JP2008172034A - Current/voltage nonlinear resistor - Google Patents

Current/voltage nonlinear resistor Download PDF

Info

Publication number
JP2008172034A
JP2008172034A JP2007003938A JP2007003938A JP2008172034A JP 2008172034 A JP2008172034 A JP 2008172034A JP 2007003938 A JP2007003938 A JP 2007003938A JP 2007003938 A JP2007003938 A JP 2007003938A JP 2008172034 A JP2008172034 A JP 2008172034A
Authority
JP
Japan
Prior art keywords
current
mol
voltage
voltage nonlinear
nonlinear resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007003938A
Other languages
Japanese (ja)
Other versions
JP5065688B2 (en
Inventor
Yasunobu Kasuga
靖宣 春日
Hideyasu Ando
秀泰 安藤
Toshiya Imai
俊哉 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007003938A priority Critical patent/JP5065688B2/en
Publication of JP2008172034A publication Critical patent/JP2008172034A/en
Application granted granted Critical
Publication of JP5065688B2 publication Critical patent/JP5065688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a voltage nonlinear resistor which can have an excellent current/voltage nonlinear characteristic, a life characteristic and surge energy resistance, can improve thermal stability at high temperatures, and can contribute to the miniaturization of an overvoltage protection device. <P>SOLUTION: A sintered compact 1 contains ZnO not smaller than 95 mol% as its main component. The compact also contains, as its sub components, 0.3-1 mol% of Bi<SB>2</SB>O<SB>3</SB>, 0.5-2.5 mol% of Sb<SB>2</SB>O<SB>3</SB>, 0.3-1.5 mol% of Co<SB>2</SB>O<SB>3</SB>, 0.2-2 mol% of MnO, and 0.5-3 mol% of NiO when Bi, Sb, Co, Mn and Ni are converted to Bi<SB>2</SB>O<SB>3</SB>, Sb<SB>2</SB>O<SB>3</SB>, Co<SB>2</SB>O<SB>3</SB>, MnO and NiO, respectively. A ratio of NiO to MnO is 2.0 to 6.0, and a ratio of Sb<SB>2</SB>O<SB>3</SB>to MnO is 1.5 to 4.0. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、過電圧保護装置に適用する酸化亜鉛(ZnO)を主成分とした電流−電圧非直線抵抗体に係り、特に、高温下での熱安定性に優れた電流−電圧非直線抵抗体に関するものである。   The present invention relates to a current-voltage nonlinear resistor mainly composed of zinc oxide (ZnO) applied to an overvoltage protection device, and more particularly to a current-voltage nonlinear resistor excellent in thermal stability at high temperatures. Is.

一般に、電力系統や電子機器回路には、これらを異常電圧から保護するために避雷器やサージアブソーバ等の過電圧保護装置が用いられている。過電圧保護装置には電流−電圧非直線抵抗体が設けられている。電流−電圧非直線抵抗体は、正常な電圧下ではほぼ絶縁特性を示す一方、異常電圧が印加されると低抵抗特性を示す非直線抵抗特性を有しており、過電圧の抑制に有効である。   In general, overvoltage protection devices such as lightning arresters and surge absorbers are used in power systems and electronic equipment circuits to protect them from abnormal voltages. The overvoltage protection device is provided with a current-voltage nonlinear resistor. The current-voltage nonlinear resistor has a non-linear resistance characteristic that exhibits a low resistance characteristic when an abnormal voltage is applied, while exhibiting almost an insulation characteristic under a normal voltage, and is effective in suppressing overvoltage. .

電流−電圧非直線抵抗体の構成について図1を参照して説明する。電流−電圧非直線抵抗体は焼結体1からなり、この焼結体1の側面部に側面高抵抗層2を形成している。また、焼結体1の両平坦面に電極3を設けている。次に、電流−電圧非直線抵抗体の具体的な製造工程について述べる。   The configuration of the current-voltage nonlinear resistor will be described with reference to FIG. The current-voltage non-linear resistor comprises a sintered body 1, and a side high resistance layer 2 is formed on the side surface of the sintered body 1. In addition, electrodes 3 are provided on both flat surfaces of the sintered body 1. Next, a specific manufacturing process of the current-voltage nonlinear resistor will be described.

ここでは、特許文献1に掲載される手順に従って、電流−電圧非直線抵抗体を作製する。まず、酸化亜鉛(ZnO)を主成分し、副成分としてBi、Sb、Co、MnOおよびNiOを所定量添加して、これを原料とする。この原料を水およびバインダーと共に十分混合した後、スプレードライヤーなどで造粒し、成形する。 Here, a current-voltage nonlinear resistor is produced according to the procedure described in Patent Document 1. First, zinc oxide (ZnO) is a main component, and Bi 2 O 3 , Sb 2 O 3 , Co 2 O 3 , MnO and NiO are added in predetermined amounts as subcomponents, and this is used as a raw material. This raw material is sufficiently mixed with water and a binder, and then granulated by a spray dryer or the like and molded.

続いて、添加したバインダーを予め除くために空気中で400〜500℃で熱処理し、さらに1200℃で焼成することで焼結体1を得る。その後、焼結体1の側面に沿面閃絡を防止する絶縁物質を塗布し、熱処理を施して側面高抵抗層2を形成する。側面高抵抗層2形成後、焼結体1の両端面を研磨し、研磨面に電極3を取り付けることにより電流−電圧非直線抵抗体を製造する。   Then, in order to remove the added binder beforehand, it heat-processes in air at 400-500 degreeC, and also the sintered body 1 is obtained by baking at 1200 degreeC. Thereafter, an insulating material that prevents creeping flashing is applied to the side surface of the sintered body 1, and heat treatment is performed to form the side high resistance layer 2. After the side high resistance layer 2 is formed, both end surfaces of the sintered body 1 are polished, and an electrode 3 is attached to the polished surface to produce a current-voltage nonlinear resistor.

ところで近年、送電コストに対する要求は厳しさを増しており、送電コストを低減すべく、送変電設備の小型化が強く望まれている。このため、変電機器の絶縁レベルを決定する過電圧保護装置の小型化は急務となっている。過電圧保護装置に採用される電流−電圧非直線抵抗体は、過電圧保護装置における保護レベルそのものであり、過電圧保護装置の小型化、ひいては送変電設備の小型化を左右する極めて重要な技術要素となっている。したがって、電流−電圧非直線抵抗体に関しては、構成成分を限定するなどして様々な改良が施されたものが種々提案されている。   By the way, in recent years, the demand for power transmission costs has become stricter, and in order to reduce the power transmission costs, downsizing of transmission and transformation facilities is strongly desired. For this reason, downsizing of the overvoltage protection device that determines the insulation level of the substation equipment is urgently needed. The current-voltage non-linear resistor used in the overvoltage protection device is the protection level itself of the overvoltage protection device, and is an extremely important technical element that influences the miniaturization of the overvoltage protection device and the downsizing of the transmission and substation equipment. ing. Accordingly, various current-voltage nonlinear resistors have been proposed in which various improvements have been made, such as by limiting the constituent components.

