JP2012013472A - Method for estimating deterioration in power storage means, power source device, and railway vehicle - Google Patents

Method for estimating deterioration in power storage means, power source device, and railway vehicle Download PDF

Info

Publication number
JP2012013472A
JP2012013472A JP2010148467A JP2010148467A JP2012013472A JP 2012013472 A JP2012013472 A JP 2012013472A JP 2010148467 A JP2010148467 A JP 2010148467A JP 2010148467 A JP2010148467 A JP 2010148467A JP 2012013472 A JP2012013472 A JP 2012013472A
Authority
JP
Japan
Prior art keywords
storage means
power storage
voltage
deterioration
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010148467A
Other languages
Japanese (ja)
Other versions
JP5386443B2 (en
JP2012013472A5 (en
Inventor
Shiyuuko Yamauchi
修子 山内
Masahiko Amano
雅彦 天野
Yutaka Arita
裕 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010148467A priority Critical patent/JP5386443B2/en
Publication of JP2012013472A publication Critical patent/JP2012013472A/en
Publication of JP2012013472A5 publication Critical patent/JP2012013472A5/ja
Application granted granted Critical
Publication of JP5386443B2 publication Critical patent/JP5386443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Abstract

PROBLEM TO BE SOLVED: To accurately grasp replacement time of power storage means by accurately and simply estimating degrading of resistance in the power storage means and to achieve stable operation without imposing an overload to the power storage means.SOLUTION: In a railway vehicle which travels according to a predetermined operation method, a current value, a surface temperature, a voltage, and an environment temperature in the power storage means while travelling on a railroad are recorded. A difference ΔV between the maximum voltage and the minimum voltage is compared with an initial value ΔVini for calculating deterioration in comparison with a threshold value ΔVth, the deterioration is reflected to vehicle control and a degree of deterioration and a checkup notice are displayed in a control platform.

Description

本発明は、リチウム二次電池,ニッケル水素電池,鉛電池,電気二重層キャパシタなどの充放電が可能な蓄電手段の制御方法に関し、特に、蓄電手段を駆動用電力の一部又はすべてとして使用する鉄道車両の制御方法に関する。   The present invention relates to a method for controlling power storage means capable of charging and discharging, such as lithium secondary batteries, nickel metal hydride batteries, lead batteries, and electric double layer capacitors, and in particular, the power storage means is used as part or all of drive power. The present invention relates to a railway vehicle control method.

近年、鉄道分野においても環境問題を考慮し省エネルギー化の流れがあり、車両に二次電池を搭載し、ブレーキ時の回生電流を蓄電,力行時に駆動用電力の全部あるいは一部として利用する蓄電手段搭載車両が開発されている。電動車両やハイブリッド車両、蓄電手段搭載電車の駆動用蓄電手段としては、ニッケル水素電池,リチウム二次電池などの二次電池や、キャパシタなどの高出力電池が搭載されている。特にニッケル水素電池やリチウム二次電池は鉛電池に比べてエネルギー密度が高いため、多直列・多並列構成として、概蓄電システムとして使用される。   In recent years, there has also been a trend toward energy saving in the railway field, taking into account environmental problems. Power storage means that uses a secondary battery in a vehicle, stores regenerative current during braking, and uses all or part of driving power during powering Onboard vehicles are being developed. As power storage means for driving electric vehicles, hybrid vehicles, and trains equipped with power storage means, secondary batteries such as nickel metal hydride batteries and lithium secondary batteries, and high output batteries such as capacitors are mounted. In particular, nickel-metal hydride batteries and lithium secondary batteries have a higher energy density than lead batteries, and are therefore used as a general power storage system in a multi-series / multi-parallel configuration.

ここで本発明における蓄電手段の定義を説明する。繰り返し充放電可能な蓄電デバイスにおいて、1対の正極負極から構成される最小の蓄電素子を単電池とする。この単電池を複数直列化して組電池としたユニット、或いはこれをさらに複数接続した構成で、外観上、単一のブロック状、或いは筐体に収容された形状で、一組の正極端子,負極端子で電流入出力経路を有するモジュールを狭義の蓄電池とする。   Here, the definition of the power storage means in the present invention will be described. In a power storage device that can be repeatedly charged and discharged, a minimum power storage element composed of a pair of positive and negative electrodes is a single cell. A unit in which a plurality of unit cells are connected in series to form an assembled battery, or a configuration in which a plurality of these units are connected, and in appearance, in a single block shape or a shape accommodated in a housing, a set of positive terminal and negative electrode A module having a current input / output path at a terminal is defined as a storage battery in a narrow sense.

二次電池は充放電を繰り返すことで、充電状態(SOC:State of Charge)や、劣化状態(SOH:State of Health)が変化し、二次電池は劣化が進行すると、充放電容量の低下や電池内部抵抗の増加を生じる。そのため、劣化に伴い、システムの出力が次第に低下する。また、保存時に自己放電による劣化が進行し、電圧の低下があることは良く知られている。   When the secondary battery is repeatedly charged and discharged, the state of charge (SOC) or the state of health (SOH) changes, and when the secondary battery deteriorates, the charge / discharge capacity decreases. Increases battery internal resistance. Therefore, the output of the system gradually decreases with deterioration. Further, it is well known that deterioration due to self-discharge proceeds during storage, and there is a voltage drop.

一方、鉄道車両に使用される蓄電手段は大型で大容量が要求され、蓄電手段のコストがシステム全体に占める割合が高く、蓄電手段の性能を生かす制御が必要であり、また、蓄電手段の交換期間は長いことが望ましい。   On the other hand, the power storage means used for railway vehicles is large and requires a large capacity, and the cost of the power storage means is high in the entire system, and control that takes advantage of the performance of the power storage means is necessary. It is desirable that the period is long.

よって、蓄電手段の入出力は劣化に応じて変化するので、劣化状態を適切に検出し、種々の制御を行う必要がある。   Therefore, since the input / output of the power storage means changes according to deterioration, it is necessary to appropriately detect the deterioration state and perform various controls.

蓄電池の劣化状態を検出するために、ハイブリッド自動車においては、特許文献1に記載されているような内部抵抗測定による方法がある。蓄電手段のSOCが略同一であると推定される時点での電流と電圧を測定し、それらの放電時と充電時の電圧と電流の測定値に基づいて内部抵抗を検出する方法が示されている。   In order to detect the deterioration state of the storage battery, there is a method based on internal resistance measurement as described in Patent Document 1 in a hybrid vehicle. A method is shown in which the current and voltage at the time when the SOC of the storage means is estimated to be substantially the same are measured, and the internal resistance is detected based on the measured values of the voltage and current at the time of discharging and charging. Yes.

特開2000−21455号公報JP 2000-21455 A

特許文献1に代表される方法では、車両の走行中に内部抵抗が検出,演算される。   In the method represented by Patent Document 1, the internal resistance is detected and calculated while the vehicle is running.

ハイブリッド自動車は加減速が頻繁であり、蓄電手段の充放電電流は図2に示すように単位時間当たりの充放電の切り替わりが多く、また使用される電流値も大きいため入出力変動が大きい。特許文献1では、その特性を利用し、放電時および充電時の電圧と対応する電流を複数収集しその電圧−電流直線の傾きにより内部抵抗を演算している。   The hybrid vehicle frequently accelerates and decelerates, and the charge / discharge current of the power storage means is frequently switched between charge and discharge per unit time as shown in FIG. In Patent Document 1, a plurality of currents corresponding to voltages at the time of discharging and charging are collected using the characteristics, and the internal resistance is calculated from the slope of the voltage-current straight line.

一方、鉄道車両やEV等においては、より大電流が必要とされ、図3に例示されるような電流パターンが蓄電手段に要求され、入力、または出力の単位時間あたりの切り替わりが少なく、蓄電手段にとっては放電又は充電の継続時間が長くなる。そのため、走行中に単位時間当たりで放電及び充電の両方のデータを数多く収集して劣化度を演算する方式では、ハイブリッド自動車と同等量のデータを得ることが難しく、短時間走行では、蓄電手段の劣化度(SOH:State of Health)を精度良く求めることが難しいという問題がある。また、同様に蓄電手段の概略同一SOCまで充電量と放電量を積算する方式においても、略同一積算容量の時点で、抵抗値が計算できる電流変化が必ずしも起こるとは限らない。また、充電電力の積算値等からSOHを求める方法では電流の測定誤差が、積算値に影響するため、電流計測手段は高精度のものが必要とされるため、コストを抑えて精度良く求めることが難しいという問題があった。更には、特にリチウム電池に見られるが、大電流充放電が継続すると一時的に抵抗値が上昇する現象が見られる。一時的な抵抗上昇であるため、前回走行終了後から始動までの期間が長く、システム停止中に抵抗値が減少した場合、前回走行時の抵抗値を利用したSOC演算や、許容入出力電流,電力について、誤差が大きくなる問題がある。そのため、蓄電手段の交換を適切な時期に交換する指標を簡便に得ることが難しかった。   On the other hand, in a railway vehicle, EV, etc., a larger current is required, and a current pattern as illustrated in FIG. 3 is required for the power storage means, and there is little switching per unit time of input or output. For this, the duration of discharging or charging becomes longer. For this reason, it is difficult to obtain the same amount of data as that of a hybrid vehicle in a method that collects a large amount of both discharge and charge data per unit time during driving and calculates the degree of deterioration. There is a problem that it is difficult to accurately obtain the degree of deterioration (SOH). Similarly, in the method of integrating the charge amount and the discharge amount up to approximately the same SOC of the power storage means, a current change that can calculate the resistance value does not always occur at the time of substantially the same integrated capacity. In addition, in the method of obtaining SOH from the integrated value of charging power, etc., the current measurement error affects the integrated value, so the current measuring means must be highly accurate. There was a problem that was difficult. Furthermore, as seen particularly in lithium batteries, there is a phenomenon in which the resistance value temporarily rises when large current charging / discharging continues. Since the resistance rises temporarily, the period from the end of the previous run to the start is long, and if the resistance value decreases while the system is stopped, SOC calculation using the resistance value during the previous run, allowable input / output current, There is a problem that the error becomes large with respect to power. For this reason, it is difficult to easily obtain an index for replacing the storage means at an appropriate time.

また、基準抵抗を用いて比較する場合には、特定条件、たとえば、計測制御周期で数十msで電流が大きく変化する場合から算出される抵抗値を使用する場合では、数十msでの初期蓄電手段の抵抗基準として、抵抗劣化の上昇率を推定SOCにおける抵抗と温度の関係から算出するが、実際の鉄道車両の充放電は数十秒継続する場合が多く、抵抗値が時間と共に上昇する。そのため、数十msでの抵抗値や、数秒での抵抗値で劣化を予測した場合に、動作上下限電圧からの限界予測抵抗値から算出される抵抗上昇率と、数十秒の充放電時の限界抵抗から算出される抵抗上昇率とは一致せず、システム上の定格動作が可能な期間が実際よりも長く見積られる問題が明らかとなった。そのため、寿命判定前にシステム上の定格動作が損なわれ、ハイブリッド車両でいえば燃費が低下するなどの問題が起こりうることがわかった。   Also, when comparing using a reference resistance, when using a resistance value calculated from a specific condition, for example, when the current changes greatly in several tens of ms in the measurement control cycle, the initial value in several tens of ms is used. The rate of increase in resistance deterioration is calculated from the relationship between resistance and temperature in the estimated SOC as the resistance standard of the power storage means. However, the actual charging / discharging of the railway vehicle often lasts for several tens of seconds, and the resistance value increases with time. . Therefore, when deterioration is predicted based on a resistance value of several tens of ms or a resistance value of several seconds, the rate of increase in resistance calculated from the limit predicted resistance value from the upper and lower operating voltage limits, and at the time of charging and discharging for several tens of seconds The rate of increase in resistance calculated from the limit resistance of the system did not match, and the problem was that the period during which the rated operation on the system could be estimated was longer than actual. For this reason, it has been found that the rated operation on the system is impaired before the life determination, and that a problem such as a reduction in fuel consumption can occur in a hybrid vehicle.

