JPH07277822A - Piezoelectric element material and its production - Google Patents

Piezoelectric element material and its production

Info

Publication number
JPH07277822A
JPH07277822A JP6071785A JP7178594A JPH07277822A JP H07277822 A JPH07277822 A JP H07277822A JP 6071785 A JP6071785 A JP 6071785A JP 7178594 A JP7178594 A JP 7178594A JP H07277822 A JPH07277822 A JP H07277822A
Authority
JP
Japan
Prior art keywords
piezoelectric element
element material
weight
powder
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6071785A
Other languages
Japanese (ja)
Inventor
慶一 ▲高▼橋
Keiichi Takahashi
Masamitsu Nishida
正光 西田
Koichi Kugimiya
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6071785A priority Critical patent/JPH07277822A/en
Publication of JPH07277822A publication Critical patent/JPH07277822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To enable sintering even at a low temp. by using Pb-contg. ceramics having a specified average grain size and a specified grain size distribution and to obtain a piezoelectric element material having improved piezoelectric characteristics of piezoelectric ceramics by controlling the fine structure of the Pb-contg. ceramics. CONSTITUTION:This piezoelectric element material contains Pb-contg. ceramics having 0.5-5mum average grain size and a grain size distribution in which >=90wt.% grains are within the range of 0.5-5mum. The basic compsn. of this material is preferably represented by the general formula Pb1-xSrx(Mg1/3 Nb2/3)aTibZrcO3 (where a+b+c=1, 0.20<=a<=0.30, 0.30<=b<=0.45, 0.30<=c<=0.40 and 0.01<=x<=0.20) and 0.01-0.2wt.% Fe2O3 is preferably added to the basic compsn.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、精密機械の位置決め、
ビデオオートトラッキング用圧電アクチュエーター、セ
ラミックフィルタ、セラミック発振子等の圧電素子、赤
外線センサー、リニアアレイセンサー等の焦電素子等の
用途に用いられる圧電セラミックス及び電歪セラミック
ス等の圧電素子材料に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to positioning of precision machinery,
The present invention relates to a piezoelectric element material such as a piezoelectric actuator for video auto tracking, a piezoelectric element such as a ceramic filter and a ceramic oscillator, a pyroelectric element such as an infrared sensor and a linear array sensor, and an electrostrictive ceramic. .

【0002】[0002]

【従来の技術】強誘電性セラミックスまたは圧電セラミ
ックスとしては、従来よりPb(Ti,Zr)O3 二成
分系、Pb(Mg1/3 Nb2/3 Tiy )ZrO3
成分系、Pb(Zn1/3 Nb2/3 A (Sn1/3 Nb
2/3 B TiCZrD3 四成分系組成等より成るセラミ
ックス材料がある。これらの従来のセラミックス材料
は、その構成成分がほとんど全部がセラミックスであ
り、原料あるいは仮焼粉末を所定の形状に成形したの
ち、高温で焼成して作製される。これら従来の圧電セラ
ミックスでは成分の組成比を選ぶことにより用途に応じ
て種々の特性の圧電セラミックスが作製され、アクチュ
エーター、セラミックフイルタ、圧電ブザー、圧電点火
栓、超音波振動子などの用途に用いられている。
2. Description of the Related Art Ferroelectric ceramics or piezoelectric ceramics have been conventionally used as Pb (Ti, Zr) O 3 binary system, Pb (Mg 1/3 Nb 2/3 ) x Ti y ) ZrO 3 ternary system, Pb (Zn 1/3 Nb 2/3 ) A (Sn 1/3 Nb
2/3 ) B TiCZrD 3 There is a ceramic material composed of a quaternary composition. Almost all of the constituents of these conventional ceramic materials are ceramics, and they are produced by molding a raw material or calcined powder into a predetermined shape and then firing it at a high temperature. With these conventional piezoelectric ceramics, piezoelectric ceramics with various characteristics can be produced by selecting the composition ratio of the components, and used for actuators, ceramic filters, piezoelectric buzzers, piezoelectric ignition plugs, ultrasonic transducers, etc. ing.

【0003】[0003]

【発明が解決しようとする課題】従来の圧電セラミック
スは、その作製上PbOの蒸発や2次相の生成などが免
れず、十分その材料系が持つ特性を示すセラミックスが
得られていなかった。とくに焼結性を阻害するような元
素例えばSr等のアルカリ土類元素を含む場合などに十
分緻密な焼結体が得られず、その材料が持つ特性を十分
発揮することは、困難であった。そこで、その焼結性を
向上させ、微細な構造を制御することは、優れた特性を
持ったセラミックスを得るために必要なことである。
In the conventional piezoelectric ceramics, the evaporation of PbO and the formation of the secondary phase are unavoidable in the production thereof, and the ceramics exhibiting the characteristics of the material system have not been sufficiently obtained. In particular, when an element that impairs sinterability, such as an alkaline earth element such as Sr, is included, a sufficiently dense sintered body cannot be obtained, and it is difficult to fully exhibit the characteristics of the material. . Therefore, it is necessary to improve the sinterability and control the fine structure in order to obtain ceramics having excellent characteristics.

【0004】本発明は、前記従来の問題を解決するた
め、低温でも焼結でき、その微細構造を制御して圧電セ
ラミックスの圧電特性を向上した圧電素子材料及びその
製造方法を提供することを目的とする。
In order to solve the above-mentioned conventional problems, it is an object of the present invention to provide a piezoelectric element material which can be sintered even at a low temperature and whose fine structure is controlled to improve the piezoelectric characteristics of piezoelectric ceramics, and a manufacturing method thereof. And

【0005】[0005]

【課題を解決するための手段】前記目的を達成するた
め、本発明の圧電素子材料は、セラミックスの平均結晶
粒径が0.5〜5μmであり、かつ前記平均粒径の粒子
が90重量%以上0.5〜5μmの間に分布するPb系
セラミックスを含むという構成を備えたものである。
In order to achieve the above object, in the piezoelectric element material of the present invention, the average crystal grain size of the ceramic is 0.5 to 5 μm, and the average grain size of the particles is 90% by weight. The Pb-based ceramics distributed in the range of 0.5 to 5 μm are included.

【0006】前記構成においては、平均結晶粒径が1〜
3μmであり、かつ前記平均結晶粒径の粒子が75重量
%以上1〜3μmの間に分布するPb系セラミックスを
含むことが好ましい。
In the above structure, the average crystal grain size is 1 to
It is preferable that the Pb-based ceramics has a diameter of 3 μm and the particles having the average crystal grain size are distributed in the range of 75% by weight or more and 1 to 3 μm.

【0007】また前記構成においては、圧電素子材料組
成が一般式Pb1-x Srx (Mg1/ 3 Nb2/3 A Ti
B ZrC 3 で示され、(但しA+B+C=1) 0.20≦A≦0.30 0.30≦B≦0.45 0.30≦C≦0.40 0.01≦x≦0.20 を満足する基本組成を主成分とすることが好ましい。
[0007] In the above configuration, the piezoelectric element material composition formula Pb 1-x Sr x (Mg 1/3 Nb 2/3) A Ti
B Zr C O 3 (where A + B + C = 1) 0.20 ≦ A ≦ 0.30 0.30 ≦ B ≦ 0.45 0.30 ≦ C ≦ 0.40 0.01 ≦ x ≦ 0. It is preferable that the main component is a basic composition satisfying 20.

【0008】また前記構成においては、Fe2 3
0.01〜0.2重量%の範囲存在させることが好まし
い。また前記構成においては、組成が一般式Pb(Ni
1/3 Nb2/3 A TiB ZrC 3 で示され、(但しA
+B+C=1) 0.40≦A≦0.55 0.15≦B≦0.30 0.10≦C≦0.30 を満足する基本組成を主成分とすることが好ましい。
In the above construction, it is preferable that Fe 2 O 3 be present in the range of 0.01 to 0.2% by weight. Further, in the above structure, the composition is represented by the general formula Pb (Ni
1/3 Nb 2/3 ) A Ti B Zr C O 3 (where A
+ B + C = 1) It is preferable that the main component is a basic composition satisfying 0.40 ≦ A ≦ 0.55 0.15 ≦ B ≦ 0.30 0.10 ≦ C ≦ 0.30.

