JP2012013359A - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP2012013359A
JP2012013359A JP2010151793A JP2010151793A JP2012013359A JP 2012013359 A JP2012013359 A JP 2012013359A JP 2010151793 A JP2010151793 A JP 2010151793A JP 2010151793 A JP2010151793 A JP 2010151793A JP 2012013359 A JP2012013359 A JP 2012013359A
Authority
JP
Japan
Prior art keywords
hot water
water
circuit
storage tank
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010151793A
Other languages
Japanese (ja)
Inventor
Yasusuke Horiki
泰佑 堀木
Yasuyuki Nukina
康之 貫名
Katsuhiro Wada
克広 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010151793A priority Critical patent/JP2012013359A/en
Publication of JP2012013359A publication Critical patent/JP2012013359A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bathtub Accessories (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water heater for reducing the oxidation power of tapping hot water.SOLUTION: This water heater is provided with: a hot water storage tank 2 for storing water or hot water; a raw water circuit 3 for introducing raw water to the hot water storage tank 2; a hot water tapping circuit 5 for mixing the hot water of the hot water storage tank 2 with the water of the raw water circuit 3, and for tapping hot water; and an electrolytic device 7 for reforming the hot water to be tapped from the hot water tapping circuit 5. The electrolytic device 7 is provided with: an electrode configured of at least a pair of anode (not shown in the figure) and cathode (not shown in the figure); a separator 16 for separating a water passage between the electrodes: and a DC power source (not shown in the figure) for applying a voltage between the electrodes. This water heater is configured to generate reduction components by introducing hot water passing through the electrolytic device 7 to the cathode, and carrying out electrolysis, and to decompose oxidation components contained in the hot water of the hot water tapping circuit 5 by reduction components, and to more reduce the oxidation power of the hot water to be supplied by the hot water tapping circuit 5 than that of the raw water. Thus, it is possible to obtain the hot water whose oxidation power is reduced with a simple configuration, and to use it. Furthermore, it is not necessary to provide any maintenance such as the regular refilling of chemical agent.

Description

本発明は、出湯する湯の湯質を改良し、酸化力が減少した湯を提供する給湯機に関するものである。   The present invention relates to a hot water supply apparatus that improves the quality of hot water discharged and provides hot water with reduced oxidizing power.

従来、この種の酸化力を低減した湯を供給する給湯機に使用される水処理装置は、図4に示すような構成であった(例えば、特許文献1参照)。   Conventionally, a water treatment apparatus used for a hot water supply apparatus that supplies hot water with reduced oxidation power of this type has a configuration as shown in FIG. 4 (see, for example, Patent Document 1).

図4は、従来の給湯機に使用される水処理装置の構成を示す図である。   FIG. 4 is a diagram showing a configuration of a water treatment device used in a conventional hot water heater.

図4において、電解槽31は、陰極32を含む陰極室33と、陽極34を含む陽極室35とを備える。陰極室33と陽極室35とは隔膜36により分離されている。陰極室33には、陰極水(電解還元水)を取出す管37が接続されており、陽極室35には、陽極水(酸性水)を外部に排出する管38が接続されている。   In FIG. 4, the electrolytic cell 31 includes a cathode chamber 33 including a cathode 32 and an anode chamber 35 including an anode 34. The cathode chamber 33 and the anode chamber 35 are separated by a diaphragm 36. A tube 37 for taking out cathode water (electrolytically reduced water) is connected to the cathode chamber 33, and a tube 38 for discharging anode water (acidic water) to the outside is connected to the anode chamber 35.

陰極室33および陽極室35のそれぞれには、給水管39が接続されており、電解槽31に導く水を、逆浸透膜に通過させることにより純水にする純水製造装置40と、純水製造装置40により生成した純水に、NaOHを添加するNaOH添加装置41が、給水管39上に配置されている。   A water supply pipe 39 is connected to each of the cathode chamber 33 and the anode chamber 35, and a pure water producing apparatus 40 that purifies pure water by passing water guided to the electrolytic cell 31 through a reverse osmosis membrane, and pure water An NaOH addition device 41 that adds NaOH to pure water generated by the manufacturing device 40 is disposed on the water supply pipe 39.

以上のよう構成された従来の給湯機に使用された水処理装置の動作を説明する。   Operation | movement of the water treatment apparatus used for the conventional hot water heater comprised as mentioned above is demonstrated.

