JP2012013114A - Heat insulating member and building member using the same - Google Patents

Heat insulating member and building member using the same Download PDF

Info

Publication number
JP2012013114A
JP2012013114A JP2010148466A JP2010148466A JP2012013114A JP 2012013114 A JP2012013114 A JP 2012013114A JP 2010148466 A JP2010148466 A JP 2010148466A JP 2010148466 A JP2010148466 A JP 2010148466A JP 2012013114 A JP2012013114 A JP 2012013114A
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum
panel
foam
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010148466A
Other languages
Japanese (ja)
Inventor
Daigoro Kamoto
大五郎 嘉本
Takayuki Nakakawaji
孝行 中川路
Hisao Yokokura
久男 横倉
Masanao Kotani
正直 小谷
Mari Uchida
麻理 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010148466A priority Critical patent/JP2012013114A/en
Publication of JP2012013114A publication Critical patent/JP2012013114A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/90Passive houses; Double facade technology

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulating panel excellent in long-term heat insulation performance as the heat insulating panel of a heat insulating member, which contributes to energy saving of environmentally friendly housing, etc.SOLUTION: A vacuum heat insulating member 1 includes: a core material 3 comprising glass wool; a getter agent 4; and a package material 2 storing the core material 3 and the getter agent 4, and the inside of the package material 2 is sealed in vacuum. In addition, the heat insulating panel 7 of the heat insulating member 10 encloses the vacuum heat insulating member 1 in open cell foam 9 and arranges a sheathing material 5, and the inside of the sheathing material 5 is decompressed and sealed.

Description

本発明は、断熱部材およびそれを用いた建築用部材に関するものである。   The present invention relates to a heat insulating member and a building member using the same.

近年、地球環境保護の観点より、家電製品や産業機器並びに住宅等の建築構造物の省エネルギー化の対策として、特に建築物に対する高断熱化が求められている。その際、断熱パネルの性能向上を図ろうとすると、断熱層の厚さを厚くしなければならないため、スペースや施工の問題が生じてくる。そこで、グラスウールやフォーム樹脂に比べ断熱性能に優れた真空断熱材が提案されている。真空断熱材はガスバリア性を有する外包材中に断熱性に優れた芯材を入れ、内部を真空にすることで作製される。   In recent years, from the viewpoint of protecting the global environment, as a measure for energy saving of building structures such as home appliances, industrial equipment, and houses, particularly high heat insulation is demanded for buildings. At that time, if the performance of the heat insulation panel is to be improved, the thickness of the heat insulation layer must be increased, resulting in problems of space and construction. Therefore, a vacuum heat insulating material that has better heat insulating performance than glass wool or foam resin has been proposed. A vacuum heat insulating material is produced by putting a core material excellent in heat insulating properties into an outer packaging material having gas barrier properties and evacuating the inside.

真空断熱材は初期の熱伝導率が非常に優れる。しかし、芯材を包む外包材の溶着部やラミネートフィルムからのガス侵入および真空断熱材の内部に付着する水分等により、真空度が徐々に低下して次第に断熱性能の劣化が生じる。冷蔵庫等では、省エネ化のために真空断熱材が多く用いられている。その際、真空断熱材の長期信頼性は、約10〜15年を想定して性能劣化を進めているが、時間的に制約があり電気部品の寿命を推定させるアレニウスプロットを用いている。   The vacuum heat insulating material has an excellent initial thermal conductivity. However, the degree of vacuum gradually lowers due to gas intrusion from the outer packaging material that wraps the core material, gas intrusion from the laminate film, moisture adhering to the inside of the vacuum heat insulating material, and the like, and the heat insulating performance gradually deteriorates. In refrigerators and the like, vacuum heat insulating materials are often used for energy saving. At that time, the long-term reliability of the vacuum heat insulating material has been deteriorating in performance assuming about 10 to 15 years, but the Arrhenius plot is used to estimate the lifetime of the electrical component due to time constraints.

建築構造物などの断熱部材における断熱パネルもやはり長期の信頼性試験が必要であり、冷蔵庫よりも長く25年以上の劣化抑制が要求される。また、断熱部材の真空断熱材は特に外部からの衝撃等に対して運搬,保管,施工まで真空断熱材を損傷させずに、長期間において高強度を維持させる必要がある。   A thermal insulation panel in a thermal insulation member such as a building structure also needs a long-term reliability test, and is required to suppress deterioration for 25 years or longer than a refrigerator. In addition, the vacuum heat insulating material of the heat insulating member is required to maintain high strength for a long period of time without damaging the vacuum heat insulating material especially during transportation, storage and construction against external impacts and the like.