【0009】また前記構成においては、Fe2 3
0.01〜0.5重量%の範囲存在させることが好まし
い。また前記構成においては、組成が一般式Pb1-x
x (Ni1/3 Nb2/3 A TiB ZrC 3 で示さ
れ、(但しA+B+C=1) 0.35≦A≦0.55 0.15≦B≦0.40 0.15≦C≦0.40 0.01≦x≦0.10 を満足する基本組成を主成分とすることが好ましい。
In the above structure, Fe2O3To
It is preferable to exist in the range of 0.01 to 0.5% by weight.
Yes. In the above structure, the composition is represented by the general formula Pb1-xS
rx(Ni1/3Nb2/3) ATiBZrCO3Indicated by
(However, A + B + C = 1) 0.35 ≦ A ≦ 0.55 0.15 ≦ B ≦ 0.40 0.15 ≦ C ≦ 0.40 0.01 ≦ x ≦ 0.10 It is preferable to use it as a main component.

【0010】また前記構成においては、Fe2 3
0.01〜0.5重量%の範囲存在させることが好まし
い。また前記構成においては、一般式Pb(Ni1/3
2/3 B TiC ZrD 3 で示され、(但しA+B+
C=1) 0.25≦A≦0.45 0.20≦B≦0.35 0.20≦C≦0.40 を満足する基本組成を主成分とする圧電素子材料に対し
て、Pbの一部分を、アルカリ土類金属及び希土類元素
のなかから選ばれた少なくとも1種の金属で0.01〜
0.2モル%置換し、かつ副成分として、Fe2 3
0.01〜0.5重量%存在させることが好ましい。
In the above structure, Fe2O3To
It is preferable to exist in the range of 0.01 to 0.5% by weight.
Yes. In the above structure, the general formula Pb (Ni1/3T
a2/3)BTiCZrDO 3It is indicated by ((A + B +
C = 1) For a piezoelectric element material whose main component is a basic composition satisfying 0.25 ≦ A ≦ 0.45 0.20 ≦ B ≦ 0.35 0.20 ≦ C ≦ 0.40
A part of Pb as an alkaline earth metal and a rare earth element
At least one metal selected from among 0.01 to
Replaced by 0.2 mol% and Fe as an accessory component2O3To
It is preferable that 0.01 to 0.5% by weight be present.

【0011】また前記構成においては、組成が一般式P
1-x Srx (Mg1/3 Nb2/3 A (Ni1/3 Nb
2/3 B TiC ZrD 3 または、Pb1-x Srx (M
1/3Nb2/3 A (Ni1/3 Ta2/3 B TiC Zr
D 3 またはPb(Ni1/3 Nb2/3 A (Ni1/3
2/3 B TiC ZrD 3 で示され、(但しA+B+
C+D=1) 0.05≦A≦0.55 0.05≦B≦0.55 0.15≦C≦0.30 0.15≦D≦0.30 0.01≦x≦0.20 を満足する基本組成を主成分とする圧電素子材料に対し
て、副成分として、希土類元素の酸化物から選ばれた少
なくとも1種を0.01〜0.5重量%、及びFe2
3 を0.05〜0.5重量%添加含有してなることが好
ましい。
Further, in the above constitution, the composition is represented by the general formula P
b1-xSrx(Mg1/3Nb2/3) A(Ni1/3Nb
2/3)BTiCZrDO3Or Pb1-xSrx(M
g1/3Nb2/3)A(Ni1/3Ta2/3)BTiCZr
DO3Or Pb (Ni1/3Nb2/3)A(Ni1/3T
a2/3)BTiCZrDO3It is indicated by ((A + B +
C + D = 1) 0.05 ≦ A ≦ 0.55 0.05 ≦ B ≦ 0.55 0.15 ≦ C ≦ 0.30 0.15 ≦ D ≦ 0.30 0.01 ≦ x ≦ 0.20 For piezoelectric element materials whose main component is a satisfying basic composition
As an accessory component, a small amount selected from oxides of rare earth elements.
0.01 to 0.5% by weight at least, and Fe2O
3Is preferably added in an amount of 0.05 to 0.5% by weight.
Good

【0012】次に本発明の圧電素子材料の製造方法は、
粉体の平均粒子径が0.4μm以下で、かつ前記粉体の
粒度分布が前記平均粒子径の2倍以上の大きさの粒子の
割合を7重量%以上含む微粉体を焼結前原料粉体として
用い、焼結前原料粉体を焼結してセラミックスの平均結
晶粒径が0.5〜5μm、かつ前記平均粒径の粒子が9
0重量%以上0.5〜5μmの間に分布するPb系セラ
ミックスを含む圧電素子材料を得るという構成を備えた
ものである。
Next, the method of manufacturing the piezoelectric element material of the present invention is as follows.
Pre-sintering raw material powder is a fine powder having an average particle size of 0.4 μm or less and a particle size distribution of the powder containing 7% by weight or more of particles having a size twice or more the average particle size. Used as a body, the raw material powder before sintering is sintered so that the average crystal grain size of the ceramic is 0.5 to 5 μm, and the average grain size is 9 or more.
The piezoelectric element material contains Pb-based ceramics distributed in the range of 0% by weight or more and 0.5 to 5 μm.

【0013】前記構成においては、粉体媒液の体積が粉
体の真の体積の4倍以下の量でかつ分散剤を添加して粉
砕し、かつ0.6mm以下の微小な玉石を用いたことが
好ましい。
In the above structure, the volume of the powder medium liquid is 4 times or less of the true volume of the powder, the dispersant is added and the powder is crushed, and the fine boulders of 0.6 mm or less are used. It is preferable.

【0014】[0014]

【作用】前記本発明の圧電素子材料の構成によれば、セ
ラミックスの平均結晶粒径が0.5〜5μmであり、か
つ前記平均粒径の粒子が90重量%以上0.5〜5μm
の間に分布するPb系セラミックスを含むことにより、
圧電セラミックスの圧電特性、たとえば圧電定数d31
絶対値が大きく、他の圧電定数d33及びd15の値も大き
い圧電セラミックスを得ることができる。
According to the structure of the piezoelectric element material of the present invention, the average crystal grain size of the ceramic is 0.5 to 5 μm, and the particles of the average grain size are 90% by weight or more and 0.5 to 5 μm.
By including Pb-based ceramics distributed between
It is possible to obtain a piezoelectric ceramic in which the piezoelectric characteristics of the piezoelectric ceramic, for example, the absolute value of the piezoelectric constant d 31 is large, and other piezoelectric constants d 33 and d 15 are also large.

【0015】前記において、平均結晶粒径が1〜3μm
であり、かつ前記平均結晶粒径の粒子が75重量%以上
1〜3μmの間に分布するPb系セラミックスを含むと
いう好ましい構成によれば、粒界部に存在する気孔の大
きさが緻密なセラミックスの場合、その結晶粒子径に依
存して十分小さくなるか、または非常にその数も減少
し、材料の持つ特性を十分に発揮することができる。
In the above, the average crystal grain size is 1 to 3 μm.
According to a preferred configuration in which the particles having the average crystal grain size include Pb-based ceramics distributed in the range of 75% by weight or more and 1 to 3 μm, the ceramics having dense pores existing in the grain boundary portion In the case of, the number becomes sufficiently small depending on the crystal grain size, or the number thereof decreases significantly, and the characteristics of the material can be sufficiently exhibited.

【0016】また前記において、圧電素子材料組成が一
般式Pb1-x Srx (Mg1/3 Nb 2/3 A TiB Zr
C 3 で示され、(但しA+B+C=1) 0.20≦A≦0.30 0.30≦B≦0.45 0.30≦C≦0.40 0.01≦x≦0.20 を満足する基本組成を主成分とするという好ましい構成
によれば、モルフォトピック フェイズ バウンダリ付
近の組成となり、比誘電率εr 、及び電気機械結合係数
p 及びk31が大きく、圧電定数d31の絶対値の大きな
材料を得ることができる。
In the above, the piezoelectric element material composition is
General formula Pb1-xSrx(Mg1/3Nb 2/3)ATiBZr
CO3(Where A + B + C = 1) 0.20 ≦ A ≦ 0.30 0.30 ≦ B ≦ 0.45 0.30 ≦ C ≦ 0.40 0.01 ≦ x ≦ 0.20 A preferred composition in which the composition is the main component
According to Morpho Topic Phase Boundary
The composition is similar, and the relative permittivity εr, And electromechanical coupling coefficient
kpAnd k31Is large, and the piezoelectric constant d31Large absolute value of
The material can be obtained.