給水管39により導かれる水は、残留塩素(Cl)濃度が0.1ppm未満、また、塩化物イオン(Cl)濃度が5ppm以下で、実質的に含有しないよう純水製造装置40により除去される。次に、NaOH添加装置41により純水製造装置40により生成した純水に電解質としてNaOHを添加し、電解槽31で電気分解が行われる。陰極室33では、Naを高濃度で含有し、残留塩素濃度が0.1ppm未満の電解還元水が生成する。 The water led by the water supply pipe 39 is removed by the pure water production apparatus 40 so that the residual chlorine (Cl 2 ) concentration is less than 0.1 ppm and the chloride ion (Cl ) concentration is 5 ppm or less so as not to contain substantially. Is done. Next, NaOH is added as an electrolyte to pure water generated by the pure water production apparatus 40 by the NaOH addition apparatus 41, and electrolysis is performed in the electrolytic bath 31. In the cathode chamber 33, electrolytic reduced water containing Na at a high concentration and having a residual chlorine concentration of less than 0.1 ppm is generated.

特許第3933403号公報Japanese Patent No. 3933403

しかしながら、前記従来の給湯機の構成では、所望の水質を得るために、純水製造装置40により純水を製造した後に、NaOHを添加しており、構成が複雑で、しかも高コストな装置であり、また、定期的にNaOHを補充する必要がありメンテナンスが煩雑になる、という課題があった。   However, in the configuration of the conventional hot water heater, in order to obtain a desired water quality, after pure water is produced by the pure water production apparatus 40, NaOH is added, and the configuration is complicated and the apparatus is expensive. In addition, there is a problem that NaOH needs to be replenished periodically and maintenance becomes complicated.

本発明は、上記従来の課題を解決するもので、メンテナンス性に優れ、安価な構成で酸化力が低減した湯を提供することができる給湯機を提供することを目的とする。   This invention solves the said conventional subject, and it aims at providing the hot water supply machine which can provide the hot water which was excellent in maintainability, and was able to provide the oxidation power with the cheap structure.

前記従来の課題を解決するために、本発明の給湯機は、水や湯を蓄える貯湯タンクと、前記貯湯タンクに原水を導く原水回路と、前記貯湯タンクの湯と前記原水回路の水を混合して出湯する出湯回路と、前記出湯回路から出湯する湯を改質する改質手段とを有し、前
記改質手段は、少なくとも1対の陽極と陰極からなる電極と、前記電極間の水路を分離する隔膜と、前記電極間に電圧を印加する直流電源とを有し、前記改質手段を通過する湯を前記陰極に導き電気分解することにより還元成分を発生させ、前記還元成分により前記出湯回路の湯に含まれる酸化成分を分解し、前記出湯回路より供給する湯の酸化力が、前記原水より減少するようにしたもので、簡単な構成で、酸化力が減少したお湯を得ると共に、それを利用することができ、また、定期的な薬剤の補給等のメンテナンスを必要としない。
In order to solve the above-described conventional problems, the water heater of the present invention includes a hot water storage tank that stores water and hot water, a raw water circuit that guides raw water to the hot water storage tank, hot water of the hot water storage tank, and water of the raw water circuit. And a reforming means for reforming the hot water discharged from the tapping circuit, the reforming means comprising at least a pair of an anode and a cathode, and a water channel between the electrodes And a direct current power source that applies a voltage between the electrodes, and hot water that passes through the reforming means is led to the cathode to electrolyze, and a reducing component is generated by the reducing component. It decomposes the oxidizing components contained in the hot water of the tapping circuit and reduces the oxidizing power of the hot water supplied from the tapping circuit from that of the raw water, and obtains hot water with reduced oxidizing power with a simple configuration. Can use it, It was, does not require the maintenance of supply, such as regular drug.

本発明の給湯機は、出湯する湯を電気分解することで酸化力が低減した湯を提供することができるので、装置の構成を簡素にすることで安価な商品を提供することができ、また、定期的な薬剤の補給を必要とせずメンテナンスの煩雑さから開放される。   The hot water supply apparatus of the present invention can provide hot water with reduced oxidizing power by electrolyzing the hot water to be discharged, so that it is possible to provide an inexpensive product by simplifying the configuration of the apparatus, This eliminates the need for periodic drug replenishment and frees you from the complexity of maintenance.

