WO2008062507A1 - Electrolytic hydrogen water production system - Google Patents

Electrolytic hydrogen water production system Download PDF

Info

Publication number
WO2008062507A1
WO2008062507A1 PCT/JP2006/323138 JP2006323138W WO2008062507A1 WO 2008062507 A1 WO2008062507 A1 WO 2008062507A1 JP 2006323138 W JP2006323138 W JP 2006323138W WO 2008062507 A1 WO2008062507 A1 WO 2008062507A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrolytic
water
titanium
electrodes
Prior art date
Application number
PCT/JP2006/323138
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshikazu Harata
Takeshi Kawashima
Original Assignee
Takaoka Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Chemical Co., Ltd. filed Critical Takaoka Chemical Co., Ltd.
Priority to PCT/JP2006/323138 priority Critical patent/WO2008062507A1/en
Priority to JP2008518544A priority patent/JP4929279B2/en
Publication of WO2008062507A1 publication Critical patent/WO2008062507A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an electrolytic hydrogen water generating apparatus having a sterilizing function, which is equipped with an activated carbon block capable of adsorbing and holding organic pollutants contained in tap water.
  • an electrolytic hydrogen water generator of FIG. 2 (hereinafter referred to as a conventional device) shown in Japanese Patent Application Laid-Open No. 2006-43610 is known.
  • This conventional apparatus is equipped with an electrolytic cell 3 equipped with electrodes 1 and 2 for electrolysis, organic chlorine compounds such as residual chlorine and trihalomethane, 2-methylisoborneol that causes mold odor, and organic pollution such as agricultural chemicals. It consists of a filtration unit 6 equipped with an activated carbon block 4 that has the ability to adsorb and retain substances.
  • the electrolysis electrodes 1 and 2 are supplied with a DC voltage from the power supply unit 7 to electrolyze the water stored in the apparatus to generate electrolytic gas such as hydrogen and oxygen, and when the water flow is stopped, Electrolytic gas is stored in In the power supply 7 that feeds the electrodes 1 and 2, the electrolytic current is detected by the current sensor 9 and fed back to the regulator 10 in order to maintain electrolysis that is not affected by fluctuations in water quality. Constant current control is used to keep it constant.
  • a polarity reversing circuit is provided to prevent mineral components such as calcium in tap water from precipitating on the cathode surface.
  • Electrodes 1 and 2 The polarity of electrodes 1 and 2 is reversed by opening and closing transistors S1A, S1B and S2A, S2B provided in power supply unit 7 at the same timing.
  • a sterilizing electrode 26 made of titanium that constantly supplies a negative voltage to the electrode 1 or 2 is provided independently.
  • the impedance between the two electrodes is Z2
  • the ratio of the electrolysis current and the current required for titanium elution is Z1 while maintaining the same impedance Z1 between the electrodes 1 and 2 and the titanium electrode 26 constituting the electrode pair.
  • Electrode pairs 1 and 2 and bactericidal electrode 26 are arranged so that Z2 can be constructed.
  • the sterilizing electrode 26 is always used as a cathode, and a very small amount of titanium is eluted by passing a weak current between the anode 1 and the electrode 2 serving as the anode. Therefore, the generation of bacteria in the activated carbon block 4 in the equipment and the latter stage is suppressed.
  • the sterilizing electrode 26 is always supplied with a negative DC voltage from the power supply unit 7 to the electrode 1 or the electrode 2.
  • the raw material is activated charcoal with silver antibacterial action that has an antibacterial action in order to suppress the generation of bacteria in the adsorbent material filling section Technology (Patent Document 1) and activated carbon filter added with mineral sustained-release particles, and the technology that suppresses the growth of bacteria by the activated carbon filter power sustained release calcium and magnesium (Patent Document 2) are used.
  • Patent Document 3 a method of eluting titanium is used to suppress bacterial growth.
  • Patent Document 1 JP-A-11 226570
  • Patent Document 2 JP 2003-144821
  • Patent Document 3 JP 2006-43610
  • activated carbon block 4 having the ability to adsorb organic pollutants formed by forming activated carbon powder into a hollow column shape using a binder such as polyethylene is formed, and an extremely fine size of about several ⁇ m is formed.
  • An invention for providing pores is disclosed.
  • the electrolytic gas stored in the filtration unit 6 flows into countless pores of the activated carbon block 4 and the activated carbon powder, and the electrolytic gas is occluded in the activated carbon block 4.
  • the stored water permeates from the outer periphery of the activated carbon block 4 and oozes into the through hole 5 in the center, and the water supply pipe 16 force drains through the pressure adjustment valve 15. It is discharged as water.
  • electrolysis is continued, the water stored in the filtration unit 6 and the electrolytic cell 3 is completely replaced with electrolytic gas, and the electrodes 1 and 2 are exposed to the electrolytic gas layer 17. If for some reason the electrodes 1 and 2 are short-circuited, not only is the wasted power that is not consumed by the electrolysis lost, but also an electrolytic gas composed of high-concentration hydrogen gas and oxygen gas is generated when the short-circuit occurs. (Spark) may cause ignition or explosion. In order to prevent such a danger, electrolysis is started by starting power supply from the power supply unit 7 to the electrodes 1 and 2 by the activation signal from the flow switch 13 at the start of water flow. The timer 11 is configured to automatically stop the power supply from the power supply unit 7 for a certain period of time before being exposed to the gas.
  • a water level sensor such as a float switch is provided in the upper part of the electrolytic cell 3 or the lower part of the filtration unit 6 so that the electrolytic cell 3 is always filled with stored water.
  • a method of controlling the power supply of the power supply unit 7 with a water level sensor is sometimes used.
  • Equation (1) represents the cathodic reaction
  • equation (2) represents the anodic reaction
  • equation (3) represents the reaction of the entire system based on the above equations (1) and (2).
  • the electrolysis gas generated by the electrolysis of water is composed of hydrogen gas volume: oxygen gas volume ratio of 2: 1. Gas is stored It ’s hard to stay. In addition, extremely fine pores with a gap between the activated carbon powder constituting the activated carbon block 4 and the binder of about several / zm are formed, and the activated carbon powder surface, which is a component, has numerous pores on the order of nm to m. Have. For this reason, the electrolytic gas stored in the activated carbon block 4 is mixed with tap water and pushed out as fine bubbles from the activated carbon block 4, resulting in the generation of high-concentration hydrogen water.
  • the electrode for electrolysis has a polarity reversal circuit so that a large amount of hydrogen is generated on the electrode surface when calcium is attached when a negative voltage is applied. It can be removed by dissolving with water containing ions, so-called acidic water, but the sterilization electrode is always applied with a negative voltage, so long-term operation and the hardness of tap water are high! There was a problem that the electrolytic current decreased due to the accumulation of mineral components such as calcium on the surface. As the electrolysis current decreases, the amount of titanium elution from the sterilization electrode decreases, making it difficult to obtain a stable bactericidal effect. For example, an acidic solution such as citrate is prepared and cleaned regularly. Had to do.
  • a water supply pipe an electrolytic cell connected to the water supply pipe, a pair of electrolytic electrodes facing each other in the electrolytic cell, A sterilization electrode disposed above one of the electrolytic electrodes, a power source for supplying a positive or negative DC voltage to the pair of electrolytic electrodes at regular intervals, and the one electrode serving as a cathode.
  • the control means for supplying a negative voltage to the sterilization electrode above it the filtration unit connected to the electrolytic cell and filtering the electrolyzed water and electrolytic gas generated in the electrolytic cell, and the filtration unit It consists of a water pipe that guides filtered water to the outside.
  • the electrolytic electrode is a conductive material that is not easily changed in electrical characteristics due to an oxidation reaction, such as platinum or a metal plated with platinum, and the sterilization electrode is made of titanium.
  • an oxidation reaction such as platinum or a metal plated with platinum
  • the sterilization electrode is made of titanium.
  • acidic water generated in the vicinity of the anode is generated by the flow of oxygen bubbles generated when the electrolysis electrode disposed below the sterilization electrode becomes the anode.
  • the subsequent filtration unit contains activated carbon blocks obtained by forming activated carbon powder into a hollow column shape using a binder such as polyethylene.
  • a control circuit for time-controlling the polarity of the power supply voltage and a power supply unit having a constant current function are provided outside, and power is supplied to the electrolytic electrode and the sterilization electrode of the electrolytic cell.
  • mineral components such as calcium deposited on the surface of the titanium electrode by weak electrolysis at the time of negative polarity are generated by electrolysis of water when the lower electrolysis electrode is at the anode.
  • Acidic water can be dissolved and removed by inducing it near the titanium electrode for sterilization as the oxygen bubbles generated by electrolysis rise.
  • a shielding plate such as a separator is provided to prevent mixing of the electrolytic gas generated at each electrode, and to suppress a decrease in the acidity of the acidic water generated on the anode side. is doing.
  • FIG. 1 shows a configuration example of an electrolytic hydrogen water generator according to the present invention.
  • the apparatus comprises electrolysis electrodes 1 and 2 for electrolyzing water in the lower part to generate electrolysis gas 17, a sterilizing titanium electrode 20 disposed above electrode 2 so as to face electrode 1, Electrolytic cell 3 composed of separator 23 made of insulating material in gap 22 composed of electrode 1 and titanium electrode 20, and activated carbon block 4 in which powdered activated carbon is formed into a hollow column shape with a binder at the top.
  • a filtration unit 6 is provided.
  • the electrodes 1 and 2 are made of platinum-plated metal such as titanium.
  • the titanium electrode 20 for bacteria uses a titanium material as it is.
  • the separator 23 is provided with an electrode in order to prevent the bubbles of the electrolytic gas generated at the electrodes 1 and 2 from being mixed in both directions and reducing the acidity of the acidic water generated at the electrode 2.
  • Titanium electrode 20 facing 1 is arranged so as to cover and hide the surface.