【0017】また前記において、Fe2 3 を0.01
〜0.2重量%の範囲存在させるという好ましい構成に
よれば、焼成温度が低下する分より微細な結晶粒子径を
持ちかつ緻密なセラミックスが得られ、圧電定数の絶対
値の大きな材料を得ることができる。
In the above, 0.01% Fe 2 O 3 is added.
According to the preferable constitution that it exists in the range of up to 0.2% by weight, it is possible to obtain a dense ceramic having a finer crystal grain size and a material having a large absolute value of the piezoelectric constant as the firing temperature decreases. You can

【0018】また前記構成において、組成が一般式Pb
(Ni1/3 Nb2/3 A TiB Zr C 3 で示され、
(但しA+B+C=1) 0.40≦A≦0.55 0.15≦B≦0.30 0.10≦C≦0.30 を満足する基本組成を主成分とするという好ましい構成
によれば、モルフォトピック フェイズ バウンダリ付
近の組成となり、比誘電率εr 、及び電気機械結合係数
p 及びk31が大きく、圧電定数d31の絶対値の大きな
材料を得ることができる。
In the above structure, the composition is represented by the general formula Pb
(Ni1/3Nb2/3)ATiBZr CO3Indicated by
(However, A + B + C = 1) 0.40≤A≤0.55 0.15≤B≤0.30 0.10≤C≤0.30
According to Morpho Topic Phase Boundary
The composition is similar, and the relative permittivity εr, And electromechanical coupling coefficient
kpAnd k31Is large, and the piezoelectric constant d31Large absolute value of
The material can be obtained.

【0019】また前記において、Fe2 3 を0.01
〜0.5重量%の範囲存在させるという好ましい構成に
よれば、焼成温度が低下する分より微細な結晶粒子径を
持ちかつ緻密なセラミックスが得られ、圧電定数の絶対
値の大きな材料を得ることができる。
Further, in the above, 0.01% Fe 2 O 3 is added.
According to the preferable constitution that it exists in the range of 0.5 wt%, it is possible to obtain a fine ceramic having a finer crystal grain size and a dense ceramic, and to obtain a material having a large absolute value of the piezoelectric constant. You can

【0020】また前記構成において、組成が一般式Pb
1-x Srx (Ni1/3 Nb2/3 ATiB ZrC 3
示され、(但しA+B+C=1) 0.35≦A≦0.55 0.15≦B≦0.40 0.15≦C≦0.40 0.01≦x≦0.10 を満足する基本組成を主成分とするという好ましい構成
によれば、キュリー点が下がる分比誘電率の値が大きく
なり、かつモルフォトピックフェイズ バウンダリ付近
の組成となり、圧電定数d31の絶対値の大きな材料を得
ることができる。
In the above structure, the composition is represented by the general formula Pb
1-x Sr x (Ni 1/3 Nb 2/3 ) A Ti B Zr C O 3 (where A + B + C = 1) 0.35 ≦ A ≦ 0.55 0.15 ≦ B ≦ 0.40 According to a preferable structure in which the main component is a basic composition satisfying 0.15 ≦ C ≦ 0.40 0.01 ≦ x ≦ 0.10, the Curie point is lowered and the value of relative dielectric constant is increased, and The composition is close to the morphotopic phase boundary, and a material having a large absolute value of the piezoelectric constant d 31 can be obtained.

【0021】また前記において、Fe2 3 を0.01
〜0.5重量%の範囲存在させるという好ましい構成に
よれば、焼成温度が低下する分より微細な結晶粒子径を
持ちかつ緻密なセラミックスが得られ、圧電定数の絶対
値の大きな材料を得ることができる。
In the above, 0.01% Fe 2 O 3 is added.
According to the preferable constitution that it exists in the range of 0.5 wt%, it is possible to obtain a fine ceramic having a finer crystal grain size and a dense ceramic, and to obtain a material having a large absolute value of the piezoelectric constant. You can

【0022】また前記において、一般式Pb(Ni1/3
Ta2/3 B TiC ZrD 3 で示され、(但しA+B
+C=1) 0.25≦A≦0.45 0.20≦B≦0.35 0.20≦C≦0.40 を満足する基本組成を主成分とする圧電素子材料に対し
て、Pbの一部分を、アルカリ土類金属及び希土類元素
のなかから選ばれた少なくとも1種の金属で0.01〜
0.2モル%置換し、かつ副成分として、Fe2 3
0.01〜0.5重量%存在させるという好ましい構成
によれば、モルフォトピック フェイズバウンダリ付近
の組成となり、比誘電率εr 、及び電気機械結合係数k
p 及びk 31が大きく、圧電定数d31の絶対値の大きな材
料を得ることができる。
In the above, the general formula Pb (Ni1/3
Ta2/3)BTiCZrDO3It is indicated by ((A + B
+ C = 1) For a piezoelectric element material whose main component is a basic composition satisfying 0.25 ≦ A ≦ 0.45 0.20 ≦ B ≦ 0.35 0.20 ≦ C ≦ 0.40
A part of Pb as an alkaline earth metal and a rare earth element
At least one metal selected from among 0.01 to
Replaced by 0.2 mol% and Fe as an accessory component2O3To
Preferred composition of 0.01 to 0.5% by weight
According to Morphotopic Phase Boundary
And the relative permittivity εr, And the electromechanical coupling coefficient k
pAnd k 31Is large, and the piezoelectric constant d31Material with a large absolute value of
You can get a fee.

【0023】また前記において、組成が一般式Pb1-x
Srx (Mg1/3 Nb2/3 A (Ni1/3 Nb2/3 B
TiC ZrD 3 または、Pb1-x Srx (Mg1/3
2/ 3 A (Ni1/3 Ta2/3 B TiC ZrD 3
たはPb(Ni1/3 Nb2/3)A (Ni1/3 Ta2/3
B TiC ZrD 3 で示され、(但しA+B+C+D=
1) 0.05≦A≦0.55 0.05≦B≦0.55 0.15≦C≦0.30 0.15≦D≦0.30 0.01≦x≦0.20 を満足する基本組成を主成分とする圧電素子材料に対し
て、副成分として、希土類元素の酸化物から選ばれた少
なくとも1種を0.01〜0.5重量%、及びFe2
3 を0.05〜0.5重量%添加含有してなるという好
ましい構成によれば、前記と同様、圧電定数d31の絶対
値の大きな材料を得ることができる。
In the above, the composition is represented by the general formula Pb 1-x
Sr x (Mg 1/3 Nb 2/3 ) A (Ni 1/3 Nb 2/3 ) B
Ti C Zr D O 3 or Pb 1-x Sr x (Mg 1/3 N
b 2/3) A (Ni 1/3 Ta 2/3) B Ti C Zr D O 3 or Pb (Ni 1/3 Nb 2/3) A (Ni 1/3 Ta 2/3)
B Ti C Zr D O 3 (where A + B + C + D =
1) 0.05 ≦ A ≦ 0.55 0.05 ≦ B ≦ 0.55 0.15 ≦ C ≦ 0.30 0.15 ≦ D ≦ 0.30 0.01 ≦ x ≦ 0.20 0.01 to 0.5% by weight of at least one selected from oxides of rare earth elements and Fe 2 O as auxiliary components to the piezoelectric element material containing the basic composition as a main component.
According to the preferable composition in which 0.05 to 0.5 wt% of 3 is added, a material having a large absolute value of the piezoelectric constant d 31 can be obtained as in the above.