本発明の実施の形態1における給湯機の構成図Configuration diagram of a water heater in Embodiment 1 of the present invention 同給湯機の電解装置の構成図Configuration diagram of the electrolyzer of the water heater 同給湯機のミネラル供給手段の構成図Configuration diagram of mineral supply means of the water heater 従来の給湯機の構成図Configuration of a conventional water heater

第1の発明は、水や湯を蓄える貯湯タンクと、前記貯湯タンクに原水を導く原水回路と、前記貯湯タンクの湯と前記原水回路の水を混合して出湯する出湯回路と、前記出湯回路から出湯する湯を改質する改質手段とを有し、前記改質手段は、少なくとも1対の陽極と陰極からなる電極と、前記電極間の水路を分離する隔膜と、前記電極間に電圧を印加する直流電源とを有し、前記改質手段を通過する湯を前記陰極に導き電気分解することにより還元成分を発生させ、前記還元成分により前記出湯回路の湯に含まれる酸化成分を分解し、前記出湯回路より供給する湯の酸化力が、前記原水より減少するようにしたもので、簡単な構成で、酸化力が減少したお湯を得ると共に、それを利用することができ、また、定期的な薬剤の補給等のメンテナンスを必要としない。   The first invention includes a hot water storage tank that stores water and hot water, a raw water circuit that guides raw water to the hot water storage tank, a hot water discharge circuit that mixes hot water of the hot water storage tank and water of the raw water circuit, and the hot water circuit. Reforming means for reforming hot water discharged from the hot water, the reforming means comprising at least a pair of an anode and a cathode, a diaphragm separating a water channel between the electrodes, and a voltage between the electrodes. A direct-current power source for applying a gas to the hot water passing through the reforming means to the cathode and electrolyzing it to generate a reducing component, and the reducing component decomposes an oxidizing component contained in the hot water of the tapping circuit. In addition, the oxidizing power of the hot water supplied from the tapping circuit is reduced from that of the raw water, and with a simple configuration, hot water having a reduced oxidizing power can be obtained and used. Maintainers for regular drug replenishment, etc. It does not require a scan.

第2の発明は、特に、第1の発明の改質手段は、原水では希薄なミネラルを投入するミネラル供給手段を有するもので、ミネラルの豊富な湯を利用したり、そのお湯に入浴することができる。   In the second invention, in particular, the reforming means of the first invention has a mineral supply means for adding minerals that are diluted in raw water, and uses hot water rich in minerals or bathes in the hot water. Can do.

第3の発明は、特に、第2の発明のミネラル供給手段は、出湯回路から出湯する湯のアルカリ度を増加させるアルカリ供給手段を有し兼ねるもので、省スペースで簡単な構成とすることができ、安価に給湯機を提供することができる。   In the third aspect of the invention, in particular, the mineral supply means of the second aspect of the invention also has an alkali supply means for increasing the alkalinity of the hot water discharged from the hot water circuit, and the space saving and simple configuration can be obtained. The hot water heater can be provided at low cost.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における給湯機の構成図、図2は、同給湯機の電解装置の構成図、図3は、同給湯機のミネラル供給手段の構成図である。
(Embodiment 1)
FIG. 1 is a configuration diagram of a water heater in Embodiment 1 of the present invention, FIG. 2 is a configuration diagram of an electrolysis apparatus of the water heater, and FIG. 3 is a configuration diagram of mineral supply means of the water heater.

図1において、本実施の形態における給湯機の貯湯タンクユニット1は、内部に水と製造した湯を蓄える貯湯タンク2を有し、水道水、工業用水、地下水等の水源から供給される原水ライン(図示せず)に原水回路3により接続されている。   In FIG. 1, a hot water storage tank unit 1 of a water heater in the present embodiment has a hot water storage tank 2 for storing water and manufactured hot water therein, and is a raw water line supplied from water sources such as tap water, industrial water, and groundwater. (Not shown) is connected by the raw water circuit 3.

通常、貯湯タンク2は、湯および水で満たされており、原水ラインの水圧がかかってい
る。給湯機から出湯する際は、原水回路3の水と、水が貯湯タンクに流入することで貯湯タンク2から押し出された湯とを、任意の温度になるよう混合手段4により調整し、注湯弁6を開放して出湯する。
Usually, the hot water storage tank 2 is filled with hot water and water, and the water pressure of the raw water line is applied. When the hot water is discharged from the water heater, the mixing means 4 adjusts the water in the raw water circuit 3 and the hot water pushed out of the hot water storage tank 2 when the water flows into the hot water storage tank so as to reach an arbitrary temperature. The valve 6 is opened to discharge the hot water.

湯質を改質する改質手段として、出湯する湯の酸化力を減少する電解装置7と、原水では希薄なミネラルを投入しアルカリ度を増加させるミネラル供給手段8とが、出湯回路5上に配置されている。   As reforming means for reforming the hot water quality, an electrolysis device 7 for reducing the oxidizing power of the hot water to be discharged and a mineral supply means 8 for increasing the alkalinity by adding a rare mineral in the raw water are provided on the hot water circuit 5. Has been placed.