本発明は、従来のこのような問題の少なくともいずれかを解決することを目的に開発されたものであって、蓄電手段の劣化を簡便な方法で測定するものである。   The present invention has been developed for the purpose of solving at least one of the conventional problems, and measures the deterioration of the power storage means by a simple method.

本発明は、前記蓄電手段の電圧を計測し、計測された電圧計測値を記録し、記録された電圧計測値から電圧変動幅を算出し、算出された電圧変動幅を予め算出された初期電圧変動幅と比較することにより蓄電手段の劣化状態を推定する。   The present invention measures the voltage of the power storage means, records the measured voltage measurement value, calculates the voltage fluctuation width from the recorded voltage measurement value, and calculates the calculated voltage fluctuation width in advance as the initial voltage. The deterioration state of the power storage means is estimated by comparing with the fluctuation range.

本発明により、蓄電手段の劣化をより簡便な方法で計測することを可能とする。   According to the present invention, it is possible to measure the deterioration of the power storage means by a simpler method.

本発明の動作フロー概要図である。It is an operation | movement flow schematic diagram of this invention. ハイブリッド自動車の蓄電池電流の例を示した図である。It is the figure which showed the example of the storage battery current of a hybrid vehicle. 鉄道,EV等の蓄電池電流の例を示した図である。It is the figure which showed the example of storage battery currents, such as a railroad and EV. 本発明を適用した蓄電システムの構成例である。It is a structural example of the electrical storage system to which this invention is applied. 本発明を適用した蓄電システムの構成例である。It is a structural example of the electrical storage system to which this invention is applied. 本発明における実施形態である動作フローを示した図である。It is the figure which showed the operation | movement flow which is embodiment in this invention. 本発明の実施形態である蓄電手段からの測定データ処理の概要図である。It is a schematic diagram of the measurement data processing from the electrical storage means which is an embodiment of the present invention. 蓄電手段の電圧動作を示した図である。It is the figure which showed the voltage operation | movement of an electrical storage means. 蓄電手段の特性を示した図である。It is the figure which showed the characteristic of the electrical storage means. 蓄電手段の特性を示した図である。It is the figure which showed the characteristic of the electrical storage means. 本発明の実施形態である蓄電システムの構成例である。It is a structural example of the electrical storage system which is embodiment of this invention. 本発明の実施形態である蓄電システムの表示装置の例である。It is an example of the display apparatus of the electrical storage system which is embodiment of this invention. 本発明における実施形態である動作フローを示した図である。It is the figure which showed the operation | movement flow which is embodiment in this invention.

本発明における実施例では、あらかじめ決められた運転を定期的に実施することが多い鉄道車両において、走行中に得られる、蓄電手段を流れる電流,蓄電手段の電圧,蓄電手段温度,環境温度の計測データから、同一走行路線における、運転時の蓄電手段電圧の最大値Vmaxと最小値Vminを記録し、その差ΔVを指標として、劣化を判定する。   In the embodiment of the present invention, in a railway vehicle that frequently performs a predetermined operation periodically, measurement of the current flowing through the power storage means, the voltage of the power storage means, the temperature of the power storage means, and the environmental temperature obtained during traveling is performed. From the data, the maximum value Vmax and the minimum value Vmin of the storage means voltage during operation on the same travel route are recorded, and deterioration is determined using the difference ΔV as an index.

さらに、一定路線における走行初期のΔViniと走行時のΔVを比較することにより、蓄電手段の劣化を判定し、交換指標を運転台に表示,視認できる手段を搭載するものである。   Further, a means for determining deterioration of the power storage means by comparing ΔVini at the initial stage of travel on a fixed route with ΔV at the time of travel, and displaying and visually checking the replacement index on the cab is mounted.

ここで、電圧の計測手段は本発明において必須の構成である。電流や蓄電手段温度,環境温度の計測手段は劣化判定の精度を向上させるために必要な構成である。電圧を計測する際の電流,蓄電手段温度,環境温度によって劣化演算結果は異なるため、これらの各パラメータは電圧計測値と関連付けて記憶される。例えば、図9に示すように蓄電手段の温度によって蓄電手段の内部抵抗値は大きく変動する。そのため、例えば、蓄電手段の温度が25度以上の場合に計測した電圧値を劣化推定に用いると良い。   Here, the voltage measuring means is an essential component in the present invention. The means for measuring the current, the power storage means temperature, and the environmental temperature is a configuration necessary for improving the accuracy of deterioration determination. Since the deterioration calculation result differs depending on the current at the time of measuring the voltage, the power storage means temperature, and the environmental temperature, these parameters are stored in association with the voltage measurement value. For example, as shown in FIG. 9, the internal resistance value of the power storage means varies greatly depending on the temperature of the power storage means. Therefore, for example, a voltage value measured when the temperature of the power storage means is 25 degrees or higher is preferably used for the deterioration estimation.

本発明における実施例の鉄道車両は、少なくとも1つ以上の蓄電手段と制御回路を備えた蓄電手段の情報制御システムであり、図4に示す、少なくともひとつ以上の蓄電手段20を充放電させる充放電手段60と、蓄電手段20の電圧を検出する電圧計測手段30と、ホールCTやシャント抵抗型の電流センサ等を備えて各蓄電手段の電流値を計測する電流検出手段40と、電圧計測手段30の検出電圧及び電流検出手段40の電流値を記録するデータ記録部10と、データ記録部10に記録された電圧情報から前記蓄電手段の抵抗値を演算する演算部分(図示せず)と、を有し、劣化判定プログラムを有した構成であり、鉄道車両の運転中は制御指令発生手段70から運転指令を出力して、充放電手段60で負荷電流を印加する。   The railway vehicle according to the embodiment of the present invention is an information control system for power storage means including at least one power storage means and a control circuit, and is configured to charge and discharge at least one power storage means 20 shown in FIG. A means 60; a voltage measuring means 30 for detecting the voltage of the power storage means 20; a current detecting means 40 for measuring the current value of each power storage means provided with a Hall CT or a shunt resistance type current sensor; A data recording unit 10 that records the detected voltage and the current value of the current detecting unit 40, and a calculation part (not shown) that calculates the resistance value of the power storage unit from the voltage information recorded in the data recording unit 10. And having a deterioration determination program, the operation command is output from the control command generation means 70 during operation of the railway vehicle, and the load current is applied by the charge / discharge means 60.

本発明における実施例では、システム起動開始とともに、図1に示すように、初期電圧Vini,電流I,蓄電手段の温度Tc,環境温度Taを計測,記録を開始、(S1)、その後、車両走行開始(S5)後も電圧V,電流I,温度Tc,Taを記録(S6)、走行終了(S7)時までデータを蓄積する。その後、充電時の最大電圧Vmax、放電時の最小電圧Vminを抽出する。ここで、最大電圧Vmaxと最小電圧Vminの抽出は、放電動作と充電動作を少なくとも各1回以上行う走行後に実施するものとし、例えば1日に1回の抽出を行うと良い。また、最大電圧Vmaxと最小電圧Vminの抽出は、電圧Vと関連付けて記録された電流I,温度Tc,Taがそれぞれ所定範囲である場合の電圧Vから抽出される。このように電流I,温度Tc,Taが所定範囲を逸脱した際の電圧Vを除外して最大電圧Vmaxと最小電圧Vminを抽出することにより、劣化推定の誤差を抑えることができる。   In the embodiment of the present invention, as shown in FIG. 1, when the system starts, the initial voltage Vini, current I, temperature Tc of the storage means, and environmental temperature Ta are measured and recorded (S1). Even after the start (S5), the voltage V, current I, and temperatures Tc and Ta are recorded (S6), and data is accumulated until the end of travel (S7). Thereafter, the maximum voltage Vmax during charging and the minimum voltage Vmin during discharging are extracted. Here, the extraction of the maximum voltage Vmax and the minimum voltage Vmin is performed after traveling in which the discharging operation and the charging operation are performed at least once each. For example, the extraction may be performed once a day. The maximum voltage Vmax and the minimum voltage Vmin are extracted from the voltage V when the current I and the temperature Tc, Ta recorded in association with the voltage V are within a predetermined range. As described above, by extracting the maximum voltage Vmax and the minimum voltage Vmin by excluding the voltage V when the current I and the temperatures Tc and Ta deviate from the predetermined ranges, it is possible to suppress the error in the deterioration estimation.

電圧変動を充電時の最大電圧Vmaxと放電時の最小電圧Vminの差分を取り、ΔVとする(S8)。初期に得られるΔVをΔViniとし、ΔVとΔViniを比較することで蓄電手段の劣化度SOHを算出する(S10)。ここで、ΔViniの算出も、蓄電手段が放電動作と充電動作を少なくとも各1回以上行った後に実施される。   The difference between the maximum voltage Vmax at the time of charging and the minimum voltage Vmin at the time of discharging is determined as ΔV (S8). ΔVini obtained in the initial stage is set as ΔVini, and ΔV and ΔVini are compared to calculate the deterioration degree SOH of the power storage means (S10). Here, the calculation of ΔVini is also performed after the power storage means has performed the discharging operation and the charging operation at least once each.

SOHを閾値とΔVthと比較判定(S12)し、閾値よりも大きい場合は、交換警告表示(S13)、閾値よりも小さい場合は履歴を記録(S14)し終了する。   The SOH is compared with the threshold value and ΔVth (S12). If it is larger than the threshold value, the replacement warning is displayed (S13). If it is smaller than the threshold value, the history is recorded (S14) and the process is terminated.

以上により蓄電手段の劣化判定を実施し、正常,異常の判定及び交換時期の表示を実施することで本発明の課題を解決する。   Thus, the problem of the present invention is solved by determining the deterioration of the power storage means, determining the normality / abnormality, and displaying the replacement time.

ここで図8により、電圧変動幅ΔVについて説明する。走行時の蓄電手段の電圧波形は、放電時に電圧低下し、充電時に電圧が上昇する。このとき、図8に示すように蓄電手段のシステムの初期の蓄電手段電圧波形(A)に対し、劣化進行時の蓄電手段電圧波形は(B)に示すようになる。初期は、最大充電電圧Vmax0,最小放電電圧Vmin0で、電圧変動幅はΔVini=(Vmax0−Vmin0)である。劣化進行時は最大電圧Vmax,最小電圧はVminとなり、ΔV=(Vmax−Vmin)である。ここで、Vclimは充電動作時における最大動作電圧、Vdlimは放電動作時における最小動作電圧、ΔVthは電圧変動幅の閾値である。 Here, the voltage fluctuation range ΔV will be described with reference to FIG. The voltage waveform of the power storage means during running decreases during discharging and increases during charging. At this time, as shown in FIG. 8, the storage means voltage waveform during the progress of deterioration is as shown in (B) with respect to the initial storage means voltage waveform (A) of the storage means system. Initially, the maximum charging voltage V max0 and the minimum discharging voltage V min0 are set, and the voltage fluctuation range is ΔVini = (V max0 −V min0 ). When the deterioration proceeds, the maximum voltage Vmax and the minimum voltage become Vmin, and ΔV = (Vmax−Vmin). Here, V clim is the maximum operating voltage during the charging operation, V dlim is the minimum operating voltage during the discharging operation, and ΔVth is a threshold of the voltage fluctuation range.

前記のデータ記録部10は、一次的な記録を実施するRAM、演算データを記録するROM(Read Only Memory)、書き換え可能な大容量記録媒体の少なくとも1つ以上を有する。   The data recording unit 10 includes at least one of a RAM that performs primary recording, a ROM (Read Only Memory) that records operation data, and a rewritable large-capacity recording medium.

走行の時期,乗客数の増減,天候による運転条件の違い等から発生する電流誤差を軽減するため、乗客が不在となる営業前の路線走行時の蓄電手段の電流および電圧データを同路線で複数取得し、路線に対し、平均の蓄電手段電流パターンI(t)を取得する。得られた電流パターンI(t)と、路線走行パターンはほぼ同等の走行をすると考えられるため、走行時の電流I(t)′は初期に得られる電流パターンI(t)をある一定の範囲内で逸脱しないことになる。   In order to reduce current errors caused by travel time, increase / decrease in the number of passengers, differences in driving conditions due to weather, etc., multiple current and voltage data of power storage means when traveling on routes before passengers are present on the same route And an average power storage means current pattern I (t) is obtained for the route. Since the obtained current pattern I (t) and the route travel pattern are considered to travel substantially the same, the current I (t) ′ during travel is the current pattern I (t) obtained in the initial range within a certain range. Will not deviate within.

そのため、電流パターンは同一とみなすことができ、蓄電手段の劣化を相対的に評価することが可能となる。   Therefore, the current patterns can be regarded as the same, and the deterioration of the power storage means can be relatively evaluated.

また、蓄電手段においては許容される充放電における最大電流値が充電側Icmax,放電側Idmaxともあらかじめ決定されている。そのため最大電流と、動作時の蓄電手段のSOCの関係から得られる限界時の開回路電圧をもとに、電圧変動幅の閾値ΔVthを計算することが可能である。   Further, the maximum current value in charge / discharge allowed in the power storage means is determined in advance for both the charge side Icmax and the discharge side Idmax. Therefore, it is possible to calculate the threshold ΔVth of the voltage fluctuation range based on the open circuit voltage at the limit obtained from the relationship between the maximum current and the SOC of the power storage means during operation.

蓄電手段の温度が室温以上の場合においては、最大電流までの範囲で、SOC変動が1%以内の範囲では 特許文献1の理論を使用すれば、直流抵抗Rは電流によらず一定である。しかし、SOC変動を大きく伴う場合には分極を含む抵抗値が大きくなる傾向が顕著となる。しかしながら、その情報は電圧変動に含まれるため、電圧変動の監視が重要となる。動作時の最大電圧Vmax,最小電圧Vminはそれぞれ式(1),(2)で示される。ここで、i1(R),i2(R)は充電電流i1、放電電流i2のときの分極を含む全体の抵抗値を反映した電圧分極幅を示している。 When the temperature of the power storage means is room temperature or higher, the DC resistance R is constant regardless of the current if the theory of Patent Document 1 is used in the range up to the maximum current and the SOC fluctuation is within 1%. However, when the SOC variation is greatly accompanied, the tendency that the resistance value including polarization becomes large becomes remarkable. However, since the information is included in the voltage fluctuation, it is important to monitor the voltage fluctuation. The maximum voltage Vmax and the minimum voltage Vmin at the time of operation are respectively expressed by equations (1) and (2). Here, i 1 (R) and i 2 (R) indicate voltage polarization widths reflecting the entire resistance value including polarization at the time of the charging current i 1 and the discharging current i 2 .

Figure 2012013472
Figure 2012013472

Figure 2012013472
Figure 2012013472

初期の電圧変動ΔV0、走行時の電圧変動幅ΔVはそれぞれ式(3),式(4)で示される。ここで初期の抵抗R1、走行時の抵抗R2とすると、この状態の電圧分極は動作時の上限SOC,下限SOCが同じ場合、電圧差は定数aとおける。式(5)。変動幅ΔVから定数aを引いた差分が、劣化情報を含んだ電圧変動式(6)となる。 The initial voltage fluctuation ΔV0 and the voltage fluctuation width ΔV during traveling are expressed by equations (3) and (4), respectively. Here, assuming that the initial resistance R 1 and the running resistance R 2 are the voltage polarization in this state, the voltage difference can be a constant a when the upper limit SOC and the lower limit SOC during operation are the same. Formula (5). A difference obtained by subtracting the constant a from the fluctuation range ΔV is a voltage fluctuation equation (6) including deterioration information.

Figure 2012013472
Figure 2012013472

Figure 2012013472
Figure 2012013472

Figure 2012013472
Figure 2012013472

Figure 2012013472
Figure 2012013472

よって、電圧変動幅ΔVは劣化情報を直接含み、しかも、確認が容易である。この電圧変動幅ΔVの値が大きくなればなるほど劣化は進行しているということになる。例えば、電圧変動幅ΔVの絶対値を劣化の段階分けしたテーブル値と比較することによって、交換,異常の判断を実施することが可能である。   Therefore, the voltage fluctuation width ΔV directly includes deterioration information and is easy to confirm. As the value of the voltage fluctuation width ΔV increases, the deterioration progresses. For example, by comparing the absolute value of the voltage fluctuation range ΔV with a table value obtained by grading deterioration, it is possible to determine whether the replacement or abnormality has occurred.

また、蓄電手段の温度を測定する温度検出部(図示せず)の検出温度の情報から、あらかじめ内部情報として持っている抵抗値の温度換算を実施、基準値と比較することにより、蓄電手段の劣化状態を走行中のデータから検出することで上記の課題を解決するものである。   In addition, from the detected temperature information of the temperature detection unit (not shown) that measures the temperature of the power storage means, the temperature of the resistance value held as internal information in advance is converted and compared with the reference value, The above-described problem is solved by detecting the deterioration state from the running data.

または、得られた電圧変動幅ΔVの値とシステム寿命時に想定される電圧変動幅ΔVthと比較することにより、蓄電手段の劣化度を判定,交換,異常の警告を運転台に表示する。本手法により運転手に視認させることができることにより、適切な蓄電手段の交換を促す。さらには、判定した劣化度を蓄電手段の入出力制御に反映し、劣化進行時には電流の絶対値を小さくすることで、蓄電手段への負担を軽減し、蓄電手段の長寿命化にも寄与するものである。   Alternatively, by comparing the obtained value of the voltage fluctuation width ΔV with the voltage fluctuation width ΔVth assumed at the time of system life, the deterioration degree of the power storage means is determined, replaced, and an abnormality warning is displayed on the cab. By allowing the driver to visually recognize this method, it is urged to replace the power storage unit appropriately. Furthermore, the determined degree of deterioration is reflected in the input / output control of the power storage means, and when the deterioration progresses, the absolute value of the current is reduced, thereby reducing the burden on the power storage means and contributing to extending the life of the power storage means. Is.

実走行時の日々走行データの2つ以上の計測データの平均値から算出された電圧変動幅ΔVを用いて劣化度を算出することで、蓄電手段の劣化度の演算ばらつきを抑制し、精度よく劣化度を推定し、一時的な抵抗変化を劣化と分離することができる。   By calculating the degree of deterioration using the voltage fluctuation range ΔV calculated from the average value of two or more measured data of daily driving data during actual driving, the calculation variation in the degree of deterioration of the power storage means is suppressed and the accuracy is high. The degree of deterioration can be estimated, and temporary resistance changes can be separated from deterioration.

または、さらに停車時の抵抗測定手法により算出された蓄電手段の抵抗値や、別アルゴリズムで演算した劣化データと、上記した劣化推定方法を組み合わせることにより、蓄電手段の電圧を走行中に別アルゴリズムで演算した劣化データとさらに比較し、検出した抵抗値に応じて蓄電手段の制御用パラメータを変更し、劣化及び異常を判定することによっても本発明の課題を解決できる。   Alternatively, by combining the resistance value of the power storage means calculated by the resistance measurement method when the vehicle is stopped, the deterioration data calculated by another algorithm, and the above-described deterioration estimation method, the voltage of the power storage means can be changed by another algorithm while traveling. The problem of the present invention can also be solved by further comparing with the calculated deterioration data, changing the control parameter of the power storage means according to the detected resistance value, and determining the deterioration and abnormality.

本発明の実施例では、図3に示されたような単位時間当たりに充電又は放電に切り替わる回数が少なく、電流変化も急峻でない電流変化をする蓄電手段の使用用途においても、蓄電手段の劣化状態を簡便に推定することが可能で、点検・交換時期を適切に管理できる。充放電時間が長く、統計的に処理を実施するため、マクロな蓄電手段の動作全体での劣化状態が確認できるため、SOCの推定演算の精度に影響を受けずに、劣化を判定することが可能になる。また、別アルゴリズムで算出したSOHとの対比により、蓄電手段の状態が判別可能であり、蓄電手段の劣化に合わせた充放電制御が可能となる。   In the embodiment of the present invention, the deterioration state of the power storage means is also used in the usage of the power storage means in which the number of times of switching to charging or discharging per unit time as shown in FIG. 3 is small and the current change is not steep. Can be estimated easily, and the inspection and replacement time can be appropriately managed. Since the charging / discharging time is long and the processing is performed statistically, the deterioration state of the entire operation of the macro power storage means can be confirmed. Therefore, the deterioration can be determined without being affected by the accuracy of the SOC estimation calculation. It becomes possible. Further, the state of the power storage means can be determined by comparison with SOH calculated by another algorithm, and charge / discharge control in accordance with the deterioration of the power storage means becomes possible.

マクロに蓄電手段の劣化を捕らえることで、蓄電手段の抵抗を使用したSOC演算の精度が向上し、蓄電手段の許容入出力を超える入出力命令が起こることがなくなり、蓄電手段が過負荷になることが防止できる。過負荷によってシステム停止を引き起こすエラーがなくなり、システムがより安定すると共に、蓄電手段の性能を十分引き出すことが可能となり、その時々の状態に合わせた最適使用が可能になる。   Capturing the degradation of the power storage means in a macro improves the accuracy of the SOC calculation using the resistance of the power storage means, so that an input / output command exceeding the allowable input / output of the power storage means does not occur and the power storage means becomes overloaded. Can be prevented. An error that causes the system to stop due to overload is eliminated, the system becomes more stable, and the performance of the power storage means can be sufficiently extracted, and the optimum use according to the state at that time becomes possible.

また、劣化確認操作部を有することにより、オペレータが簡便に蓄電手段劣化を確認することが可能であり、蓄電手段の劣化が激しいものについては走行開始前に交換することが可能となる。さらには、読み出し値と現状劣化状態との比較が出来、蓄電手段の状態が確認できるため、蓄電手段の充放電量を蓄電手段の劣化状態に合わせて制御することが可能になる。よって、より安定した制御が可能となり、安定走行につながり、ハイブリッドシステムの場合は燃費も向上する。   In addition, by having the deterioration checking operation unit, the operator can easily check the deterioration of the power storage means, and it is possible to replace the battery having a severe deterioration of the power storage means before the start of traveling. Furthermore, since the read value can be compared with the current deterioration state and the state of the power storage means can be confirmed, the charge / discharge amount of the power storage means can be controlled in accordance with the deterioration state of the power storage means. Therefore, more stable control is possible, leading to stable running, and in the case of a hybrid system, fuel efficiency is also improved.

鉄道車両などに本発明を適用した場合、営業前の始業時に電圧変動幅の算出を実施することが可能であり、走行前の一連の点検に盛り込むことにより、特別な保守なく、蓄電手段の精度よい劣化推定が可能となる。そして、より安定な運行を維持することが可能となる。   When the present invention is applied to a railway vehicle or the like, it is possible to calculate a voltage fluctuation range at the start of business before business, and by incorporating it into a series of inspections before traveling, the accuracy of the power storage means can be obtained without special maintenance. Good degradation estimation is possible. And it becomes possible to maintain more stable operation.

また、リチウム蓄電手段の場合、SOCに応じて抵抗値が変化する特性を持っているが本方法によれば、劣化測定は、ほぼ同一のSOC値における劣化比較も可能で、前回値との比較から、複雑なアルゴリズムを有しなくても劣化を推定反映させることが可能である。   In addition, in the case of the lithium storage means, the resistance value changes according to the SOC. However, according to this method, the deterioration measurement can be performed at the same SOC value and compared with the previous value. Therefore, it is possible to estimate and reflect deterioration without having a complicated algorithm.

また、大電流の継続による一時的な抵抗増加についても、電圧情報に含まれているため、本発明の電圧管理を実施することにより、電流を継続して流す時間の長短に関わらず、蓄電手段の劣化を検出することが可能になる。また、SOC推定演算によって求めたSOCと、推定OCVを使用する劣化演算方式の場合に比較して、本発明では稼動時のSOCが完全に同一でなくても、変動幅ΔVはほぼ一定であるから、劣化進行時の推定誤差が小さくできる利点がある。   Further, since temporary resistance increase due to continuation of a large current is also included in the voltage information, the power management means can be implemented regardless of the length of time that the current is continuously flowed by performing the voltage management of the present invention. It becomes possible to detect the deterioration of. Further, compared to the SOC obtained by the SOC estimation calculation and the deterioration calculation method using the estimated OCV, in the present invention, the fluctuation range ΔV is substantially constant even if the operating SOC is not completely the same. Therefore, there is an advantage that the estimation error when the deterioration progresses can be reduced.

また、推定SOCの値や推定OCVを利用した演算を実施し、リアルタイムでのSOH演算で得られた走行終了直後の蓄電手段の劣化状態を次回走行に反映する方式では、前回走行終了後から始動までの期間が長く、システム停止中に一時的に上昇した抵抗値が減少した場合、前回値の反映では、SOC演算や、許容入出力電流、電力について、誤差が大きくなる問題があったがこの問題に対し、本発明を適用することにより、蓄電手段の実抵抗をより反映した入出力指令が可能となりSOC推定に基準抵抗値を使用する演算方法の場合は推定精度が向上する。更に学習による制御パラメータ補正と組み合わせることにより、電池の状態検知精度が向上する。   In addition, in the method in which the calculation using the estimated SOC value and the estimated OCV is performed and the deterioration state of the power storage means immediately after the end of travel obtained by the real-time SOH calculation is reflected in the next travel, the system starts after the end of the previous travel. If the resistance value temporarily increased during the system stoppage is long and the previous value is reflected, there is a problem that errors in SOC calculation, allowable input / output current, and power increase. In response to the problem, by applying the present invention, an input / output command that more reflects the actual resistance of the power storage means becomes possible, and in the case of an arithmetic method using a reference resistance value for SOC estimation, the estimation accuracy is improved. Further, by combining with control parameter correction by learning, the battery state detection accuracy is improved.

蓄電手段の制御精度が向上することにより、蓄電手段については過負荷を回避することが可能になり、より安定した走行を実現できる。   By improving the control accuracy of the power storage means, it is possible to avoid overloading the power storage means, and more stable travel can be realized.

蓄電手段の劣化が停車時に容易に判別でき保守もしやすくなるという利点がある。特に一定電流での走行パターンの場合に、上下限電圧と時間の関係から、定量的に劣化が判定できる   There is an advantage that deterioration of the power storage means can be easily discriminated when the vehicle is stopped and maintenance is easy. Deterioration can be determined quantitatively from the relationship between upper and lower limit voltage and time, especially in the case of a running pattern with a constant current.

以下図面を用いて本発明に関わる実施の形態について詳細に説明する。   Embodiments according to the present invention will be described below in detail with reference to the drawings.

図5のように構成された、エンジン201と蓄電手段206によって駆動されるハイブリッドシステムに適用する場合について説明する。車両システムの構成例を以下に示す。エンジン201及びエンジン201に軸で直結された発電機202はU,V,Wの3相の交流電力を発生し、コンバータ装置203はこの交流電力を直流電力に変換して出力する。インバータ装置204はコンバータ装置203から出力される直流電力を可変電圧,可変周波数の3相交流電力に変換し、誘導電動機205に供給する。蓄電装置206はコンバータ装置203の出力側(直流側)に並列に接続され、車両の起動時に電力を補給する。平滑コンデンサ207はインバータ装置204の入力側(直流側)に並列に接続され、インバータ入力電圧の変動を抑制する。   A case where the present invention is applied to a hybrid system configured as shown in FIG. 5 and driven by the engine 201 and the power storage means 206 will be described. A configuration example of the vehicle system is shown below. The engine 201 and the generator 202 directly connected to the engine 201 via a shaft generate three-phase AC power of U, V, and W, and the converter device 203 converts this AC power into DC power and outputs it. The inverter device 204 converts the DC power output from the converter device 203 into three-phase AC power of variable voltage and variable frequency, and supplies it to the induction motor 205. Power storage device 206 is connected in parallel to the output side (DC side) of converter device 203 and replenishes power when the vehicle is started. The smoothing capacitor 207 is connected in parallel to the input side (DC side) of the inverter device 204, and suppresses fluctuations in the inverter input voltage.

一方、制御部210は、電流検出器209aで検出したコンバータ出力電流Isと電圧検出器208で検出した平滑コンデンサ電圧及び発電機回転周波数によりコンバータ制御演算を実行し、コンバータ装置203に対して、コンバータPWM制御信号を出力する。また、制御部210は、電流検出器209b,209c,209dで検出した電動機電流Iu,Iv,Iwと電圧検出器208で検出した平滑コンデンサ電圧、及び電動機回転周波数よりインバータ制御演算を実行し、インバータ装置204に対して、インバータPWM制御信号を出力する。蓄電手段の電池状態演算部では、蓄電装置206の入出力電流,電圧,蓄電装置の温度と、環境温度から、蓄電装置206の稼動状態を演算する。さらに、制御部210は、蓄電手段の電池状態演算部から出力される蓄電装置206の情報から、蓄電装置206の稼動状態を判断,蓄電装置の充放電制御信号を出力する構成となっている。   On the other hand, the control unit 210 executes converter control calculation based on the converter output current Is detected by the current detector 209a, the smoothing capacitor voltage detected by the voltage detector 208, and the generator rotation frequency, and A PWM control signal is output. Further, the control unit 210 executes inverter control calculation based on the motor currents Iu, Iv, Iw detected by the current detectors 209b, 209c, and 209d, the smoothing capacitor voltage detected by the voltage detector 208, and the motor rotation frequency, and the inverter An inverter PWM control signal is output to the device 204. The battery state calculation unit of the power storage means calculates the operating state of the power storage device 206 from the input / output current and voltage of the power storage device 206, the temperature of the power storage device, and the environmental temperature. Further, the control unit 210 is configured to determine the operating state of the power storage device 206 from the information of the power storage device 206 output from the battery state calculation unit of the power storage means, and to output a charge / discharge control signal for the power storage device.

電池状態演算部で実行される蓄電装置の劣化推定手順を図6を使用して説明する。まず、蓄電システムの起動後、初期電圧Vini,電流I,蓄電手段の温度Tc,環境温度Taを測定し(S1)、開始充電状態SOCiniを演算する(S2)。開始電圧Viniと、SOCiniを記録し(S3)、始動電圧に満たない場合は、充電により始動時の電圧を調整(S4)してから走行を開始する(S5)。走行中は電圧V,電流I,温度Tc,Taの測定値を関連付けて記録し(S6)、走行終了(S7)後、走行時の最大電圧Vmax,最小電圧Vminをそのときの電流値I及び温度Tc,Taとともに抽出し、ΔVを求める(S8)。求めたΔVを予め定められた初期値ΔViniと比較する(S9)。ΔVの閾値ΔVthとも比較をし、劣化度SOHの算出(S10)後、オペレータ確認画面へ表示する(S11)。更にSOHを閾値と比較し(S12)、閾値よりも大きい場合を劣化とみなし、交換点検警告表示をし(S13)履歴を記録する(S14)。閾値よりも劣化度SOHが小さい場合は交換点検警告表示を行わずに、そのまま履歴を記録する(S14)。   A procedure for estimating the deterioration of the power storage device executed by the battery state calculation unit will be described with reference to FIG. First, after the power storage system is activated, the initial voltage Vini, the current I, the temperature Tc of the power storage means, and the environmental temperature Ta are measured (S1), and the start charge state SOCini is calculated (S2). The start voltage Vini and the SOCini are recorded (S3). When the start voltage is not reached, the start voltage is adjusted by charging (S4), and the vehicle starts running (S5). During traveling, the measured values of voltage V, current I, temperature Tc, Ta are recorded in association with each other (S6), and after traveling is completed (S7), the maximum voltage Vmax and minimum voltage Vmin during traveling are represented by the current value I and Extracted together with the temperatures Tc and Ta to obtain ΔV (S8). The obtained ΔV is compared with a predetermined initial value ΔVini (S9). The threshold value ΔVth of ΔV is also compared, and after the deterioration degree SOH is calculated (S10), it is displayed on the operator confirmation screen (S11). Further, SOH is compared with a threshold value (S12), a case where the SOH is larger than the threshold value is regarded as deterioration, a replacement inspection warning is displayed (S13), and a history is recorded (S14). When the degree of deterioration SOH is smaller than the threshold value, the history is recorded as it is without displaying the replacement inspection warning (S14).

このとき劣化度SOHの算出は、ΔVとΔViniの絶対値で比較により算出することができる。もしくはΔV/ΔViniにより算出しても良いし、またはΔVからSOC変動分の電圧幅を減じ電流値で除した値での比較により算出しても良い。   At this time, the degree of deterioration SOH can be calculated by comparing the absolute values of ΔV and ΔVini. Alternatively, it may be calculated by ΔV / ΔVini, or may be calculated by comparison with a value obtained by subtracting the voltage width corresponding to the SOC fluctuation from ΔV and dividing by the current value.

さらに、図7に電池状態演算部における劣化演算のデータ処理を示す。図7に示すように、劣化演算は、各センサからの電圧V,電流I,温度Tc,Taの入力をA/D変換後、関連付けて記録部に記録し、記録部からデータを選択,抽出して劣化度SOHを算出した後、劣化度SOHの算出結果を表示部へ表示するとともに、劣化度SOHの算出結果を制御部210へ反映させる。制御部210は、劣化度SOHの算出結果により、蓄電手段の現在の抵抗値を算出し、得られた抵抗値から許容される電流値を計算、更にはSOC演算補正を実施する。尚、SOC演算や許容電流計算は特許第4157317号の段落[0028]から[0079]に開示されている技術が適用できる。   Further, FIG. 7 shows data processing of deterioration calculation in the battery state calculation unit. As shown in FIG. 7, in the deterioration calculation, the input of voltage V, current I, temperature Tc, Ta from each sensor is A / D converted, correlated and recorded in the recording unit, and data is selected and extracted from the recording unit. After calculating the deterioration degree SOH, the calculation result of the deterioration degree SOH is displayed on the display unit, and the calculation result of the deterioration degree SOH is reflected on the control unit 210. The control unit 210 calculates the current resistance value of the power storage unit based on the calculation result of the deterioration degree SOH, calculates an allowable current value from the obtained resistance value, and further performs SOC calculation correction. The technique disclosed in paragraphs [0028] to [0079] of Japanese Patent No. 4157317 can be applied to the SOC calculation and allowable current calculation.

路線走行時の劣化度SOH演算は、車庫から始発駅まで、あるいは終着駅から車庫までの走行時のように車両重量が一定の場合に行う方が好ましい。車両重量が一定の場合には出力変動が少なく、電流パターンもほぼ一定で得られるため、より精度の高い劣化診断が実施できる。   It is preferable to perform the deterioration degree SOH calculation when traveling on a route when the vehicle weight is constant, such as when traveling from the garage to the starting station or from the terminal station to the garage. When the vehicle weight is constant, the output fluctuation is small and the current pattern is almost constant, so that a more accurate deterioration diagnosis can be performed.

他の実施例として、図11に示すように複数の蓄電手段それぞれに電圧計測手段を備えた実施形態について説明する。本実施例で言及しない部分は、実施例1と同様の構成であるものとする。   As another example, an embodiment will be described in which each of a plurality of power storage means includes voltage measurement means as shown in FIG. Parts not mentioned in the present embodiment are assumed to have the same configuration as in the first embodiment.

図11に示す複数の蓄電手段211と212が直列に接続された蓄電手段に直列に各蓄電手段の電流値を計測する電流検出手段40と,各蓄電手段の電圧を計測する電圧計測手段31,32および、総電圧検出手段の検出電圧及び電流検出手段の電流値を記録するデータ記録部10と、データ記録部10に記録された電圧情報から前記蓄電手段の抵抗値を演算する演算部分(図示せず)とを有し、劣化判定プログラムを有した構成で、走行中は制御指令発生手段70から指令を実施して、充放電手段60で負荷電流を印加する車両構成において、蓄電手段211は電圧計測手段31の電圧を、蓄電手段212は電圧計測手段32の電圧をモニタし、記録することにより、蓄電手段ごとの電圧変動幅ΔVをそれぞれ演算する。初期あるいはシステムの代表値のΔVini と比較し、それぞれの蓄電手段の劣化度を算出し、ΔVが閾値以上の場合に,各蓄電手段について個別に劣化情報を表示する。これにより、各蓄電手段の異常や、蓄電手段の劣化ばらつきが判定でき、蓄電手段の交換やメインテナンスの要否を簡便に知ることができる。また各蓄電手段の劣化状態に応じて、充放電電流を制御したり、部分保守を容易に行うことができる。   A current detecting means 40 for measuring the current value of each power storage means in series with a power storage means in which a plurality of power storage means 211 and 212 shown in FIG. 11 are connected in series, and a voltage measuring means 31 for measuring the voltage of each power storage means, 32, a data recording unit 10 for recording the detection voltage of the total voltage detection unit and the current value of the current detection unit, and a calculation part for calculating the resistance value of the power storage unit from the voltage information recorded in the data recording unit 10 (FIG. In a vehicle configuration in which a command is issued from the control command generating means 70 and a load current is applied by the charging / discharging means 60 during traveling, the power storage means 211 is configured to have a deterioration determination program. The storage unit 212 monitors and records the voltage of the voltage measurement unit 31 and records the voltage of the voltage measurement unit 32, thereby calculating the voltage fluctuation width ΔV for each storage unit. The degree of deterioration of each power storage means is calculated by comparing with the initial value or the representative value ΔVini of the system, and when ΔV is equal to or greater than a threshold value, deterioration information is individually displayed for each power storage means. Thereby, the abnormality of each power storage means and the deterioration variation of the power storage means can be determined, and it is possible to easily know whether the power storage means needs to be replaced or maintained. Moreover, according to the deterioration state of each electrical storage means, charge / discharge current can be controlled and partial maintenance can be easily performed.

他の実施例として、システムの安定維持運用に関する実施形態について説明する。本実施例で言及しない部分は、実施例1と同様の構成であるものとする。走行時の蓄電手段の電圧波形は放電時に電圧低下し、充電時に電圧が上昇する。このとき、図8に示すように蓄電手段のシステムの初期の蓄電手段電圧波形(A)に対し、劣化進行時の蓄電手段電圧波形は(B)に示すようになる。初期は、最大充電電圧Vmax0,最小放電電圧Vmin0で、電圧変動幅はΔVini=(Vmax0−Vmin0)である。劣化進行時は最大電圧Vmax、最小電圧はVminとなり、ΔV=(Vmax−Vmin)である。ここで、Vclimは充電動作時における最大動作電圧、Vdlimは放電動作時における最小動作電圧である。 As another example, an embodiment related to the stable maintenance operation of the system will be described. Parts not mentioned in the present embodiment are assumed to have the same configuration as in the first embodiment. The voltage waveform of the power storage means during running decreases during discharging and increases during charging. At this time, as shown in FIG. 8, the storage means voltage waveform during the progress of deterioration is as shown in (B) with respect to the initial storage means voltage waveform (A) of the storage means system. Initially, the maximum charging voltage V max0 and the minimum discharging voltage V min0 are set, and the voltage fluctuation range is ΔVini = (V max0 −V min0 ). When the deterioration proceeds, the maximum voltage Vmax and the minimum voltage become Vmin, and ΔV = (Vmax−Vmin). Here, V clim is the maximum operating voltage during the charging operation, and V dlim is the minimum operating voltage during the discharging operation.

蓄電手段の劣化時には、蓄電手段の過充電、あるいは過放電の保護のため、電圧が最大電圧Vclimまたは最小電圧Vdlimに到達した場合に電流を減じることが一般に行われている。本実施例においても、劣化時のΔVが閾値ΔVthを超えた場合に、蓄電手段の充放電電流をあらかじめ設計されている電流閾値よりも小さくすることができる。また、図8に示すように、上限のVclimから決定される電流閾値の場合、開始電圧を下げることで、電流閾値による許容範囲内の電流値を得ることが可能である。よって、走行中に電圧変動幅ΔVが閾値ΔVthに達し、VmaxがVclimに達した場合には、ひとまず走行時の充電電流を減少させて走行する。走行終了後、次回走行開始時に、開始電圧を下げることにより、VmaxをVclim以下とすることができ、電流値はもとの規定の電流値を得ることが可能となる。電圧変動幅ΔVが閾値ΔVthに達した時点で即座に蓄電手段を交換せずみ、継続して蓄電手段を使用することが可能で、蓄電手段を有効利用できる制御が可能となる。尚、ΔVがΔVthに達し,かつ,最大電圧Vmaxが上限電圧Vclim、あるいは最小電圧Vminが下限電圧Vdlimに達した場合の電流制限は、ΔVthに所定の回数達した場合に実施することも出来る。これによりノイズなどによる誤検知により無駄に電流制限を実施することを防ぐことができる。 When the power storage means deteriorates, the current is generally reduced when the voltage reaches the maximum voltage V clim or the minimum voltage V dlim in order to protect the power storage means from being overcharged or overdischarged. Also in the present embodiment, when ΔV at the time of deterioration exceeds the threshold value ΔVth, the charge / discharge current of the power storage means can be made smaller than the current threshold value designed in advance. Also, as shown in FIG. 8, in the case of a current threshold value determined from the upper limit V clim, it is possible to obtain a current value within an allowable range by the current threshold value by lowering the start voltage. Therefore, when the voltage fluctuation width ΔV reaches the threshold value ΔVth and Vmax reaches V clim during traveling, the vehicle travels while reducing the charging current during traveling. By reducing the start voltage at the start of the next run after the end of the run, Vmax can be made equal to or less than V clim, and the current value can be the original specified current value. When the voltage fluctuation width ΔV reaches the threshold value ΔVth, it is possible to immediately use the power storage means without exchanging the power storage means, and to control the power storage means effectively. The current limit when ΔV reaches ΔVth and the maximum voltage Vmax reaches the upper limit voltage V clim or the minimum voltage Vmin reaches the lower limit voltage V dlim may be executed when ΔVth is reached a predetermined number of times. I can do it. As a result, it is possible to prevent wasteful current limitation due to erroneous detection due to noise or the like.

本発明の他の実施例として、電圧変動幅ΔVの算出に用いる電圧計測値の計測時間を選択する例を示す。本実施例で言及しない部分は、実施例1と同様の構成であるものとする。   As another embodiment of the present invention, an example of selecting a measurement time of a voltage measurement value used for calculation of the voltage fluctuation range ΔV will be shown. Parts not mentioned in the present embodiment are assumed to have the same configuration as in the first embodiment.

本発明の蓄電システムにおいて、特定路線を車両が走行した際の蓄電手段の電流I,電圧V,温度Tcの記録データから、温度Tcが所定温度以上、且つ複数の電流値Iの前後の電流範囲I±αで選択された電流値を使用し、走行開始時間から所定時間経過後の時間tの前途の時間範囲t±t′での走行区間を選択し、路線のデータを時間とともに記録しておいた記録データの中から、選択した路線における放電電流,充電電流が最も大きくなると想定されている、あらかじめ決められた時間の範囲内で演算箇所を選択し、ΔVを算出し、劣化度を判定する。   In the power storage system of the present invention, the current range before and after a plurality of current values I, where the temperature Tc is equal to or higher than a predetermined temperature, based on recorded data of the current I, voltage V, and temperature Tc of the power storage means when the vehicle travels on a specific route. Using the current value selected by I ± α, select the travel section in the time range t ± t ′ ahead of the time t after the lapse of the predetermined time from the travel start time, and record the route data along with the time From the recorded data, select the calculation location within the predetermined time range where the discharge current and charging current on the selected route are assumed to be the largest, calculate ΔV, and determine the degree of deterioration To do.

このとき、温度範囲もT±tの範囲で限定、更に複数値での平均値として、複数状態での蓄電手段の劣化情報を含むように設定する。   At this time, the temperature range is also limited to a range of T ± t, and further, an average value of a plurality of values is set so as to include deterioration information of the power storage means in a plurality of states.

この実施例によると、ΔVの算出に用いる電圧値の計測条件を特定できるため、劣化判定の精度をより向上させることができる。   According to this embodiment, the measurement condition of the voltage value used for calculating ΔV can be specified, so that the accuracy of the deterioration determination can be further improved.

本発明の他の実施例として、劣化度をより精度よく算出する実施形態を説明する。本実施例で言及しない部分は、実施例1と同様の構成であるものとする。劣化度の測定区間として定電流で運行される区間を選択し、一定秒数tの時点の充電電圧V1と、放電側でも一定秒数t′の時点でのV2と、でΔV=(V1−V2)を算出し、このΔVと、同条件で算出された初期値ΔViniを比較し、閾値ΔVthとの差から劣化度を算出する。   As another embodiment of the present invention, an embodiment for calculating the degree of deterioration with higher accuracy will be described. Parts not mentioned in the present embodiment are assumed to have the same configuration as in the first embodiment. A section operated at a constant current is selected as a measurement section for the deterioration degree, and ΔV = (V1−) at a charging voltage V1 at a certain time t and a voltage V2 at a certain time t ′ on the discharge side. V2) is calculated, this ΔV is compared with the initial value ΔVini calculated under the same conditions, and the deterioration degree is calculated from the difference from the threshold value ΔVth.

この実施例によると、同じ電流値の条件で電圧値を検出できるため、劣化度を精度良く算出することができる。   According to this embodiment, since the voltage value can be detected under the same current value condition, the deterioration degree can be calculated with high accuracy.

定期的な走行により、平均化することで初期ΔVoを基準とし、走行劣化時のΔVを比較する。蓄電手段の電圧が放電時間(SOC)に伴い一様に変化する蓄電デバイスであれば、使用範囲内で、最大電圧,最小電圧が決まる。更に、一日の運行路線が決定している場合は、最大電圧と最小電圧の幅が決定している。   Averaging is averaged by regular running, and the ΔV at the time of running deterioration is compared with the initial ΔVo as a reference. In the case of an electricity storage device in which the voltage of the electricity storage means changes uniformly with the discharge time (SOC), the maximum voltage and the minimum voltage are determined within the usage range. Furthermore, when the daily operating route is determined, the width of the maximum voltage and the minimum voltage is determined.

蓄電手段がリチウムイオン電池の場合は、図9,図10に示すように温度による抵抗値変化が大きいが、蓄電手段の温度が25℃以上であれば、SOCによらず、抵抗値はほぼ一定である。   When the power storage means is a lithium ion battery, as shown in FIGS. 9 and 10, the resistance value changes greatly depending on the temperature. However, if the temperature of the power storage means is 25 ° C. or higher, the resistance value is almost constant regardless of the SOC. It is.

このSOCと温度の範囲内で動作する蓄電手段のシステムにおいては、開始電圧が数%異なり、走行時のSOCが全体的数%上下しても、電圧変動幅で抵抗値の変動を見積もることが可能である。   In this system of power storage means operating within the range of SOC and temperature, even if the starting voltage differs by several% and the SOC during traveling is up or down by several% overall, it is possible to estimate the fluctuation of the resistance value by the voltage fluctuation range. Is possible.

蓄電手段の劣化は緩やかに進行するため、1走行、1走行での比較よりも、同じ路線を複数回走行したときの平均値から、初期走行の代表値を求め、更に蓄電手段の温度ごとに代表値を蓄積する。初期走行で取得できない温度範囲については、蓄電手段の初期の温度特性から換算テーブルを作成して利用することができる。   Since the deterioration of the power storage means progresses slowly, the representative value of the initial travel is obtained from the average value when the same route is traveled a plurality of times rather than the comparison between one travel and one travel, and further, for each temperature of the power storage means. Accumulate representative values. For the temperature range that cannot be acquired in the initial running, a conversion table can be created and used from the initial temperature characteristics of the power storage means.

初期蓄電手段のΔViniの代表値と、複数走行、たとえば10日間のデータを蓄積しての移動平均から求めた走行時のΔVを比較すると、計測異常値やデータ変換異常の値をフィルタすることができ、これにより信頼性の高い劣化判定が実施できる。   Comparing the representative value of ΔVini of the initial power storage means with ΔV at the time of running obtained from a moving average obtained by accumulating data for a plurality of runs, for example, 10 days, it is possible to filter the measurement abnormal value and the value of the data conversion abnormality. This makes it possible to perform highly reliable deterioration determination.

図13を用いて本発明の測定時の動作を説明する。システム起動時に初期電圧Viniを測定(S1)、電圧V,電流I,温度Tの情報から初期の蓄電手段の状態SOCiniを演算(S2)、その後開始電圧Vini,SOCiniをデータ記録部に記録後(S3)、走行開始する(S5)。実行時の電圧,電流,温度をデータ記録し(S6)、選択した電圧,電流データでのΔVを算出する(S8)。ΔVから(使用した電流データを用いて得られる抵抗値より)SOHを算出(S10)し、オペレータ確認用画面に表示する(S11)。また、算出されたSOHを基準のSOHからの変動ΔSOHとして、ΔSOHの閾値と比較し(S12)、ΔSOHの閾値より大きい場合は蓄電手段の充放電制御に用いられる制御パラメータへ劣化を反映し(S13)、履歴を記録する(S14)。S12においてΔSOH≦閾値の場合は、履歴を記録するのみでパラメータには反映しない。 The operation at the time of measurement according to the present invention will be described with reference to FIG. The initial voltage Vini is measured when the system is started (S1), the initial state SOC ini of the power storage means is calculated from information on the voltage V, current I, and temperature T (S2), and then the start voltage V ini and SOC ini are stored in the data recording unit. After recording (S3), traveling is started (S5). The voltage, current, and temperature at the time of execution are recorded as data (S6), and ΔV is calculated for the selected voltage and current data (S8). SOH is calculated from ΔV (from the resistance value obtained using the current data used) (S10) and displayed on the operator confirmation screen (S11). Further, the calculated SOH is compared with a threshold value of ΔSOH as a variation ΔSOH from the reference SOH (S12). S13), the history is recorded (S14). If ΔSOH ≦ threshold value in S12, only the history is recorded and not reflected in the parameter.

また、走行毎の蓄電手段電圧,電流,温度などを記録するデータ保管装置は、車両内における二次電池システムの状態検知演算部にあるのが望ましいが、車両内の任意のデータ保管装置や、あるいは、LAN等の通信を利用して、車両外の車両基地にあっても良い。 Further, the data storage device for recording the storage means voltage, current, temperature, etc. for each run is preferably in the state detection calculation unit of the secondary battery system in the vehicle, but any data storage device in the vehicle, Or you may exist in the vehicle base outside a vehicle using communication, such as LAN.

路線、あるいは区間毎に走行時の日時,蓄電手段電流,電圧,蓄電手段の温度,環境温度を記録しておき、図12に示すような運転台にある視認操作パネルにおいて、路線選択,温度範囲選択,日時指定を実施することで、所望の期間における蓄電手段のΔVを算出し、任意の劣化度を確認することができ、蓄電手段の保守時に異常の有無を確認することを可能とする。   Record the date and time of travel, the current of the storage means, the voltage, the temperature of the storage means, and the environmental temperature for each route or section, and select the route selection and temperature range on the visual operation panel in the cab as shown in FIG. By selecting and specifying the date and time, ΔV of the power storage means in a desired period can be calculated, an arbitrary degree of deterioration can be confirmed, and it can be confirmed whether there is an abnormality during maintenance of the power storage means.

図12に運転台の視認操作パネルの例を示す。操作表示盤には点検警告表示、交換表示を表示する部位を備え、第1の蓄電手段状態表示装置と、任意測定SOH表示装置の少なくとも1つ以上を備え、温度範囲選択部,路線選択部により、条件設定を実施し、蓄電手段の劣化確認処理スイッチにより蓄電手段の状態を演算し、結果を表示装置に表示させる。点検警告表示は運転台の操作パネルの他、各蓄電手段にそれぞれ配置されていてもよい。   FIG. 12 shows an example of a driver's cab visual operation panel. The operation display panel includes a part for displaying an inspection warning display and a replacement display, and includes at least one of a first power storage means state display device and an arbitrary measurement SOH display device. The temperature range selection unit and the route selection unit The condition is set, the state of the power storage means is calculated by the deterioration check processing switch of the power storage means, and the result is displayed on the display device. The inspection warning display may be arranged on each power storage means in addition to the operation panel of the cab.

以上のように、電流I,電圧V,蓄電手段の温度Tの情報から、蓄電手段の状態を検出し、および蓄電手段の劣化状態(SOH)を演算する。演算されたSOHを制御用パラメータに反映し、検出された蓄電手段の状態の許容電流・許容電力演算を実施、これに基づいた入出力指令により、蓄電手段を充放電することで安定した出力を得、蓄電システムを長寿命化することが出来、システムの安定維持が可能となる。   As described above, the state of the power storage unit is detected from the information on the current I, the voltage V, and the temperature T of the power storage unit, and the deterioration state (SOH) of the power storage unit is calculated. The calculated SOH is reflected in the control parameters, the allowable current / allowable power calculation of the detected state of the power storage means is performed, and stable output is obtained by charging / discharging the power storage means according to the input / output command based on this As a result, the life of the power storage system can be extended, and the system can be maintained stably.

なお、本実施例における蓄電手段2は、蓄電手段のシステムを構成する要素であって、単電池でも適用可能であり、該単電池を組み合わせた組電池であっても良い。   The power storage means 2 in the present embodiment is an element constituting the system of the power storage means, and can be applied as a single battery, or may be an assembled battery combining the single batteries.

さらに、通信により、蓄電手段の組電池の筐体内に例えば内蔵された制御回路等にデータ保存領域がある場合、履歴を保存し、保守時に活用できる。   Furthermore, when there is a data storage area, for example, in a built-in control circuit or the like in the battery pack housing of the power storage means by communication, the history can be stored and used during maintenance.

本発明における蓄電手段はリチウム二次電池に限らず、ニッケル水素電池,NAS電池,鉛電池,電気二重層キャパシタなどの充放電可能な蓄電素子で構成される電池システムすべてに適用可能である。これらの電池システムを使用でき、電流の入出力パターンがほぼ決まっている、路線走行するシステムにおける移動体である鉄道車両,地上給電設備,電力貯蔵システムなどの大規模電池システムの安定維持について有効である。電池を制御するシステム及び方法において電池の劣化度を精度良く求めることを実現して、電池制御システムの製造,販売,メインテナンスに寄与し、電池システムの信頼性を向上させることが可能になる。   The power storage means in the present invention is not limited to a lithium secondary battery, and can be applied to all battery systems including chargeable / dischargeable power storage elements such as nickel metal hydride batteries, NAS batteries, lead batteries, and electric double layer capacitors. These battery systems can be used, and the current input / output pattern is almost fixed. It is effective for stable maintenance of large-scale battery systems such as rail vehicles, ground power supply facilities, power storage systems, etc. is there. In the system and method for controlling the battery, it is possible to accurately determine the degree of deterioration of the battery, contributing to the manufacture, sale, and maintenance of the battery control system, and improving the reliability of the battery system.

10 データ記録部
20,211,212 蓄電手段
30,31,32 電圧計測手段
40 電流検出手段
50 状態検知手段
60 充放電手段
70 制御指令発生手段
DESCRIPTION OF SYMBOLS 10 Data recording part 20, 211, 212 Electric storage means 30, 31, 32 Voltage measurement means 40 Current detection means 50 State detection means 60 Charging / discharging means 70 Control command generation means

Claims (15)

蓄電手段の充放電を制御する充放電手段と接続された充放電可能な蓄電手段の劣化を推定する蓄電手段劣化推定方法において、
前記蓄電手段の電圧を計測し、
計測された電圧計測値を記録し、
所定期間に記録された電圧計測値の最大値及び最小値から電圧変動幅を算出し、
算出された前記電圧変動幅を基準電圧変動幅と比較することにより蓄電手段の劣化状態を推定することを特徴とする蓄電手段劣化推定方法。
In the power storage means deterioration estimation method for estimating the deterioration of chargeable / dischargeable power storage means connected to the charge / discharge means for controlling charge / discharge of the power storage means,
Measure the voltage of the power storage means,
Record the measured voltage measurement value,
Calculate the voltage fluctuation range from the maximum and minimum values of the voltage measurement values recorded in the specified period,
A method for estimating deterioration of power storage means, wherein the deterioration state of power storage means is estimated by comparing the calculated voltage fluctuation width with a reference voltage fluctuation width.
請求項1記載の蓄電手段劣化推定方法において、
前記蓄電手段の電圧を計測する際に、前記蓄電手段を流れる電流と、前記蓄電手段の動作時温度と、環境温度の少なくともいずれかを計測し、
前記電圧計測値を、前記電流計測値及び前記動作時温度計測値及び環境温度計測値の少なくともいずれかと関連付けて記録し、
所定範囲を逸脱していない前記計測値と関連付けて記憶されている前記電圧計測値の最大値及び最小値から電圧変動幅を算出し、前記基準電圧変動幅と比較することにより蓄電手段の劣化状態を推定することを特徴とする蓄電手段劣化推定方法。
The power storage means deterioration estimation method according to claim 1,
When measuring the voltage of the power storage means, measure at least one of the current flowing through the power storage means, the operating temperature of the power storage means, and the environmental temperature,
Recording the voltage measurement value in association with at least one of the current measurement value, the operating temperature measurement value, and the environmental temperature measurement value;
The voltage fluctuation range is calculated from the maximum and minimum values of the voltage measurement values stored in association with the measurement values that do not deviate from the predetermined range, and is compared with the reference voltage fluctuation range, thereby deteriorating the storage means. A method for estimating deterioration of power storage means, characterized in that
請求項1記載の蓄電手段劣化推定方法において、
前記蓄電手段の温度を検出し、
電圧計測値を温度検出値と関連付けて記憶し、
所定の温度範囲の温度検出値と関連付けられた電圧計測値の最大値及び最小値から電圧変動幅を算出することを特徴とする蓄電手段劣化推定方法。
The power storage means deterioration estimation method according to claim 1,
Detecting the temperature of the power storage means;
Store the voltage measurement value in association with the temperature detection value,
A method for estimating deterioration of power storage means, comprising: calculating a voltage fluctuation range from a maximum value and a minimum value of voltage measurement values associated with a temperature detection value in a predetermined temperature range.
請求項1ないし3のいずれかに記載の蓄電手段劣化推定方法において、
前記基準電圧変動幅は、前記蓄電手段の初期状態における電圧計測値の最大値及び最小値から算出される電圧変動幅であることを特徴とする蓄電手段劣化推定方法。
In the storage means deterioration estimation method according to any one of claims 1 to 3,
The method for estimating deterioration of power storage means, wherein the reference voltage fluctuation width is a voltage fluctuation width calculated from a maximum value and a minimum value of voltage measurement values in an initial state of the power storage means.
請求項1ないし4のいずれかに記載の蓄電手段劣化推定方法において、
前記電圧計測値の最大値が最大許容電圧以上であり、前記電圧計測値の最小値が最小許容電圧値よりも大きい場合に、次回の走行開始時の前記蓄電手段の電圧を下げることを特徴とする蓄電手段劣化推定方法。
In the electrical storage means deterioration estimation method in any one of Claims 1 thru | or 4,
When the maximum value of the voltage measurement value is greater than or equal to the maximum allowable voltage and the minimum value of the voltage measurement value is greater than the minimum allowable voltage value, the voltage of the power storage means at the next start of traveling is reduced. A method for estimating deterioration of power storage means.
請求項5記載の蓄電手段劣化推定方法において、
所定回数以上の演算により前記電圧変動幅が前記基準電圧変動幅以上となった場合に、前記蓄電手段の許容電流値を減少させることを特徴とする蓄電手段劣化推定方法。
The power storage means deterioration estimation method according to claim 5,
A method for estimating deterioration of power storage means, comprising: reducing an allowable current value of the power storage means when the voltage fluctuation width becomes equal to or greater than the reference voltage fluctuation width by a predetermined number of operations.
充放電可能な蓄電手段と、当該蓄電手段の充放電を制御する充放電手段と、備えた電源装置において、
前記蓄電手段の電圧値を計測する電圧計測手段と、
前記電圧計測値を記録する記録手段と、
所定期間に前記記録手段に記録された電圧計測値の最大値と最小値により電圧変動幅を算出し、算出された電圧変動幅を基準電圧変動幅と比較することにより前記蓄電手段の劣化状態を判定する劣化判定手段と、を備えたことを特徴とする電源装置。
In a power supply device comprising a chargeable / dischargeable power storage means, a charge / discharge means for controlling charge / discharge of the power storage means,
Voltage measuring means for measuring a voltage value of the power storage means;
Recording means for recording the voltage measurement value;
A voltage fluctuation range is calculated based on the maximum and minimum voltage measurement values recorded in the recording unit during a predetermined period, and the calculated voltage fluctuation range is compared with a reference voltage fluctuation range to determine the deterioration state of the power storage unit. A power supply apparatus comprising: a deterioration determining means for determining.
請求項7記載の電源装置において、
前記蓄電手段を流れる電流を計測する電流計測手段と、
前記蓄電手段の動作時温度を計測する温度計測手段と、
環境温度を計測する環境温度計測手段と、の少なくともいずれかの計測手段を有し、
前記計測手段の計測値は、前記電圧計測手段で計測された電圧計測値と関連付けて前記記録手段に記録され、
前記劣化判定手段は、所定の温度範囲を逸脱していない前記計測手段の計測値と関連付けて記録された前記電圧計測値の最大値および最小値から電圧変動幅を算出することを特徴とする電源装置。
The power supply device according to claim 7, wherein
Current measuring means for measuring a current flowing through the power storage means;
Temperature measuring means for measuring an operating temperature of the power storage means;
An environmental temperature measuring means for measuring the environmental temperature and at least one of the measuring means;
The measurement value of the measurement unit is recorded in the recording unit in association with the voltage measurement value measured by the voltage measurement unit,
The degradation determination unit calculates a voltage fluctuation range from the maximum value and the minimum value of the voltage measurement value recorded in association with the measurement value of the measurement unit that does not deviate from a predetermined temperature range. apparatus.
請求項7または請求項8記載の電源装置において、
劣化判定の条件を指定可能な条件指定手段を備え、
前記劣化判定手段は、前記条件指定手段で入力された条件に一致する電圧計測値を前記記録手段から抽出し、当該電圧計測値を用いて電圧変動幅を算出して前記蓄電手段の劣化状態を判定することを特徴とする電源装置。
The power supply device according to claim 7 or 8,
It is equipped with condition specifying means that can specify the condition for judging deterioration,
The deterioration determination means extracts a voltage measurement value that matches the condition input by the condition specifying means from the recording means, calculates a voltage fluctuation range using the voltage measurement value, and determines the deterioration state of the power storage means. A power supply device characterized by determining.
請求項9記載の電源装置において、
前記条件指定手段で入力された条件に基づいて判定された劣化状態を抵抗上昇率または容量維持率で表示する表示装置を備えることを特徴とする電源装置。
The power supply device according to claim 9, wherein
A power supply apparatus comprising: a display device that displays a deterioration state determined based on a condition input by the condition designating unit using a resistance increase rate or a capacity maintenance rate.
請求項7または請求項8記載の電源装置において、
前記劣化判定手段で判定された劣化状態が所定劣化度を超えた場合に、警告表示を行う表示装置を備えることを特徴とする電源装置。
The power supply device according to claim 7 or 8,
A power supply apparatus comprising: a display device that displays a warning when the deterioration state determined by the deterioration determination means exceeds a predetermined deterioration degree.
請求項11記載の電源装置において、
前記表示装置は、劣化状態を抵抗上昇率または容量維持率で表示することを特徴とする電源装置。
The power supply device according to claim 11, wherein
The display device displays a deterioration state by a resistance increase rate or a capacity maintenance rate.
充放電可能な蓄電手段と、当該蓄電手段から電力の供給を受けるインバータ装置と、該インバータ装置により駆動される電動機と、備えた鉄道車両において、
前記蓄電手段の電圧値を計測する電圧計測手段と、
前記電圧計測値を記録する記録手段と、
所定期間に前記記録手段に記録された電圧計測値の最大値と最小値により電圧変動幅を算出し、算出された電圧変動幅を基準電圧変動幅と比較することにより前記蓄電手段の劣化状態を判定する劣化判定手段と、
判定された劣化状態の情報を用いて前記インバータ装置を制御する制御部と、
を備えたことを特徴とする鉄道車両。
In a railway vehicle provided with chargeable / dischargeable power storage means, an inverter device that receives supply of electric power from the power storage means, and an electric motor driven by the inverter device,
Voltage measuring means for measuring a voltage value of the power storage means;
Recording means for recording the voltage measurement value;
A voltage fluctuation range is calculated based on the maximum and minimum voltage measurement values recorded in the recording unit during a predetermined period, and the calculated voltage fluctuation range is compared with a reference voltage fluctuation range to determine the deterioration state of the power storage unit. A deterioration determining means for determining;
A control unit that controls the inverter device using information of the determined deterioration state;
A railway vehicle characterized by comprising:
請求項13記載の鉄道車両において、
前記蓄電手段の温度を検出する温度検出手段を備え、
前記記録手段は、温度検出値を前記電圧計測値と関連付けて記録し、
前記劣化判定手段は、所定の温度範囲の前記温度検出値と関連付けて記録された電圧計測値であって、所定期間に前記記録手段に記録された電圧計測値の最大値と最小値により電圧変動幅を算出することを特徴とする鉄道車両。
The railway vehicle according to claim 13,
Temperature detecting means for detecting the temperature of the power storage means,
The recording means records the temperature detection value in association with the voltage measurement value,
The degradation determination means is a voltage measurement value recorded in association with the temperature detection value in a predetermined temperature range, and the voltage fluctuation is caused by the maximum value and the minimum value of the voltage measurement value recorded in the recording means during a predetermined period. A railway vehicle characterized by calculating a width.
請求項13記載の鉄道車両において、
前記蓄電手段を流れる電流を計測する電流計測手段と、
前記蓄電手段の動作時温度を計測する温度計測手段と、
環境温度を計測する環境温度計測手段と、
前記電圧計測値に加えて、路線情報,電流計測値,蓄電手段温度計測値,環境温度計測値を記録する前記記録手段と、を備え、
前記劣化判定手段は、路線,電流値,蓄電手段温度,環境温度の指定された範囲内で、前記記録手段から電圧計測値を抽出し、当該電圧計測値の最大値と最小値により電圧変動幅を算出し、算出された電圧変動幅と基準電圧変動幅とに比率を劣化指標とし、
前記電圧計測値の最大値が予め定められた最大許容電圧値に達し、かつ前記電圧変動幅が予め定められた最大許容電圧値に複数回達した場合に、予め定められた許容電流値を減少させることを特徴する鉄道車両。
The railway vehicle according to claim 13,
Current measuring means for measuring a current flowing through the power storage means;
Temperature measuring means for measuring an operating temperature of the power storage means;
Environmental temperature measuring means for measuring environmental temperature;
In addition to the voltage measurement value, the recording means for recording route information, current measurement value, power storage means temperature measurement value, environmental temperature measurement value,
The deterioration determining means extracts a voltage measurement value from the recording means within a specified range of a route, current value, power storage means temperature, and environmental temperature, and a voltage fluctuation range according to the maximum value and the minimum value of the voltage measurement value. And the ratio between the calculated voltage fluctuation width and the reference voltage fluctuation width as a deterioration index,
When the maximum value of the voltage measurement value reaches a predetermined maximum allowable voltage value and the voltage fluctuation range reaches the predetermined maximum allowable voltage value a plurality of times, the predetermined allowable current value is decreased. Railway vehicle characterized by letting
JP2010148467A 2010-06-30 2010-06-30 Power supply, railway vehicle Active JP5386443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010148467A JP5386443B2 (en) 2010-06-30 2010-06-30 Power supply, railway vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010148467A JP5386443B2 (en) 2010-06-30 2010-06-30 Power supply, railway vehicle