【0024】次に本発明の圧電素子材料の製造方法の構
成によれば、粉体の平均粒子径が0.4μm以下で、か
つ前記粉体の粒度分布が前記平均粒子径の2倍以上の大
きさの粒子の割合を7重量%以上含む微粉体を焼結前原
料粉体として用い、焼結前原料粉体を焼結してセラミッ
クスの平均結晶粒径が0.5〜5μm、かつ前記平均粒
径の粒子が90重量%以上0.5〜5μmの間に分布す
るPb系セラミックスを含む圧電素子材料を得ることに
より、前記本発明の圧電素子材料を効率良く合理的に製
造することができる。
Next, according to the structure of the method for producing a piezoelectric element material of the present invention, the average particle size of the powder is 0.4 μm or less, and the particle size distribution of the powder is at least twice the average particle size. A fine powder containing 7% by weight or more of particles having a size is used as a raw material powder before sintering, and the raw material powder before sintering is sintered to have an average crystal grain size of 0.5 to 5 μm. The piezoelectric element material of the present invention can be efficiently and rationally produced by obtaining a piezoelectric element material containing Pb-based ceramics in which particles having an average particle size are distributed between 90% by weight and 0.5 to 5 μm. it can.

【0025】前記において、粉体媒液の体積が粉体の真
の体積の4倍以下の量でかつ分散剤を添加して粉砕し、
かつ0.6mm以下の微小な玉石を用いたという好まし
い構成によれば、高濃度媒液でありながら流動性が良好
な媒液であるので、均質性に優れ、微小な玉石を用いて
いるため、接触表面積も増え、また通常の粉砕時間では
困難な粒径まで微粉砕できる。また、圧電セラミックス
の平均結晶粒径が1〜5μm以下であり、均一な組織よ
りなるようにするのが好ましい。また、その密度が97
%以上であり、気孔をほとんど含まないような組織を持
つようにするのが好ましい。
In the above, the volume of the powder medium liquid is 4 times or less of the true volume of the powder, and the dispersant is added to the powder, and the powder is pulverized.
Moreover, according to the preferable configuration in which the fine boulders of 0.6 mm or less are used, since the medium liquid has a high concentration and a good fluidity, it has excellent homogeneity and uses the fine boulders. In addition, the contact surface area is increased, and it is possible to finely pulverize to a particle size that is difficult with a normal pulverization time. Further, it is preferable that the average crystal grain size of the piezoelectric ceramic is 1 to 5 μm or less and that the piezoelectric ceramic has a uniform structure. The density is 97
% Or more, and it is preferable to have a structure containing few pores.

【0026】[0026]

【実施例】以下実施例を用いて本発明をさらに具体的に
説明する。本発明で用いる圧電セラミックスとしては、
一例としてPb1-x Srx (Mg 1/3 Nb2/3 A Ti
B ZrC 3 或いは、Pb(Ni1/3 Nb2/3 A Ti
ーB ZrC 3 或いはPb(Ni1/3 Ta2/3 A Ti
B ZrC 3 (但しA+B+C=1)で示され、或いは
Pb1-x Srx (Mg1/3 Nb2/3 A (Ni1/3Nb
2/3 B TiC ZrD 3 または、Pb1-x Srx (M
1/3 Nb2/3 A(Ni1/3 Ta2/3 B TiC Zr
D 3 またはPb(Ni1/3 Nb2/3 A (Ni1/3
2/3 B TiC ZrD 3 (但しA+B+C+D=
1)で示され、これら材料系の焼結性を上げ、低温でも
焼結でき、その微細構造を制御したような圧電セラミッ
クス作製することとその製造方法を確立することを本発
明の目的とする。その際、製造方法としては原料粉体の
微粉砕を行うなどの方法がとられているが、その粉砕に
関して、有機溶剤を分散剤として混入して高濃度のスラ
リーを用いるのだが、スラリーの水素イオン濃度を大き
く変えてしまうような原料粉を用いる場合そのスラリー
の水素イオン濃度を調整して、スラリーのゲル化を防ぐ
ことも重要である。
EXAMPLES The present invention will be described more specifically with reference to the following examples.
explain. The piezoelectric ceramics used in the present invention include:
Pb as an example1-xSrx(Mg 1/3Nb2/3)ATi
BZrCO3Alternatively, Pb (Ni1/3Nb2/3)ATi
-B ZrCO3Alternatively, Pb (Ni1/3Ta2/3)ATi
BZrCO3(However, A + B + C = 1), or
Pb1-xSrx (Mg1/3Nb2/3)A(Ni1/3Nb
2/3)BTiCZrDO3Or Pb1-xSrx(M
g1/3Nb2/3)A(Ni1/3Ta2/3)BTiCZr
DO3Or Pb (Ni1/3Nb2/3)A(Ni1/3T
a2/3)BTiCZrDO3(However, A + B + C + D =
As shown in 1), the sinterability of these material systems is improved, and even at low temperatures.
Piezoelectric ceramics that can be sintered and whose microstructure is controlled
To create a box and establish a manufacturing method
For the purpose of Ming. At that time, as a manufacturing method,
Although methods such as fine pulverization are taken,
In this regard, it is necessary to mix an organic solvent as a dispersant and
Rea is used, but increase the hydrogen ion concentration of the slurry.
When using raw material powder that changes
To prevent gelation of the slurry by adjusting the hydrogen ion concentration of
That is also important.

【0027】本発明の一例を示すと、圧電セラミックス
粉末として組成がPb0.9 Sr0.1(Mg1/3
2/3 0.255 Ti0.38Zr0.365 、及びPb(Ni
1/3 Nb2/30.45Ti0.35Zr0.2 3 など原料粉末
を媒体撹拌ミルを用いて、直径0.6mmのジルコニア
玉石と共に、有機系の分散剤及び水を加え、平均粒子径
約0.2μmに粉砕したのち乾燥させ、造粒した。この
粉体を、金型を用いて直径13mm、厚さ約1mmの円板状
の成形体を作製し、通常の焼成温度よりも低温で2時間
焼成し、微細構造を制御した圧電セラミックスを製造す
る。
As an example of the present invention, the piezoelectric ceramic powder has a composition of Pb 0.9 Sr 0.1 (Mg 1/3 N
b 2/3 ) 0.255 Ti 0.38 Zr 0.365 , and Pb (Ni
1/3 Nb 2/3 ) 0.45 Ti 0.35 Zr 0.2 O 3 and other raw material powders are added to a zirconia cobblestone having a diameter of 0.6 mm with an organic dispersant and water using a medium stirring mill to obtain an average particle size of about 0. After pulverizing to 0.2 μm, it was dried and granulated. A disk-shaped molded body having a diameter of 13 mm and a thickness of about 1 mm was produced from this powder using a mold, and fired at a temperature lower than the usual firing temperature for 2 hours to produce a piezoelectric ceramic with controlled microstructure. To do.

【0028】なお以下の実施例においては、ε:誘電
率、ε0 :真空中の誘電率、kp :径方向振動の電気機
械結合係数、d31:分極軸と垂直な方向の圧電定数をそ
れぞれ示す。
In the following examples, ε: permittivity, ε 0 : permittivity in vacuum, k p : electromechanical coupling coefficient of radial vibration, d 31 : piezoelectric constant in the direction perpendicular to the polarization axis. Shown respectively.

【0029】(実施例1)原料粉末としてPbO,Sr
CO3 ,MgO,Nb2 5 ,TiO2 ,ZrO 2 を用
い、組成は第1表のようになるようにした。所定の組成
に配合した混合粉体に純水及び分散剤を加えてスラリー
とし、媒体撹拌ミルを用いて混合粉砕を行った。混合粉
砕後の平均粒径はレーザ式粒子径測定器で測りながら、
各組成とも0.2 μm 以下なるようにした。得られた混合
粉を2時間仮焼した。さらに媒体撹拌ミルを用いて、直
径0.6mmのジルコニア玉石と共に、有機系の分散剤
及び水を加え、平均粒子径約0.4μm以下に粉砕し
た。比較例のため粉砕の進んでいない平均粒子径の異な
る粉砕も行った。これを乾燥させ焼結前の原料粉末を得
た。この粉末を有機バインダーと共にまぜ、500μm
の篩を通過させて整粒した。この粉体を、金型を用いて
直径13mm、厚さ約1mmの円板状の成形体を作製し、こ
れを電気炉で2時間焼成し、圧電セラミックスを作製し
た。昇温・降温速度は300℃/hである。次に、各々
試料の両面にCr−Auの蒸着電極を付与し、その後120
℃のシリコンオイル中で両電極間に3kV/mm の直流電界
を30分間印加して分極処理し、圧電素子を得た。この
試料について、圧電特性を測定し、またSEM写真より
微細構造の観察を行い結晶粒径の分布をインターセプト
法によりもとめた。測定結果を(表1)に示す。
(Example 1) PbO and Sr as raw material powders
CO3, MgO, Nb2OFive, TiO2, ZrO 2For
The composition was as shown in Table 1. Predetermined composition
Slurry by adding pure water and dispersant to the mixed powder blended in
And mixed and pulverized using a medium stirring mill. Mixed powder
While measuring the average particle size after crushing with a laser type particle size measuring device,
Each composition was 0.2 μm or less. The resulting mixture
The flour was calcined for 2 hours. Further, using a media stirring mill,
Organic dispersant along with zirconia cobblestone with a diameter of 0.6 mm
And water, and crushed to an average particle size of 0.4 μm or less.
It was For comparison examples, the average particle size was
I also crushed it. This is dried to obtain raw powder before sintering
It was Mix this powder with an organic binder, 500 μm
The powder was passed through a No. 4 sieve to be sized. This powder, using a mold
A disk-shaped molded body with a diameter of 13 mm and a thickness of about 1 mm was prepared.
This is baked in an electric furnace for 2 hours to produce piezoelectric ceramics.
It was The temperature rising / falling rate is 300 ° C./h. Then each
A vapor deposition electrode of Cr-Au was applied to both sides of the sample, and then 120
DC electric field of 3kV / mm between both electrodes in silicon oil at ℃
Was applied for 30 minutes for polarization treatment to obtain a piezoelectric element. this
The piezoelectric characteristics of the sample were measured, and from the SEM photograph
Observe the fine structure and intercept the grain size distribution
I found it by law. The measurement results are shown in (Table 1).