浴槽9の湯を循環させる循環回路10は、浴槽循環ポンプ11により循環され、出湯回路5は、循環回路10に接続されている。追焚熱交換器12は、タンク循環ポンプ13により貯湯タンク2の湯を導き、循環回路10の湯に熱を供給している。貯湯タンク2には、上部に高温の湯が、下部に低温の水が蓄えられており、ヒートポンプユニット(図示せず)の加熱手段(図示せず)により下部の水から湯を生成し、上部に蓄積している。   A circulation circuit 10 that circulates the hot water in the bathtub 9 is circulated by a bathtub circulation pump 11, and the tapping circuit 5 is connected to the circulation circuit 10. The memory heat exchanger 12 guides hot water in the hot water storage tank 2 by the tank circulation pump 13 and supplies heat to the hot water in the circulation circuit 10. The hot water storage tank 2 stores hot water in the upper part and cold water in the lower part, and generates hot water from the lower water by heating means (not shown) of a heat pump unit (not shown). Has accumulated.

図2は、電解装置7の構成図である。   FIG. 2 is a configuration diagram of the electrolysis apparatus 7.

電解装置7は、陽極14と、陰極15の電極を対向して設置しており、流路を分離する隔膜としてのセパレータ16が両電極14、15間に配置され、陽極室17と陰極室18に分離されている。陽極14は、カーボングラファイト、白金メッキを施したチタン等を用いることができるが、耐久性と低コストを兼ね備えたカーボングラファイト電極が望ましい。陰極15は、チタン、ステンレス、カーボングラファイト等を用いることができる。   In the electrolyzer 7, the anode 14 and the electrode of the cathode 15 are disposed so as to face each other, a separator 16 as a diaphragm for separating the flow path is disposed between the electrodes 14, 15, and the anode chamber 17 and the cathode chamber 18. Have been separated. As the anode 14, carbon graphite, platinum-plated titanium, or the like can be used, but a carbon graphite electrode having both durability and low cost is desirable. The cathode 15 can be made of titanium, stainless steel, carbon graphite, or the like.

給湯機から出湯する際は、電極14、15間に図示しない直流電源で直流の電圧を印加し、出湯回路5の湯は、電解装置7に導かれる際に分岐され、陰極室18を通過した湯が出湯される。一方、陽極室17を通過した湯は、排水弁19を開放することにより機外へ排出される。水道水は、消毒の為に塩素剤を注入しており、残留塩素により酸化力を有している。   When the hot water is discharged from the water heater, a DC voltage is applied between the electrodes 14 and 15 by a DC power source (not shown), and the hot water in the hot water circuit 5 is branched when it is led to the electrolyzer 7 and passes through the cathode chamber 18. Hot water is poured out. On the other hand, the hot water that has passed through the anode chamber 17 is discharged to the outside by opening the drain valve 19. Tap water is injected with a chlorine agent for disinfection, and has oxidizing power due to residual chlorine.

残留塩素(ClO)の濃度は、水道法施行規則で0.1ppm以上、また、水質管理目標設定項目として1ppm以下が示されている。電圧が印加された陰極15では、水を電気分解することで還元成分である水素を生成し、残留塩素は、水素と反応することで酸化力の無い塩化物イオン(Cl)に分解され、酸化力が減少する。 The concentration of residual chlorine (ClO ) is 0.1 ppm or more in the Water Supply Law Enforcement Regulations, and 1 ppm or less is shown as a water quality management target setting item. At the cathode 15 to which a voltage is applied, water as a reducing component is generated by electrolyzing water, and residual chlorine is decomposed into chloride ions (Cl ) having no oxidizing power by reacting with hydrogen, Oxidizing power decreases.

印加した電流によって残留塩素の分解量が決まり、酸化力の減少量が決まる。水の電気伝導率は、温度が1℃上昇すると約2%増加するので、水温を増加させることで、必要な電流を得るために印加する電圧を低く抑えることができる。   The applied current determines the amount of residual chlorine decomposed and the amount of decrease in oxidizing power. Since the electrical conductivity of water increases by about 2% when the temperature rises by 1 ° C., the voltage applied to obtain a necessary current can be kept low by increasing the water temperature.

本実施の形態における給湯機は、出湯する高温の湯に対して電気分解を行うことができるので、印加電圧を低く抑えることができ、電源を簡素化することができるので、省スペースで安価な商品を提供することができる。また、酸化力を低減した湯を提供することができるので、肌や髪に優しい湯を利用することができ、入浴した際の皮膚への刺激が減少する。水道水中の残留塩素濃度は、浄水量の平均値が0.4ppmであり、酸化力を有している。電解装置7は、水道水中の残留塩素を通常の検出限界以下である0.02ppm以下に減少させ、肌や髪に対して優しい湯を提供することができる。   Since the hot water heater in this embodiment can perform electrolysis on hot water to be discharged, the applied voltage can be kept low and the power source can be simplified, so that it is space-saving and inexpensive. Goods can be offered. Moreover, since hot water with reduced oxidizing power can be provided, hot water gentle to the skin and hair can be used, and irritation to the skin when taking a bath is reduced. As for the residual chlorine concentration in tap water, the average value of the amount of purified water is 0.4 ppm, and it has oxidizing power. The electrolyzer 7 can reduce the residual chlorine in tap water to 0.02 ppm or less, which is below the normal detection limit, and provide hot water that is gentle to the skin and hair.