Publications (3)

Publication Number Publication Date
JP2012013472A true JP2012013472A (en) 2012-01-19
JP2012013472A5 JP2012013472A5 (en) 2012-08-09
JP5386443B2 JP5386443B2 (en) 2014-01-15

Family

ID=45600100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010148467A Active JP5386443B2 (en) 2010-06-30 2010-06-30 Power supply, railway vehicle

Country Status (1)

Country Link
JP (1) JP5386443B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104081216A (en) * 2012-11-30 2014-10-01 株式会社Lg化学 Apparatus and method for managing use environment and use history of battery
WO2015001751A1 (en) * 2013-07-03 2015-01-08 パナソニックIpマネジメント株式会社 Vehicle storage battery management device, vehicle power unit, and vehicle storage battery management method
WO2015019874A1 (en) * 2013-08-09 2015-02-12 日立オートモティブシステムズ株式会社 Battery control system and vehicle control system
US20150046109A1 (en) * 2012-04-23 2015-02-12 Hitachi, Ltd. Battery system maintenance management system and method
JP2016197955A (en) * 2015-04-03 2016-11-24 プライムアースEvエナジー株式会社 Battery controller, battery control method and lower limit voltage determination method
JP6065156B2 (en) * 2014-04-09 2017-01-25 三菱電機株式会社 Storage battery deterioration measuring device, power storage system device
JP2017129400A (en) * 2016-01-19 2017-07-27 日立化成株式会社 Battery state estimation device
RU2627239C1 (en) * 2013-08-09 2017-08-04 Хитачи Аутомотив Системс, Лтд. Storage battery control system and vehicle control system
RU2627240C1 (en) * 2013-08-09 2017-08-04 Хитачи Аутомотив Системс, Лтд. Storage battery control system and vehicle control system
RU2627298C1 (en) * 2013-08-09 2017-08-07 Хитачи Аутомотив Системс, Лтд. Storage battery control system and vehicle control system
US10644359B2 (en) 2015-09-15 2020-05-05 Kabushiki Kaisha Toshiba Storage battery controlling device, controlling method, non-transitory computer readable medium, power storage system, and power system
JP2022044172A (en) * 2020-09-07 2022-03-17 株式会社東芝 Determination device, power storage system, determination method, and determination program for multiple batteries
JP2022544857A (en) * 2019-08-23 2022-10-21 エルジー エナジー ソリューション リミテッド BATTERY SOH PREDICTION METHOD AND BATTERY PACK USING THIS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022049745A1 (en) 2020-09-04 2022-03-10 株式会社 東芝 Information processing device, information processing method, information processing system, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197049A (en) * 1997-09-22 1999-04-09 Kansai Electric Power Co Inc:The Life predicting method for fuel cell
JP2000206214A (en) * 1999-01-18 2000-07-28 Mitsutoyo Corp Battery life detecting device
JP2003214248A (en) * 2002-01-28 2003-07-30 Denso Corp Battery deterioration detector of vehicle
JP2006275846A (en) * 2005-03-30 2006-10-12 Furukawa Electric Co Ltd:The Method and device for determining deterioration of secondary battery, and power source system
JP2010093875A (en) * 2008-10-03 2010-04-22 Hitachi Ltd Power control apparatus, vehicle running control system, and method for detecting deterioration state of storage battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197049A (en) * 1997-09-22 1999-04-09 Kansai Electric Power Co Inc:The Life predicting method for fuel cell
JP2000206214A (en) * 1999-01-18 2000-07-28 Mitsutoyo Corp Battery life detecting device
JP2003214248A (en) * 2002-01-28 2003-07-30 Denso Corp Battery deterioration detector of vehicle
JP2006275846A (en) * 2005-03-30 2006-10-12 Furukawa Electric Co Ltd:The Method and device for determining deterioration of secondary battery, and power source system
JP2010093875A (en) * 2008-10-03 2010-04-22 Hitachi Ltd Power control apparatus, vehicle running control system, and method for detecting deterioration state of storage battery

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150046109A1 (en) * 2012-04-23 2015-02-12 Hitachi, Ltd. Battery system maintenance management system and method
CN104081216A (en) * 2012-11-30 2014-10-01 株式会社Lg化学 Apparatus and method for managing use environment and use history of battery
WO2015001751A1 (en) * 2013-07-03 2015-01-08 パナソニックIpマネジメント株式会社 Vehicle storage battery management device, vehicle power unit, and vehicle storage battery management method
JP2015014487A (en) * 2013-07-03 2015-01-22 パナソニックIpマネジメント株式会社 Vehicle storage battery management device, vehicle electric power unit and management method of vehicle electric power unit
RU2627243C1 (en) * 2013-08-09 2017-08-04 Хитачи Аутомотив Системс, Лтд. Storage battery control system and vehicle control system
US9821667B2 (en) 2013-08-09 2017-11-21 Hitachi Automotive Systems, Ltd. Battery control system and vehicle control system
CN105453381A (en) * 2013-08-09 2016-03-30 日立汽车系统株式会社 Battery control system and vehicle control system
US10005373B2 (en) 2013-08-09 2018-06-26 Hitachi Automotive Systems, Ltd. Battery control system and vehicle control system
JPWO2015019874A1 (en) * 2013-08-09 2017-03-02 日立オートモティブシステムズ株式会社 Battery control system, vehicle control system
US9931959B2 (en) 2013-08-09 2018-04-03 Hitachi Automotive Systems, Ltd. Battery control system and vehicle control system
WO2015019874A1 (en) * 2013-08-09 2015-02-12 日立オートモティブシステムズ株式会社 Battery control system and vehicle control system
RU2627239C1 (en) * 2013-08-09 2017-08-04 Хитачи Аутомотив Системс, Лтд. Storage battery control system and vehicle control system
RU2627240C1 (en) * 2013-08-09 2017-08-04 Хитачи Аутомотив Системс, Лтд. Storage battery control system and vehicle control system
RU2627298C1 (en) * 2013-08-09 2017-08-07 Хитачи Аутомотив Системс, Лтд. Storage battery control system and vehicle control system
US10211490B2 (en) 2014-04-09 2019-02-19 Mitsubishi Electric Corporation Storage battery deterioration measurement device and power storage system
JP6065156B2 (en) * 2014-04-09 2017-01-25 三菱電機株式会社 Storage battery deterioration measuring device, power storage system device
JP2016197955A (en) * 2015-04-03 2016-11-24 プライムアースEvエナジー株式会社 Battery controller, battery control method and lower limit voltage determination method
US10644359B2 (en) 2015-09-15 2020-05-05 Kabushiki Kaisha Toshiba Storage battery controlling device, controlling method, non-transitory computer readable medium, power storage system, and power system
JP2017129400A (en) * 2016-01-19 2017-07-27 日立化成株式会社 Battery state estimation device
JP2022544857A (en) * 2019-08-23 2022-10-21 エルジー エナジー ソリューション リミテッド BATTERY SOH PREDICTION METHOD AND BATTERY PACK USING THIS
JP7341322B2 (en) 2019-08-23 2023-09-08 エルジー エナジー ソリューション リミテッド Battery SOH prediction method and battery pack using this method
JP2022044172A (en) * 2020-09-07 2022-03-17 株式会社東芝 Determination device, power storage system, determination method, and determination program for multiple batteries

Also Published As

Publication number Publication date
JP5386443B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5386443B2 (en) Power supply, railway vehicle
JP5297751B2 (en) Power supply control device, vehicle travel control system, and storage battery deterioration state detection method
CN107533109B (en) Battery control device and electric vehicle system
JP3867581B2 (en) Assembled battery system
JP4884945B2 (en) Charging state prediction program, overhead line-less traffic system and charging method thereof
US11346887B2 (en) Method and apparatus for calculating SOH of battery power pack, and electric vehicle
JP5599375B2 (en) Deterioration monitoring method for power storage device and degradation monitoring device for the same
KR101943091B1 (en) System and method for determining the state of health of electrochemical battery cells
JP6084225B2 (en) Battery control device, secondary battery system
KR20100085791A (en) The control and management equipment of battery stack, and method there of
EP2343558A2 (en) Battery system and method for detecting internal short circuit in battery system
WO2012091076A1 (en) Battery degradation level detection method
US20140239914A1 (en) Battery controller
JP2007309839A (en) Battery pack condition measuring device, degradation of battery pack discrimination method and program for the same
CN105339802A (en) Device for assessing extent of degradation in secondary cell
JP5977979B2 (en) Electric storage device for railway vehicles
JP6412847B2 (en) Power storage device and control method
US11034257B2 (en) Method and system for estimating remaining battery pack energy using cell-group state of charge spread
CN113614981A (en) Battery management device, battery management method, and power storage system
JP2011127973A (en) State of charge estimation method and device for secondary battery
JP2004031014A (en) Maximum charge-discharge power calculation method and device for battery pack including parallel connection battery
EP3806227A1 (en) Battery control device, battery control system, and battery control method
JP2006020401A (en) Battery managing system of hybrid vehicle
US11658499B2 (en) Battery diagnosis apparatus
US10333182B2 (en) Estimation of cell voltage excursion in the presence of battery pack sensing faults

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120627

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R151 Written notification of patent or utility model registration

Ref document number: 5386443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151