【0030】[0030]

【表1】 [Table 1]

【0031】(表1)から明らかなように、本発明の圧
電セラミックスは、同一の組成のNo.12 〜No.14 のいず
れの圧電特性に関しても向上が見られる。本実施例で
は、平均粒子径が0.4μm以下の微粉体を用いること
により、1200℃の低温で焼成でき、微細構造の制御
したことによって、圧電セラミックスの特性が大きく向
上している。また、平均粉末粒径が0.22μm のNo.12 及
び0.63μm のNo.13 はその平均粒子径の2倍以上の大き
さの粉体の比率がそれぞれ3wt%、6wt%以上であ
り、No.14 、No.15 のはそれぞれ8wt%13wt%で
あった。即ち、比較例である粉体の粒度分布を平均粒子
径の2倍以上の大きさの粉体の比率が7wt%以上の微
粉体から作製したNo.14 、及びNo.15 は、微細構造の制
御できておらず、同時に微粉砕もしていないため、結晶
粒径が5.1μmとなり、焼成温度も高く、特性も良く
ない。
As is clear from (Table 1), the piezoelectric ceramics of the present invention are improved in any of the piezoelectric characteristics of No. 12 to No. 14 having the same composition. In this embodiment, by using fine powder having an average particle diameter of 0.4 μm or less, firing can be performed at a low temperature of 1200 ° C., and the characteristics of the piezoelectric ceramic are greatly improved by controlling the fine structure. In No. 12 with an average powder particle size of 0.22 μm and No. 13 with an average powder particle size of 0.63 μm, the ratio of powders having a size twice or more the average particle size is 3 wt% and 6 wt% or more, respectively. 14 and No. 15 were 8 wt% and 13 wt% respectively. That is, No. 14 and No. 15, which are comparative examples, were prepared from fine powders having a particle size distribution of powders having a size of at least twice the average particle size of 7 wt% or more. Since it was not controlled and was not pulverized at the same time, the crystal grain size was 5.1 μm, the firing temperature was high, and the characteristics were not good.

【0032】(実施例2)原料粉末としてPbO,Sr
CO3 ,MgO,Nb2 5 ,TiO2 ,ZrO 2 ,F
2 3 を用い、組成は第2表のようになるようにし
た。所定の組成に配合した混合粉体に純水及び分散剤を
加えてスラリーとし、媒体撹拌ミルを用いて混合粉砕を
行った。混合粉砕後の平均粒径はレーザ式粒子径測定器
で測りながら、各組成とも0.2 μm 以下なるようにし
た。得られた混合粉を2時間仮焼した。さらに媒体撹拌
ミルを用いて、直径0.6mmのジルコニア玉石と共
に、有機系の分散剤及び水を加え、平均粒子径約0.4
μm以下に粉砕した。これを乾燥させ焼結前の原料粉末
を得た。この粉末を有機バインダーと共にまぜ、500
μmの篩を通過させて整粒した。この粉体を、金型を用
いて直径13mm、厚さ約1mmの円板状の成形体を作製
し、これを電気炉で2時間焼成し、圧電セラミックスを
作製した。昇温・降温速度は300℃/hである。次
に、各々試料の両面にCr−Auの蒸着電極を付与し、その
後120℃のシリコンオイル中で両電極間に3kV/mm の
直流電界を30分間印加して分極処理し、圧電素子を得
た。この試料について、圧電特性を測定し、またSEM
写真より微細構造の観察を行い結晶粒径の分布をインタ
ーセプト法によりもとめた。測定結果を(表2)に示
す。
(Example 2) PbO and Sr as raw material powders
CO3, MgO, Nb2OFive, TiO2, ZrO 2, F
e2O3And the composition is as shown in Table 2.
It was Pure water and a dispersant are added to the mixed powder that has been blended to the specified composition.
In addition, it is made into a slurry and mixed and pulverized using a media stirring mill.
went. The average particle size after mixing and crushing is the laser particle size measuring device.
Make sure that each composition is 0.2 μm or less.
It was The resulting mixed powder was calcined for 2 hours. Medium stirring
Using a mill, coexist with zirconia boulders with a diameter of 0.6 mm
To the above, an organic dispersant and water are added, and the average particle size is about 0.4.
It was pulverized to a size of less than μm. Raw material powder before drying and sintering
Got Mix this powder with an organic binder, 500
The particles were sized by passing through a μm sieve. Use this powder in a mold
A disk-shaped molded body with a diameter of 13 mm and a thickness of approximately 1 mm
Then, this is fired in an electric furnace for 2 hours to obtain the piezoelectric ceramics.
It was made. The temperature rising / falling rate is 300 ° C./h. Next
In addition, Cr-Au vapor deposition electrodes were applied to both sides of each sample,
After that, in silicon oil at 120 ° C, apply 3kV / mm between both electrodes.
Apply a DC electric field for 30 minutes to perform polarization to obtain a piezoelectric element.
It was The piezoelectric characteristics of this sample were measured, and the SEM
The microstructure is observed from the photograph and the grain size distribution is examined.
-Sept method was used. The measurement results are shown in (Table 2).
You

【0033】[0033]

【表2】 [Table 2]

【0034】(表2)から明らかなように、本実施例の
No.2〜No.9の圧電セラミックスは、単一の組成のNo.1よ
りも、圧電特性の向上が見られる。本実施例では、粒径
分布の調整された平均粒子径が0.4μm以下の微粉体
を用いさらにFe2 O3 を添加することにより、120
0℃の低温で焼成でき、微細構造を制御したことによっ
て、圧電セラミックスの特性が大きく向上している。
As is clear from (Table 2),
The piezoelectric ceramics of No. 2 to No. 9 show improved piezoelectric characteristics compared to No. 1 of single composition. In this embodiment, fine powder having an adjusted average particle diameter of 0.4 μm or less is used, and Fe2 O3 is further added to obtain 120
The properties of the piezoelectric ceramics are greatly improved by being able to fire at a low temperature of 0 ° C. and controlling the fine structure.