一方、陽極室17では、水の電気分解により発生した酸素が、水に溶解している塩化物イオンと反応し、残留塩素を生成する反応が同時に起こる。陽極室17で生成した酸化成分は、出湯する湯と混合しないよう、セパレータ16で分離して排出される。   On the other hand, in the anode chamber 17, oxygen generated by electrolysis of water reacts with chloride ions dissolved in water, and a reaction for generating residual chlorine occurs simultaneously. Oxidized components generated in the anode chamber 17 are separated and discharged by the separator 16 so as not to be mixed with the hot water to be discharged.

セパレータ16は、電解装置7内で還元成分と酸化成分の混合を防止するよう水を分離し、かつ、電流を電極間に電流が通るよう導電性を持った材質であり、イオン交換膜、不織布、メンブレンフィルタ、連続発泡膜、造粒焼結体等を用いることができる。   The separator 16 is a conductive material that separates water so as to prevent mixing of the reducing component and the oxidizing component in the electrolysis apparatus 7 and that allows current to flow between the electrodes. A membrane filter, a continuous foamed film, a granulated sintered body, or the like can be used.

なお、陽イオン交換膜が、水の移動が微少であり、また、陽イオンを透過することで出湯する湯のアルカリ度を増加させることができるので、最も適している。出湯を停止した際は、電極間への電圧の印加を停止して水の電気分解ガスの発生を無くし、排水弁19を閉めて湯の漏出を防止する。   Note that the cation exchange membrane is most suitable because the movement of water is small and the alkalinity of the hot water to be discharged can be increased by permeating the cation. When the hot water is stopped, the application of voltage between the electrodes is stopped to eliminate the generation of water electrolysis gas, and the drain valve 19 is closed to prevent the leakage of hot water.

図3は、ミネラル供給手段8の構成図である。   FIG. 3 is a configuration diagram of the mineral supply means 8.

ミネラル供給手段8は、略円筒形の上部に人間の必須元素である固体の無機塩ミネラルを樹脂網等で保持した溶解部20を有しており、給湯機の出湯停止時にミネラルが溶解し、出湯時に溶解したミネラル分と共に流すことで、出湯する湯にミネラルを供給することができる。   The mineral supply means 8 has a dissolving portion 20 that holds a solid inorganic salt mineral, which is a human essential element, in a substantially cylindrical upper part with a resin net or the like, and the mineral dissolves when the hot water supply of the hot water supply is stopped, Mineral can be supplied to the hot water discharged by pouring together with the mineral dissolved at the time of hot water.

ミネラル供給手段8は、水道水では希薄なミネラルを追加することができ、ナトリウム、マグネシウム、アルミニウム、ケイ素、カリウム、カルシウム、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、セレン、モリブデン等の酸化物、水酸化物、炭酸塩、塩化物等の無機塩を用いることができる。   Mineral supply means 8 can add dilute minerals in tap water, sodium, magnesium, aluminum, silicon, potassium, calcium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, selenium, molybdenum Inorganic salts such as oxides, hydroxides, carbonates, chlorides and the like can be used.

なお、ミネラル供給手段8は、ミネラルを全て溶出すると補充の必要があるので、メンテナンスの頻度を減少させるため、溶解度の低い金属元素の酸化物が望ましい。また、必要量が少ない微量元素を選定することで、ミネラル補給効果を長期間維持することができる。   In addition, since the mineral supply means 8 needs to be replenished when all the mineral is eluted, an oxide of a metal element having low solubility is desirable in order to reduce the frequency of maintenance. Moreover, the mineral replenishment effect can be maintained for a long time by selecting a trace element with a small required amount.

また、水酸化物を選定することでアルカリ度を高めることができ、肌への浸透力が強いpHの高い湯を提供することができる。ミネラル剤として、水酸化亜鉛(Zn(OH))、酸化亜鉛(ZnO)、炭酸亜鉛(ZnCO)が適しており、単体または混合物として用いることができる。 Moreover, the alkalinity can be increased by selecting a hydroxide, and hot water with a high pH and a strong penetration into the skin can be provided. As the mineral agent, zinc hydroxide (Zn (OH) 2 ), zinc oxide (ZnO), and zinc carbonate (ZnCO 3 ) are suitable and can be used alone or as a mixture.