  • separator 23 acts as a floating electrode with a polarity opposite to that of electrode 2 for water electrolysis, so that the acidity of the acidic water generated at electrode 2 is reduced. Therefore, it is desirable that the separator 23 is made of an insulating material, or an insulating coating is applied even if it is a conductive material.
  • the electrodes 1 and 2 It is also possible to reduce the supply voltage to the electrode 1 and the titanium electrode 20 while preventing the mixing of the electrolytic gas generated in step 1.
  • Fig. 3 and Fig. 4 show an example of the bactericidal effect of the eluted titanium.
  • the electrode configuration of the present invention using titanium as the cathode and titanium plated with platinum and the electrode configuration using titanium plated with platinum on both electrodes, After energizing water for 5 hours at 10 mA, where the current value (mA) multiplied by the current-carrying time (hour) is equivalent to 50 mA X hour (hereinafter abbreviated as mA'h), It shows the transition of the number of viable bacteria when.
  • FIG. 4 The example shown in Fig. 4 is equivalent to 50mA'h for 1L of water using titanium as the cathode and titanium with platinum plating on the anode, similar to the conditions in Fig. 3.
  • Figure 5 shows the change in the number of viable bacteria when energized for 5 hours at 10 mA and general bacteria were added before energization. The number of viable bacteria decreases with the passage of time immediately after energization, and as described above, the decrease in the number of viable bacteria is confirmed even after energization is stopped.
  • the bactericidal effect can be improved by increasing the current value of the titanium electrode and increasing the titanium concentration. Since the growth of bacteria can be sufficiently suppressed if it is continuously used, the energization condition represented by the product of the current value and the energization time required for titanium elution is equivalent to 50 mA'h.
  • Fig. 5 shows the amount of titanium eluted with respect to the energization condition represented by the product of the current value and the energization time.
  • the amount of titanium elution increased with the increase in the product of the current value and energization time, and the amount of titanium elution was about 10 _4 mg under the energization conditions of the present invention (equivalent to 50 mA'h for 1 L of stored water). titanium concentration of the stored water is estimated to be about 10 _4 mgZL.
  • the titanium electrode 20 is configured with an electrode area corresponding to the current ratio between the electrode 2 and the titanium electrode 20 in order to ensure a current-carrying condition in which the bactericidal effect of the eluted titanium is exhibited.
  • the energization conditions for exerting the above bactericidal effect are set so that the condition shown in Equation 1 is satisfied based on the results of the verification of the bactericidal effect of the eluted titanium described above.
  • I is the conduction current (mA) of the titanium electrode
  • V is the amount of water stored in the electrolytic hydrogen water generator according to the present invention (L)
  • t is the power supply time to the titanium electrode (h ).
  • the surface area S2 of the electrode 2 and the surface area S1 of the titanium electrode are the impedance between the electrodes 1 and 2 as Z2, the distance between the electrodes as L2, the impedance between the electrodes 1 and the titanium electrode 20 as Z1, When the distance between the electrodes is L1, the electrolytic current required to generate the electrolytic gas is 12, and the current flowing through the titanium electrode is II, the relationship of Eq. (4) is established.
  • the electrolytic current between electrodes 1 and 2 12, the distance L2 between electrodes, and the surface area S2 of electrode 2, the surface area S1 of titanium electrode 20 and the distance L1 between electrodes satisfy the relationship of Eq. (4). If it is configured like this, it is good.
  • the surface area S1 of the titanium electrode 20 does not indicate an apparent surface area corresponding to the total facing area of the titanium electrode 20, but indicates a true surface area that is undesirably applied to a weak current.
  • the surface area S1 becomes / J, the smaller the material that changes depending on the form and uses a lower porosity.
  • I1XL1 / S1 I2XL2 / S2 (4)
  • the power supply unit 7 that feeds a DC voltage to the electrodes 1 and 2 and the titanium electrode 20 includes a current sensor 9 that detects a current flowing through the electrodes 1 and 2 and the titanium electrode 20, and an output signal of the current sensor 9.
  • a constant-current power supply is equipped with a regulator 10 that keeps the current value constant by varying the output voltage, and a timer 11 that stops voltage output at a predetermined time.
  • the power supply circuit to the titanium electrode 2 is equipped with a diode 24, and energization is performed only at the cathode, and the power supply is stopped at the anode, thereby preventing a decrease in the energization performance due to oxidation of the titanium electrode 20.
  • the polarity of the electrodes 1 and 2 is reversed by opening and closing the transistors S1A, S1B and S2A, S2B provided in the power supply unit 7 at the same timing.
  • Acidic water is generated near the electrode by hydrogen ions generated by electrolysis of water, and the calcium deposited on the electrode can be dissolved.
  • tap water containing a large amount of calcium is used, calcium precipitation at electrode 1 and electrode 2 can be suppressed by reducing the polarity switching time.
  • a negative voltage is applied to the titanium electrode 20 with the transistors S1A and S1B open and S2A and S2B closed, and a small amount of titanium is eluted to exert a bactericidal action. Under the condition that transistors S1A and SIB are closed and S2A and S2B are opened, power supply is stopped by diode 24. Note that calcium is deposited on the surface of the titanium electrode 20 during negative voltage feeding.
  • the electrolytic cell 3 including the electrodes 1 and 2 and the titanium electrode 20 configured as described above, and a DC voltage having a controlled polarity are applied to each of the electrodes, so that the filtration unit 6 and the lower part are disposed.
  • the stored water in the electrolytic cell 3 is electrolyzed, and hydrogen and oxygen, which are the electrolysis gas 17, accumulate in the upper part of the filtration unit 6.
  • electrode 2 and titanium electrode 20 are negative, a slight amount of titanium elutes and diffuses into the stored water.
  • the stored water containing the eluted titanium permeates from the outer periphery of the activated carbon block 4 and oozes into the through-hole 5 in the center and passes through the pressure regulating valve 15. It is discharged from the water pipe 16 as drain water.
  • the eluted titanium can sterilize the stored water and bacteria in the activated carbon block 4 and keep the device clean.
  • the tap water is introduced to the filtration unit 6 via the flow switch 13 and the electrolytic cell 3, mixed with the stored electrolytic gas, and then activated carbon block 4
  • the outer peripheral force also penetrates and is discharged from the through hole 5.
  • trace amounts of pollutants contained in tap water are removed, and the mixed electrolytic gas and the electrolytic gas occluded in the activated carbon block 4 are converted into fine bubbles by the activated carbon block 4, and the Provides high-concentration hydrogen water by diffusing and dissolving.
  • FIG. 6 shows a configuration in which a titanium electrode is disposed above both electrolytic electrode pairs, using the above-described electrolytic cell structure according to the present invention as an application example.
  • titanium electrodes 31 and 32 are provided above both electrode 1 and electrode 2, and accordingly, a power supply circuit for applying a negative potential to both titanium electrodes 31 and 32 is provided. Except for this, the other components and operating conditions are the same as those of the device shown in Fig. 1 above.
  • Titanium electrode 31 is fed from electrode 1 and titanium electrode 32 is fed from electrode unit 2 with the polarity synchronized to electrode 2, and the output voltage is varied by current sensor 9 and regulator 10 to change the current value. Keep constant. At this time, only a negative potential is fed to the titanium electrodes 31 and 32, and therefore the diode 24 is provided in the feeding circuit to the titanium electrodes 31 and 32.
  • electrode 1 functions as an anode
  • electrode 2 and titanium electrode 32 function as a cathode.
  • Mineral components such as calcium are deposited.
  • electrode 2 acts as the anode
  • electrode 1 and titanium electrode 31 act as the cathode
  • calcium is deposited on the surface of titanium electrode 31.
  • oxygen bubbles 25 and acidic water are generated at electrode 2 by electrolysis of water. Acidic water is guided to the vicinity of the titanium electrode 32 as the oxygen bubbles 25 rise, and dissolves and removes calcium deposited on the titanium electrode 32. Calcium deposited on the titanium electrode 31 is dissolved and removed by the acidic water generated at the electrode 1 after polarity reversal.
  • the titanium electrode is always kept clean even during long-term use, and stable energization performance can be secured. Therefore, it is possible to stably supply safe hydrogen water with little bacterial contamination.
  • FIG. 1 is a diagram showing a configuration of an electrolytic hydrogen water generator according to the present invention.
  • FIG. 2 is a diagram showing a configuration of a conventional electrolytic hydrogen water generator.
  • FIG. 4 is a diagram showing an example of a bactericidal effect by eluted titanium.
  • FIG. 5 is a graph showing the amount of titanium eluted with respect to the energization conditions.
  • FIG. 6 is a diagram showing a configuration of an electrolytic hydrogen water generator according to the present invention. Explanation of symbols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

An electrolytic hydrogen water production system having a titanium electrode for sterilization which can sustain sterilization effect even when the system is operated for a long term or used in a region where hardness of city water is high by ensuring a stabilized electrolytic current. The electrolytic hydrogen water production system comprises a water supply pipe, an electrolytic tank connected therewith, a pair of electrolytic electrodes opposing each other in the electrolytic tank, a sterilization electrode arranged above one electrolytic electrode, a power supply for supplying positive or negative DC voltage alternately every predetermined period to the pair of electrolytic electrodes, a control means for supplying a negative voltage, only when one electrode becomes a negative electrode, to the sterilization electrode arranged above it, a filter unit connected with the electrolytic tank and filtering electrolytic water and electrolytic gas generated therein, and a pipe for introducing water filtered by the filter unit to the outside, wherein a means for introducing acid water produced at the lower electrolytic electrode to the sterilization electrode is provided in the gap between the sterilization electrode and the opposing electrolytic electrode.