【0035】(実施例3)原料粉末としてPbO,Sr
CO3 ,MgO,Nb2 5 ,TiO2 ,ZrO 2 を用
い、組成は第3表のようになるようにした。所定の組成
に配合した混合粉体に純水及び分散剤を加えてスラリー
とし、媒体撹拌ミルを用いて混合粉砕を行った。混合粉
砕後の平均粒径はレーザ式粒子径測定器で測りながら、
各組成とも0.2 μm 以下なるようにした。得られた混合
粉を2時間仮焼した。さらに媒体撹拌ミルを用いて、直
径0.6mmのジルコニア玉石と共に、有機系の分散剤
及び水を加え、平均粒子径約0.4μm以下に粉砕し
た。比較例のため粉砕の進んでいない平均粒子径の異な
る粉砕も行った。これを乾燥させ焼結前の原料粉末を得
た。この粉末を有機バインダーと共にまぜ、500μm
の篩を通過させて整粒した。この粉体を、金型を用いて
直径13mm、厚さ約1mmの円板状の成形体を作製し、こ
れを電気炉で2時間焼成し、圧電セラミックスを作製し
た。昇温・降温速度は300℃/hである。次に、各々
試料の両面にCr−Auの蒸着電極を付与し、その後120
℃のシリコンオイル中で両電極間に3kV/mm の直流電界
を30分間印加して分極処理し、圧電素子を得た。この
試料について、圧電特性を測定し、またSEM写真より
微細構造の観察を行い結晶粒径の分布をインターセプト
法によりもとめた。測定結果を(表3)に示す。
(Example 3) PbO and Sr as raw material powders
CO3, MgO, Nb2OFive, TiO2, ZrO 2For
The composition was as shown in Table 3. Predetermined composition
Slurry by adding pure water and dispersant to the mixed powder blended in
And mixed and pulverized using a medium stirring mill. Mixed powder
While measuring the average particle size after crushing with a laser type particle size measuring device,
Each composition was 0.2 μm or less. The resulting mixture
The flour was calcined for 2 hours. Further, using a media stirring mill,
Organic dispersant along with zirconia cobblestone with a diameter of 0.6 mm
And water, and crushed to an average particle size of 0.4 μm or less.
It was For comparison examples, the average particle size was
I also crushed it. This is dried to obtain raw powder before sintering
It was Mix this powder with an organic binder, 500 μm
The powder was passed through a No. 4 sieve to be sized. This powder, using a mold
A disk-shaped molded body with a diameter of 13 mm and a thickness of about 1 mm was prepared.
This is baked in an electric furnace for 2 hours to produce piezoelectric ceramics.
It was The temperature rising / falling rate is 300 ° C./h. Then each
A vapor deposition electrode of Cr-Au was applied to both sides of the sample, and then 120
DC electric field of 3kV / mm between both electrodes in silicon oil at ℃
Was applied for 30 minutes for polarization treatment to obtain a piezoelectric element. this
The piezoelectric characteristics of the sample were measured, and from the SEM photograph
Observe the fine structure and intercept the grain size distribution
I found it by law. The measurement results are shown in (Table 3).

【0036】[0036]

【表3】 [Table 3]

【0037】(表3)から明らかなように、本実施例の
圧電セラミックスは、同一の組成のNo.1〜No.5及びNo.7
〜No.9及びNo.19 、20のいずれの圧電特性に関しても向
上が見られる。本実施例では、粒径分布の調整された平
均粒子径が0.4μm以下の微粉体を用いることによ
り、1200℃の低温で焼成でき、微細構造の制御した
ことによって、圧電セラミックスの特性が大きく向上し
ている。微細構造の制御できていない比較例はいずれも
微粉砕しておらず、結晶粒子径が5μm以上となり、焼
成温度も高く、特性も良くない。
As is clear from (Table 3), the piezoelectric ceramics of this example had No. 1 to No. 5 and No. 7 having the same composition.
-No. 9 and No. 19 and 20 show improvement in piezoelectric characteristics. In this example, by using a fine powder having an adjusted average particle diameter of 0.4 μm or less, which can be fired at a low temperature of 1200 ° C., the characteristics of the piezoelectric ceramic are increased by controlling the fine structure. Has improved. None of the comparative examples whose fine structure could not be controlled were not finely pulverized, the crystal grain size was 5 μm or more, the firing temperature was high, and the characteristics were not good.

【0038】(実施例4)原料粉末としてPbO,Sr
CO3 ,MgO,Nb2 5 ,TiO2 ,ZrO 2 を用
い、組成は第4表のようになるようにした。所定の組成
に配合した混合粉体に純水及び分散剤を加えてスラリー
とし、媒体撹拌ミルを用いて混合粉砕を行った。混合粉
砕後の平均粒径はレーザ式粒子径測定器で測りながら、
各組成とも0.2 μm 以下なるようにした。得られた混合
粉を2時間仮焼した。さらに媒体撹拌ミルを用いて、直
径0.6mmのジルコニア玉石と共に、有機系の分散剤
及び水を加え、平均粒子径約0.4μm以下に粉砕し
た。比較例のため粉砕の進んでいない平均粒子径の異な
る粉砕も行った。これを乾燥させ焼結前の原料粉末を得
た。この粉末を有機バインダーと共にまぜ、500μm
の篩を通過させて整粒した。この粉体を、金型を用いて
直径13mm、厚さ約1mmの円板状の成形体を作製し、こ
れを電気炉で2時間焼成し、圧電セラミックスを作製し
た。昇温・降温速度は300℃/hである。次に、各々
試料の両面にCr−Auの蒸着電極を付与し、その後120
℃のシリコンオイル中で両電極間に3kV/mm の直流電界
を30分間印加して分極処理し、圧電素子を得た。この
試料について、圧電特性を測定し、またSEM写真より
微細構造の観察を行い結晶粒径の分布をインターセプト
法によりもとめた。測定結果を(表4)に示す。
(Example 4) PbO and Sr as raw material powders
CO3, MgO, Nb2OFive, TiO2, ZrO 2For
The composition was as shown in Table 4. Predetermined composition
Slurry by adding pure water and dispersant to the mixed powder blended in
And mixed and pulverized using a medium stirring mill. Mixed powder
While measuring the average particle size after crushing with a laser type particle size measuring device,
Each composition was 0.2 μm or less. The resulting mixture
The flour was calcined for 2 hours. Further, using a media stirring mill,
Organic dispersant along with zirconia cobblestone with a diameter of 0.6 mm
And water, and crushed to an average particle size of 0.4 μm or less.
It was For comparison examples, the average particle size was
I also crushed it. This is dried to obtain raw powder before sintering
It was Mix this powder with an organic binder, 500 μm
The powder was passed through a No. 4 sieve to be sized. This powder, using a mold
A disk-shaped molded body with a diameter of 13 mm and a thickness of about 1 mm was prepared.
This is baked in an electric furnace for 2 hours to produce piezoelectric ceramics.
It was The temperature rising / falling rate is 300 ° C./h. Then each
A vapor deposition electrode of Cr-Au was applied to both sides of the sample, and then 120
DC electric field of 3kV / mm between both electrodes in silicon oil at ℃
Was applied for 30 minutes for polarization treatment to obtain a piezoelectric element. this
The piezoelectric characteristics of the sample were measured, and from the SEM photograph
Observe the fine structure and intercept the grain size distribution
I found it by law. The measurement results are shown in (Table 4).

【0039】[0039]

【表4】 [Table 4]

【0040】(表4)から明らかなように、本実施例の
No.10 〜No.20 の圧電セラミックスは、いずれの同一組
成のNo.1〜No.10 の圧電セラミックスと比較して圧電特
性の向上が見られる。本実施例では、粒径分布の調整さ
れた平均粒子径が0.4μm以下の微粉体を用いること
により、低温で焼成でき、微細構造を制御したことによ
って、圧電セラミックスの特性が大きく向上している。
As is clear from (Table 4),
The piezoelectric ceramics of No.10 to No.20 show improved piezoelectric characteristics as compared with the piezoelectric ceramics of No.1 to No.10 having the same composition. In this example, by using a fine powder having an average particle size of 0.4 μm or less with an adjusted particle size distribution, it is possible to perform firing at a low temperature, and by controlling the fine structure, the characteristics of the piezoelectric ceramic are greatly improved. There is.