亜鉛は、成人の一日の必要量が10〜15mgであり、食品からの摂取状況は、男性で平均9.1mg、女性は平均7.6mgである。亜鉛は、細胞分裂に重要な酵素の構成成分であり、欠乏すると皮膚炎、味覚障害、胃腸機能の減衰、免疫機能低下等が起こる。   The daily requirement for zinc for adults is 10 to 15 mg, and the intake from food is an average of 9.1 mg for men and an average of 7.6 mg for women. Zinc is a component of an enzyme important for cell division, and deficiency causes dermatitis, taste disorder, attenuation of gastrointestinal function, decreased immune function, and the like.

サプリメントとしても亜鉛は定着しており、味覚を正常に保つのに必要な栄養素、皮膚や粘膜の健康維持を助ける栄養素、たんぱく質・核酸の代謝に関与して健康の維持に役立つ栄養素として認知されている。   Zinc is well established as a supplement, and it is recognized as a nutrient that is necessary for maintaining a healthy taste, a nutrient that helps maintain the health of the skin and mucous membranes, and a nutrient that helps maintain health by being involved in protein and nucleic acid metabolism. Yes.

一方、水道水中の亜鉛濃度は、平均値が0.01ppm以下であり、大半の地域で検出限界以下であり、含有していない。ミネラル供給手段8は、水道水では希薄なミネラルを投入することで、ミネラルの豊富な湯を利用および入浴することができる。   On the other hand, the average concentration of zinc in tap water is 0.01 ppm or less, which is below the detection limit in most regions and is not contained. Mineral supply means 8 can use and bathe hot water rich in minerals by adding minerals that are diluted with tap water.

日本三大美人の湯は、川中温泉、龍神温泉、湯の川温泉と広く知られており、pHは7.8〜8.5程度と弱アルカリ性である。一方、水道水のpHは平均値が7.3と中性であり、pH7.8未満が浄水量の95%以上であり、大半の地域が美人の湯と呼ばれる弱アルカリ性ではない。ミネラル供給手段8は、ミネラルの投入と共にアルカリ度をpH7.8〜pH8.5に増加させ、弱アルカリ性の湯を提供することができる。弱アルカリ性の湯は、肌への水分の浸透力が強く、弱アルカリ性の湯を利用および入浴することで、みずみずしい肌を提供することができる。   The hot springs of Japan's three major beauties are widely known as Kawanaka Onsen, Ryujin Onsen, and Yunokawa Onsen, and have a pH of about 7.8 to 8.5 and are slightly alkaline. On the other hand, the pH of tap water is neutral, with an average value of 7.3, and a pH of less than 7.8 is 95% or more of the amount of purified water, and most areas are not weakly alkaline called Bijin-no-Yu. The mineral supply means 8 can increase the alkalinity to pH 7.8 to pH 8.5 along with the input of the mineral to provide weak alkaline hot water. Weak alkaline hot water has a strong water penetration ability to the skin, and it is possible to provide fresh skin by using and bathing weak alkaline hot water.

ミネラル供給手段8は、出湯回路5から電解装置7と分岐して湯を導入しており、ミネラル供給手段8の上流と下流にそれぞれ開閉手段21、22を配置している。開閉手段21、22は、注湯停止時にスプリング等で閉止状態に保たれており、開閉手段21、22に挟まれた空間でミネラルが飽和溶解する。注湯時は、開閉手段21、22が水流で開き、飽和溶解したミネラル成分が出湯される。ミネラルの投入量は、飽和溶解度のミネラルが供給されることから、開閉手段21、22に挟まれた空間の大きさで調整することができる。   The mineral supply means 8 branches from the hot water circuit 5 to the electrolyzer 7 and introduces hot water. Opening and closing means 21 and 22 are arranged upstream and downstream of the mineral supply means 8, respectively. The opening and closing means 21 and 22 are kept closed by a spring or the like when pouring is stopped, and minerals are saturated and dissolved in a space between the opening and closing means 21 and 22. At the time of pouring, the open / close means 21 and 22 are opened by a water flow, and the mineral components that are saturated and dissolved are discharged. The amount of mineral input can be adjusted by the size of the space sandwiched between the opening / closing means 21 and 22 because the mineral having saturated solubility is supplied.

なお、給湯機の長期不使用時は、凍結防止等のため、内部の水を排出することが望ましい。開放弁23をミネラル供給手段8と上流の開閉手段21との間に配置し、長期不使用時に開放することで、ミネラルを飽和溶解度まで含有した水が電解装置7に流入することなく、ミネラル供給手段8および電解装置7内部の水を排出することができる。   When the hot water heater is not used for a long period of time, it is desirable to discharge the internal water to prevent freezing. By disposing the release valve 23 between the mineral supply means 8 and the upstream opening / closing means 21 and opening it when not in use for a long period of time, water containing mineral up to the saturation solubility does not flow into the electrolyzer 7 and the mineral supply The water inside the means 8 and the electrolyzer 7 can be discharged.

なお、本発明の出湯する湯を改質する改質手段を備えた給湯機は、ヒートポンプ式に限らず、電気ヒータ式、燃料電池式の加熱手段であっても湯を供給する機器であれば適応することができる。   In addition, the water heater provided with the reforming means for reforming the hot water to be discharged according to the present invention is not limited to the heat pump type, but may be an electric heater type or fuel cell type heating means as long as it is a device that supplies hot water. Can adapt.

なお、上記実施の形態では、電解装置7とミネラル供給手段8とを出湯回路5に並列に配置しているが、電解装置7の下流にミネラル供給手段8を配置しても構わない。電解装置7により原水の酸化力を低減し、ミネラル供給手段8によりミネラルを付与した湯を提供できることに変わりはない。   In the above embodiment, the electrolyzer 7 and the mineral supply means 8 are arranged in parallel with the tap water circuit 5, but the mineral supply means 8 may be arranged downstream of the electrolyzer 7. There is no change in the ability to reduce the oxidizing power of the raw water by the electrolyzer 7 and to provide hot water to which the mineral is supplied by the mineral supply means 8.

以上のように、本発明にかかる出湯する湯を改質する改質手段を備えた給湯機は、原水より酸化力を減少した湯を提供することができることから、家庭用、産業用に制限されることなく、湯を提供する給湯機全般に適応することができる。   As described above, the water heater provided with the reforming means for reforming the hot water to be discharged according to the present invention can provide hot water having a lower oxidizing power than the raw water, and thus is limited to household use and industrial use. It can be applied to all hot water supply machines that provide hot water.

2 貯湯タンク
3 原水回路
5 出湯回路
7 電解装置(改質手段)
8 ミネラル供給手段(改質手段)
14 陽極(電極)
15 陰極(電極)
16 セパレータ(隔膜)
2 Hot water storage tank 3 Raw water circuit 5 Hot water circuit 7 Electrolyzer (reforming means)
8 Mineral supply means (modification means)
14 Anode (electrode)
15 Cathode (electrode)
16 Separator (diaphragm)

Claims (3)

水や湯を蓄える貯湯タンクと、前記貯湯タンクに原水を導く原水回路と、前記貯湯タンクの湯と前記原水回路の水を混合して出湯する出湯回路と、前記出湯回路から出湯する湯を改質する改質手段とを有し、前記改質手段は、少なくとも1対の陽極と陰極からなる電極と、前記電極間の水路を分離する隔膜と、前記電極間に電圧を印加する直流電源とを有し、前記改質手段を通過する湯を前記陰極に導き電気分解することにより還元成分を発生させ、前記還元成分により前記出湯回路の湯に含まれる酸化成分を分解し、前記出湯回路より供給する湯の酸化力が、前記原水より減少するようにした給湯機。 A hot water storage tank for storing water and hot water, a raw water circuit for directing raw water to the hot water storage tank, a hot water discharge circuit for mixing hot water from the hot water storage tank and water from the raw water circuit, and hot water discharged from the hot water supply circuit are modified. Reforming means, and the reforming means comprises at least a pair of anode and cathode electrodes, a diaphragm for separating a water channel between the electrodes, and a DC power source for applying a voltage between the electrodes. The hot water passing through the reforming means is led to the cathode and electrolyzed to generate a reducing component, and the reducing component decomposes the oxidizing component contained in the hot water of the hot water circuit, from the hot water circuit. A hot water supply machine in which the oxidizing power of supplied hot water is less than that of the raw water. 改質手段は、原水では希薄なミネラルを投入するミネラル供給手段を有する請求項1に記載の給湯機。 The hot water supply apparatus according to claim 1, wherein the reforming means includes a mineral supply means for charging a mineral that is dilute in raw water. ミネラル供給手段は、出湯回路から出湯する湯のアルカリ度を増加させるアルカリ供給手段を有し兼ねる請求項2に記載の給湯機。 The water heater according to claim 2, wherein the mineral supply means also has an alkali supply means for increasing the alkalinity of the hot water discharged from the hot water circuit.
JP2010151793A 2010-07-02 2010-07-02 Water heater Pending JP2012013359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010151793A JP2012013359A (en) 2010-07-02 2010-07-02 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010151793A JP2012013359A (en) 2010-07-02 2010-07-02 Water heater

Publications (1)

Publication Number Publication Date
JP2012013359A true JP2012013359A (en) 2012-01-19

Family

ID=45600003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010151793A Pending JP2012013359A (en) 2010-07-02 2010-07-02 Water heater

Country Status (1)

Country Link
JP (1) JP2012013359A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818310A (en) * 2012-08-18 2012-12-12 佛山市顺德区奇林电气有限公司 Automatic water replenishing device for wall-hanging stove water heating system
WO2014141649A1 (en) * 2013-03-14 2014-09-18 株式会社 クリア Production method for natural-extract beverage

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180146A (en) * 1992-12-08 1994-06-28 Mitsubishi Electric Corp Electric water heater having function of producing electrolytic water
JPH06213508A (en) * 1993-01-18 1994-08-02 Matsushita Electric Ind Co Ltd Electric water heater
JP2000167557A (en) * 1998-09-30 2000-06-20 Osaka Gas Co Ltd Antibacterial water
JP2003220389A (en) * 2002-01-30 2003-08-05 Kosumosu Enterp:Kk Reduced water former
JP2004230261A (en) * 2003-01-29 2004-08-19 Silver Seiko Ltd Reduced hydrogen water producing apparatus
JP2010088973A (en) * 2008-10-03 2010-04-22 Chugoku Electric Manufacture Co Ltd Hydrogen-containing electrolytic water generation device and hot water supply device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180146A (en) * 1992-12-08 1994-06-28 Mitsubishi Electric Corp Electric water heater having function of producing electrolytic water
JPH06213508A (en) * 1993-01-18 1994-08-02 Matsushita Electric Ind Co Ltd Electric water heater
JP2000167557A (en) * 1998-09-30 2000-06-20 Osaka Gas Co Ltd Antibacterial water
JP2003220389A (en) * 2002-01-30 2003-08-05 Kosumosu Enterp:Kk Reduced water former
JP2004230261A (en) * 2003-01-29 2004-08-19 Silver Seiko Ltd Reduced hydrogen water producing apparatus
JP2010088973A (en) * 2008-10-03 2010-04-22 Chugoku Electric Manufacture Co Ltd Hydrogen-containing electrolytic water generation device and hot water supply device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818310A (en) * 2012-08-18 2012-12-12 佛山市顺德区奇林电气有限公司 Automatic water replenishing device for wall-hanging stove water heating system
WO2014141649A1 (en) * 2013-03-14 2014-09-18 株式会社 クリア Production method for natural-extract beverage
JP2014176341A (en) * 2013-03-14 2014-09-25 Kuria:Kk Production method of natural product extraction beverage
US9801396B2 (en) 2013-03-14 2017-10-31 Tech Corporation Co., Ltd. Production method for natural-extract beverage

Similar Documents

Publication Publication Date Title
JP5688103B2 (en) Electrolyzed water production method and apparatus
US7749370B2 (en) Manufacturing method of oxidative water to be employed for sterilization
JP3716042B2 (en) Acid water production method and electrolytic cell
JP3113645B2 (en) Electrolyzed water production method
JP2005058848A (en) Production method for water used for washing, disinfecting, and wound healing, its production apparatus, and water used for washing, disinfecting, and wound healing
US20140166498A1 (en) Water purification system and method
CN105603452B (en) Novel high-efficient hypochlorite generator
KR101326272B1 (en) A production system of sodium hypochlorite for reducing byproduct
JP2004267956A (en) Method for producing mixed electrolytic water
CN101713078A (en) Device and method for preparing potassium ferrate through electrolysis
JP2012217991A (en) Electroreduction water producing apparatus
JP2012013359A (en) Water heater
JP4597263B1 (en) Electrolyzed water production apparatus and electrolyzed water production method using the same
JP4417707B2 (en) Water conditioner
KR101313698B1 (en) Generation-system for antiseptic solution including chlorine
KR20130077099A (en) Apparatus for providing purified water and ionized water with the ability to sterilize tanks
JPH07299457A (en) Electrolyzed water producing device
KR100651654B1 (en) A water purifier using an electrolysis
WO2008062507A1 (en) Electrolytic hydrogen water production system
JP2002035751A (en) Batchwise electrolytic water making apparatus
JP3205527B2 (en) Method for producing weakly acidic sterilized water and weakly alkaline water
JP2001246383A (en) Electrolyzed water forming device
CN101391832B (en) Method for preparing acidic high oxidation water
CN215403304U (en) Sewage comprehensive treatment machine and sewage treatment system with same
JPH10296276A (en) Mineral eluting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121210

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140107

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422