これまでの真空断熱材の保護材としては、断熱性能の点から独立気泡を有するウレタン発泡体(熱伝導率:20mW/m・K以上)で覆った断熱パネルを用いてきた(例えば、特許文献1)。   Conventionally, as a protective material for a vacuum heat insulating material, a heat insulating panel covered with a urethane foam (thermal conductivity: 20 mW / m · K or more) having closed cells has been used from the viewpoint of heat insulating performance (for example, Patent Documents). 1).

特開平10−219866号公報Japanese Patent Laid-Open No. 10-211986

独立気泡の発泡体を保護材として用いた従来の真空断熱材では、発泡体の気泡内に空気よりも熱伝導率が低い発泡ガスをトラップしているため、初期状態では熱伝導率の低い発泡体となる。一方、発泡ガスを独立気泡内にトラップするとウレタン樹脂との親和性が良いためガス透過係数が大きく、炭酸ガス等が気泡内部と大気中のガス分圧の差で気泡膜を通して外部へ透過排出され、外部から透過係数の低い空気が侵入しないため気泡内部が減圧されフォームの収縮が発生し易くなる。また、独立気泡内に存在する発泡ガスは、時間経過と共に空気中へ放散すると同時に空気が断熱材の内部に侵入することで、断熱材の熱伝導率が劣化してしまう問題がある。   In conventional vacuum insulation materials using closed-cell foam as a protective material, foam gas with lower thermal conductivity than air is trapped in the foam bubbles, so foam with low thermal conductivity in the initial state Become a body. On the other hand, trapping foam gas in closed cells has a good gas permeability coefficient due to good affinity with urethane resin, and carbon dioxide gas is permeated and discharged through the bubble membrane due to the difference in gas partial pressure in the air and in the atmosphere. In addition, since air having a low permeability coefficient does not enter from the outside, the inside of the bubbles is decompressed and foam contraction is likely to occur. In addition, the foaming gas present in the closed cells is diffused into the air with the passage of time, and at the same time, there is a problem that the heat conductivity of the heat insulating material is deteriorated by the air entering the heat insulating material.

また、発泡樹脂の注入は、真空断熱材の狭い空間に原料を充填しなければならず、型への装着,型からの取り外しや、真空断熱材が流動性を阻害することで発生するボイドの改善が必要になる。また、ウレタン発泡体の反応温度が約120℃に到達するため、高温により真空断熱材がダメージを受け、熱伝導率が劣化する問題がある。このことから、真空断熱材を発泡樹脂で覆う直接注入では、真空断熱材の型への取り付け、発泡体の流れを考慮した型の作製が必要になる。更に、気泡内への空気侵入や空気中の水分の吸着(吸湿)、発泡剤の炭酸ガスが気泡内に残留し空気中で置換される等の理由により、施工まで保管(倉庫等:環境温度が約50℃)するとフォームの寸法変化や収縮および熱伝導率の劣化が促進され、高性能かつ長期の信頼性が要求される建築物の断熱材としては問題がある。   In addition, the injection of foamed resin requires filling the raw material into the narrow space of the vacuum heat insulating material, and the voids generated when the vacuum heat insulating material impedes fluidity must be attached to the mold and removed from the mold. Improvement is needed. Further, since the reaction temperature of the urethane foam reaches about 120 ° C., there is a problem that the vacuum heat insulating material is damaged due to high temperature and the thermal conductivity is deteriorated. For this reason, in direct injection in which the vacuum heat insulating material is covered with the foamed resin, it is necessary to attach the vacuum heat insulating material to the mold and to prepare a mold in consideration of the flow of the foam. In addition, storage until construction (warehouse, etc .: environmental temperature) due to air intrusion into the bubbles, adsorption of moisture in the air (moisture absorption), carbon dioxide in the foaming agent remains in the bubbles and is replaced in the air. Is about 50 ° C.), the dimensional change and shrinkage of the foam and the deterioration of the thermal conductivity are promoted, and there is a problem as a heat insulating material for a building which requires high performance and long-term reliability.

本発明は、上記従来技術の問題点に鑑みてなされたもので、初期の熱伝導率に優れ、熱伝導率の劣化を低減できる断熱部材を提供することを目的とする。   The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a heat insulating member that has excellent initial thermal conductivity and can reduce deterioration of thermal conductivity.

前述の目的を達成するため、本発明の第1の態様では、グラスウールの芯材と、ゲッター剤と、前記芯材および前記ゲッター剤を収納するガスバリア性の外包材とを備え、前記外包材の内部を減圧密封した真空断熱材と、前記真空断熱材の周囲を覆うように配置され、連通気泡を有する発砲体で構成される被覆材と、前記真空断熱材及び前記被覆材を収納する外被材と、を備え、前記外被剤の内部が減圧密封された断熱部材とした。   In order to achieve the above-mentioned object, the first aspect of the present invention comprises a glass wool core material, a getter agent, and a gas barrier outer packaging material containing the core material and the getter agent, A vacuum heat insulating material whose inside is sealed under reduced pressure, a covering material that is arranged so as to cover the periphery of the vacuum heat insulating material and has a communicating bubble, and an outer casing that houses the vacuum heat insulating material and the covering material And a heat insulating member in which the inside of the covering agent is sealed under reduced pressure.

この断熱部材によれば、グラスウールの芯材を備えた高性能な真空断熱材と連通気泡を有する発砲体からなる被覆材を組み合わせて、更に減圧密封する構成とすることで長期間において熱伝導率の劣化が少ない建築用の断熱部材が実現できる。被覆材として連通気泡を有する発泡体とすることで独立気泡の発泡体で問題であった気泡内への空気侵入や水分吸着および寸法変化や収縮が発生せず熱伝導率の劣化が防止できるようになる。   According to this heat insulating member, a high-performance vacuum heat insulating material having a glass wool core material and a covering material made of a foamed body having open air bubbles are combined and further sealed under reduced pressure to achieve a high thermal conductivity over a long period of time. It is possible to realize a heat insulating member for construction with less deterioration. By using a foam with open cells as the coating material, it is possible to prevent deterioration of thermal conductivity without air intrusion, moisture adsorption, dimensional change or shrinkage, which was a problem with closed-cell foams. become.

係る本発明の第1の態様におけるより好ましい具体的構成例は次の通りである。
(1)減圧下における前記被覆材の熱伝導率が10mW/m・K以下であること。
A more preferable specific configuration example in the first aspect of the present invention is as follows.
(1) The thermal conductivity of the coating material under reduced pressure is 10 mW / m · K or less.

この断熱部材によれば、被覆材の連通気泡が真空層中に存在することで、熱伝導率を10mW/m・K以下とすることができる。これにより、高性能な真空断熱材と共に熱伝導率が優れる被覆材を組み合わせることで、断熱性能が優れる断熱部材を提供することができる。
(2)前記真空断熱材および連通の被覆材が独立に形成され、前記連通体からなる被覆材の圧縮強度が0.15MPa以上の断熱パネルであること。
According to this heat insulating member, the thermal conductivity can be 10 mW / m · K or less because the communication bubbles of the covering material exist in the vacuum layer. Thereby, the heat insulation member which is excellent in heat insulation performance can be provided by combining the coating material which is excellent in thermal conductivity with a high-performance vacuum heat insulating material.
(2) The heat insulating panel is such that the vacuum heat insulating material and the continuous covering material are independently formed, and the compressive strength of the covering material made of the communicating body is 0.15 MPa or more.

この断熱パネルによれば、真空断熱材と連通体の被覆材が独立することで、真空断熱材を型セットで発泡充填することやウレタン発泡体の反応温度による高温ダメージを受けずに圧縮強度が維持され、真空断熱材の保護・補強および施工が両立できるようになる。
(3)前記発泡体が水または炭酸ガスからなる発泡剤で形成されていること。
According to this heat insulation panel, the vacuum insulation material and the covering material of the communication body are independent, so that the compression strength can be obtained without foaming and filling the vacuum insulation material with a mold set or the high temperature damage due to the reaction temperature of the urethane foam. It is maintained, and it becomes possible to achieve both protection, reinforcement and construction of the vacuum heat insulating material.
(3) The said foam is formed with the foaming agent which consists of water or a carbon dioxide gas.

この断熱部材によれば、被覆材に水または炭酸ガスの発泡剤を用いて形成された発泡体を適用することにより、環境性に優れるとともに、長期にわたり圧縮強度等も安定な被覆材とすることができる。
(4)前記外被材が金属箔からなること。
According to this heat insulating member, by applying a foam formed using a foaming agent of water or carbon dioxide gas to the covering material, it is possible to make the covering material excellent in environmental characteristics and stable in compressive strength and the like over a long period of time. Can do.
(4) The jacket material is made of a metal foil.

この断熱部材によれば、真空断熱材と連通気泡を有する発砲体の被覆材を組み合わせて金属箔を用い減圧封止することによりハイバリア性の断熱パネルが得られ、建築用に適した長期の性能維持が可能になる。更にハイバリア性の観点からは真空断熱材をラミネートフィルムからなる外包材で真空封止することが望ましい。
(5)住宅の断熱材を構成する面に設置した断熱部材の断熱パネルを備えた建築構造物、並びに建築構造物に適用される建築用部材。
According to this heat insulating member, a high-barrier heat insulating panel can be obtained by combining a vacuum heat insulating material and a covering material of a foamed body having open air bubbles using a metal foil, and a long-term performance suitable for construction. Maintenance is possible. Furthermore, from the viewpoint of high barrier properties, it is desirable to vacuum seal the vacuum heat insulating material with an outer packaging material made of a laminate film.
(5) A building structure provided with a heat insulating panel of a heat insulating member installed on a surface constituting a heat insulating material of a house, and a building member applied to the building structure.

この断熱パネルによれば、高性能な断熱性能および高強度が維持される断熱部材であり、光熱費やCO2発生量の削減および壁厚等も薄くすることができる。 According to this heat insulation panel, it is a heat insulation member that maintains high performance heat insulation performance and high strength, and it is possible to reduce utility costs, CO 2 generation, wall thickness, and the like.

本発明により、初期の熱伝導率に優れ、熱伝導率の劣化を低減でき、長期における断熱性能が優れた断熱部材を提供できる。   According to the present invention, it is possible to provide a heat insulating member that has excellent initial thermal conductivity, can reduce deterioration of thermal conductivity, and has excellent long-term heat insulating performance.

本発明の断熱部材である断熱パネルの断面模式図である。It is a cross-sectional schematic diagram of the heat insulation panel which is a heat insulation member of this invention. 従来の断熱部材である断熱パネルの断面模式図である。It is a cross-sectional schematic diagram of the heat insulation panel which is the conventional heat insulation member. 本発明の断熱部材を用いた建築構造物の概略断面図である。It is a schematic sectional drawing of the building structure using the heat insulation member of this invention.

以下、本発明の内容について詳細に説明する。本発明の断熱部材は、グラスウールの芯材とゲッター剤を外包材に挿入し真空封止した真空断熱材の周囲を連通気泡を有する被覆材で覆い、その外周が外被材で被覆され、外皮材の内部を減圧して密封した構成を有する。真空断熱材および連通気泡を有する被覆材を含む内部が外被材中で減圧密封してなる構成とすることで、ハイバリア性となり長期で高性能と高強度の両立が図れる断熱パネル(断熱部材)とすることができる。   Hereinafter, the contents of the present invention will be described in detail. The heat insulating member of the present invention covers the periphery of a vacuum heat insulating material obtained by inserting a glass wool core material and a getter agent into an outer packaging material and vacuum-sealing with a covering material having open air bubbles, and the outer periphery is covered with a covering material. The inside of the material is sealed under reduced pressure. Heat insulation panel (heat insulation member) that has high barrier properties and can achieve both high performance and high strength over the long term by adopting a configuration in which the inside including the vacuum insulation material and the covering material having open cells is sealed under reduced pressure in the jacket material. It can be.

グラスウールの芯材を用いた真空断熱材は熱伝導率が約1.5mW/m・K程度と優れた特性を有する。それに比べ、ウレタン発泡体等の断熱材は熱伝導率が約20mW/m・K以上と高く、真空断熱材に比べ約15倍以上断熱性能が劣る。このことから、真空断熱材に組み合わせる発泡断熱材やシート材についても、熱伝導率が優れる被覆材を用いることができれば断熱パネルとしての断熱性能が大幅に向上させることができる。   A vacuum heat insulating material using a glass wool core has an excellent characteristic of a thermal conductivity of about 1.5 mW / m · K. In contrast, a heat insulating material such as urethane foam has a high thermal conductivity of about 20 mW / m · K or more, and the heat insulating performance is inferior by about 15 times or more compared to a vacuum heat insulating material. From this, also about the foam heat insulating material and sheet material combined with a vacuum heat insulating material, if the coating material which is excellent in heat conductivity can be used, the heat insulation performance as a heat insulation panel can be improved significantly.