【0041】(実施例5)原料粉末としてPbO,Sr
CO3 ,MgO,Nb2 5 ,TiO2 ,ZrO 2 を用
い、組成は第5表のようになるようにした。所定の組成
に配合した混合粉体に純水及び分散剤を加えてスラリー
とし、媒体撹拌ミルを用いて混合粉砕を行った。混合粉
砕後の平均粒径はレーザ式粒子径測定器で測りながら、
各組成とも0.2 μm 以下なるようにした。得られた混合
粉を2時間仮焼した。さらに媒体撹拌ミルを用いて、直
径0.6mmのジルコニア玉石と共に、有機系の分散剤
及び水を加え、平均粒子径約0.4μm以下に粉砕し
た。比較例のため粉砕の進んでいない平均粒子径の異な
る粉砕も行った。これを乾燥させ焼結前の原料粉末を得
た。この粉末を有機バインダーと共にまぜ、500μm
の篩を通過させて整粒した。この粉体を、金型を用いて
直径13mm、厚さ約1mmの円板状の成形体を作製し、こ
れを電気炉で2時間焼成し、圧電セラミックスを作製し
た。昇温・降温速度は300℃/hである。次に、各々
試料の両面にCr−Auの蒸着電極を付与し、その後120
℃のシリコンオイル中で両電極間に3kV/mm の直流電界
を30分間印加して分極処理し、圧電素子を得た。この
試料について、圧電特性を測定し、またSEM写真より
微細構造の観察を行い結晶粒径の分布をインターセプト
法によりもとめた。測定結果を(表5)に示す。
(Embodiment 5) PbO and Sr as raw material powders
CO3, MgO, Nb2OFive, TiO2, ZrO 2For
The composition was as shown in Table 5. Predetermined composition
Slurry by adding pure water and dispersant to the mixed powder blended in
And mixed and pulverized using a medium stirring mill. Mixed powder
While measuring the average particle size after crushing with a laser type particle size measuring device,
Each composition was 0.2 μm or less. The resulting mixture
The flour was calcined for 2 hours. Further, using a media stirring mill,
Organic dispersant along with zirconia cobblestone with a diameter of 0.6 mm
And water, and crushed to an average particle size of 0.4 μm or less.
It was For comparison examples, the average particle size was
I also crushed it. This is dried to obtain raw powder before sintering
It was Mix this powder with an organic binder, 500 μm
The powder was passed through a No. 4 sieve to be sized. This powder, using a mold
A disk-shaped molded body with a diameter of 13 mm and a thickness of about 1 mm was prepared.
This is baked in an electric furnace for 2 hours to produce piezoelectric ceramics.
It was The temperature rising / falling rate is 300 ° C./h. Then each
A vapor deposition electrode of Cr-Au was applied to both sides of the sample, and then 120
DC electric field of 3kV / mm between both electrodes in silicon oil at ℃
Was applied for 30 minutes for polarization treatment to obtain a piezoelectric element. this
The piezoelectric characteristics of the sample were measured, and from the SEM photograph
Observe the fine structure and intercept the grain size distribution
I found it by law. The measurement results are shown in (Table 5).

【0042】[0042]

【表5】 [Table 5]

【0043】(表5)から本実施例では、粒径分布の調
整された平均粒子径が0.4μm以下の微粉体を用いる
ことにより、低温で焼成でき、微細構造を制御したこと
によって、従来の特性よりその特性が大きく向上してい
る。
From Table 5, in this example, it is possible to perform firing at a low temperature by controlling the fine structure by using a fine powder having an average particle size of 0.4 μm or less whose particle size distribution is adjusted. The characteristics are greatly improved from those of.

【0044】[0044]

【発明の効果】以上のように、本発明の圧電セラミック
スでは、媒体撹拌ミルによる微粉砕により焼成温度を低
下させ微細構造を制御することにより、圧電セラミック
スの圧電特性を向上させることができる。
As described above, in the piezoelectric ceramics of the present invention, the piezoelectric characteristics of the piezoelectric ceramics can be improved by controlling the fine structure by lowering the firing temperature by fine pulverization by a medium stirring mill.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 41/22 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 41/22 A

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 セラミックスの平均結晶粒径が0.5〜
5μmであり、かつ前記平均粒径の粒子が90重量%以
上0.5〜5μmの間に分布するPb系セラミックスを
含む圧電素子材料。
1. The average crystal grain size of ceramics is 0.5 to
A piezoelectric element material containing Pb-based ceramics having a particle size of 5 μm and having an average particle size of 90% by weight or more and distributed in a range of 0.5 to 5 μm.
【請求項2】 平均結晶粒径が1〜3μmであり、かつ
前記平均結晶粒径の粒子が75重量%以上1〜3μmの
間に分布するPb系セラミックスを含む請求項1に記載
の圧電素子材料。
2. The piezoelectric element according to claim 1, wherein the average crystal grain size is 1 to 3 μm, and the particles having the average crystal grain size include Pb-based ceramics distributed between 75% by weight and 1 to 3 μm. material.
【請求項3】 圧電素子材料組成が一般式Pb1-x Sr
x (Mg1/3 Nb2/3A TiB ZrC 3 で示され、
(但しA+B+C=1) 0.20≦A≦0.30 0.30≦B≦0.45 0.30≦C≦0.40 0.01≦x≦0.20 を満足する基本組成を主成分とする請求項1または2に
記載の圧電素子材料。
3. The piezoelectric element material composition is represented by the general formula Pb 1-x Sr.
indicated by x (Mg 1/3 Nb 2/3) A Ti B Zr C O 3,
(However, A + B + C = 1) 0.20 ≦ A ≦ 0.30 0.30 ≦ B ≦ 0.45 0.30 ≦ C ≦ 0.40 0.01 ≦ x ≦ 0.20 as a main component The piezoelectric element material according to claim 1 or 2.
【請求項4】 Fe2 3 を0.01〜0.2重量%の
範囲存在させる請求項3に記載の圧電素子材料。
4. The piezoelectric element material according to claim 3 , wherein Fe 2 O 3 is present in the range of 0.01 to 0.2% by weight.
【請求項5】 組成が一般式Pb(Ni1/3 Nb2/3
A TiB ZrC 3 で示され、(但しA+B+C=1) 0.40≦A≦0.55 0.15≦B≦0.30 0.10≦C≦0.30 を満足する基本組成を主成分とする請求項1に記載の圧
電素子材料。
5. The composition has the general formula Pb (Ni 1/3 Nb 2/3 ).
A basic composition represented by A Ti B Zr C O 3 (where A + B + C = 1) 0.40 ≦ A ≦ 0.55 0.15 ≦ B ≦ 0.30 0.10 ≦ C ≦ 0.30 The piezoelectric element material according to claim 1, which comprises a main component.
【請求項6】 Fe2 3 を0.01〜0.5重量%の
範囲存在させる請求項5に記載の圧電素子材料。
6. The piezoelectric element material according to claim 5, wherein Fe 2 O 3 is present in the range of 0.01 to 0.5% by weight.
【請求項7】 組成が一般式Pb1-x Srx (Ni1/3
Nb2/3 A TiB ZrC 3 で示され、(但しA+B
+C=1) 0.35≦A≦0.55 0.15≦B≦0.40 0.15≦C≦0.40 0.01≦x≦0.10 を満足する基本組成を主成分とする請求項1または2に
記載の圧電素子材料。
7. The composition has the general formula Pb 1-x Sr x (Ni 1/3
Nb 2/3 ) A Ti B Zr C O 3 (provided that A + B
+ C = 1) 0.35 ≦ A ≦ 0.55 0.15 ≦ B ≦ 0.40 0.15 ≦ C ≦ 0.40 0.01 ≦ x ≦ 0.10 as a main component The piezoelectric element material according to claim 1.
【請求項8】 Fe2 3 を0.01〜0.5重量%の
範囲存在させる請求項5に記載の圧電素子材料。
8. The piezoelectric element material according to claim 5, wherein Fe 2 O 3 is present in the range of 0.01 to 0.5% by weight.
【請求項9】 一般式Pb(Ni1/3 Ta2/3 B Ti
C ZrD 3 で示され、(但しA+B+C=1) 0.25≦A≦0.45 0.20≦B≦0.35 0.20≦C≦0.40 を満足する基本組成を主成分とする圧電素子材料に対し
て、Pbの一部分を、アルカリ土類金属及び希土類元素
のなかから選ばれた少なくとも1種の金属で0.01〜
0.2モル%置換し、かつ副成分として、Fe2 3
0.01〜0.5重量%存在させた請求項1または2に
記載の圧電素子材料。
9. The general formula Pb (Ni 1/3 Ta 2/3 ) B Ti
C Zr D O 3 (where A + B + C = 1) 0.25 ≦ A ≦ 0.45 0.20 ≦ B ≦ 0.35 0.20 ≦ C ≦ 0.40 In the piezoelectric element material described above, a part of Pb is made of at least one metal selected from alkaline earth metals and rare earth elements in an amount of 0.01 to
The piezoelectric element material according to claim 1 or 2, which is substituted by 0.2 mol% and 0.01 to 0.5% by weight of Fe 2 O 3 is present as an accessory component.
【請求項10】 組成が一般式Pb1-x Srx (Mg
1/3 Nb2/3 A (Ni 1/3 Nb2/3 B TiC ZrD
3 または、Pb1-x Srx (Mg1/3 Nb2/3
A (Ni1/3 Ta2/3 B TiC ZrD 3 またはPb
(Ni1/3 Nb2/3 A (Ni1/3 Ta2/3 B TiC
ZrD 3 で示され、(但しA+B+C+D=1) 0.05≦A≦0.55 0.05≦B≦0.55 0.15≦C≦0.30 0.15≦D≦0.30 0.01≦x≦0.20 を満足する基本組成を主成分とする圧電素子材料に対し
て、副成分として、希土類元素の酸化物から選ばれた少
なくとも1種を0.01〜0.5重量%、及びFe2
3 を0.05〜0.5重量%添加含有してなる請求項1
または2に記載の圧電素子材料。
10. The composition has the general formula Pb.1-xSrx(Mg
1/3Nb2/3)A(Ni 1/3Nb2/3)BTiCZrD
O3Or Pb1-xSrx(Mg1/3Nb2/3)
A(Ni1/3Ta2/3)BTiCZrDO3Or Pb
(Ni1/3Nb2/3) A(Ni1/3Ta2/3)BTiC
ZrDO3(Where A + B + C + D = 1) 0.05 ≦ A ≦ 0.55 0.05 ≦ B ≦ 0.55 0.15 ≦ C ≦ 0.30 0.15 ≦ D ≦ 0.30 0.01 ≦ For a piezoelectric element material whose main component is a basic composition satisfying x ≦ 0.20
As an accessory component, a small amount selected from oxides of rare earth elements.
0.01 to 0.5% by weight at least, and Fe2O
31. Addition of 0.05 to 0.5% by weight of
Alternatively, the piezoelectric element material described in 2.
【請求項11】 粉体の平均粒子径が0.4μm以下
で、かつ前記粉体の粒度分布が前記平均粒子径の2倍以
上の大きさの粒子の割合を7重量%以上含む微粉体を焼
結前原料粉体として用い、焼結前原料粉体を焼結してセ
ラミックスの平均結晶粒径が0.5〜5μm、かつ前記
平均粒径の粒子が90重量%以上0.5〜5μmの間に
分布するPb系セラミックスを含む圧電素子材料を得る
圧電素子材料の製造方法。
11. A fine powder having an average particle size of 0.4 μm or less and a particle size distribution of the powder containing 7% by weight or more of particles having a size twice or more the average particle size. Used as raw material powder before sintering, the raw material powder before sintering is sintered to have an average crystal grain size of ceramics of 0.5 to 5 μm, and particles having the average grain size of 90% by weight or more and 0.5 to 5 μm. A method of manufacturing a piezoelectric element material, comprising: obtaining a piezoelectric element material containing Pb-based ceramics distributed between the layers.
【請求項12】 粉体媒液の体積が粉体の真の体積の4
倍以下の量でかつ分散剤を添加して粉砕し、かつ0.6
mm以下の微小な玉石を用いた請求項11記載の圧電素
子材料の製造方法。
12. The volume of the powder medium liquid is 4 times the true volume of the powder.
Less than twice the amount and crushed by adding a dispersant, and 0.6
The method for manufacturing a piezoelectric element material according to claim 11, wherein fine boulders having a size of not more than mm are used.
JP6071785A 1994-04-11 1994-04-11 Piezoelectric element material and its production Pending JPH07277822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6071785A JPH07277822A (en) 1994-04-11 1994-04-11 Piezoelectric element material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6071785A JPH07277822A (en) 1994-04-11 1994-04-11 Piezoelectric element material and its production