Description

明 細 書  Specification
電解式水素水生成装置  Electrolytic hydrogen water generator
技術分野  Technical field
[0001] 本発明は,水道水に含まれる有機汚濁物質の吸着保持能をもつ活性炭ブロックを 備えた殺菌機能を有する電解式水素水生成装置に関するものである。  [0001] The present invention relates to an electrolytic hydrogen water generating apparatus having a sterilizing function, which is equipped with an activated carbon block capable of adsorbing and holding organic pollutants contained in tap water.
背景技術  Background art
[0002] 従来,特開 2006— 43610に示される図 2の電解式水素水生成装置(以下,従来 装置と記する。)が知られている。  Conventionally, an electrolytic hydrogen water generator of FIG. 2 (hereinafter referred to as a conventional device) shown in Japanese Patent Application Laid-Open No. 2006-43610 is known.
[0003] この従来装置は,電解用電極 1, 2を備える電解槽 3および残留塩素やトリハロメタ ンをはじめとする有機塩素化合物,カビ臭の原因となる 2—メチルイソボルネオール, 農薬等の有機汚濁物質の吸着保持能を有する活性炭ブロック 4を備えるろ過ユニット 6から構成される。前記電解用電極 1, 2には電源ユニット 7より直流電圧が給電され, 装置内の貯留水を電気分解して水素および酸素カゝら成る電解ガスを発生させ,通水 停止時にはろ過ユニット 6内に電解ガスを貯留する。電極 1, 2に給電する電源ュ-ッ ト 7では,水質の変動に影響を受けない電気分解を維持するため,電解電流を電流 センサー 9で検出し,レギユレータ 10にフィードバックすることで電解電流を一定に保 持する定電流制御が採用されている。  [0003] This conventional apparatus is equipped with an electrolytic cell 3 equipped with electrodes 1 and 2 for electrolysis, organic chlorine compounds such as residual chlorine and trihalomethane, 2-methylisoborneol that causes mold odor, and organic pollution such as agricultural chemicals. It consists of a filtration unit 6 equipped with an activated carbon block 4 that has the ability to adsorb and retain substances. The electrolysis electrodes 1 and 2 are supplied with a DC voltage from the power supply unit 7 to electrolyze the water stored in the apparatus to generate electrolytic gas such as hydrogen and oxygen, and when the water flow is stopped, Electrolytic gas is stored in In the power supply 7 that feeds the electrodes 1 and 2, the electrolytic current is detected by the current sensor 9 and fed back to the regulator 10 in order to maintain electrolysis that is not affected by fluctuations in water quality. Constant current control is used to keep it constant.
さらに,水道水中のミネラル成分,例えば,カルシウムが陰極表面に析出することを 防止するための極性反転回路を備える。  In addition, a polarity reversing circuit is provided to prevent mineral components such as calcium in tap water from precipitating on the cathode surface.
[0004] 電源ユニット 7に設けられたトランジスタ S1A, S1Bおよび S2A, S2Bを同一のタイ ミングで開閉動作させることで電極 1, 2の極性を反転させる。 [0004] The polarity of electrodes 1 and 2 is reversed by opening and closing transistors S1A, S1B and S2A, S2B provided in power supply unit 7 at the same timing.
トランジスタ S1A, S1Bを開, S2A, S2Bを閉として電源ユニット 7から直流電圧を給 電すると,電極 1は陽極,電極 2は陰極として水の電気分解が開始され,数時間に 1 回の割合でトランジスタ S1A, S1Bを閉, S2A, S2Bを開に切り替え,電極 1を陰極, 電極 2を陽極として電気分解を継続する。数時間の電解によっても陰極表面にカル シゥムが析出する可能性があるが,極性反転が行われ,電極表面に多量の水素ィォ ンを発生させることでカルシウムが溶解する酸性水を生成する。 [0005] また,前記電極 1, 2の近傍には,電極 1,または,電極 2に対し,常時,負電圧を給 電するチタン製の殺菌用電極 26を独立して設け,電極 1および電極 2間のインピー ダンスを Z2としたとき,電極対を構成する各電極 1, 2とチタン電極 26間のインピーダ ンス Z1を同等に保ちつつ,電解電流とチタン溶出に要する通電電流との比率で Z1, Z2を構成できる様,電極対 1, 2および殺菌用電極 26を配設する。従来の電解式水 素水生成装置では,前記殺菌用電極 26を常時陰極として用い,このとき陽極となる 電極 1または,電極 2との間に微弱電流を通電して極微少量のチタンを溶出させ,装 置内や後段の活性炭ブロック 4での細菌の発生を抑制している。 When the transistors S1A and S1B are opened and S2A and S2B are closed and DC voltage is supplied from the power supply unit 7, the electrolysis of water starts with the electrode 1 serving as the anode and the electrode 2 serving as the cathode, once every few hours. Transistors S1A and S1B are closed, S2A and S2B are switched to open, and electrolysis continues with electrode 1 as the cathode and electrode 2 as the anode. Electrolysis for several hours may deposit calcium on the cathode surface, but the polarity is reversed, and a large amount of hydrogen is generated on the electrode surface to generate acidic water in which calcium dissolves. [0005] Further, in the vicinity of the electrodes 1 and 2, a sterilizing electrode 26 made of titanium that constantly supplies a negative voltage to the electrode 1 or 2 is provided independently. When the impedance between the two electrodes is Z2, the ratio of the electrolysis current and the current required for titanium elution is Z1 while maintaining the same impedance Z1 between the electrodes 1 and 2 and the titanium electrode 26 constituting the electrode pair. , Electrode pairs 1 and 2 and bactericidal electrode 26 are arranged so that Z2 can be constructed. In a conventional electrolytic hydrogen generator, the sterilizing electrode 26 is always used as a cathode, and a very small amount of titanium is eluted by passing a weak current between the anode 1 and the electrode 2 serving as the anode. Therefore, the generation of bacteria in the activated carbon block 4 in the equipment and the latter stage is suppressed.
なお,前記殺菌用電極 26には,電極 1,または,電極 2に対して,常時,負の直流電 圧を電源ユニット 7より供給する。  The sterilizing electrode 26 is always supplied with a negative DC voltage from the power supply unit 7 to the electrode 1 or the electrode 2.
[0006] 浄水を目的として活性炭等の吸着材料を要する一般の水処理装置では,吸着材料 充填部での細菌の発生を抑制するため,抗菌作用を有する銀添着加工を施した活 性炭を原料とする技術 (特許文献 1)やミネラル徐放粒子を添加した活性炭フィルタを 利用し,活性炭フィルタ力 徐放されるカルシウム,マグネシウムによって細菌の繁殖 を抑制する技術 (特許文献 2)が利用されるが,特許文献 3では細菌繁殖を抑制する ためにチタンを溶出させる方法をとつて ヽる。  [0006] In general water treatment equipment that requires an adsorbent material such as activated carbon for the purpose of purifying water, the raw material is activated charcoal with silver antibacterial action that has an antibacterial action in order to suppress the generation of bacteria in the adsorbent material filling section Technology (Patent Document 1) and activated carbon filter added with mineral sustained-release particles, and the technology that suppresses the growth of bacteria by the activated carbon filter power sustained release calcium and magnesium (Patent Document 2) are used. In Patent Document 3, a method of eluting titanium is used to suppress bacterial growth.
特許文献 1:特開平 11 226570  Patent Document 1: JP-A-11 226570
特許文献 2 :特開 2003— 144821  Patent Document 2: JP 2003-144821
特許文献 3 :特開 2006— 43610  Patent Document 3: JP 2006-43610
[0007] さらに,特許文献 3では,活性炭粉末をポリエチレン等のバインダを用いて中空柱 状に成形した有機汚濁物質の吸着保持能を有する活性炭ブロック 4を形成し,数 μ m程度の極めて微細な細孔を備えさせる発明が開示されている。 [0007] Furthermore, in Patent Document 3, activated carbon block 4 having the ability to adsorb organic pollutants formed by forming activated carbon powder into a hollow column shape using a binder such as polyethylene is formed, and an extremely fine size of about several μm is formed. An invention for providing pores is disclosed.
[0008] ろ過ユニット 6内に貯留された電解ガスは活性炭ブロック 4および活性炭粉末が有す る無数の細孔に流入し,活性炭ブロック 4内に電解ガスが吸蔵される。 [0008] The electrolytic gas stored in the filtration unit 6 flows into countless pores of the activated carbon block 4 and the activated carbon powder, and the electrolytic gas is occluded in the activated carbon block 4.
なお,電解ガスの発生にともなう容器内圧の上昇により,貯留水は活性炭ブロック 4の 外周から浸透し,中心部の貫通穴 5に浸み出て,圧力調整弁 15を介して送水管 16 力 ドレン水として排出される。  As the internal pressure of the container increases due to the generation of electrolytic gas, the stored water permeates from the outer periphery of the activated carbon block 4 and oozes into the through hole 5 in the center, and the water supply pipe 16 force drains through the pressure adjustment valve 15. It is discharged as water.
[0009] 水道蛇口 12を開放して通水状態とすると,水道水はフロースィッチ 13および電解 槽 3を介してろ過ユニット 6に導水され,活性炭ブロック 4の外周から浸透して貫通穴 5 カゝら排出される。このとき,活性炭ブロック 4内に吸蔵された電解ガスと水道水が接触 し,電解ガスが水中に拡散,溶解する。 [0009] When water tap 12 is opened and water is passed through, tap water is supplied to flow switch 13 and electrolytic water. Water is introduced to the filtration unit 6 through the tank 3, penetrates from the outer periphery of the activated carbon block 4, and is discharged from 5 through holes. At this time, the electrolytic gas occluded in the activated carbon block 4 comes into contact with tap water, and the electrolytic gas diffuses and dissolves in the water.
[0010] なお,電気分解を継続するとろ過ユニット 6および電解槽 3内の貯留水が完全に電 解ガスで置換され,電極 1, 2が電解ガス層 17に露出する。何らかの理由により電極 1および電極 2の間が短絡した場合,電解に消費されない無駄な電力を浪費するだ けでなく,高濃度の水素ガスと酸素ガスで構成される電解ガスが短絡時に発生する アーク (火花)により発火現象や爆発現象をともなう場合がある。このような危険を防 止するため,通水開始時のフロースィッチ 13からの起動信号によって電源ユニット 7 から電極 1, 2への給電をスタートすることで電解を開始させ,電極 1, 2が電解ガス中 に露出する前にタイマー 11によって一定の時間で電源ユニット 7からの給電を自動 停止するように構成している。 If electrolysis is continued, the water stored in the filtration unit 6 and the electrolytic cell 3 is completely replaced with electrolytic gas, and the electrodes 1 and 2 are exposed to the electrolytic gas layer 17. If for some reason the electrodes 1 and 2 are short-circuited, not only is the wasted power that is not consumed by the electrolysis lost, but also an electrolytic gas composed of high-concentration hydrogen gas and oxygen gas is generated when the short-circuit occurs. (Spark) may cause ignition or explosion. In order to prevent such a danger, electrolysis is started by starting power supply from the power supply unit 7 to the electrodes 1 and 2 by the activation signal from the flow switch 13 at the start of water flow. The timer 11 is configured to automatically stop the power supply from the power supply unit 7 for a certain period of time before being exposed to the gas.
なお,上述のタイマー制御方法の代替として,電解槽 3内の上部,あるいは,ろ過ュ ニット 6内の下部にフロートスィッチ等の水位センサーを設け,電解槽 3内が常に貯留 水で満たされる様,電源ユニット 7の給電を水位センサーで制御する方法が用いられ ることちある。  As an alternative to the timer control method described above, a water level sensor such as a float switch is provided in the upper part of the electrolytic cell 3 or the lower part of the filtration unit 6 so that the electrolytic cell 3 is always filled with stored water. A method of controlling the power supply of the power supply unit 7 with a water level sensor is sometimes used.
[0011] 電解停止後,水道蛇口 12が開放され,水道水が電解式水素水生成装置に導水さ れると,電源ユニット 7にフロースィッチ 13の起動信号が入力され,再度,電気分解 が開始される。  [0011] After the electrolysis is stopped, when the water tap 12 is opened and tap water is introduced into the electrolytic hydrogen water generator, the start signal of the flow switch 13 is input to the power unit 7, and electrolysis starts again. The
[0012] 水の電気分解で生じる化学反応を化学式 1に記する。  [0012] Chemical reaction generated by electrolysis of water is shown in Chemical Formula 1.
(化 1)  (Chemical 1)
2H 0 + 2e→H + 20H" … (1)  2H 0 + 2e → H + 20H "… (1)
2 2  twenty two
2H 0→0 +4H+ +4e … (2)  2H 0 → 0 + 4H + + 4e… (2)
2 2  twenty two
H 0→H + 1/20 … (3)  H 0 → H + 1/20… (3)
2 2 2  2 2 2
[0013] (1)式は陰極反応, (2)式は陽極反応, (3)式は前記(1) , (2)式を踏まえた系全体 としての反応を示す。  [0013] Equation (1) represents the cathodic reaction, equation (2) represents the anodic reaction, and equation (3) represents the reaction of the entire system based on the above equations (1) and (2).
(3)式に表されるように,水の電気分解によって発生する電解ガスは,水素ガス容 積:酸素ガス容積が 2 : 1の割合で構成されるため,約 65%の高濃度の水素ガスが貯 留すること〖こなる。また,活性炭ブロック 4を構成する活性炭粉末とバインダの間隙が 数/ z m程度の極めて微細な細孔を形成し,かつ,構成要素である活性炭粉末表面 には nm〜 mオーダーの無数の細孔を有している。このため,活性炭ブロック 4内 に貯留した電解ガスは,水道水と混合されて活性炭ブロック 4から微細な気泡となつ て押し出され,この結果,高濃度の水素水が生成されることになる。 As expressed in Eq. (3), the electrolysis gas generated by the electrolysis of water is composed of hydrogen gas volume: oxygen gas volume ratio of 2: 1. Gas is stored It ’s hard to stay. In addition, extremely fine pores with a gap between the activated carbon powder constituting the activated carbon block 4 and the binder of about several / zm are formed, and the activated carbon powder surface, which is a component, has numerous pores on the order of nm to m. Have. For this reason, the electrolytic gas stored in the activated carbon block 4 is mixed with tap water and pushed out as fine bubbles from the activated carbon block 4, resulting in the generation of high-concentration hydrogen water.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0014] 前述した従来の電解式水素水生成装置においては,電解用電極は,極性反転回 路を備えることで負電圧印加時に付着したカルシウムを正電圧印加時に電極面に発 生する多量の水素イオンを含んだ水,いわゆる酸性水によって溶解することで除去 できるが,殺菌用電極については,常時,負電圧を印加するため,長期間の運転や 水道水の硬度が高!、地域では,電極表面にカルシウム等のミネラル成分が堆積して 電解電流が低下する課題があった。電解電流の低下にともな 、殺菌用電極のチタン 溶出量が低下し,安定した制菌効果を得ることが困難となるため,例えば,クェン酸 等の酸性溶液を調製し,定期的に洗浄作業を行う必要があった。 [0014] In the above-described conventional electrolytic hydrogen water generator, the electrode for electrolysis has a polarity reversal circuit so that a large amount of hydrogen is generated on the electrode surface when calcium is attached when a negative voltage is applied. It can be removed by dissolving with water containing ions, so-called acidic water, but the sterilization electrode is always applied with a negative voltage, so long-term operation and the hardness of tap water are high! There was a problem that the electrolytic current decreased due to the accumulation of mineral components such as calcium on the surface. As the electrolysis current decreases, the amount of titanium elution from the sterilization electrode decreases, making it difficult to obtain a stable bactericidal effect. For example, an acidic solution such as citrate is prepared and cleaned regularly. Had to do.
課題を解決するための手段  Means for solving the problem
[0015] 上述の課題を解決するために,本発明の電解式水素水生成装置では,給水管と, それに接続された電解槽と,電解槽中の相互に対向する一対の電解電極と,その一 方の電解電極の上方に配設された殺菌用電極と,前記一対の電解電極に一定期間 ごとに相互に正,または,負の直流電圧を供給する電源と,前記一方の電極が陰極 となったときのみ,その上方の殺菌用電極に負の電圧を供給する制御手段と,前記 電解槽に接続され,電解槽で発生する電解水と電解ガスをろ過するろ過ユニットと, 前記ろ過ユニットでろ過された水を外部に導く送水管で構成する。  [0015] In order to solve the above-mentioned problem, in the electrolytic hydrogen water generating apparatus of the present invention, a water supply pipe, an electrolytic cell connected to the water supply pipe, a pair of electrolytic electrodes facing each other in the electrolytic cell, A sterilization electrode disposed above one of the electrolytic electrodes, a power source for supplying a positive or negative DC voltage to the pair of electrolytic electrodes at regular intervals, and the one electrode serving as a cathode. Only when the control means for supplying a negative voltage to the sterilization electrode above it, the filtration unit connected to the electrolytic cell and filtering the electrolyzed water and electrolytic gas generated in the electrolytic cell, and the filtration unit It consists of a water pipe that guides filtered water to the outside.
前記電解電極は, 白金,または, 白金めつきを施した金属等,酸化反応による電気 的特性の変化をうけにくい導電性材料,また,殺菌用電極はチタンで構成し,殺菌用 電極と,これに対向する電解電極の間隙には,殺菌用電極の下部に配設された電解 電極が陽極になったときに発生する酸素気泡の流れにより,前記陽極近傍で生成す る酸性水を殺菌用電極に導くための誘導手段,例えばセパレータ等の遮蔽板を設け る。 The electrolytic electrode is a conductive material that is not easily changed in electrical characteristics due to an oxidation reaction, such as platinum or a metal plated with platinum, and the sterilization electrode is made of titanium. In the gap between the electrolysis electrodes facing the sterilization electrode, acidic water generated in the vicinity of the anode is generated by the flow of oxygen bubbles generated when the electrolysis electrode disposed below the sterilization electrode becomes the anode. Introducing a guiding means, such as a separator The
[0016] また,後段の前記ろ過ユニットには,活性炭粉末をポリエチレン等のバインダを用い て中空柱状に成形した活性炭ブロックを収納する。  [0016] Further, the subsequent filtration unit contains activated carbon blocks obtained by forming activated carbon powder into a hollow column shape using a binder such as polyethylene.
さらに,外部には給電電圧の極性を時間制御するための制御回路と定電流機能を 有する電源ユニットを備え,前記電解槽の電解電極および殺菌用電極に給電する。 発明の効果  Furthermore, a control circuit for time-controlling the polarity of the power supply voltage and a power supply unit having a constant current function are provided outside, and power is supplied to the electrolytic electrode and the sterilization electrode of the electrolytic cell. The invention's effect
[0017] 本発明の電解式水素水生成装置によれば,負極性時に微弱電解によってチタン電 極表面に析出したカルシウム等のミネラル成分は,下部の電解電極が陽極時に水の 電気分解によって発生する酸性水を,同じく電気分解によって発生する酸素気泡の 上昇にともなって殺菌用のチタン電極近傍に誘導させることで溶解し,除去すること ができる。  [0017] According to the electrolytic hydrogen water generator of the present invention, mineral components such as calcium deposited on the surface of the titanium electrode by weak electrolysis at the time of negative polarity are generated by electrolysis of water when the lower electrolysis electrode is at the anode. Acidic water can be dissolved and removed by inducing it near the titanium electrode for sterilization as the oxygen bubbles generated by electrolysis rise.
また,この酸性水の誘導手段として,例えばセパレータ等の遮蔽板を配設することで ,各電極で発生する電解ガスの混合を防止し,陽極側で生成する酸性水の酸性度 の低下を抑制している。  In addition, as a means for guiding the acidic water, for example, a shielding plate such as a separator is provided to prevent mixing of the electrolytic gas generated at each electrode, and to suppress a decrease in the acidity of the acidic water generated on the anode side. is doing.
さらに,チタン電極洗浄時は,チタン電極への給電を停止することでアルカリ性水を 生成させず,酸性水による電極の洗浄効率を向上する。  In addition, when cleaning the titanium electrode, power supply to the titanium electrode is stopped, so that alkaline water is not generated, and the electrode cleaning efficiency with acidic water is improved.
[0018] なお,前記セパレータをチタン電極に近接して配設することで,陽極で発生する酸素 気泡が陽極近傍に集約されて浮上するため,同時に生成する酸性水を効果的にチ タン電極近傍に誘導することができ,カルシウム等,ミネラル成分の洗浄効果をさらに 向上することができる。 [0018] By disposing the separator close to the titanium electrode, oxygen bubbles generated at the anode are concentrated and floated near the anode, so that the acidic water generated at the same time can be effectively removed near the titanium electrode. This can further improve the cleaning effect of mineral components such as calcium.
実施例  Example
[0019] 図 1に本発明の電解式水素水生成装置の構成例を示す。  FIG. 1 shows a configuration example of an electrolytic hydrogen water generator according to the present invention.
本装置は,下部に水を電気分解し,電解ガス 17を発生させるための電解用電極 1, 2と,電極 1に対向させ,電極 2の上方に配設される殺菌用チタン電極 20と,電極 1お よびチタン電極 20で構成されるギャップ部 22に絶縁材料カゝら成るセパレータ 23で構 成される電解槽 3,上部に粉末活性炭をバインダにより中空柱状に成形した活性炭 ブロック 4を収納したろ過ユニット 6を配設して成る。  The apparatus comprises electrolysis electrodes 1 and 2 for electrolyzing water in the lower part to generate electrolysis gas 17, a sterilizing titanium electrode 20 disposed above electrode 2 so as to face electrode 1, Electrolytic cell 3 composed of separator 23 made of insulating material in gap 22 composed of electrode 1 and titanium electrode 20, and activated carbon block 4 in which powdered activated carbon is formed into a hollow column shape with a binder at the top. A filtration unit 6 is provided.
なお,前記電極 1, 2はチタン等の金属に白金めつきを施した電極を使用し,前記殺 菌用チタン電極 20はチタン素材をそのまま使用する。 The electrodes 1 and 2 are made of platinum-plated metal such as titanium. The titanium electrode 20 for bacteria uses a titanium material as it is.
[0020] 前記セパレータ 23は,電極 1および電極 2で発生する電解ガスの気泡が双方向に 混入して,電極 2で生成される酸性水の酸性度を低下させることを抑制するため,電 極 1に対向するチタン電極 20表面を覆 ヽ隠すように配設する。 [0020] The separator 23 is provided with an electrode in order to prevent the bubbles of the electrolytic gas generated at the electrodes 1 and 2 from being mixed in both directions and reducing the acidity of the acidic water generated at the electrode 2. Titanium electrode 20 facing 1 is arranged so as to cover and hide the surface.
なお,セパレータ 23に導電性材料を使用した場合,セパレータ 23が電極 2とは逆極 性の浮き電極として作用して水電解を行うため,電極 2で生成した酸性水の酸性度を 低下させる。よって,セパレータ 23は絶縁物で構成するか,あるいは,導電性素材で あっても絶縁被覆を施すことが望ま 、。  When a conductive material is used for separator 23, separator 23 acts as a floating electrode with a polarity opposite to that of electrode 2 for water electrolysis, so that the acidity of the acidic water generated at electrode 2 is reduced. Therefore, it is desirable that the separator 23 is made of an insulating material, or an insulating coating is applied even if it is a conductive material.
また,電極 1を陽極,チタン電極 20を陰極として微弱電流を通電する場合,前記セパ レータ 23として,例えば,イオン交換膜のような微細孔を有する絶縁物を利用すれば ,電極 1および電極 2で発生する電解ガスの混入を防止しつつ,電極 1とチタン電極 20への給電電圧を低減することもできる。  When a weak current is applied with the electrode 1 as an anode and the titanium electrode 20 as a cathode, if an insulator having a micropore such as an ion exchange membrane is used as the separator 23, the electrodes 1 and 2 It is also possible to reduce the supply voltage to the electrode 1 and the titanium electrode 20 while preventing the mixing of the electrolytic gas generated in step 1.
[0021] 図 3,図 4に溶出チタンによる殺菌効果の一例を示す。 [0021] Fig. 3 and Fig. 4 show an example of the bactericidal effect of the eluted titanium.
図 3に示す事例は,陰極にチタン,陽極に白金めつきを施したチタンを用いた本発 明の電極構成と,両極とも白金めつきを施したチタンを用いた電極構成として, 1Lの 水道水に対し,電流値 (mA)と通電時間(hour)の積で表される通電条件が 50mA X hour (以下, mA'hと略記する)相当となる 10mAで 5時間通電した後,一般細菌 を投入した場合の生菌数の推移を示したものである。  In the example shown in Fig. 3, the electrode configuration of the present invention using titanium as the cathode and titanium plated with platinum, and the electrode configuration using titanium plated with platinum on both electrodes, After energizing water for 5 hours at 10 mA, where the current value (mA) multiplied by the current-carrying time (hour) is equivalent to 50 mA X hour (hereinafter abbreviated as mA'h), It shows the transition of the number of viable bacteria when.
両極とも白金めつきを施したチタンを用いた電極構成では,生菌数の低下が確認さ れないことに対し,本発明の電極構成では時間経過に従って明らかな殺菌効果が確 認されている。  In the electrode configuration using titanium plated with platinum at both electrodes, no decrease in the number of viable bacteria was confirmed, whereas in the electrode configuration of the present invention, a clear bactericidal effect was confirmed over time.
結果より,本発明の電極構成では,陰極力 溶出した微量のチタンが水中に残存す るため,通電停止後の水にお!、ても殺菌効果が発揮されることがわかる。  From the results, it can be seen that in the electrode configuration of the present invention, a small amount of titanium eluted with the cathode force remains in the water, so that the sterilizing effect is exhibited even when the water is turned off.
[0022] 図 4に示す事例は,図 3の条件と同様に,陰極にチタン,陽極に白金めつきを施した チタンを用いて, 1Lの水に対し,通電条件が 50mA'h相当となる様, 10mAで 5時 間通電し,通電前に一般細菌を投入した時の生菌数の推移を示したものである。 生菌数は通電直後より時間経過に伴って減少し,さらに,前述したように通電停止後 も生菌数の減少が確認されて!ヽる。 [0023] また,チタン電極の電流値を上昇させ,チタン濃度を増加させることで殺菌効果を向 上できる可能性もあるが,低濃度のチタン含有水であっても,細菌が存在しない初期 状態から継続的に使用すれば,細菌の増殖を充分に抑制できることから,チタンの 溶出に必要となる電流値および通電時間の積で表す通電条件を 50mA' h相当とし ている。 [0022] The example shown in Fig. 4 is equivalent to 50mA'h for 1L of water using titanium as the cathode and titanium with platinum plating on the anode, similar to the conditions in Fig. 3. Figure 5 shows the change in the number of viable bacteria when energized for 5 hours at 10 mA and general bacteria were added before energization. The number of viable bacteria decreases with the passage of time immediately after energization, and as described above, the decrease in the number of viable bacteria is confirmed even after energization is stopped. [0023] In addition, there is a possibility that the bactericidal effect can be improved by increasing the current value of the titanium electrode and increasing the titanium concentration. Since the growth of bacteria can be sufficiently suppressed if it is continuously used, the energization condition represented by the product of the current value and the energization time required for titanium elution is equivalent to 50 mA'h.
[0024] 図 5に電流値および通電時間の積で表される通電条件に対するチタンの溶出量を 示す。チタンの溶出量は電流値および通電時間の積の上昇に伴って増加し,本発 明の通電条件 (貯留水 1Lに対し, 50mA'h相当)によるチタンの溶出量は 10_4mg 程度であり,貯留水のチタン濃度は 10_4mgZL程度になると推察される。 [0024] Fig. 5 shows the amount of titanium eluted with respect to the energization condition represented by the product of the current value and the energization time. The amount of titanium elution increased with the increase in the product of the current value and energization time, and the amount of titanium elution was about 10 _4 mg under the energization conditions of the present invention (equivalent to 50 mA'h for 1 L of stored water). titanium concentration of the stored water is estimated to be about 10 _4 mgZL.
[0025] さらに,チタン電極 20は溶出チタンによる殺菌効果が発揮される通電条件を確保 するため,電極 2とチタン電極 20の電流比率に応じた電極面積で構成する。  [0025] Furthermore, the titanium electrode 20 is configured with an electrode area corresponding to the current ratio between the electrode 2 and the titanium electrode 20 in order to ensure a current-carrying condition in which the bactericidal effect of the eluted titanium is exhibited.
上記の殺菌効果を発揮するための通電条件は,前述の溶出チタンによる殺菌効果 の検証結果に基づき,数式 1に示す条件を満たすように設定する。  The energization conditions for exerting the above bactericidal effect are set so that the condition shown in Equation 1 is satisfied based on the results of the verification of the bactericidal effect of the eluted titanium described above.
(数式 1)  (Formula 1)
I = 50mA-h XV/t  I = 50mA-h XV / t
ここで,数式 1に記される Iはチタン電極の通電電流 (mA) , Vは本発明による電解式 水素水生成装置の貯留水の水量 (L) , tはチタン電極への給電時間(h)を示す。  Where I is the conduction current (mA) of the titanium electrode, V is the amount of water stored in the electrolytic hydrogen water generator according to the present invention (L), and t is the power supply time to the titanium electrode (h ).
[0026] なお,電極 2の表面積 S2とチタン電極の表面積 S1は,電極 1〜電極 2間のインピー ダンスを Z2,電極間距離を L2,電極 1〜チタン電極 20間のインピーダンスを Z1,電 極間距離を L1とし,電解ガスの発生に要する電解電流を 12,チタン電極の通電電流 を IIとしたとき,数式 2の (4)式の関係が成立する。 [0026] The surface area S2 of the electrode 2 and the surface area S1 of the titanium electrode are the impedance between the electrodes 1 and 2 as Z2, the distance between the electrodes as L2, the impedance between the electrodes 1 and the titanium electrode 20 as Z1, When the distance between the electrodes is L1, the electrolytic current required to generate the electrolytic gas is 12, and the current flowing through the titanium electrode is II, the relationship of Eq. (4) is established.
したがって,電極 1〜電極 2間の電解電流 12,電極間距離 L2および電極 2の 表面積 S2の設定値に準じて,チタン電極 20の表面積 S1および電極間距離 L1を (4 )式の関係を満たすように構成すれば良 ヽ。  Therefore, the electrolytic current between electrodes 1 and 2 12, the distance L2 between electrodes, and the surface area S2 of electrode 2, the surface area S1 of titanium electrode 20 and the distance L1 between electrodes satisfy the relationship of Eq. (4). If it is configured like this, it is good.
なお,チタン電極 20の表面積 S1は,チタン電極 20の全対向面積に相当する見掛け の表面積を示すものではなく,微弱電流の通電に奇与する真の表面積を指すもので あって,前記セパレータの形態によって変化し,開孔率の低い素材を用いるほど,表 面積 S1は/ J、さくなる。 (数式 2) The surface area S1 of the titanium electrode 20 does not indicate an apparent surface area corresponding to the total facing area of the titanium electrode 20, but indicates a true surface area that is undesirably applied to a weak current. The surface area S1 becomes / J, the smaller the material that changes depending on the form and uses a lower porosity. (Formula 2)
Z1XI1=Z2XI2 ··· (1)  Z1XI1 = Z2XI2 (1)
Zl= XL1/S1 ··· (2)  Zl = XL1 / S1 (2)
Z2= p XL2/S2 ··· (3)  Z2 = p XL2 / S2 (3)
I1XL1/S1=I2XL2/S2 ··· (4)  I1XL1 / S1 = I2XL2 / S2 (4)
S2/S1=I2XL2/(I1XL1) ··· (5)  S2 / S1 = I2XL2 / (I1XL1) (5)
なお,数式 2の(2)式および(3)式に示す pは,水の比抵抗を示す。  Note that p in Eqs. (2) and (3) indicates the specific resistance of water.
[0027] 前記電極 1, 2およびチタン電極 20に直流電圧を給電する電源ユニット 7は,電極 1 , 2とチタン電極 20で流れる電流を検出する電流センサー 9と,電流センサー 9の出 力信号により出力電圧を可変して電流値を一定に保つレギユレータ 10と,所定の時 間で電圧出力を停止するためのタイマ— 11とを備えた定電流電源とする。なお,チ タン電極 2への給電回路にはダイオード 24を具備し,陰極時のみに通電させ,陽極 時には給電を停止することでチタン電極 20の酸ィ匕による通電性能の低下を防止する [0027] The power supply unit 7 that feeds a DC voltage to the electrodes 1 and 2 and the titanium electrode 20 includes a current sensor 9 that detects a current flowing through the electrodes 1 and 2 and the titanium electrode 20, and an output signal of the current sensor 9. A constant-current power supply is equipped with a regulator 10 that keeps the current value constant by varying the output voltage, and a timer 11 that stops voltage output at a predetermined time. In addition, the power supply circuit to the titanium electrode 2 is equipped with a diode 24, and energization is performed only at the cathode, and the power supply is stopped at the anode, thereby preventing a decrease in the energization performance due to oxidation of the titanium electrode 20.
[0028] 電源ユニット 7に設けられたトランジスタ S1A, S1Bおよび S2A, S2Bを同一のタイ ミングで開閉動作させることで電極 1, 2の極性を反転させる。 [0028] The polarity of the electrodes 1 and 2 is reversed by opening and closing the transistors S1A, S1B and S2A, S2B provided in the power supply unit 7 at the same timing.
トランジスタ S1A, S1Bを開, S2A, S2Bを閉として電源ユニット 7から直流電圧を給 電すると,電極 1は陽極,電極 2は陰極として水の電気分解が開始され,数時間に 1 回の割合でトランジスタ S1A, S1Bを閉, S2A, S2Bを開に切り替え,電極 1を陰極, 電極 2を陽極として電気分解を継続する。電極 1,または電極 2が陰極となった場合, 原水に含まれるミネラル成分,例えば,カルシウムが電極表面に析出するが,上述の 極性切替機能により電極 1,または電極 2が陽極となることで,水の電気分解によって 発生した水素イオンによって電極近傍に酸性水が生成され,電極に析出したカルシ ゥムを溶解することができる。なお,カルシウムを多量に含む水道水を使用する場合 ,前記の極性切替時間を短縮することで電極 1および電極 2におけるカルシウムの析 出を抑制することができる。  When the transistors S1A and S1B are opened and S2A and S2B are closed and DC voltage is supplied from the power supply unit 7, the electrolysis of water starts with the electrode 1 serving as the anode and the electrode 2 serving as the cathode, once every few hours. Transistors S1A and S1B are closed, S2A and S2B are switched to open, and electrolysis continues with electrode 1 as the cathode and electrode 2 as the anode. When electrode 1 or electrode 2 becomes a cathode, mineral components contained in the raw water, such as calcium, are deposited on the surface of the electrode, but electrode 1 or electrode 2 becomes an anode by the polarity switching function described above. Acidic water is generated near the electrode by hydrogen ions generated by electrolysis of water, and the calcium deposited on the electrode can be dissolved. When tap water containing a large amount of calcium is used, calcium precipitation at electrode 1 and electrode 2 can be suppressed by reducing the polarity switching time.
[0029] チタン電極 20には前記トランジスタ S1A, S1Bを開, S2A, S2Bを閉とした条件で 負電圧が印加され,微量のチタンを溶出して殺菌作用を発揮させ, トランジスタ S1A, SIBを閉, S2A, S2Bを開した条件では,ダイオード 24により,給 電を停止する。なお,負電圧給電時,チタン電極 20表面には,カルシウムが析出す る。 [0029] A negative voltage is applied to the titanium electrode 20 with the transistors S1A and S1B open and S2A and S2B closed, and a small amount of titanium is eluted to exert a bactericidal action. Under the condition that transistors S1A and SIB are closed and S2A and S2B are opened, power supply is stopped by diode 24. Note that calcium is deposited on the surface of the titanium electrode 20 during negative voltage feeding.
チタン電極への給電停止時,下部の電極 2には正電圧が印加され,水の電気分解に よって,前記 (ィ匕 1)の(2)式に示す反応により,電解ガスである酸素気泡 25および酸 性水が生成する。  When power supply to the titanium electrode is stopped, a positive voltage is applied to the lower electrode 2, and oxygen bubbles, which are electrolytic gases, are generated by the reaction shown in Eq. (2) in (ii) 1 by electrolysis of water. And acid water is produced.
酸素気泡は浮力により上部に上昇し,同時に酸素気泡の流れに伴つて酸性水がチ タン電極 20の近傍に効率良く導かれることで,前述のチタン電極 20表面に析出した カルシウムを溶解,除去する。  Oxygen bubbles rise to the top due to buoyancy, and at the same time, acidic water is efficiently guided to the vicinity of the titanium electrode 20 along with the flow of oxygen bubbles, so that the calcium deposited on the surface of the titanium electrode 20 is dissolved and removed. .
[0030] さらに,前記セパレータ 23を電極 2およびチタン電極 20に近接して配設することで 酸素気泡の拡散が抑えられ,同時に生成される酸性水を効率良くチタン電極 20表 面に導くことができるため,電極表面に析出したカルシウムの洗浄効果を向上できる Furthermore, by disposing the separator 23 in the vicinity of the electrode 2 and the titanium electrode 20, diffusion of oxygen bubbles can be suppressed, and simultaneously generated acidic water can be efficiently guided to the surface of the titanium electrode 20. Can improve the cleaning effect of calcium deposited on the electrode surface
[0031] 上述のように構成した電極 1, 2およびチタン電極 20を備える電解槽 3と前記各電 極に極性を制御された直流電圧を印加することでろ過ユニット 6および下部に配設さ れた電解槽 3内部の貯留水が電気分解され,電解ガス 17である水素および酸素が ろ過ユニット 6の上部に溜まる。同時に,電極 2およびチタン電極 20が負極性である とき,チタン電極 20の通電面力 微少量のチタンが溶出し,貯留水中に拡散する。 また,電解ガス 17の発生にともなう容器内圧の上昇により,溶出チタンを含む貯留 水は活性炭ブロック 4の外周から浸透し,中心部の貫通穴 5に浸み出て,圧力調整 弁 15を介して送水管 16からドレン水として排出される。 [0031] The electrolytic cell 3 including the electrodes 1 and 2 and the titanium electrode 20 configured as described above, and a DC voltage having a controlled polarity are applied to each of the electrodes, so that the filtration unit 6 and the lower part are disposed. The stored water in the electrolytic cell 3 is electrolyzed, and hydrogen and oxygen, which are the electrolysis gas 17, accumulate in the upper part of the filtration unit 6. At the same time, when electrode 2 and titanium electrode 20 are negative, a slight amount of titanium elutes and diffuses into the stored water. In addition, due to an increase in the internal pressure of the container due to the generation of the electrolytic gas 17, the stored water containing the eluted titanium permeates from the outer periphery of the activated carbon block 4 and oozes into the through-hole 5 in the center and passes through the pressure regulating valve 15. It is discharged from the water pipe 16 as drain water.
上記のような過程を経て,溶出チタンが貯留水および活性炭ブロック 4内の細菌を 殺菌し,装置内を清浄な状態に保つことができる。  Through the process described above, the eluted titanium can sterilize the stored water and bacteria in the activated carbon block 4 and keep the device clean.
[0032] 水道蛇口 12を開放して通水状態とすると,水道水はフロースィッチ 13および電解 槽 3を介してろ過ユニット 6に導水され,貯留された電解ガスと混合された後,活性炭 ブロック 4の外周力も浸透して貫通穴 5から排出される。このとき,水道水中に含まれ る微量の汚染物質が取り除かれるとともに,混合された電解ガスおよび活性炭ブロッ ク 4内に吸蔵された電解ガスが活性炭ブロック 4によって微細気泡に変換され,水中 に拡散,溶解することで高濃度の水素水を提供する。 [0032] When the water tap 12 is opened and water is passed, the tap water is introduced to the filtration unit 6 via the flow switch 13 and the electrolytic cell 3, mixed with the stored electrolytic gas, and then activated carbon block 4 The outer peripheral force also penetrates and is discharged from the through hole 5. At this time, trace amounts of pollutants contained in tap water are removed, and the mixed electrolytic gas and the electrolytic gas occluded in the activated carbon block 4 are converted into fine bubbles by the activated carbon block 4, and the Provides high-concentration hydrogen water by diffusing and dissolving.
[0033] 次に,上述した本発明における電解槽構造を応用例として,電解電極対の双方の 上方にチタン電極を配設した構成を図 6に示す。  Next, FIG. 6 shows a configuration in which a titanium electrode is disposed above both electrolytic electrode pairs, using the above-described electrolytic cell structure according to the present invention as an application example.
本装置では,電極 1および電極 2のいずれの上方にもチタン電極 31, 32を備えてい ること,およびこれに伴い,チタン電極 31, 32に双方に負電位を印加するための給 電回路を備えることを除けば,その他の構成要素や動作条件については,上述の図 1に示す装置の構成と同様である。  In this equipment, titanium electrodes 31 and 32 are provided above both electrode 1 and electrode 2, and accordingly, a power supply circuit for applying a negative potential to both titanium electrodes 31 and 32 is provided. Except for this, the other components and operating conditions are the same as those of the device shown in Fig. 1 above.
[0034] チタン電極 31は電極 1に,また,チタン電極 32は電極 2に極性を同期させて電源ュ ニット 7から給電を行い,電流センサー 9およびレギユレータ 10によって出力電圧を可 変して電流値を一定に保つ。このときチタン電極 31, 32には負電位のみを給電する ため,チタン電極 31, 32への給電回路にはダイオード 24を具備する。  [0034] Titanium electrode 31 is fed from electrode 1 and titanium electrode 32 is fed from electrode unit 2 with the polarity synchronized to electrode 2, and the output voltage is varied by current sensor 9 and regulator 10 to change the current value. Keep constant. At this time, only a negative potential is fed to the titanium electrodes 31 and 32, and therefore the diode 24 is provided in the feeding circuit to the titanium electrodes 31 and 32.
[0035] 上記の構成とすることで,トランジスタ S1A, S1Bを開, S2A, S2Bを閉としたとき,電 極 1が陽極,電極 2およびチタン電極 32が陰極として働き,チタン電極 32の表面にミ ネラル成分,例えばカルシウムが析出する。また,トランジスタ S1A, S1Bを閉, S2A , S2Bを開としたとき,電極 2が陽極,電極 1およびチタン電極 31が陰極として働き, チタン電極 31の表面にカルシウムが析出する。なお,このとき,電極 2では水の電気 分解によって酸素気泡 25および酸性水が生成される。酸性水は,酸素気泡 25の上 昇に伴ってチタン電極 32の近傍に導かれ,チタン電極 32に析出したカルシウムを溶 解,除去する。また,チタン電極 31に析出したカルシウムは,極性反転後,電極 1で 生成する酸性水によって溶解,除去される。  [0035] With the above configuration, when transistors S1A and S1B are opened and S2A and S2B are closed, electrode 1 functions as an anode, electrode 2 and titanium electrode 32 function as a cathode. Mineral components such as calcium are deposited. When transistors S1A and S1B are closed and S2A and S2B are opened, electrode 2 acts as the anode, electrode 1 and titanium electrode 31 act as the cathode, and calcium is deposited on the surface of titanium electrode 31. At this time, oxygen bubbles 25 and acidic water are generated at electrode 2 by electrolysis of water. Acidic water is guided to the vicinity of the titanium electrode 32 as the oxygen bubbles 25 rise, and dissolves and removes calcium deposited on the titanium electrode 32. Calcium deposited on the titanium electrode 31 is dissolved and removed by the acidic water generated at the electrode 1 after polarity reversal.
[0036] 以上,詳述した本発明の電解式水素水生成装置を用いることで,長期間の使用によ つても,チタン電極は常に清浄な状態に保たれ,安定した通電性能を確保できるた め,細菌汚染の少ない安全な水素水を安定供給することができる。  [0036] By using the electrolytic hydrogen water generator of the present invention described above in detail, the titanium electrode is always kept clean even during long-term use, and stable energization performance can be secured. Therefore, it is possible to stably supply safe hydrogen water with little bacterial contamination.
図面の簡単な説明  Brief Description of Drawings
[0037] [図 1]本発明に係る電解式水素水生成装置の構成を示す図である。 FIG. 1 is a diagram showing a configuration of an electrolytic hydrogen water generator according to the present invention.
[図 2]従来の電解式水素水生成装置の構成を示す図である。  FIG. 2 is a diagram showing a configuration of a conventional electrolytic hydrogen water generator.
[図 3]、  [Figure 3],
[図 4]溶出チタンによる殺菌効果の一例を示す図である。 [図 5]通電条件に対するチタンの溶出量を示す図である。 FIG. 4 is a diagram showing an example of a bactericidal effect by eluted titanium. FIG. 5 is a graph showing the amount of titanium eluted with respect to the energization conditions.
圆 6]本発明に係る電解式水素水生成装置の構成を示す図である。 符号の説明 [6] FIG. 6 is a diagram showing a configuration of an electrolytic hydrogen water generator according to the present invention. Explanation of symbols
1 電極  1 electrode
2 電極  2 electrodes
3 電解槽  3 Electrolyzer
4 活性炭ブロック  4 Activated carbon block
5 貫通穴  5 Through hole
6 ろ過ユニット  6 Filtration unit
7 電源ユニット  7 Power supply unit
9 電流センサー  9 Current sensor
10 レギユレータ  10 Regulator
11 タイマー  11 Timer
12 蛇口  12 Faucet
13 フロースィッチ  13 Flow switch
15 圧力調整弁  15 Pressure regulating valve
16 送水管  16 Water pipe
17 電解ガス  17 Electrolytic gas
20 殺菌用チタン電極  20 Titanium electrode for sterilization
21 給電端子  21 Feeding terminal
22 ギャップ  22 Gap
23 セパレータ  23 Separator
24 ダイオード  24 diodes
25 酸素気泡  25 oxygen bubbles
S1A, SIB, S2A, S2B トランジスタ  S1A, SIB, S2A, S2B transistors
31, 32 チタン電極  31, 32 Titanium electrode

Claims

請求の範囲 The scope of the claims
[1] 給水管と,それに接続された電解槽と,電解槽中の相互に対向する一対の電解電 極と,その一方の電解電極の上方に配設された殺菌用電極と,前記一対の電解電 極に一定期間ごとに相互に正,または,負の直流電圧を供給する電源と,前記一方 の電極が陰極となったときのみ,その上方の殺菌用電極に負の電圧を供給する制御 手段と,前記電解槽に接続され,電解槽で発生する電解水と電解ガスをろ過するろ 過ユニットと,前記ろ過ユニットでろ過された水を外部に導く送水管で構成されること を特徴とする電解式水素水生成装置。  [1] A water supply pipe, an electrolytic cell connected thereto, a pair of electrolytic electrodes opposed to each other in the electrolytic cell, a sterilizing electrode disposed above one of the electrolytic electrodes, A power supply that supplies a positive or negative DC voltage to the electrolytic electrode at regular intervals, and a control that supplies a negative voltage to the sterilization electrode above only when one of the electrodes becomes a cathode. Means, a filtration unit connected to the electrolytic cell and filtering electrolytic water and electrolytic gas generated in the electrolytic cell, and a water pipe for guiding the water filtered by the filtration unit to the outside. Electrolytic hydrogen water generator.
[2] 電解槽中の相互に対向する一対の電解電極の間に,一方の電解電極が陽極にな つたときに発生する酸素気泡の流れにより,前記陽極近傍に生じた水素イオンを含 んだ酸性水を殺菌用電極に導く誘導手段を設けて,前記殺菌用電極にカルシウム 等のミネラル成分の蓄積を防止することを特徴とする請求項 1の電解式水素水生成 装置。  [2] Between a pair of opposing electrolytic electrodes in the electrolytic cell, hydrogen ions generated in the vicinity of the anode are included due to the flow of oxygen bubbles generated when one electrolytic electrode becomes the anode. 2. The electrolytic hydrogen water generating apparatus according to claim 1, wherein guiding means for guiding acidic water to the sterilization electrode is provided to prevent accumulation of mineral components such as calcium in the sterilization electrode.
PCT/JP2006/323138 2006-11-21 2006-11-21 Electrolytic hydrogen water production system WO2008062507A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2006/323138 WO2008062507A1 (en) 2006-11-21 2006-11-21 Electrolytic hydrogen water production system
JP2008518544A JP4929279B2 (en) 2006-11-21 2006-11-21 Electrolytic hydrogen water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/323138 WO2008062507A1 (en) 2006-11-21 2006-11-21 Electrolytic hydrogen water production system

Publications (1)

Publication Number Publication Date
WO2008062507A1 true WO2008062507A1 (en) 2008-05-29

Family

ID=39429448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323138 WO2008062507A1 (en) 2006-11-21 2006-11-21 Electrolytic hydrogen water production system

Country Status (2)

Country Link
JP (1) JP4929279B2 (en)
WO (1) WO2008062507A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214242A (en) * 2009-03-13 2010-09-30 Takaoka Kasei Kogyo Kk Hydrogen water generator
CN105525305A (en) * 2015-12-15 2016-04-27 四川大学 Electrolytic water decomposition implemented by phytic acid metal electrode material under alkaline condition
JP2016108657A (en) * 2014-10-16 2016-06-20 リン, シン−ユンLin, Hsin−Yung Gas generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106521546A (en) * 2016-10-11 2017-03-22 广东工业大学 Multi-layer BiVO4/CuWO4 composite film for photocatalytic water splitting hydrogen production and preparing method of multi-layer BiVO4/CuWO4 composite film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300355A (en) * 1998-04-27 1999-11-02 Tokico Ltd Electrolytic water generator
JP2003039072A (en) * 2001-07-31 2003-02-12 Pentel Corp Electrochemical pollution preventing method
JP2005296922A (en) * 2004-03-19 2005-10-27 Sekisui Chem Co Ltd Sterilizing system of rainwater
JP2006043610A (en) * 2004-08-05 2006-02-16 Takaoka Kasei Kogyo Kk Electrolytic hydrogen-containing water producing apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2727282B2 (en) * 1992-11-06 1998-03-11 赤井電機株式会社 Cleaning device for electrodes in water purifier
JP3518907B2 (en) * 1994-10-06 2004-04-12 ホシザキ電機株式会社 Electrolyzed water generator
JP4200118B2 (en) * 2004-05-14 2008-12-24 タカオカ化成工業株式会社 Alkaline ion water conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300355A (en) * 1998-04-27 1999-11-02 Tokico Ltd Electrolytic water generator
JP2003039072A (en) * 2001-07-31 2003-02-12 Pentel Corp Electrochemical pollution preventing method
JP2005296922A (en) * 2004-03-19 2005-10-27 Sekisui Chem Co Ltd Sterilizing system of rainwater
JP2006043610A (en) * 2004-08-05 2006-02-16 Takaoka Kasei Kogyo Kk Electrolytic hydrogen-containing water producing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010214242A (en) * 2009-03-13 2010-09-30 Takaoka Kasei Kogyo Kk Hydrogen water generator
JP2016108657A (en) * 2014-10-16 2016-06-20 リン, シン−ユンLin, Hsin−Yung Gas generator
CN105525305A (en) * 2015-12-15 2016-04-27 四川大学 Electrolytic water decomposition implemented by phytic acid metal electrode material under alkaline condition

Also Published As

Publication number Publication date
JPWO2008062507A1 (en) 2010-03-04
JP4929279B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
US6572902B2 (en) Process for producing improved alkaline drinking water and the product produced thereby
CN103951020B (en) Healthy drinking machine
KR20140074927A (en) Electrolysis system and electrolysis method for the same
CN103951118B (en) Commercial affairs water machine
JP2017014587A (en) Electrolytic apparatus and electrolytic ozone water production apparatus
CN108633269B (en) Water treatment device, device for producing water for dialysate preparation, and hydrogen-rich water supply device
JP4399221B2 (en) Hydrogen water supply equipment
JP2000246249A (en) Production of electrolytic water
JP2013108104A (en) Electrolytic synthesis device, electrolytic treating device, electrolytic synthesis method, and electrolytic treatment method
JP4069470B2 (en) Electrolytic hydrogen water generator
JP2020142209A (en) Hydrogen addition method and hydrogen addition device
CN203833687U (en) Healthy water dispenser
JP4929279B2 (en) Electrolytic hydrogen water generator
JP3753987B2 (en) Reduced water generator
JP4641003B2 (en) Electrolyzed water generation method and electrolyzed water generator
CN107935130B (en) Electrochemical system for purifying drinking water and purifying method
JP2004298832A (en) Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water
GB2257982A (en) An electrolytic method of drinking-water purification
JP2002035751A (en) Batchwise electrolytic water making apparatus
JP2002035754A (en) Batchwise electrolytic water making apparatus
JP3056511B2 (en) Treatment water treatment equipment
JP3014427B2 (en) Treatment of treated water
JP4944913B2 (en) Hydrogen water generator
JP2004313977A (en) Water reformer
JPH06328079A (en) Electrolytic ionic water producing device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2008518544

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06832988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06832988

Country of ref document: EP

Kind code of ref document: A1