具体的には、特許文献2では、非直線抵抗体の構成成分を限定した上でスピネル粒子の焼結体中に占める割合を限定することにより非直線抵抗体の高抵抗化を図った技術である。また、特許文献3記載の非直線抵抗体では、構成成分を限定し、且つビスマスの結晶相と焼結体中に占めるその割合を限定することで、高抵抗化を図っている。これらの技術によれば、非直線抵抗体の高抵抗化により過電圧保護装置での使用枚数を減らすことができるため、過電圧保護装置の小型化を導くことが可能である。   Specifically, Patent Document 2 is a technique for increasing the resistance of a non-linear resistor by limiting the components of the non-linear resistor and limiting the proportion of spinel particles in the sintered body. is there. Further, in the non-linear resistor described in Patent Document 3, the constituent components are limited, and the proportion of the bismuth crystal phase and the ratio in the sintered body is limited, thereby achieving high resistance. According to these techniques, since the number of sheets used in the overvoltage protection device can be reduced by increasing the resistance of the non-linear resistor, it is possible to reduce the size of the overvoltage protection device.

また、非直線抵抗体の接合体ユニットを形成することで、放電耐量を低下させることなく、避雷器等の過電圧保護装置を小型化する技術も提案されている(例えば、特許文献4)。この技術では、さらに形成成分を限定して気孔率を低減させることで、非直線抵抗体の素体強度を向上させた焼結体を得ている。素体強度が強くなれば放電耐量特性が向上するので、非直線抵抗体自体の小型化が可能となる。なお、優れた放電耐量を獲得する技術としては、例えば特許文献5がある。ここでは非直線抵抗体の構成成分を限定して非直線抵抗体を低抵抗化することで放電耐量特性の向上を図っており、非直線抵抗体の小型化を実現させている。   In addition, a technique for miniaturizing an overvoltage protection device such as a lightning arrester without reducing the discharge withstand capability by forming a non-linear resistor joined unit has been proposed (for example, Patent Document 4). In this technique, a sintered body with improved element strength of a non-linear resistor is obtained by further limiting the formation components and reducing the porosity. If the element strength is increased, the discharge withstand characteristics are improved, so that the nonlinear resistor itself can be miniaturized. For example, Patent Literature 5 discloses a technique for obtaining an excellent discharge tolerance. Here, by limiting the components of the non-linear resistor and reducing the resistance of the non-linear resistor, the discharge withstand characteristics are improved, and the size of the non-linear resistor is reduced.

特公平4−25681号公報Japanese Patent Publication No. 4-25681 特開2002−217006号公報JP 2002-217006 A 特開2001−307909号公報JP 2001-307909 A 特開2001−28303号公報JP 2001-28303 A 特開2001−93705号公報JP 2001-93705 A

しかしながら、上記の従来技術には次のような問題点が指摘されていた。すなわち、避雷器等の過電圧保護装置を小型化するために、特許文献1、2のように電流−電圧非直線抵抗体を高抵抗化したり、特許文献3、4のように放電耐量特性の向上を進めるようにした場合、高いサージエネルギーを処理しなくてはならなくなる。その結果、サージエネルギーを吸収した後のジュール発熱により発熱温度は高くなる。電流−電圧非直線抵抗体は温度の上昇に伴って抵抗値が低下するので、抵抗値の低下度合いが大きくなれば、仮にサージエネルギーは処理できたとしても、漏れ電流が増加してサージエネルギー吸収後の商用周波電流による熱暴走が起こり、寿命特性が低下するおそれがあった。   However, the following problems have been pointed out in the above prior art. In other words, in order to reduce the size of an overvoltage protection device such as a lightning arrester, the current-voltage nonlinear resistor is increased in resistance as in Patent Documents 1 and 2, or the discharge withstand characteristics are improved as in Patent Documents 3 and 4. When proceeding, high surge energy must be handled. As a result, the heat generation temperature increases due to Joule heat generation after absorbing the surge energy. Since the resistance value of current-voltage nonlinear resistors decreases with increasing temperature, if the degree of decrease in resistance value increases, even if surge energy can be processed, leakage current increases and surge energy absorption Later, thermal runaway due to commercial frequency current occurred, and there was a risk that the life characteristics would be degraded.

このため、サージエネルギーを吸収して熱暴走の発生を抑止するには、電流−電圧非直線抵抗体自体の大きさが制限された。また、電流−電圧非直線抵抗体一つあたりの抵抗値が十分でなければ、避雷器等の過電圧保護装置に多数の電流−電圧非直線抵抗体を積層するほか無く、結局は過電圧保護装置の大型化を招いていた。   For this reason, the size of the current-voltage nonlinear resistor itself is limited in order to absorb the surge energy and suppress the occurrence of thermal runaway. In addition, if the resistance value per current-voltage non-linear resistor is not sufficient, there is no other way than stacking a large number of current-voltage non-linear resistors on an overvoltage protection device such as a lightning arrester. Was inviting.

本発明は、上記従来の問題点を解決するためになされたものであり、小型化を進めた上で電流−電圧非直線特性、寿命特性およびサージエネルギー耐量に優れると共に、電流−電圧非直線抵抗体の温度が上昇した時の抵抗値の低下度合いを小さくする、つまり高温下での熱安定性を向上させることにより、過電圧保護装置の小型化に寄与することが可能な電流−電圧非直線抵抗体を提供することを目的とする。   The present invention has been made in order to solve the above-described conventional problems, and is excellent in current-voltage nonlinear characteristics, life characteristics, and surge energy withstanding progress in downsizing, and current-voltage nonlinear resistance. Current-voltage nonlinear resistance that can contribute to miniaturization of overvoltage protection devices by reducing the degree of decrease in resistance when the body temperature rises, that is, by improving thermal stability at high temperatures The purpose is to provide a body.

本発明は、上記の目的を達成するために、焼結体の構成成分における種類および含有量を次のように規定したものである。すなわち、ZnOを主成分とした焼結体からなる電流−電圧非直線抵抗体において、副成分としてBi、Sb、Co、Mn、Niを、それぞれBi、Sb、Co、MnOおよびNiOに換算して、Biを0.3〜1mol%、Sbを0.5〜2.5mol%、Coを0.3〜1.5mol%、MnOを0.2〜2mol%、NiOを0.5〜3mol%含み、上記MnOに対する前記NiOの含有量の比が2.0〜6.0、上記MnOに対する前記Sbの含有量の比が1.5〜4.0である焼結体からなることを特徴とするものである。 In order to achieve the above object, the present invention defines the types and contents of the constituents of the sintered body as follows. That is, in a current-voltage non-linear resistor composed of a sintered body mainly composed of ZnO, Bi, Sb, Co, Mn, and Ni are added as secondary components to Bi 2 O 3 , Sb 2 O 3 , and Co 2 O, respectively. 3 , converted to MnO and NiO, Bi 2 O 3 is 0.3 to 1 mol%, Sb 2 O 3 is 0.5 to 2.5 mol%, Co 2 O 3 is 0.3 to 1.5 mol%, MnO and 0.2 to 2 mol%, NiO hints 0.5 to 3 mol%, the content ratio of the NiO to said MnO is 2.0 to 6.0, a content of the Sb 2 O 3 relative to the MnO It consists of a sintered body having a ratio of 1.5 to 4.0.

以上のような本発明において、Biは主成分であるZnOの粒界に存在して非直線抵抗特性を発現させる成分であり、Sbは、ZnOとスピネル粒子を形成して焼結中のZnO粒子の粒成長を抑制し、均一化する働きを有し、非直線抵抗特性を向上させる効果を有する成分である。また、Co、MnOおよびNiOは、主にスピネル粒子中に固溶して非直線抵抗特性を大きく向上させるために有効な成分である。本発明に係る電流−電圧非直線抵抗体では、その副成分を上記の範囲に規定した上で、さらに、MnOに対するNiOの含有量の比を2.0〜6.0とし、MnOに対するSbの含有量の比を1.5〜4.0とすることによって、電流−電圧非直線抵抗体の温度上昇時における抵抗値の低下度合いを小さくすることができる。また、優れた非直線抵抗特性を確保することが可能となる。 In the present invention as described above, Bi 2 O 3 is a component that exists in the grain boundary of ZnO as a main component and develops non-linear resistance characteristics, and Sb 2 O 3 forms spinel particles with ZnO. It is a component which has the effect | action which suppresses the grain growth of the ZnO particle | grain during sintering, and has the effect | action which makes uniform and improves a non-linear resistance characteristic. Further, Co 2 O 3 , MnO and NiO are effective components mainly for solid solution in spinel particles and greatly improving the non-linear resistance characteristics. In the current-voltage non-linear resistor according to the present invention, the subcomponent is defined in the above range, and the ratio of the content of NiO to MnO is set to 2.0 to 6.0, and Sb 2 to MnO is set. By setting the ratio of the content of O 3 to 1.5 to 4.0, the degree of decrease in the resistance value when the temperature of the current-voltage nonlinear resistor is increased can be reduced. In addition, excellent non-linear resistance characteristics can be ensured.

本発明の電流−電圧非直線抵抗体によれば、焼結体の副成分であるBi、Sb、Co、Mn、Niの含有量の範囲に規定すると共に、MnOに対するNiOの比と、MnOに対するSbの比を規定したことで、電流−電圧非直線特性、寿命特性およびサージエネルギー耐量に優れ、しかも高温下での熱安定性を向上させることが可能となり、過電圧保護装置の小型化に寄与することができる。 According to the current-voltage non-linear resistor of the present invention, the content of Bi, Sb, Co, Mn, and Ni, which are subcomponents of the sintered body, is specified in the range, and the ratio of NiO to MnO and to MnO By defining the ratio of Sb 2 O 3 , it has excellent current-voltage non-linear characteristics, life characteristics and surge energy withstand capability, and it is possible to improve thermal stability at high temperatures, and downsizing of overvoltage protection devices Can contribute.

以下、本発明に係る実施形態の一例について図面を参照して具体的に説明する。既に述べたように、電圧非直線抵抗体は、焼結体1からなり、側面部に側面高抵抗層2を形成すると共に、焼結体1の両平坦面に電極3を設けている(図1参照)。以下に述べる本実施の形態は全て、焼結体1の構成成分に関するものである。   Hereinafter, an example of an embodiment according to the present invention will be specifically described with reference to the drawings. As described above, the voltage non-linear resistor is made of the sintered body 1, the side high resistance layer 2 is formed on the side surface portion, and the electrodes 3 are provided on both flat surfaces of the sintered body 1 (see FIG. 1). All the embodiments described below relate to the constituent components of the sintered body 1.

(1)第1の実施形態
[電流−電圧非直線抵抗体の製造工程]
まず、第1の実施形態に該当する試料および比較例である本発明の範囲外の試料に関して、次のような手順に従って作製する。
(1) First Embodiment [Manufacturing Process of Current-Voltage Nonlinear Resistor]
First, a sample corresponding to the first embodiment and a sample outside the scope of the present invention, which is a comparative example, are manufactured according to the following procedure.

まず、最終的に得られる電流−電圧非直線抵抗体の副成分含有量が下記の表1に示す値となるように、主成分としてのZnOに対し副成分としてのBi、Sb、Co、MnOおよびNiOを所定量秤量する。そして、この原料を水と有機バインダー類とともに混合装置で混合して、均一なスラリーを調整する。ここで調整したすべてのスラリーにはアルミニウムを水酸化アルミニウム(Al)水溶液にし、0.008mol%添加する。次に、得られた各スラリーをスプレードライヤーで噴霧造粒することにより粒径100μm程度の造粒粉を作製する。 First, Bi 2 O 3 and Sb 2 as subcomponents with respect to ZnO as the main component so that the subcomponent contents of the current-voltage nonlinear resistor finally obtained have values shown in Table 1 below. A predetermined amount of O 3 , Co 2 O 3 , MnO and NiO is weighed. And this raw material is mixed with a mixing apparatus with water and organic binders, and uniform slurry is adjusted. In all the slurries prepared here, aluminum is made into an aluminum hydroxide (Al 2 O 3 ) aqueous solution, and 0.008 mol% is added. Next, each obtained slurry is spray-granulated with a spray dryer to produce granulated powder having a particle size of about 100 μm.

得られた造粒粉を金型に入れて加圧し、直径48mm、厚さ38mmの円柱に成形し、成形体を500℃に加熱することにより、添加した有機バインダー類を除去した後、さらに、焼成時の雰囲気、温度条件を変化させることにより、1mAの電流が流れたときの電圧(動作開始電圧、V1mA)が200V/mm程度になるように焼成する。続いて、図1に示すように焼結体1の側面に無機絶縁物を塗布、熱処理して側面絶縁層2を形成する。さらに、側面絶縁層を設けた焼結体の上下両端面を研磨した後、焼結体1の研磨面に電極3を溶射により作製することにより、電流−電圧非直線抵抗体を作製した。 The obtained granulated powder is put into a mold and pressurized, formed into a cylinder having a diameter of 48 mm and a thickness of 38 mm, and the molded body is heated to 500 ° C. to remove the added organic binders. By changing the atmosphere and temperature conditions during firing, firing is performed so that the voltage (operation start voltage, V 1 mA ) when a current of 1 mA flows is about 200 V / mm. Subsequently, as shown in FIG. 1, an inorganic insulating material is applied to the side surface of the sintered body 1 and heat-treated to form the side surface insulating layer 2. Furthermore, after polishing both the upper and lower end surfaces of the sintered body provided with the side insulating layer, the electrode 3 was prepared on the polished surface of the sintered body 1 by thermal spraying to produce a current-voltage nonlinear resistor.

[性能評価]
作製した種々の電流−電圧非直線抵抗体の非直線抵抗特性は次のように評価する。すなわち、1mAの電流が流れたときの電圧(動作開始電圧、V1mA)と10kAの8×20μsインパルス電流を流した時の電圧(V10kA)を測定し、これらの比(V10kA/V1mA)を非直線性係数として評価した。この非直線性係数の値は小さいほど、非直線抵抗特性が優れることを示している。
[Performance evaluation]
The non-linear resistance characteristics of the various current-voltage non-linear resistors manufactured are evaluated as follows. That is, a voltage when an electric current of 1 mA flows (operation start voltage, V 1 mA ) and a voltage when an 8 × 20 μs impulse current of 10 kA flows (V 10 kA ) are measured, and a ratio thereof (V 10 kA / V 1 mA). ) Was evaluated as a nonlinear coefficient. The smaller the value of this nonlinearity coefficient, the better the nonlinear resistance characteristic.

また、作製した電流−電圧非直線抵抗体を恒温槽にて200℃に加熱し、動作開始電圧(V1mA)の90%の交流電圧を印加した時の抵抗分漏れ電流(IR)を測定し、評価した。この抵抗分漏れ電流は、その値が小さいほど高温下での熱安定性に優れていることを示すものである。なお、それぞれの組成試料については各10pづつ測定し、その平均値をその組成の非直線性係数および200℃で抵抗分漏れ電流とした。 In addition, the produced current-voltage nonlinear resistor was heated to 200 ° C. in a thermostatic chamber, and the resistance leakage current (IR) was measured when an AC voltage of 90% of the operation start voltage (V 1 mA ) was applied. ,evaluated. This resistance leakage current indicates that the smaller the value, the better the thermal stability at high temperatures. Each composition sample was measured for each 10p, and the average value was defined as the non-linearity coefficient of the composition and the resistance leakage current at 200 ° C.

各添加成分量を変化させて作製した電流−電圧非直線抵抗体について、それぞれの成分の含有量、動作開始電圧、非直線性係数および200℃で抵抗分漏れ電流を以下の表1に示す。表1において、*印は本発明の範囲外である試料を示す比較例である。   Table 1 below shows the content of each component, the operation start voltage, the nonlinearity coefficient, and the resistance leakage current at 200 ° C. for the current-voltage nonlinear resistors manufactured by changing the amount of each additive component. In Table 1, * marks are comparative examples showing samples that are outside the scope of the present invention.

ここで、第1の実施形態に該当する電流−電圧非直線抵抗体は、次のような構成成分のものである(表1において*印が付いていない試料)。すなわち、ZnOを主成分とした焼結体1は、副成分としてBi、Sb、Co、Mn、Niを、それぞれBi、Sb、Co、MnOおよびNiOに換算して、Biを0.3〜1mol%、Sbを0.5〜2.5mol%、Coを0.3〜1.5mol%、MnOを0.2〜2mol%、NiOを0.5〜3mol%含んでいる。また、MnOに対するNiOの含有量の比は2.0〜6.0であり、MnOに対するSbの含有量の比は1.5〜4.0である。さらに、焼結体1の主成分であるZnOの含有量は95mol%以上である。 Here, the current-voltage nonlinear resistor corresponding to the first embodiment has the following components (samples not marked with * in Table 1). That is, the sintered body 1 containing ZnO as a main component converts Bi, Sb, Co, Mn, and Ni as subcomponents into Bi 2 O 3 , Sb 2 O 3 , Co 2 O 3 , MnO, and NiO, respectively. Bi 2 O 3 0.3-1 mol%, Sb 2 O 3 0.5-2.5 mol%, Co 2 O 3 0.3-1.5 mol%, MnO 0.2-2 mol% NiO is contained in an amount of 0.5 to 3 mol%. Moreover, the ratio of the content of NiO to MnO is 2.0 to 6.0, and the ratio of the content of Sb 2 O 3 to MnO is 1.5 to 4.0. Furthermore, the content of ZnO which is the main component of the sintered body 1 is 95 mol% or more.

なお、*印のついた比較例のうち、本実施形態に該当していない点は次の部分である。試料番号1、7、12、18、19、24、34、39、40、43、45、47、49は、MnOに対するNiOの含有量の比が2.0未満若しくは6.0よりも大である。また、試料番号25、30、31、32、38、40〜47、49はいずれも、MnOに対するSbの含有量の比が1.5未満である。さらに試料番号37〜52は焼結体1の主成分であるZnOの含有量が95mol%未満である。 Of the comparative examples marked with *, points that do not correspond to this embodiment are the following parts. Sample Nos. 1, 7, 12, 18, 19, 24, 34, 39, 40, 43, 45, 47, and 49 have a NiO to MnO ratio of less than 2.0 or greater than 6.0. is there. Moreover, both the sample No. 25,30,31,32,38,40~47,49, the ratio of the content of Sb 2 O 3 with respect to MnO is less than 1.5. Further, in sample numbers 37 to 52, the content of ZnO as the main component of the sintered body 1 is less than 95 mol%.

Figure 2008172034
Figure 2008172034

[作用効果]
続いて、第1の実施形態の作用効果について、本実施形態に該当する試料と、それ以外の試料とを比較して説明する。ここで、表1の結果から明らかなように、本実施形態に係わる電流−電圧非直線抵抗体においては、非直線抵抗特性(V10kA/V1mA)が1.74以下、熱安定性(200℃での漏れ電流)が3.00(mA)未満といった優れたレベルを示した。これに対して、本発明の範囲外の試料である比較例は、非直線抵抗特性か熱安定性の一方に優れたものがあるものの、両方の特性を同時に満足したものはなかった。
[Function and effect]
Then, the effect of 1st Embodiment is demonstrated by comparing the sample applicable to this embodiment with the other sample. Here, as is clear from the results in Table 1, in the current-voltage nonlinear resistor according to the present embodiment, the nonlinear resistance characteristic (V 10 kA / V 1 mA ) is 1.74 or less, and the thermal stability (200 The leakage current at ° C.) was an excellent level of less than 3.00 (mA). On the other hand, although the comparative example which is a sample outside the scope of the present invention has an excellent non-linear resistance characteristic or thermal stability, none of them satisfies both characteristics at the same time.

このことから明らかなように、第1の実施形態では、95mol%以上のZnOを主成分として、Biを0.3〜1mol%、Sbを0.5〜2.5mol%、Coを0.3〜1.5mol%、MnOを0.2〜2mol%、NiOを0.5〜3mol%含み、MnOに対するNiOの含有量の比が2.0〜6.0、MnOに対するSb2O3の含有量の比が1.5〜4.0である焼結体1を適用することで、高温下で優れた熱安定性を発揮することができた。 As is clear from this, in the first embodiment, 95 mol% or more of ZnO is the main component, Bi 2 O 3 is 0.3 to 1 mol%, and Sb 2 O 3 is 0.5 to 2.5 mol%. Co 2 O 3 is contained in an amount of 0.3 to 1.5 mol%, MnO is contained in an amount of 0.2 to 2 mol%, NiO is contained in an amount of 0.5 to 3 mol%, and the ratio of the content of NiO to MnO is 2.0 to 6.0. By applying the sintered body 1 in which the ratio of the content of Sb2O3 to MnO is 1.5 to 4.0, it was possible to exhibit excellent thermal stability at high temperatures.

したがって、電流−電圧非直線抵抗体の高抵抗化や放電耐量特性の向上を進めたことで高いサージエネルギーを処理する必要が出て、ジュール発熱により発熱温度は高くなったとしても、抵抗値の低下度合いを低く抑えることができる。これにより、漏れ電流が増加する心配がなく、サージエネルギー吸収後の商用周波電流による熱暴走の発生を防いで、寿命特性の低下を防止可能である。   Therefore, it is necessary to process high surge energy by increasing the resistance of the current-voltage nonlinear resistor and improving the discharge withstand characteristics, and even if the heating temperature increases due to Joule heating, the resistance value The degree of decline can be kept low. As a result, there is no fear of an increase in leakage current, and it is possible to prevent the occurrence of thermal runaway due to the commercial frequency current after absorption of surge energy, thereby preventing deterioration of the life characteristics.

また、電流−電圧非直線抵抗体自体の大きさを制限することなく、熱暴走の発生を抑止できるので、電流−電圧非直線抵抗体自体の小型化を進めることができ、その上で、優れた電流−電圧非直線特性を得ることができる。したがって、高い信頼性の下で避雷器等の過電圧保護装置の小型化ひいては送変電設備の小型化を実現することができ、送電コストの低減に寄与することが可能である。   Moreover, since the occurrence of thermal runaway can be suppressed without limiting the size of the current-voltage non-linear resistor itself, the current-voltage non-linear resistor itself can be reduced in size. Current-voltage nonlinear characteristics can be obtained. Therefore, it is possible to reduce the size of the overvoltage protection device such as a lightning arrester and the like and to reduce the size of the transmission / transformation equipment with high reliability, thereby contributing to the reduction of the transmission cost.

(2)第2の実施形態
[構成]
次に、第2の実施形態について説明する。第2の実施形態では、主成分としてのZnOに対して副成分の含有量を次のように規定している。すなわち、Bi、Co、MnをそれぞれBi、Co、MnOに換算して1.0mol%含み、Sb、NiをそれぞれSb、NiOに換算して2mol%含み、さらにAlをAl3+に換算して0.008mol%となるように秤量しそれぞれ添加した。
(2) Second Embodiment [Configuration]
Next, a second embodiment will be described. In 2nd Embodiment, content of a subcomponent is prescribed | regulated as follows with respect to ZnO as a main component. That is, Bi, Co, and Mn are respectively included in terms of Bi 2 O 3 , Co 2 O 3 , and MnO in an amount of 1.0 mol%, and Sb and Ni are respectively included in terms of Sb 2 O 3 and NiO in an amount of 2 mol%. Al 2 O 3 was weighed so as to be 0.008 mol% in terms of Al 3+ and added.

また、第2の実施形態では上記の基本組成に対し、BをBに換算して0.005〜0.05wt%含むように添加し、前記第1の実施形態に示した方法で電流−電圧非直線抵抗体を作製した。表2にBの含有量と漏れ電流変化率を示す。なお、表2に示す*印を付した試料番号は本発明の範囲外である比較例である。 In the second embodiment, B is added so as to contain 0.005 to 0.05 wt% in terms of B 2 O 3 with respect to the basic composition, and the method shown in the first embodiment is used. A current-voltage nonlinear resistor was produced. Table 2 shows the content of B 2 O 3 and the rate of change in leakage current. The sample numbers marked with * shown in Table 2 are comparative examples that are outside the scope of the present invention.

Figure 2008172034
Figure 2008172034

[性能評価]
第2の実施形態では、上記のようにして作製した種々の電流−電圧非直線抵抗体に関して、その寿命特性を次のように評価した。すなわち、寿命特性評価では動作開始電圧(V1mA)を大気中、120℃の雰囲気で3000h印加し続け、その前後のV1mAを印加したとき漏れ電流(IR)の変化率を測定した。ここで変化率はIR(3000h後)/IR(初期値、0h)の式で表すことができ、この値が1より小さくなれば、電流−電圧非直線抵抗体の寿命特性が優れていることを示している。
[Performance evaluation]
In the second embodiment, the life characteristics of various current-voltage nonlinear resistors manufactured as described above were evaluated as follows. That is, in the life characteristic evaluation, the operation start voltage (V 1 mA ) was continuously applied in the atmosphere at 120 ° C. for 3000 h, and the rate of change in leakage current (IR) was measured when V 1 mA before and after that was applied. Here, the rate of change can be expressed by the equation IR (after 3000 h) / IR (initial value, 0 h). If this value is smaller than 1, the life characteristics of the current-voltage nonlinear resistor are excellent. Is shown.

[作用効果]
表2から明らかなように、第2の実施形態では、Bの含有量を0.005〜0.05wt%に規定することにより、漏れ電流の変化率が負の値となり、非直線抵抗体自体の小型化を進めると同時に、優れた寿命特性の電流−電圧非直線抵抗体が得られることが判明した。なお、本実施形態においては前記基本組成についてのみ、Bの添加による寿命特性の向上効果を示したが、請求項1、2記載の基本組成範囲であれば同様な効果が得られることは確認済みである。
[Function and effect]
As is clear from Table 2, in the second embodiment, by defining the content of B 2 O 3 to 0.005 to 0.05 wt%, the rate of change in leakage current becomes a negative value, and the nonlinearity It has been found that a current-voltage non-linear resistor having excellent life characteristics can be obtained while miniaturizing the resistor itself. In the present embodiment, only the basic composition showed the effect of improving the life characteristics due to the addition of B, but it has been confirmed that the same effect can be obtained in the basic composition range of claims 1 and 2. It is.

(3)第3の実施形態
[構成]
第3の実施形態では、主成分としてのZnOに対して副成分の含有量を次のように規定している。すなわち、Bi、Co、MnをそれぞれBi、Co、MnOに換算して1.0mol%含み、Sb、NiをそれぞれSb、NiOに換算して2mol%含み、さらにAlをAl3+に換算して0.008mol%となるように秤量しそれぞれ添加した。
(3) Third Embodiment [Configuration]
In 3rd Embodiment, content of a subcomponent is prescribed | regulated as follows with respect to ZnO as a main component. That is, Bi, Co, and Mn are respectively included in terms of Bi 2 O 3 , Co 2 O 3 , and MnO in an amount of 1.0 mol%, and Sb and Ni are respectively included in terms of Sb 2 O 3 and NiO in an amount of 2 mol%. Al 2 O 3 was weighed so as to be 0.008 mol% in terms of Al 3+ and added.

また、第3の実施形態では上記の基本組成に対し、AgをAgOに換算して0.005〜0.05wt%含むように添加し、前記第1の実施形態に示した方法で電流−電圧非直線抵抗体を作製した。表3にAgOの含有量と漏れ電流変化率を示す。なお、表3に示す*印を付した試料番号は本発明の範囲外である比較例である。 In the third embodiment, Ag is added to the basic composition so as to contain 0.005 to 0.05 wt% in terms of Ag 2 O, and the current is applied by the method shown in the first embodiment. -A voltage non-linear resistor was produced. Table 3 shows the content of Ag 2 O and the rate of change in leakage current. In addition, the sample number attached | subjected * shown in Table 3 is a comparative example which is outside the scope of the present invention.

Figure 2008172034
Figure 2008172034

[性能評価]
以上のような第3の実施形態では、前記第2の実施形態に示した方法と同様の方法で寿命特性を評価した。
[Performance evaluation]
In the third embodiment as described above, the life characteristics are evaluated by the same method as the method shown in the second embodiment.

[作用効果]
表3から明らかなように、第3の実施形態では、AgOの含有量を0.005〜0.05wt%に規定することにより、漏れ電流の変化率が負の値となり、上記第2の実施形態と同じく、非直線抵抗体自体の小型化を進めると同時に、優れた寿命特性の電流−電圧非直線抵抗体が得られた。なお、本実施形態においては前記基本組成についてのみAgの寿命特性への添加含有効果を示したが、請求項1、2記載の基本組成範囲であれば同様な効果が得られることは確認済みである。
[Function and effect]
As is apparent from Table 3, in the third embodiment, by defining the content of Ag 2 O to 0.005 to 0.05 wt%, the rate of change in leakage current becomes a negative value, and the second As in the embodiment, the current-voltage nonlinear resistor having excellent life characteristics was obtained while the size of the nonlinear resistor itself was reduced. In the present embodiment, only the basic composition showed the effect of adding to the life characteristics of Ag. However, it has been confirmed that the same effect can be obtained if the basic composition range is defined in claims 1 and 2. is there.

(4)第4の実施形態
[構成]
第4の実施形態は、主成分としてのZnOに対して副成分の含有量を次のように規定している。すなわち、Bi、Co、MnをそれぞれBi、Co、MnOに換算して1.0mol%含み、Sb、NiをそれぞれSb、NiOに換算して2mol%含み、さらにB及びAgをそれぞれB及びAgOに換算して0.02wt%含むように秤量してそれぞれ添加した。
(4) Fourth Embodiment [Configuration]
In the fourth embodiment, the content of subcomponents is defined as follows with respect to ZnO as a main component. That is, Bi, Co, and Mn are respectively included in terms of Bi 2 O 3 , Co 2 O 3 , and MnO in an amount of 1.0 mol%, and Sb and Ni are respectively included in terms of Sb 2 O 3 and NiO in an amount of 2 mol%. B and Ag were weighed and added to 0.02 wt% in terms of B 2 O 3 and Ag 2 O, respectively.

さらに第4の実施形態では、この基本組成に対し、AlをAl3+に換算して0.001〜0.01mol%含むように添加して、前記第1の実施の形態に示した方法で電流−電圧非直線抵抗体を作製した。表4にAl3+の含有量と非直線抵抗特性を示す。なお、表4に示す*印を付した試料番号は本発明の範囲外である比較例である。 Further, in the fourth embodiment, Al 2 O 3 is added to the basic composition so as to contain 0.001 to 0.01 mol% in terms of Al 3+ and shown in the first embodiment. A current-voltage nonlinear resistor was produced by this method. Table 4 shows the content of Al 3+ and nonlinear resistance characteristics. Note that the sample numbers marked with * shown in Table 4 are comparative examples that are outside the scope of the present invention.

Figure 2008172034
Figure 2008172034

[性能評価]
第4の実施形態における非直線抵抗体特性に関しては前記第1の実施形態に示した方法と同じ方法で評価した。
[Performance evaluation]
The non-linear resistor characteristics in the fourth embodiment were evaluated by the same method as the method shown in the first embodiment.

[作用効果]
第4の実施形態によれば、表4に示すように、Al3+の含有量が0.001〜0.01mol%の範囲内であれば、非直線抵抗体自体の小型化を実現すると共に、優れた非直線抵抗特性が得られることが判明した。なお、本実施形態においては前記基本組成についてのみAlの寿命特性への添加含有効果を示したが、請求項1記載の基本組成範囲であれば同様な効果が得られることは確認済みである。また、前記請求項1記載の範囲の組成に前記請求項2〜4の記載の範囲でZnO、B、Agを含有した組成についても同様なAlの効果が得られることも確認済みである。
[Function and effect]
According to the fourth embodiment, as shown in Table 4, if the content of Al 3+ is in the range of 0.001 to 0.01 mol%, the nonlinear resistor itself can be downsized, It has been found that excellent non-linear resistance characteristics can be obtained. In the present embodiment, only the basic composition has an additive content effect on the life characteristics of Al. However, it has been confirmed that the same effect can be obtained within the basic composition range of claim 1. In addition, it has been confirmed that the same effect of Al can be obtained for a composition containing ZnO, B, and Ag in the range of the claims 2 to 4 in the composition in the range of the claim 1.

(5)第5の実施形態
[構成]
第5の実施形態について、表5を参照して説明する。第5の実施形態では、上記第3の実施形態と同じく、主成分としてのZnOに対して副成分の含有量を次のように規定している。すなわち、Bi、CoをそれぞれBi、Coに換算して1.0mol%含み、NiをNiOに換算して2mol%含み、AgをAgOに換算して0.02wt%含み、さらにAlをAl3+に換算して0.008mol%となるように秤量しそれぞれ添加した。
(5) Fifth Embodiment [Configuration]
The fifth embodiment will be described with reference to Table 5. In the fifth embodiment, the content of subcomponents is defined as follows with respect to ZnO as the main component, as in the third embodiment. That is, Bi and Co are respectively converted to Bi 2 O 3 and Co 2 O 3 to contain 1.0 mol%, Ni is converted to NiO and 2 mol% is included, and Ag is converted to Ag 2 O and 0.02 wt%. In addition, Al 2 O 3 was weighed so as to be 0.008 mol% in terms of Al 3+ and added.

また、第5の実施形態では前記第1の実施の形態に示した方法で電流−電圧非直線抵抗体を作製したが、焼成時の降温速度を50℃/h以上に規定したことに特徴がある。表5では、焼成時の降温速度を25〜100℃/hに変化させて作製した電流−電圧非直線抵抗体における高温下での漏れ電流を示した。表5において*印は本発明の請求範囲外である試料を示している。   Further, in the fifth embodiment, the current-voltage nonlinear resistor is manufactured by the method shown in the first embodiment, but the feature is that the temperature-decreasing rate at the time of firing is set to 50 ° C./h or more. is there. Table 5 shows the leakage current at high temperature in a current-voltage nonlinear resistor manufactured by changing the temperature drop rate during firing to 25 to 100 ° C./h. In Table 5, * indicates a sample that is outside the scope of the present invention.

Figure 2008172034
Figure 2008172034

[性能評価]
第5の実施形態では、前記第1の実施形態に示した方法と同様の方法で高温下での漏れ電流を評価した。すなわち、作製した電流−電圧非直線抵抗体を恒温槽にて200℃に加熱し、動作開始電圧(V1mA)の90%の交流電圧を印加した時の抵抗分漏れ電流(IR)を測定し、評価した。
[Performance evaluation]
In the fifth embodiment, the leakage current at high temperature was evaluated by the same method as the method shown in the first embodiment. That is, the produced current-voltage nonlinear resistor was heated to 200 ° C. in a thermostatic chamber, and the resistance leakage current (IR) was measured when an AC voltage of 90% of the operation start voltage (V 1 mA ) was applied. ,evaluated.

[作用効果]
表5から明らかなように、第5の実施形態に係る電流−電圧非直線抵抗体では熱安定性(200℃での漏れ電流)が5.30(mA)以下といった優れたレベルであるのに対し、本発明の範囲外の試料である比較例(試料番号75)は、7.83(mA)というように熱安定性が低かった。このように第5の実施形態によれば、焼成時の降温速度を50℃/h以上にすることにより、高温下での漏れ電流が少なくなり、熱安定性に優れた電流−電圧非直線抵抗体が得られることが判明した。
[Function and effect]
As is apparent from Table 5, the current-voltage nonlinear resistor according to the fifth embodiment has an excellent level of thermal stability (leakage current at 200 ° C.) of 5.30 (mA) or less. On the other hand, the comparative example (sample number 75), which is a sample outside the scope of the present invention, had a low thermal stability of 7.83 (mA). Thus, according to the fifth embodiment, by setting the temperature drop rate during firing to 50 ° C./h or more, the leakage current at high temperature is reduced, and the current-voltage nonlinear resistance excellent in thermal stability. It turned out that a body was obtained.

すなわち、ジュール発熱により発熱温度は高くなったとしても、抵抗値の低下度合いを低く抑えることができ、サージエネルギー吸収後の商用周波電流による熱暴走の発生を確実に防止して、寿命特性を向上させることができる。また、熱暴走を防止するために電流−電圧非直線抵抗体自体を大きくする必要がないので、電流−電圧非直線抵抗体自体を効率よく小型化しつつ、電流−電圧非直線特性の向上が可能となる。尚、本実施形態においては前記基本組成についてのみ焼成時の降温速度の熱安定性への効果を示したが、前記請求項1記載の範囲の組成に前記請求項2〜5記載の範囲でZnO、B、Ag、Alを含有した組成についても同様な効果が得られることも確認済みである。   In other words, even if the heat generation temperature increases due to Joule heat generation, the degree of decrease in resistance value can be kept low, and the occurrence of thermal runaway due to commercial frequency current after surge energy absorption is reliably prevented, improving the life characteristics. Can be made. In addition, since it is not necessary to increase the current-voltage nonlinear resistor itself to prevent thermal runaway, it is possible to improve the current-voltage nonlinear characteristics while efficiently reducing the size of the current-voltage nonlinear resistor itself. It becomes. In this embodiment, only the basic composition has an effect on the thermal stability of the temperature drop rate during firing. However, the composition in the range of claim 1 has a ZnO content in the range of claims 2 to 5. It has also been confirmed that the same effect can be obtained with a composition containing B, Ag, Al.

(6)第6の実施形態
[構成]
第6の実施形態について、表6を参照して説明する。第6の実施形態では、主成分としてのZnOに対して副成分の含有量を次のように規定している。すなわち、Bi、Co、MnをそれぞれBi、Co、MnOに換算して1.0mol%含み、Sb、NiをそれぞれSb、NiOに換算して2mol%含み、B及びAgをそれぞれB及びAgOに換算して0.02wt%含み、さらにAlをAl3+に換算して0.008mol%となるように秤量しそれぞれ添加した。
(6) Sixth Embodiment [Configuration]
The sixth embodiment will be described with reference to Table 6. In the sixth embodiment, the content of subcomponents is defined as follows with respect to ZnO as a main component. That is, Bi, Co, and Mn are respectively included in terms of Bi 2 O 3 , Co 2 O 3 , and MnO in an amount of 1.0 mol%, Sb and Ni are converted in terms of Sb 2 O 3 and NiO, respectively, and 2 mol% are included. In addition, 0.02 wt% was converted to B 2 O 3 and Ag 2 O, respectively, and Al 2 O 3 was measured to be 0.008 mol% converted to Al 3+ and added.

また、第6の実施形態では上記の基本組成に対し、Zr及びFeをZrO、Feに換算して0.1〜1000ppm含むように添加し、前記第1の実施形態に示した方法で電流−電圧非直線抵抗体を作製した。表6に各電流−電圧非直線抵抗体についてのエネルギー耐量値および非直線性係数の測定結果を示す。なお、表6において*印は本発明の範囲外である試料を示す比較例である。 Further, in the sixth embodiment, Zr and Fe are added to the basic composition so as to contain 0.1 to 1000 ppm in terms of ZrO 2 and Fe 2 O 3, and are shown in the first embodiment. A current-voltage nonlinear resistor was produced by this method. Table 6 shows the measurement results of the energy withstand value and the nonlinearity coefficient for each current-voltage nonlinear resistor. In Table 6, * marks are comparative examples showing samples that are outside the scope of the present invention.

Figure 2008172034
Figure 2008172034

[性能評価]
第6の実施形態では、上記のようにして作製した種々の電流−電圧非直線抵抗体に関して、エネルギー耐量試験を実施した。エネルギー耐量試験では電流−電圧非直線抵抗体に1mAの交流電流を流した時の電圧(V1mA)に対して1.3倍の商用周波(50Hz)の電圧を印加し続けて、AE検出器により電流−電圧非直線抵抗体に発生する亀裂が検出されるまでに吸収したエネルギー値(J/cc)を測定した。このようなエネルギー耐量試験では各組成の電流−電圧非直線抵抗体10pについて試験を行い、その平均値をその組成のエネルギー耐量値とした。さらに、これらの作製した電流−電圧非直線抵抗体については前記第1の実施形態に示した方法で非直線係数を測定し、非直線抵抗特性も評価した。
[Performance evaluation]
In the sixth embodiment, the energy tolerance test was performed on various current-voltage nonlinear resistors manufactured as described above. In the energy tolerance test, a voltage of 1.3 times the commercial frequency (50 Hz) is continuously applied to the voltage (V 1 mA ) when a 1 mA alternating current is passed through the current-voltage nonlinear resistor, and the AE detector Was used to measure the energy value (J / cc) absorbed until a crack generated in the current-voltage nonlinear resistor was detected. In such an energy withstand test, the current-voltage nonlinear resistor 10p of each composition was tested, and the average value was defined as the energy withstand value of the composition. Further, for these produced current-voltage nonlinear resistors, the nonlinear coefficient was measured by the method shown in the first embodiment, and the nonlinear resistance characteristics were also evaluated.

[作用効果]
表6に示すように、第6の実施形態における比較例のうち、ZrOまたはFeの含有量が0.1ppm未満である試料番号79、90では、エネルギー耐量が低かった。また、ZrOまたはFeの含有量が1000ppmより大きい試料番号89、100では、非直線係数が高い値であった。
[Function and effect]
As shown in Table 6, among the comparative examples in the sixth embodiment, in the sample numbers 79 and 90 in which the content of ZrO 2 or Fe 2 O 3 was less than 0.1 ppm, the energy tolerance was low. In Sample Nos. 89 and 100 having a ZrO 2 or Fe 2 O 3 content of more than 1000 ppm, the nonlinear coefficient was high.

これに対して、第6の実施形態に係る電流−電圧非直線抵抗体ではZrOまたはFeの含有量を0.1〜1000ppmの範囲に規定することにより、優れた非直線抵抗特性を維持したまま、エネルギー耐量を向上することができるといったことが分かる。 On the other hand, in the current-voltage nonlinear resistor according to the sixth embodiment, excellent nonlinear resistance characteristics can be obtained by defining the content of ZrO 2 or Fe 2 O 3 in the range of 0.1 to 1000 ppm. It can be seen that the energy tolerance can be improved while maintaining the above.

なお、本実施形態においては前記基本組成についてのみZrまたはFeの含有効果を示したが、請求項1記載の基本組成範囲であれば同様な効果が得られることは確認済みである。また、前記請求項1記載の範囲の組成に前記請求項2〜5記載の範囲でZnO、B、Ag、Alを含有した組成についても同様なZrまたはFeの効果が得られることも確認済みである。さらに、本実施形態ではZr、Feをそれぞれ単独で含有させたときの効果を示したが、これらを同時に添加しても、同様な効果が得られることも確認済みである。   In the present embodiment, the effect of containing Zr or Fe was shown only for the basic composition, but it has been confirmed that the same effect can be obtained within the basic composition range of claim 1. In addition, it has been confirmed that the same effect of Zr or Fe can be obtained for a composition containing ZnO, B, Ag, and Al in the range of claims 2 to 5 in the composition in the range of claim 1. is there. Furthermore, in this embodiment, although the effect when Zr and Fe were each contained independently was shown, it has also been confirmed that the same effect can be obtained even if these are added simultaneously.

(7)他の実施形態
なお、本発明は上記の実施形態に限定されるものでなく、各請求項に記載の範囲であれば、各構成成分の含有量は適宜変更可能であり、各実施形態の組合せも適宜選択可能である。
(7) Other Embodiments The present invention is not limited to the above-described embodiments, and the content of each constituent component can be changed as appropriate within the range described in each claim. Combinations of forms can also be selected as appropriate.

電圧非直線抵抗体の断面図。Sectional drawing of a voltage non-linear resistor.

符号の説明Explanation of symbols

1…焼結体
2…側面高抵抗層
3…電極
DESCRIPTION OF SYMBOLS 1 ... Sintered body 2 ... Side high resistance layer 3 ... Electrode

Claims (8)

ZnOを主成分とした焼結体からなる電流−電圧非直線抵抗体において、
副成分としてBi、Sb、Co、Mn、Niを、それぞれBi、Sb、Co、MnOおよびNiOに換算して、
Biを0.3〜1mol%、
Sbを0.5〜2.5mol%、
Coを0.3〜1.5mol%、
MnOを0.2〜2mol%、
NiOを0.5〜3mol%含み、
上記MnOに対する前記NiOの含有量の比が2.0〜6.0、
上記MnOに対する前記Sbの含有量の比が1.5〜4.0である焼結体からなることを特徴とする電流−電圧非直線抵抗体。
In a current-voltage nonlinear resistor composed of a sintered body mainly composed of ZnO,
Bi, Sb, Co, Mn, Ni as subcomponents are converted into Bi 2 O 3 , Sb 2 O 3 , Co 2 O 3 , MnO and NiO, respectively.
0.3~1mol% of Bi 2 O 3,
0.5~2.5mol% of Sb 2 O 3,
0.3~1.5Mol% of Co 2 O 3,
0.2 to 2 mol% of MnO,
Containing 0.5-3 mol% of NiO,
A ratio of the content of the NiO to the MnO is 2.0 to 6.0,
A current-voltage non-linear resistor comprising a sintered body having a ratio of the Sb 2 O 3 content to the MnO of 1.5 to 4.0.
主成分であるZnOの含有量が95mol%以上の焼結体からなることを特徴とする請求項1記載の電流−電圧非直線抵抗体。   2. The current-voltage nonlinear resistor according to claim 1, wherein the current-voltage nonlinear resistor is made of a sintered body having a content of ZnO as a main component of 95 mol% or more. 副成分としてBをBに換算して0.005〜0.05wt%含む焼結体からなることを特徴とする請求項1又は2に記載の電流−電圧非直線抵抗体。 Current according to claim 1 or 2, characterized in that a sintered body of B as an auxiliary component in terms of B 2 O 3 containing 0.005 to 0.05% - voltage nonlinear resistor. 副成分としてAgをAgOに換算して0.005〜0.05wt%含む焼結体からなることを特徴とする請求項1〜3のいずれか1項に記載の電流−電圧非直線抵抗体。 Current according to any one of claims 1 to 3, the Ag as a sub-component, characterized in that a sintered body in terms of Ag 2 O containing 0.005 to 0.05% - voltage nonlinear resistor body. 副成分としてAlをAl3+に換算して0.001〜0.01mol%含む焼結体からなることを特徴とする請求項1〜4のいずれか1項に記載の電流−電圧非直線抵抗体。 The current-voltage nonlinear resistor according to any one of claims 1 to 4, wherein the current-voltage non-linear resistor is formed of a sintered body containing 0.001 to 0.01 mol% of Al as a subcomponent in terms of Al3 +. . 焼成中の冷却時の降温速度を50℃/h以上とした焼結体からなることを特徴とする請求項1〜5のいずれか1項に記載の電流−電圧非直線抵抗体。   The current-voltage nonlinear resistor according to any one of claims 1 to 5, wherein the current-voltage nonlinear resistor is made of a sintered body having a temperature drop rate during cooling during firing of 50 ° C / h or more. 副成分としてZrをZrOに換算して0.1〜1000ppm含有する焼結体からなることを特徴とする請求項1〜6のいずれか1項に記載の電流−電圧非直線抵抗体。 The current-voltage nonlinear resistor according to claim 1, comprising a sintered body containing 0.1 to 1000 ppm of Zr as a subcomponent in terms of ZrO 2 . 副成分としてFeをFeに換算して0.1〜1000ppm含有する焼結体からなることを特徴とする請求項1〜6のいずれか1項に記載の電流−電圧非直線抵抗体。 The current-voltage nonlinear resistor according to any one of claims 1 to 6, comprising a sintered body containing 0.1 to 1000 ppm of Fe in terms of Fe 2 O 3 as a subcomponent. .
JP2007003938A 2007-01-11 2007-01-11 Current-voltage nonlinear resistor Active JP5065688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003938A JP5065688B2 (en) 2007-01-11 2007-01-11 Current-voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007003938A JP5065688B2 (en) 2007-01-11 2007-01-11 Current-voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JP2008172034A true JP2008172034A (en) 2008-07-24
JP5065688B2 JP5065688B2 (en) 2012-11-07

Family

ID=39699844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003938A Active JP5065688B2 (en) 2007-01-11 2007-01-11 Current-voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JP5065688B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135560A (en) * 2008-12-04 2010-06-17 Toshiba Corp Current-voltage non-linear resistor and production process of the same
JP2011171665A (en) * 2010-02-22 2011-09-01 Toshiba Corp Current-voltage nonlinear resistor, and method of manufacturing the same
JP2012015435A (en) * 2010-07-05 2012-01-19 Japan Ae Power Systems Corp Method for manufacturing nonlinear voltage resistor and lightning element formed of nonlinear voltage resistor
JP2014183272A (en) * 2013-03-21 2014-09-29 Toshiba Corp Current-voltage nonlinear resistor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182401A (en) * 1984-09-29 1986-04-26 株式会社東芝 Voltage non-linearity resistor and manufacture thereof
JPH05258920A (en) * 1992-03-16 1993-10-08 Ngk Insulators Ltd Manufacture of voltage non-linear resistor
JP2001307909A (en) * 2000-04-25 2001-11-02 Toshiba Corp Current-voltage nonlinear resistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182401A (en) * 1984-09-29 1986-04-26 株式会社東芝 Voltage non-linearity resistor and manufacture thereof
JPH05258920A (en) * 1992-03-16 1993-10-08 Ngk Insulators Ltd Manufacture of voltage non-linear resistor
JP2001307909A (en) * 2000-04-25 2001-11-02 Toshiba Corp Current-voltage nonlinear resistor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135560A (en) * 2008-12-04 2010-06-17 Toshiba Corp Current-voltage non-linear resistor and production process of the same
US8535575B2 (en) 2008-12-04 2013-09-17 Kabushiki Kaisha Toshiba Current-voltage non-linear resistor and method of manufacture thereof
JP2011171665A (en) * 2010-02-22 2011-09-01 Toshiba Corp Current-voltage nonlinear resistor, and method of manufacturing the same
JP2012015435A (en) * 2010-07-05 2012-01-19 Japan Ae Power Systems Corp Method for manufacturing nonlinear voltage resistor and lightning element formed of nonlinear voltage resistor
JP2014183272A (en) * 2013-03-21 2014-09-29 Toshiba Corp Current-voltage nonlinear resistor

Also Published As

Publication number Publication date
JP5065688B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP2001307909A (en) Current-voltage nonlinear resistor
JPH11340009A (en) Nonlinear resistor
JP5774829B2 (en) High field strength varistor material
JP5208703B2 (en) Current-voltage nonlinear resistor and method for manufacturing the same
KR100812425B1 (en) Current-voltage nonlinear resistor
JP5065688B2 (en) Current-voltage nonlinear resistor
JP5065624B2 (en) Current-voltage non-linear resistors and lightning arresters
JP4690123B2 (en) Method for producing zinc oxide laminated varistor
CN101625918B (en) Current-voltage nonlinear resistor
JP5605432B2 (en) Semiconductor ceramic and resistance element
JP4282243B2 (en) Non-linear resistor
JP6223076B2 (en) Sintered body, manufacturing method thereof, varistor, and overvoltage protection device
JP2007329178A (en) Current-voltage non-linear resistor, and lightning arrester
JP2007329148A (en) Current-voltage nonlinear resistor
JP5264929B2 (en) Method for manufacturing voltage nonlinear resistor
JP5282332B2 (en) Manufacturing method of zinc oxide laminated chip varistor
JP5301853B2 (en) Zinc oxide chip varistor
JP6937390B2 (en) Materials for current-voltage non-linear resistors, current-voltage non-linear resistors and their manufacturing methods
EP2144256A1 (en) Current/voltage nonlinear resistor
JP2007329174A (en) Current-voltage non-linear resistor, and lightening arrester
WO2023176608A1 (en) Antimony oxide substitute zinc oxide element
JP2006245111A (en) Bismuth-based zinc oxide varistor
JP5995772B2 (en) Voltage non-linear resistor, method for manufacturing the same, and overvoltage protection device including the same
JP5388937B2 (en) Voltage non-linear resistor and lightning arrester equipped with voltage non-linear resistor
JP2020047685A (en) Zinc oxide element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120810

R151 Written notification of patent or utility model registration

Ref document number: 5065688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3