Publications (1)

Publication Number Publication Date
JPH07277822A true JPH07277822A (en) 1995-10-24

Family

ID=13470582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6071785A Pending JPH07277822A (en) 1994-04-11 1994-04-11 Piezoelectric element material and its production

Country Status (1)

Country Link
JP (1) JPH07277822A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069396A1 (en) * 2004-01-15 2005-07-28 Epcos Ag Ceramic material
JP2006265055A (en) * 2005-03-25 2006-10-05 Nec Tokin Corp Method of manufacturing piezoelectric ceramic
JP2008162889A (en) * 2002-07-16 2008-07-17 Denso Corp Piezoelectric ceramic composition, and method of producing the same and piezoelectric element
JP2008169113A (en) * 2003-01-23 2008-07-24 Denso Corp Piezoelectric ceramic composition and piezoelectric element
US7855488B2 (en) 1999-12-16 2010-12-21 Epcos Ag Piezoceramic device
US7999448B2 (en) 2007-03-02 2011-08-16 Epcos Ag Piezoelectric material, multilayer actuator and method for manufacturing a piezoelectric component
JP2017228562A (en) * 2016-06-20 2017-12-28 コニカミノルタ株式会社 Piezoelectric element, ultrasonic probe, and ultrasonic imaging apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7855488B2 (en) 1999-12-16 2010-12-21 Epcos Ag Piezoceramic device
US8209828B2 (en) 1999-12-16 2012-07-03 Epcos Ag Method for making a piezoceramic device
JP2008162889A (en) * 2002-07-16 2008-07-17 Denso Corp Piezoelectric ceramic composition, and method of producing the same and piezoelectric element
JP2008169113A (en) * 2003-01-23 2008-07-24 Denso Corp Piezoelectric ceramic composition and piezoelectric element
WO2005069396A1 (en) * 2004-01-15 2005-07-28 Epcos Ag Ceramic material
US8858822B2 (en) 2004-01-15 2014-10-14 Epcos Ag Ceramic material
JP2006265055A (en) * 2005-03-25 2006-10-05 Nec Tokin Corp Method of manufacturing piezoelectric ceramic
US7999448B2 (en) 2007-03-02 2011-08-16 Epcos Ag Piezoelectric material, multilayer actuator and method for manufacturing a piezoelectric component
JP2017228562A (en) * 2016-06-20 2017-12-28 コニカミノルタ株式会社 Piezoelectric element, ultrasonic probe, and ultrasonic imaging apparatus

Similar Documents

Publication Publication Date Title
JP2006028001A (en) Crystallographic orientation ceramic, and its manufacturing method
US6277254B1 (en) Ceramic compositions, physical vapor deposition targets and methods of forming ceramic compositions
JP2010052999A (en) Piezoelectric ceramics and method for producing the same, and piezoelectric device
Zhilun et al. Low temperature sintering of lead magnesium nickel niobate zirconate titanate (PMN-PNN-PZT) piezoelectric ceramic, with high performances
KR100475348B1 (en) Method for making lead zirconate titanate-based ceramic powder, piezoelectric ceramic and method for making same, and piezoelectric ceramic element
Duran et al. Large electromechanical anisotropic modified lead titanate ceramics: Part 1 Processing
JP2007084408A (en) Piezoelectric ceramic
JPH07277822A (en) Piezoelectric element material and its production
JPH08259323A (en) Compound lanthanum/lead/zirconium/titanium perovskite, ceramic composition and actuator
JP3827915B2 (en) Piezoelectric material and manufacturing method thereof
Winfield et al. DiP224: Neodymium titanate (Nd2Ti2O7) ceramics
JPH07267733A (en) Piezoelectric porcelain composition
JP3125624B2 (en) Piezoelectric ceramic
JP3481832B2 (en) Piezoelectric ceramic
JP3629285B2 (en) Production method of piezoelectric ceramic
JPH08104568A (en) Piezoelectric ceramic and its production
JP2000264727A (en) Piezoelectric ceramics
JP3236641B2 (en) Manufacturing method of composite ferroelectric ceramics
JP2000143340A (en) Piezoelectric ceramic
JPH09221359A (en) Piezoelectric ceramic composition
JP3704424B2 (en) Dielectric material
JPH05139825A (en) Production of lead titanate based piezoelectric ceramic
JPH08259320A (en) Perovskite compound sintered compact
KR20070000124A (en) Low temperature sintering pmw-pnn-pzt ceramics and manufacturing method thereof
JPH0987016A (en) Piezoelectric ceramic material and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees