 For production of a grain growth inhibitor, as shown in step S1 of FIG. 1 (a), first, a predetermined proportion of ZnO powder, Sb 2 O 3 powder and Co 3 O 4 powder is produced for production of a grain growth inhibitor. Are mixed and ground using a mixing and crushing means such as a ball mill (step S1a).

続いて、アルミナ坩堝等の反応容器内に入れた混合物を、加熱炉内で例えば950℃で2時間保持することにより反応させ、粒成長抑制剤となるZn7−xCoSb12(以下、「特定型粒成長抑制剤」と称する。)を作製する(工程S1b)。作製した特定型粒成長抑制剤を含む酸化物は、破砕手段により数μm以下に粉砕して微粉化処理の上、例えばフリーズドライ法により乾燥後に粉末のままで準備保存する(工程S1c)。 Subsequently, the mixture placed in a reaction vessel such as an alumina crucible is reacted by holding it in a heating furnace at, for example, 950 ° C. for 2 hours, and becomes a grain growth inhibitor Zn 7-x Co x Sb 2 O 12 ( Hereinafter, it is referred to as “specific grain growth inhibitor”) (step S1b). The produced oxide containing the specific type grain growth inhibitor is pulverized to a few μm or less by a crushing means, and is preliminarily stored as a powder after drying by, for example, freeze drying (step S1c).

上記の特定型粒成長抑制剤を作成する際、他にガラス物質を作製しやすいBi、SiO、Bのうち少なくとも一つを更に添加しても良く、また更にMnO、Cr、NiO等を上記ガラス物質がガラス化する範囲で添加しても良い。 When creating the specific type grain growth inhibitors, other easily produce a glass material Bi 2 O 3, SiO 2, B 2 O may be further added at least one of the three, or even MnO 2 , Cr 2 O 3 , NiO or the like may be added within the range in which the glass material is vitrified.

なお、上記の工程S1aにおいては、Co粉末及びSb粉末を添加して混合したものであるが、混合物は加熱反応処理されるものであるから、反応の過程で酸化物となるものであれば、これら以外の形のCo化合物やSb化合物であっても使用することができる。 In the above steps S1a, but is a mixture with the addition of Co 3 O 4 powder and Sb 2 O 3 powder, since the mixture is intended to be heat reaction treatment, the oxide in the course of the reaction As long as it is, even Co compounds and Sb compounds in other forms can be used.

また、上記した特定型粒成長抑制剤の作製する反応温度は、950℃の例を示したが、反応温度は950℃から1350℃の範囲で合成することができる。しかも、反応させる時間は2時間の保持に限られず、粒成長抑制効果の良好な特定型粒成長抑制剤を作製できる保持時間の選択ができる。   Moreover, although the reaction temperature which the above-mentioned specific type grain growth inhibitor produces is an example of 950 ° C., the reaction temperature can be synthesized in the range of 950 ° C. to 1350 ° C. In addition, the reaction time is not limited to holding for 2 hours, and a holding time capable of producing a specific grain growth inhibitor having a good grain growth inhibiting effect can be selected.

上記した混合破砕手段は、当然のことながら十分に混合や粉砕ができるならばボールミルに限らず使用できるし、特定型粒成長抑制剤を含む酸化物の乾燥も十分に乾燥ができるならば、他のものを用いることができる。   Of course, the above-mentioned mixing and crushing means can be used not only for a ball mill if it can be sufficiently mixed and pulverized, and if the oxide containing a specific type grain growth inhibitor can also be sufficiently dried, other means can be used. Can be used.

そして、図1(b)の工程S2に示す如く電圧非直線抵抗体を製造する。まず、製造する際には、主成分のZnO粉末と、一般に使用するBi、Sb、Co、Mn、Cr、Ni、Si、Al等の如き化合物の形の添加物粉末とを混合するとき、これらとの重量比で0.01から0.2の特定型粒成長抑制剤を含む酸化物粉末を添加し、通常と同様に結合材入りの水を加えて混合手段により十分に混合する(工程S2a)。作られた混合物は、乾燥後通常行われているように金型に入れ、円板状やドーナツ状の予め定めた形に加圧成形を行い(工程S2b)、最後に加圧成形物を焼結炉内で焼結を順に行う(工程S2c)ことにより、電圧非直線抵抗体を製造する。   Then, a voltage nonlinear resistor is manufactured as shown in step S2 of FIG. First, when manufacturing, when mixing the main component ZnO powder and additive powders in the form of compounds such as Bi, Sb, Co, Mn, Cr, Ni, Si, Al, etc., which are generally used, The oxide powder containing the specific type grain growth inhibitor having a weight ratio of 0.01 to 0.2 is added, and water containing the binder is added in the same manner as usual, and sufficiently mixed by the mixing means (step S2a). ). The resulting mixture is put into a mold as usual after drying, pressure-molded into a disk-shaped or donut-shaped predetermined shape (step S2b), and finally the pressure-molded product is baked. A voltage nonlinear resistor is manufactured by performing sintering in order in a sintering furnace (process S2c).

上記のように特定型粒成長抑制剤を含む酸化物を加えて製造した電圧非直線抵抗体は、混合物の焼結中において特定型粒成長抑制剤が熱的に安定して存在する。このため、特定型粒成長抑制剤の微粒子が電圧非直線抵抗体の緻密化や、粒成長過程で粒界移動の抑制粒子として働くようになるから、焼結密度が高くて結晶粒径の小さな電圧非直線抵抗体の焼結体を製造することができる。したがって、作製した電圧非直線抵抗体は、V1mA/tが高くかつV−I特性、静電容量などの電気的な特性が良好なものとなる。 In the voltage non-linear resistor manufactured by adding the oxide containing the specific type grain growth inhibitor as described above, the specific type grain growth inhibitor exists thermally stably during the sintering of the mixture. For this reason, the fine particles of the specific type grain growth inhibitor become denser in the voltage nonlinear resistor and act as particles for suppressing grain boundary migration during the grain growth process, so that the sintered density is high and the crystal grain size is small. A sintered body of a voltage non-linear resistor can be manufactured. Therefore, the produced voltage nonlinear resistor has a high V 1 mA / t and good electrical characteristics such as VI characteristics and capacitance.

一般的な製造法で作成されたZnO−Bi系電圧非直線抵抗体用成形体を加熱していくと、900℃近傍でZnSb12が生成することは従来から知られており、またZnSb12が粒成長抑制剤となることも公知である。しかし、本発明者らの検討によると、900℃近傍では上記成形体の焼結が進んでおり、その密度は焼成収縮量の50%にも達し、結晶粒径や焼結密度のばらつきが生じていると推定される。また、ZnSb12はZnBiSb14などの共融液相とZnOの反応で生成する。 It has been conventionally known that Zn 7 Sb 2 O 12 is produced in the vicinity of 900 ° C. when a ZnO—Bi 2 O 3 -based voltage non-linear resistor molded body produced by a general manufacturing method is heated. It is also known that Zn 7 Sb 2 O 12 is a grain growth inhibitor. However, according to the study by the present inventors, sintering of the molded body is proceeding near 900 ° C., and the density reaches 50% of the amount of firing shrinkage, resulting in variations in crystal grain size and sintered density. It is estimated that Zn 7 Sb 2 O 12 is produced by the reaction of eutectic liquid phase such as Zn 2 Bi 3 Sb 3 O 14 and ZnO.

このため、ZnSb12の粒成長が起こり易いので、上記(4)式によりZnSb12を多量に生成しないと十分な粒成長抑制剤として作用しなくなる。また、更にZnSb12は、熱的には必ずしも安定ではなく、ZnサイトにCoが固溶して一部を置換した上記の特定型粒成長抑制剤が、高温でも安定に存在することが判明した。 For this reason, grain growth of Zn 7 Sb 2 O 12 is likely to occur. Therefore, unless Zn 7 Sb 2 O 12 is produced in a large amount according to the above formula (4), it does not act as a sufficient grain growth inhibitor. Furthermore, Zn 7 Sb 2 O 12 is not necessarily thermally stable, and the above-described specific grain growth inhibitor in which Co is dissolved in the Zn site and partially substituted exists stably even at high temperatures. It has been found.

したがって、上記の如く特定型粒成長抑制剤を予め作製しておき、ZnO−Bi系電圧非直線抵抗体の添加物の一部として更に添加することによって、電圧非直線抵抗体製造時の理想的な粒成長抑制剤にとして活用することができる。 Therefore, the specific type grain growth inhibitor is prepared in advance as described above, and further added as a part of the additive of the ZnO-Bi 2 O 3 system voltage non-linear resistor, thereby producing the voltage non-linear resistor. It can be used as an ideal grain growth inhibitor.

上記した特定型粒成長抑制剤の作製の際、ZnO、Sb、Coの各粉末に、更にZnO−Bi系電圧非直線抵抗体の添加物であってガラス化し易い物質のBi、SiO、Bの各粉末を少なくとも一つを添加しても良く、また更には酸化マンガンMnO、Cr、NiOの粉末を添加して混合して作製することもできる。 In the production of the specific grain growth inhibitor described above, ZnO, Sb 2 O 3 , and Co 3 O 4 are further added to ZnO—Bi 2 O 3 system voltage non-linear resistor as an additive to vitrification. At least one of Bi 2 O 3 , SiO 2 , and B 2 O 3 powders, which are easy substances, may be added. Further, manganese oxide MnO 2 , Cr 2 O 3 , and NiO powders may be added and mixed. Can also be produced.

このようにしてガラス化した酸化物と特定型粒成長抑制剤を共存させると、酸化物中に含まれるガラス形成物質に特定型粒成長抑制剤の粒子が析出するようになる。この場合のようにガラス形成物質を共存させると、特定型粒成長抑制剤の作製がZnO、Sb、Coの各粉末だけを混合した場合に比較して容易になる、しかも、このように作製した特定型粒成長抑制剤を、非直線抵抗体の製造時に添加物とて用いると、ガラス物質の働きによってより低い温度で密度が高い焼結体を製造できる利点がある。 When the oxide vitrified in this way and the specific grain growth inhibitor coexist, the particles of the specific grain growth inhibitor are deposited on the glass-forming substance contained in the oxide. If a glass-forming substance is allowed to coexist as in this case, the preparation of the specific grain growth inhibitor is easier than when only ZnO, Sb 2 O 3 , and Co 3 O 4 powders are mixed. When the specific type grain growth inhibitor produced in this way is used as an additive during the production of the non-linear resistor, there is an advantage that a sintered body having a high density can be produced at a lower temperature by the action of the glass substance.

製造した電圧非直線抵抗体を用いて、図2に示す如く電圧非直線抵抗避雷素子1が製作される。即ち、円板状やドーナツ状等の予め定めた形状に焼結した電圧非直線抵抗体2は、その側面の全周に高抵抗層4の絶縁被覆を施している。また、電圧非直線抵抗体2の両端面は研磨した上で、この研磨面に例えばアルミニウムを溶射して電極3a、3bをそれぞれ形成する。   The voltage non-linear resistance lightning protection element 1 is manufactured using the manufactured voltage non-linear resistance as shown in FIG. That is, the voltage non-linear resistor 2 sintered in a predetermined shape such as a disk shape or a donut shape is provided with an insulating coating of the high resistance layer 4 on the entire circumference of its side surface. Further, after polishing both end surfaces of the voltage non-linear resistor 2, electrodes 3a and 3b are formed by spraying, for example, aluminum on the polished surface.

上記のように製造した電圧非直線抵抗避雷素子1は、系統電圧に応じて複数枚の焼結体素子を、電極3a、3bを介して直列に積み重ねて素子柱を作り、この素子柱を容器内に収納して避雷器等の過電圧保護装置を構成する。   The voltage non-linear resistance lightning protection element 1 manufactured as described above forms an element column by stacking a plurality of sintered elements in series via the electrodes 3a and 3b in accordance with the system voltage, and this element column is used as a container. It is housed in an overvoltage protection device such as a lightning arrester.

なお、以下の実施例の説明では、特定型粒成長抑制剤を添加する前の組成を、簡略化してベース組成と称し、また特定型粒成長抑制剤とベース組成の重量比を、簡略化して粒成長抑制剤/ベース比と称して使用している。また、各実施例で使用した電圧非直線抵抗避雷素子は、全てその直径を33mm、電極の直径を30mm、素子厚さを4.0mmに調整したものである。   In the description of the following examples, the composition before adding the specific grain growth inhibitor is simply referred to as a base composition, and the weight ratio between the specific grain growth inhibitor and the base composition is simplified. Used as a grain growth inhibitor / base ratio. The voltage non-linear resistance lightning protection elements used in each example are all adjusted to have a diameter of 33 mm, an electrode diameter of 30 mm, and an element thickness of 4.0 mm.

以下に、実施例1から4を用いて特定型粒成長抑制剤(Zn7−xCoSb12)の作製と、この特定型粒成長抑制剤の粉末を添加した電圧非直線抵抗体の製造方法について、順に説明する。 Hereinafter, the production of a specific type grain growth inhibitor (Zn 7-x Co x Sb 2 O 12 ) using Examples 1 to 4 and the voltage nonlinear resistor added with the powder of the specific type grain growth inhibitor These manufacturing methods will be described in order.

本発明の0≦x≦7である特定型粒成長抑制剤の代表的組成であるx=3.5、即ちZn3.5Co3.5Sb12(以下、「x3.5特定型粒成長抑制剤」と称する。)を、下記のような手順で合成した後、微粒子化して予め作製した。 In the present invention, x = 3.5, which is a typical composition of the specific type grain growth inhibitor satisfying 0 ≦ x ≦ 7, that is, Zn 3.5 Co 3.5 Sb 2 O 12 (hereinafter referred to as “x3.5 specific type”). "Grain growth inhibitor") was synthesized in the following procedure and then pre-fabricated into fine particles.

ZnO粉末を61.8モル%、Co粉末を20.6モル%、Sb粉末を17.6モル%の配合比で、これらの総量が20gになるように秤量した粉末材料を、容量2Lのモノマロンポットに純水1Lと共に投入し、ボールミルにて20時間、混合と粉砕を行った。粉砕用ボールは、直径5mmのイットリア部分安定化ジルコニアボールを使用した。混合と粉砕が終わったスラリーを、フリーズドライ法にて乾燥粉を得た。この粉末をアルミナ坩堝に詰め、電気炉で600℃/時間の昇温速度で1100℃まで昇温後、2時間保持した。その後、ヒータを切り、自然冷却にて300℃まで冷却し、電気炉から坩堝を取り出した。得られた粉末の電子顕微鏡(SEM)観察で求めた平均粒径は、およそ0.5μmであった。 Powder material weighed so that the total amount of ZnO powder was 61.8 mol%, Co 3 O 4 powder was 20.6 mol%, Sb 2 O 3 powder was 17.6 mol%, and the total amount was 20 g. Was added to a monomalon pot with a capacity of 2 L together with 1 L of pure water, and mixed and pulverized in a ball mill for 20 hours. As the grinding balls, yttria partially stabilized zirconia balls having a diameter of 5 mm were used. From the slurry after mixing and pulverization, a dry powder was obtained by freeze drying. This powder was packed in an alumina crucible, heated to 1100 ° C. at a heating rate of 600 ° C./hour in an electric furnace, and held for 2 hours. Thereafter, the heater was turned off, cooled to 300 ° C. by natural cooling, and the crucible was taken out from the electric furnace. The average particle size determined by electron microscope (SEM) observation of the obtained powder was approximately 0.5 μm.

次に、特定型粒成長抑制剤の粉末を準備し、これを添加したZnO−Bi系の電圧非直線抵抗体の製造方法について説明する。 Next, a method for producing a ZnO—Bi 2 O 2 -based voltage nonlinear resistor to which powder of a specific type grain growth inhibitor is prepared and added will be described.

ZnO−Bi系の電圧非直線抵抗避雷素子の代表的な組成の一つであるBiを0.5モル%、Coを0.33モル%、MnOを0.5モル%、NiOを0.5モル%、Crを0.5モル%、Bを0.25モル%、SiOを0.5モル%の組成物を1300℃で2時間熱処理して完全にカラス化し、前述と同様な方法で粉砕・乾燥してx3.5特定型粒成長抑制剤以外の添加物粉末を得た。ZnOにこの7成分系組成の添加物及び上述した方法で作製したx3.5特定型粒成長抑制剤を添加し、電圧非直線抵抗避雷素子を作製した。 Bi 2 O 2 is 0.5 mol%, Co 3 O 4 is 0.33 mol%, and MnO 2 is 0 mol, which is one of the typical compositions of ZnO—Bi 2 O 2 voltage non-linear resistance lightning arresters. A composition of 0.5 mol%, 0.5 mol% of NiO, 0.5 mol% of Cr 2 O 3 , 0.25 mol% of B 2 O 3 and 0.5 mol% of SiO 2 at 1300 ° C. The mixture was heat-treated for 2 hours to be completely crowed, and pulverized and dried in the same manner as described above to obtain an additive powder other than the x3.5 specific type grain growth inhibitor. A voltage non-linear resistance lightning arrester was prepared by adding an additive of this seven-component composition and an x3.5 specific grain growth inhibitor prepared by the above-described method to ZnO.

Figure 2012015435
表1の各試料に示したベース組成の配合比で、これらの総量が1kgになるように秤量したZnO粉末及び特定型粒成長抑制剤以外の添加物粉末に、ベース組成に対して表1の粒成長抑制剤/ベース比(重量比)になるように秤量したx3.5特定型粒成長抑制剤の粉末を準備した。
Figure 2012015435
In the mixing ratio of the base composition shown in each sample of Table 1, the additive powder other than the ZnO powder and the specific type grain growth inhibitor weighed so that the total amount thereof becomes 1 kg was added to the base composition in Table 1. A powder of x3.5 specific type grain growth inhibitor weighed so as to have a grain growth inhibitor / base ratio (weight ratio) was prepared.

ベース組成粉末とx3.5特定型粒成長抑制剤の粉末を、容量2Lのモノマロンポットに適量の結合材を混ぜた純水1Lと共に投入し、ボールミルにより20時間、混合と粉砕を行った。粉砕用ボールは、直径10mmのイットリア部分安定化ジルコニアボールを使用した。混合と粉砕の終わったスラリーを、フリーズドライ法にて乾燥粉を得た。この粉末を直径30mmの金型を用いて円板状に成形した後、電気炉で100℃/時間の昇温速度で表1に示した焼結温度まで昇温後、2時間保持した。その後、ヒータを切って自然冷却により300℃まで冷却してから、焼結した電圧非直線抵抗体を電気炉から取り出した。   The base composition powder and the powder of the x3.5 specific type grain growth inhibitor were charged together with 1 L of pure water in which an appropriate amount of binder was mixed in a 2 L capacity monomalon pot, and mixed and pulverized by a ball mill for 20 hours. As the grinding balls, yttria partially stabilized zirconia balls having a diameter of 10 mm were used. A dry powder was obtained from the slurry after mixing and grinding by freeze drying. This powder was molded into a disk shape using a mold having a diameter of 30 mm, and then heated to the sintering temperature shown in Table 1 at a heating rate of 100 ° C./hour in an electric furnace, and held for 2 hours. Thereafter, the heater was turned off and cooled to 300 ° C. by natural cooling, and then the sintered voltage nonlinear resistor was taken out of the electric furnace.

粒成長抑制剤/ベース比及び焼結温度を変えた場合の電圧非直線抵抗避雷素子の各試料で、測定した電気的特性を表1に示している。電圧非直線抵抗避雷素子の電気的特性は、素子厚さ1.0mm当たりの動作開始電圧V1mA/t、直流電流10μAを流した時の素子電圧V10μAと電流1mAを流した時の電圧V1mAの比V10μA/V1mA、8/20μsのインパルス電流2.5kAを流した時の素子電圧V2.5kAとV1mAの比V2.5kA/V1mA、静電容量Capと電圧V1mAの積Cap・V1mAを示してある。 Table 1 shows the measured electrical characteristics of each sample of the voltage non-linear resistance lightning arrester when the grain growth inhibitor / base ratio and the sintering temperature are changed. The electrical characteristics of the voltage non-linear resistance lightning protection device are as follows: an operation start voltage V 1 mA / t per element thickness of 1.0 mm, a device voltage V 10 μA when a direct current 10 μA is passed, and a voltage V when a current 1 mA is passed. 1 mA ratio V 10 μA / V 1 mA , 8/20 μs impulse current 2.5 kA flowing element voltage V 2.5 kA to V 1 mA ratio V 2.5 kA / V 1 mA , capacitance Cap and voltage V1 mA The product Cap · V 1 mA is shown.

なお、比V10μA/V1mA、V2.5kA/V1mAは、各々低電流領域及び大電流領域の電圧・電流非直線性を表し、両者とも1に近いほど良好な特性を示すことになる。Cap・V1mAは、静電容量をV1mAで規格化した値で、この値が大きいほど避雷素子を積層した場合に容量成分による素子間の電圧分担率が1に近づき、避雷素子の電圧負荷が軽減され、課電寿命が延びる。 Note that the ratios V 10 μA / V 1 mA and V 2.5 kA / V 1 mA represent voltage / current nonlinearity in the low current region and the large current region, respectively, and the closer to 1, the better the characteristics. . Cap · V 1 mA is a value obtained by standardizing the capacitance with V 1 mA . As this value increases, the voltage sharing ratio between the elements due to the capacitive component approaches 1 when the lightning protection elements are stacked, and the voltage load of the lightning protection elements Is alleviated and the service life is extended.

また、焼結体としてうまく焼けたかの指標となる焼結密度を表1中に示し、本発明の方法にて製造した電圧非直線抵抗避雷素子を試料No.1から試料No.9で、また従来方法による粒成長抑制剤を添加していない場合のものを、試料No.R1から試料No.R5で示した。   In addition, the sintered density, which is an indicator of whether the sintered body has been burned successfully, is shown in Table 1. 1 to sample no. No. 9 and the case where the grain growth inhibitor by the conventional method is not added, the sample No. From R1, sample no. Indicated by R5.

本発明の特定型粒成長抑制剤を添加して製作した試料No.1〜試料No.9では、1000から1100℃間の比較的低い焼結温度でも、5.6から5.7g/cmの焼結密度の高密度焼結体が得られている。一方、粒成長抑制剤を添加しない従来方法での試料No.R1から試料No.R3では、1000から1100℃の焼結温度では十分に焼結しておらず、5.0から5.2g/cm程度の低い焼結密度となっている。このため、V1mA/tは高くなっているものの、V10μA/V1mAやV2.5kA/V1mAは、悪い値となっている。 Sample No. manufactured by adding the specific type grain growth inhibitor of the present invention. 1 to Sample No. In No. 9, a high-density sintered body having a sintering density of 5.6 to 5.7 g / cm 2 is obtained even at a relatively low sintering temperature of 1000 to 1100 ° C. On the other hand, the sample No. in the conventional method without adding a grain growth inhibitor. From R1, sample no. R3 is not sufficiently sintered at a sintering temperature of 1000 to 1100 ° C., and has a low sintering density of about 5.0 to 5.2 g / cm 2 . Therefore, although V 1 mA / t is high, V 10 μA / V 1 mA and V 2.5 kA / V 1 mA are bad values.

従来方法で高い焼結密度の電圧非直線抵抗体を得るには、試料No.R4で示すように1250℃程度の高い温度が必要であり、この場合には粒成長が進むから、その結果V1mA/tは200V/mm程度に低下してしまうことになる。また、試料No.R5で示す如くベース組成の添加物のうち、粒成長抑制作用があるSbやSiOの添加量を多くすると、例えば1150℃で焼結すれば良好な焼結密度が得られる。しかし、上述の(1)式及び(2)式で示す反応により多量の絶縁物が焼結体中にできるため、特性的には望ましくないCap・V1mA値の低い避雷素子ができてしまうことになる。 In order to obtain a voltage non-linear resistor having a high sintering density by the conventional method, sample No. As indicated by R4, a high temperature of about 1250 ° C. is necessary. In this case, grain growth proceeds, and as a result, V 1 mA / t decreases to about 200 V / mm. Sample No. As shown by R5, among the additives of the base composition, when the added amount of Sb 2 O 3 or SiO 2 having a grain growth inhibiting action is increased, for example, sintering at 1150 ° C. can provide a good sintered density. However, since a large amount of insulating material can be formed in the sintered body by the reactions shown in the above formulas (1) and (2), a lightning arrester with a low Cap · V 1 mA value that is not desirable in terms of characteristics can be formed. become.

以上のことから、本発明によるx3.5特定型粒成長抑制剤の粉末を、ベース組成に添加して作製した電圧非直線抵抗避雷素子は、低温で焼結しても焼結密度が高く、このためにV10μA/V1mAやV2.5kA/V1mAが共に良好であり、しかもCap・V1mA値も大きくてV1mA/tが高くできる。したがって、送電系統電圧の超高圧化に対応した避雷器の小型化が期待できる電圧非直線抵抗避雷素子を得ることができる。 From the above, the voltage non-linear resistance lightning arrester prepared by adding the powder of the x3.5 specific grain growth inhibitor according to the present invention to the base composition has a high sintered density even when sintered at a low temperature. Therefore, V 10 μA / V 1 mA and V 2.5 kA / V 1 mA are both good, and the Cap · V 1 mA value is also large, so that V 1 mA / t can be increased. Therefore, it is possible to obtain a voltage non-linear resistance lightning arrester that can be expected to reduce the size of the lightning arrester corresponding to the ultrahigh voltage of the transmission system voltage.

実施例1で示したx3.5特定型粒成長抑制剤の代わりに、x=0,2,5,7の特定型粒成長抑制剤を作製し、これをベース組成の粉末に抑制粒子/ベース比=0.1の配合で添加し、電圧非直線抵抗避雷素子を作製した。このときの焼結温度は1050℃である。特定型粒成長抑制剤の作製は、ZnO、Co、Sb配合比を、xの値に対応した配合比にすることで作製した。 Instead of the x3.5 specific type grain growth inhibitor shown in Example 1, a specific type grain growth inhibitor of x = 0, 2, 5, and 7 was prepared, and this was converted into a powder having a base composition with the inhibitory particle / base. A voltage non-linear resistance lightning protection element was prepared by adding a ratio of 0.1. The sintering temperature at this time is 1050 ° C. The specific grain growth inhibitor was prepared by changing the ZnO, Co 3 O 4 , and Sb 2 O 3 mixing ratio to a mixing ratio corresponding to the value of x.

xの各値に対応する電気的特性及び焼結密度を表2に示している。   Table 2 shows the electrical characteristics and the sintered density corresponding to each value of x.

Figure 2012015435
この表2には、x=3.5としたx3.5特定型粒成長抑制剤を用いた表1の試料No.8も再掲載している。表2から明らかなように、各試料ではxの値が0から7のどの範囲でも、実施例1で説明したものと同様に高焼結密度にでき、同様な効果が達成できた。
Figure 2012015435
Table 2 shows the sample No. in Table 1 using x3.5 specific grain growth inhibitor with x = 3.5. 8 is also reprinted. As is clear from Table 2, in each sample, the value of x was in any range from 0 to 7, and as in the case described in Example 1, it was possible to achieve a high sintered density and achieve the same effect.

この実施例では、実施例1及び2で示したx3.5特定型粒成長抑制剤に代えて、次に説明する方法で特定型粒成長抑制剤を作製した。即ち、ZnO、Co、Sbモル%、SiO、B%、Biを表3に示す配合比で、これらの総量が1kgになるように秤量した。これらの粉末を、容量2Lのモノマロンポットに純水1Lと共に投入し、ボールミルにて20時間、混合と粉砕を行った。粉砕用ボールは、直径5mmのイットリア部分安定化ジルコニアボールを使用し、また混合と粉砕の終わったスラリーをフリーズドライ法にて乾燥し、乾燥粉を得た。 In this example, instead of the x3.5 specific type grain growth inhibitor shown in Examples 1 and 2, a specific type grain growth inhibitor was produced by the method described below. That is, ZnO, Co 3 O 4 , Sb 2 O 3 mol%, SiO 2 , B 2 O 3 %, and Bi 2 O 2 were weighed so that the total amount thereof was 1 kg at the blending ratio shown in Table 3. These powders were put into a monomalon pot with a capacity of 2 L together with 1 L of pure water, and mixed and pulverized in a ball mill for 20 hours. As the pulverizing balls, yttria partially stabilized zirconia balls having a diameter of 5 mm were used, and the slurry after mixing and pulverization was dried by freeze drying to obtain a dry powder.

この粉末は、直径50mm、厚さ50mmの円筒状に成形し、アルミナ製さやに入れ、電気炉で100℃/時間の昇温速度で1300℃まで昇温後、2時間この温度に保持した。その後、ヒータを切り、自然冷却にて300℃まで冷却し、電気炉からアルミナさやを取り出した。この粉末をX線回折法(XRD)にて調べたところ、特定型粒成長抑制剤の成分ピークだけが観測された。   This powder was formed into a cylindrical shape having a diameter of 50 mm and a thickness of 50 mm, placed in an alumina sheath, heated to 1300 ° C. at a heating rate of 100 ° C./hour in an electric furnace, and held at this temperature for 2 hours. Thereafter, the heater was turned off, cooled to 300 ° C. by natural cooling, and the alumina sheath was taken out from the electric furnace. When this powder was examined by X-ray diffraction (XRD), only the component peak of the specific type grain growth inhibitor was observed.

上記の手順で得られたx3.5特定型粒成長抑制剤及びガラス酸化物を、上述したボールミルにて再度粉砕し、フリーズドライ法で乾燥した。得られた粉末の電子顕微鏡(SEM)観察で求めた平均粒径は、およそ0.5μmであった。粒成長抑制剤/ベース比0.10の割合で配合し、実施例1に示した方法で避雷素子を作製した。なお、焼結温度は1050℃とした。   The x3.5 specific grain growth inhibitor and glass oxide obtained by the above procedure were pulverized again by the above-described ball mill and dried by freeze drying. The average particle size determined by electron microscope (SEM) observation of the obtained powder was approximately 0.5 μm. A lightning arrester was prepared by the method shown in Example 1 by blending at a grain growth inhibitor / base ratio of 0.10. The sintering temperature was 1050 ° C.

Figure 2012015435
表3に、ZnO、Sb、Co、SiO、B、Biの表中記載の組成(モル%)で、作成する酸化物中にガラス化酸化物と特定型粒成長抑制剤を共存させて製造した試料No.14から試料No.31について、測定した電気的特性及び焼結密度を示している。これから、ガラス酸化物が共存する場合でも、本発明の効果が得られることは明らかである。
Figure 2012015435
Table 3 shows the composition (mol%) described in the table of ZnO, Sb 2 O 3 , Co 3 O 4 , SiO 2 , B 2 O 3 , Bi 2 O 3 , and a vitrified oxide in the prepared oxide. Sample No. manufactured by coexisting with a specific grain growth inhibitor. 14 to sample no. About 31, the measured electrical property and sintered density are shown. From this, it is clear that the effects of the present invention can be obtained even when glass oxide coexists.

また、ここでは合成(焼結)温度は1250℃の例を示したが、試料No.15、試料No.16で示す如く合成温度を1350℃まで上げても本発明の効果は得られる。なお、合成温度を1250℃以下にすると、ガラス物質が十分反応せず不均一になり易く、また1350℃以上にすると焼結体全体が軟化し、アルミナさやとの反応が著しいため、これ以上の温度で合成するのは得策ではなくなる。   In this example, the synthesis (sintering) temperature is 1250 ° C. 15, Sample No. As shown by 16, the effect of the present invention can be obtained even if the synthesis temperature is increased to 1350 ° C. When the synthesis temperature is 1250 ° C. or lower, the glass material does not react sufficiently and is likely to be non-uniform. When the synthesis temperature is 1350 ° C. or higher, the entire sintered body is softened and the reaction with the alumina sheath is remarkable. It is not a good idea to synthesize at temperature.

試料No.17から試料No.31で示すように、特定型粒成長抑制剤におけるxが3.5に限らず、x=2或いは5の場合でも同様な効果が得られる。このことや上記の実施例2の結果を併せると、本実施例の方法でも0≦x≦7の範囲で本発明の製造方法の効果が得られる。   Sample No. 17 to sample no. As indicated by 31, the same effect can be obtained even when x in the specific grain growth inhibitor is not limited to 3.5, and x = 2 or 5. Combined with this and the results of Example 2 above, the method of the present example also provides the effects of the manufacturing method of the present invention within the range of 0 ≦ x ≦ 7.

上記の実施例3では、エネルギー分散型蛍光X線分析法(EDX)による分析の結果、配合した特定型粒成長抑制剤の抑制粒子のxの値が増加する現象が見られ、またガラス酸化物中にZnが検出された。このことから、粒成長抑制剤形成に配合したZnOの一部がガラス酸化物に溶け込んでいることが推測された。このため、設計通りのx値が得られるように実験を繰り返したところ、ガラス酸化物がZnの飽和量に対して1から2の範囲で含まれるように、配合するZnOを更に増量すれば、所定のxが得られることが判明した。   In Example 3 above, as a result of analysis by energy dispersive X-ray fluorescence analysis (EDX), a phenomenon was observed in which the value of x of the inhibitory particles of the blended specific grain growth inhibitor increased, and the glass oxide Zn was detected in it. From this, it was estimated that a part of ZnO mix | blended for grain growth inhibitor formation melt | dissolved in the glass oxide. For this reason, when the experiment was repeated so as to obtain an x value as designed, if the ZnO to be blended is further increased so that the glass oxide is included in the range of 1 to 2 with respect to the saturation amount of Zn, It has been found that a predetermined x can be obtained.

ZnOを増量する方法によると、ガラス酸化物が共存していても所望のx値を有する粒成長抑制剤を得ることができ、電圧非直線抵抗体の電気的特性のばらつきを低くでき、上記した本発明の効果をより一層高めることができる。   According to the method of increasing the amount of ZnO, it is possible to obtain a grain growth inhibitor having a desired x value even when glass oxide coexists, and to reduce variation in electrical characteristics of the voltage nonlinear resistor, as described above. The effect of the present invention can be further enhanced.

なお、実施例として示していないが、実施例3及び4で示したガラス酸化物は、Si、B、Biには限られず、電圧非直線抵抗避雷素子の電気的特性や焼結性を損ねない範囲で、ガラス物質を形成するMn、Ni、Cr、Al、Ag等を配合して製造しても、本発明の効果を達成することができる。   Although not shown as examples, the glass oxides shown in examples 3 and 4 are not limited to Si, B, and Bi, and do not impair the electrical characteristics and sinterability of the voltage non-linear resistance lightning arrester. Even if it mixes and manufactures Mn, Ni, Cr, Al, Ag, etc. which form a glass substance in the range, the effect of the present invention can be achieved.

S1、S1a、S1b、S1c、S2、S2a、S2b、S2c、…工程、1…電圧非直線抵抗避雷素子、2…電圧非直線抵抗体、3a、3b…電極、4…高抵抗層。 S 1, S 1 a, S 1 b, S 1 c, S 2, S 2 a, S 2 b, S 2 c,..., 1, voltage nonlinear resistance lightning protection element, 2, voltage nonlinear resistor, 3 a, 3 b, electrode, 4, high resistance layer.

Claims (5)

少なくとも酸化亜鉛(ZnO)粉末とコバルト(Co)化合物粉末とアンチモン(Sb)化合物粉末とを混合し、前記混合物を950℃から1300℃の加熱温度で反応させてZn7−xCoxSb2O12(0≦x≦7)を含む酸化物を作製し、前記酸化物を微粉化して予め準備し、主成分の酸化亜鉛(ZnO)粉末と電圧非直線性を発現するのに必要な化合物の形の添加物粉末に、前記Zn7−xCoxSb2O12(0≦x≦7)を含む酸化物の粉末を添加物として混合し、前記混合物を金型にて加圧成形し、前記成形体を焼結することを特徴とする電圧非直線抵抗体の製造方法。 At least zinc oxide (ZnO) powder, cobalt (Co) compound powder and antimony (Sb) compound powder are mixed, and the mixture is reacted at a heating temperature of 950 ° C. to 1300 ° C. to obtain Zn 7-x CoxSb 2 O 12 (0 ≦ x ≦ 7) is prepared, the oxide is finely pulverized, prepared in advance, and additive powder in the form of a compound necessary to develop voltage nonlinearity with the main component zinc oxide (ZnO) powder In addition, an oxide powder containing Zn 7-x CoxSb 2 O 12 (0 ≦ x ≦ 7) is mixed as an additive, the mixture is pressure-molded in a mold, and the molded body is sintered. A method for manufacturing a voltage non-linear resistor. 請求項1において、前記酸化亜鉛(ZnO)粉末とコバルト(Co)化合物粉末とアンチモン(Sb)化合物粉末とを混合するとき、ビスマス(Bi)化合物粉末、珪素(Si)化合物粉末、ホウ素(B)化合物粉末のうち少なくとも一つを添加したことを特徴とする電圧非直線抵抗体の製造方法。   2. The bismuth (Bi) compound powder, silicon (Si) compound powder, boron (B) when the zinc oxide (ZnO) powder, cobalt (Co) compound powder and antimony (Sb) compound powder are mixed. A method for producing a voltage nonlinear resistor, comprising adding at least one of compound powders. 請求項2において、前記化合物粉末に更にマンガン(Mn)化合物粉末、クロム(Cr)化合物粉末、ニッケル(Ni)化合物粉末を添加して混合したことを特徴とする電圧非直線抵抗体の製造方法。   3. The method of manufacturing a voltage nonlinear resistor according to claim 2, wherein manganese (Mn) compound powder, chromium (Cr) compound powder, and nickel (Ni) compound powder are further added to and mixed with the compound powder. 少なくとも酸化亜鉛(ZnO)粉末とコバルト(Co)化合物粉末とアンチモン(Sb)化合物粉末とを混合し、前記混合物を950℃から1300℃の加熱温度で反応させてZn7−xCoxSb2O12(0≦x≦7)を含む酸化物を作製し、前記酸化物を微粉化して予め準備し、主成分の酸化亜鉛(ZnO)粉末に、酸化ビスマス(Bi)粉末、酸化コバルト(Co)粉末、酸化マンガン(MnO)粉末、酸化アンチモン(Sb)粉末、酸化クロム(Cr)粉末、酸化珪素(SiO)粉末を電圧非直線性が発現するのに必要な配合比で添加すると共に、これらとの重量比で前記Zn7−xCoxSb2O12(0≦x≦7)を含む酸化物を0.01から0.2を添加して混合し、前記混合物を金型にて加圧成形し、前記成形体を焼結することを特徴とする電圧非直線抵抗体の製造方法。 At least zinc oxide (ZnO) powder, cobalt (Co) compound powder and antimony (Sb) compound powder are mixed, and the mixture is reacted at a heating temperature of 950 ° C. to 1300 ° C. to obtain Zn 7-x CoxSb 2 O 12 (0 ≦ x ≦ 7) is prepared, the oxide is finely pulverized and prepared in advance, and the main component zinc oxide (ZnO) powder is added to bismuth oxide (Bi 2 O 3 ) powder, cobalt oxide (Co 3 O 4). ) Powder, manganese oxide (MnO 2 ) powder, antimony oxide (Sb 2 O 3 ) powder, chromium oxide (Cr 2 O 3 ) powder, silicon oxide (SiO 2 ) powder are necessary to develop voltage nonlinearity with added in compounding ratio, the oxide added and mixed 0.2 0.01 including the weight ratio of these Zn 7-x CoxSb2O12 (0 ≦ x ≦ 7), the mixed Things were pressure-molded at a mold manufacturing method of the voltage nonlinear resistor, characterized by sintering the compact. 請求項1から4に記載の製造方法により前記Zn7−xCoxSb2O12(0≦x≦7)を含む酸化物の粉末を添加して製作した電圧非直線抵抗体は、側面に高絶縁層を施すと共に、上下面にそれぞれ電極を設けて構成したことを特徴とする電圧非直線抵抗体形避雷素子。 The voltage nonlinear resistor manufactured by adding the oxide powder containing Zn 7-x CoxSb 2 O 12 (0 ≦ x ≦ 7) by the manufacturing method according to claim 1 is provided with a high insulating layer on a side surface. In addition, a voltage non-linear resistance type lightning protection element, characterized in that electrodes are provided on the upper and lower surfaces respectively.
JP2010152753A 2010-07-05 2010-07-05 Method for manufacturing nonlinear voltage resistor and lightning element formed of nonlinear voltage resistor Pending JP2012015435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010152753A JP2012015435A (en) 2010-07-05 2010-07-05 Method for manufacturing nonlinear voltage resistor and lightning element formed of nonlinear voltage resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010152753A JP2012015435A (en) 2010-07-05 2010-07-05 Method for manufacturing nonlinear voltage resistor and lightning element formed of nonlinear voltage resistor

Publications (1)

Publication Number Publication Date
JP2012015435A true JP2012015435A (en) 2012-01-19

Family

ID=45601482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010152753A Pending JP2012015435A (en) 2010-07-05 2010-07-05 Method for manufacturing nonlinear voltage resistor and lightning element formed of nonlinear voltage resistor

Country Status (1)

Country Link
JP (1) JP2012015435A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146380A (en) * 2015-02-06 2016-08-12 パナソニックIpマネジメント株式会社 Voltage nonlinearity resistor composition, and varistor and laminate varistor that use the same
JP2016146379A (en) * 2015-02-06 2016-08-12 パナソニックIpマネジメント株式会社 Voltage nonlinear resistor composition, and varistor and laminate varistor that use the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362159A (en) * 1976-11-15 1978-06-03 Matsushita Electric Ind Co Ltd Method of manufacturing voltage nonlinear resistor
JPS55150202A (en) * 1979-05-10 1980-11-22 Matsushita Electric Ind Co Ltd Method of fabricating nonnlinear voltage resistor
JP2002373801A (en) * 2001-06-13 2002-12-26 Zuinkutopia:Kk Zinc oxide-based sintered body, manufacturing method thereof and zinc oxide varistor
JP2008172034A (en) * 2007-01-11 2008-07-24 Toshiba Corp Current/voltage nonlinear resistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362159A (en) * 1976-11-15 1978-06-03 Matsushita Electric Ind Co Ltd Method of manufacturing voltage nonlinear resistor
JPS55150202A (en) * 1979-05-10 1980-11-22 Matsushita Electric Ind Co Ltd Method of fabricating nonnlinear voltage resistor
JP2002373801A (en) * 2001-06-13 2002-12-26 Zuinkutopia:Kk Zinc oxide-based sintered body, manufacturing method thereof and zinc oxide varistor
JP2008172034A (en) * 2007-01-11 2008-07-24 Toshiba Corp Current/voltage nonlinear resistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146380A (en) * 2015-02-06 2016-08-12 パナソニックIpマネジメント株式会社 Voltage nonlinearity resistor composition, and varistor and laminate varistor that use the same
JP2016146379A (en) * 2015-02-06 2016-08-12 パナソニックIpマネジメント株式会社 Voltage nonlinear resistor composition, and varistor and laminate varistor that use the same

Similar Documents

Publication Publication Date Title
CN104671771B (en) A kind of high-voltage gradient zinc oxide base voltage sensitive resistor material and preparation method thereof
KR101281373B1 (en) Ferrite composition and electronic component
KR20090007283A (en) Semiconductor ceramic composition
Qureshi The influence of hafnia and impurities (CaO/SiO2) on the microstructure and magnetic properties of Mn–Zn ferrites
JP2940486B2 (en) Voltage nonlinear resistor, method for manufacturing voltage nonlinear resistor, and lightning arrester
JP2012015435A (en) Method for manufacturing nonlinear voltage resistor and lightning element formed of nonlinear voltage resistor
JP2018521497A (en) Manufacturing method of large capacity ZnO varistor
JP5337073B2 (en) Current-voltage nonlinear resistor and method for manufacturing the same
JPH0660721A (en) Dielectric porcelain and its manufacture
JP2007197246A (en) Mn-Co-Zn FERRITE AND MAGNETIC CORE FOR TRANSFORMER
CN105384436A (en) Titanium-rich barium strontium titanate-based dielectric medium ceramic material and preparation method thereof
JPH07277822A (en) Piezoelectric element material and its production
JPH0685363B2 (en) High voltage varistor and manufacturing method thereof
JP3323701B2 (en) Method for producing zinc oxide based porcelain composition
JP4461276B2 (en) Method for producing magnetic powder
JP7359329B1 (en) Antimony oxide substitute zinc oxide element
JP6937390B2 (en) Materials for current-voltage non-linear resistors, current-voltage non-linear resistors and their manufacturing methods
JP2003297612A (en) Voltage nonlinear resistor and its manufacturing method
JPH0967161A (en) Zinc oxide ceramic composition and its production
JPS6028121B2 (en) Manufacturing method of voltage nonlinear resistor
JPH03297101A (en) Power resistor and manufacture thereof
KR20040078915A (en) Zinc Oxide Sintered Body, and Manufacturing Method thereof and Zinc Oxide Varistor
JP3838026B2 (en) Method for manufacturing voltage-dependent nonlinear resistor ceramic
JP2012231091A (en) Current-voltage nonlinear resistor
JPH01189901A (en) Voltage dependent nonlinear resistor and manufacture thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120525

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120525

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140610