本発明では真空断熱材を被覆する材料に、独立気泡ではなく大部分が連通気泡の発泡体を設けて、外部の空気と置換しても収縮することが少ない圧縮強度の高い連通体を用いた。しかし、連通発泡体は独立気泡のように発泡ガスが存在しないことから断熱性能が劣るため、連通の被覆材であっても熱伝導率を低減させるために被覆材も含め減圧中で構成した断熱部材とすることで本発明を達成した。その際、真空断熱材を従来のように独立気泡のウレタンフォーム中に埋めるのではなく、真空断熱材と被覆材を別々に形成することで型への充填発泡がなくなり、ポリオールとイソシアネートが反応してフォームを形成する温度(約120℃)による高温ダメージで劣化を受けることもない。更に、連通気泡の発泡体である被覆材を包む外被材を金属箔から構成されるハイバリア性とすることにより、作製された断熱パネルは長期でも優れた断熱性能と高強度の両立が図れる断熱部材が実現できる。   In the present invention, the material for covering the vacuum heat insulating material is provided with a communication body having a high compressive strength, which is not closed cells but mostly provided with open cell foams and does not shrink even when replaced with external air. . However, the continuous foam is inferior in heat insulation performance because there is no foaming gas as in the case of closed cells. Therefore, even in the case of a continuous coating material, the heat insulation configured in a reduced pressure including the coating material to reduce the thermal conductivity. The present invention was achieved by using a member. At that time, instead of filling the vacuum insulation material in closed-cell urethane foam as in the past, by forming the vacuum insulation material and the coating material separately, filling and foaming into the mold is eliminated, and the polyol and isocyanate react. Therefore, it is not deteriorated by high temperature damage caused by the temperature (about 120 ° C.) at which the foam is formed. Furthermore, by making the jacket material that wraps the covering material, which is a foam of open cells, into a high barrier property composed of a metal foil, the manufactured heat insulating panel can achieve both excellent heat insulating performance and high strength even over a long period of time. A member can be realized.

〈芯材〉
真空断熱材の芯材は大気圧からその形状を保持するスペーサの機能を持ち、減圧時の圧縮応力を受けて高空隙を有するグラスウールの芯材が好ましい。芯材を構成するグラスウールの繊維径は、大きいと繊維の接触が線に近くなり接触熱抵抗の低減により熱伝導率が高く、逆に繊維径が極細になると取扱いが不便となり原料が非常に高価になる。そのため、グラスウールとしては、真空断熱材の芯材は真空時の圧縮応力でも高空隙が得られ熱伝導率が低減できる平均繊維径が約3〜6μmの繊維を用いることが好ましい。また、グラスウールを約250℃,1時間のエージング処理で吸着水分を除去したもの用いることが好ましい。また、アウトガスの発生により熱伝導率が高くなるのを避けるために、バインダー等の結合剤を含まないものが好ましい。なお、平均繊維径は走査式電子顕微鏡を用い、約10本の繊維を含む視野の繊維直径を測定したものとする。
<Core>
The core material of the vacuum heat insulating material has a function of a spacer that keeps its shape from atmospheric pressure, and is preferably a glass wool core material having a high void due to a compressive stress during decompression. If the fiber diameter of the glass wool composing the core is large, the contact of the fiber is close to a line, and the thermal conductivity is high due to the reduction of contact thermal resistance. Conversely, if the fiber diameter is extremely small, the handling becomes inconvenient and the raw material is very expensive. become. For this reason, as the glass wool, it is preferable to use a fiber having an average fiber diameter of about 3 to 6 μm as a core material of the vacuum heat insulating material, which can obtain high voids even under a compressive stress in a vacuum and reduce thermal conductivity. Further, it is preferable to use glass wool from which adsorbed moisture has been removed by an aging treatment at about 250 ° C. for 1 hour. Moreover, in order to avoid that heat conductivity becomes high by generation | occurrence | production of outgas, what does not contain binders, such as a binder, is preferable. In addition, the average fiber diameter shall have measured the fiber diameter of the visual field containing about 10 fibers using the scanning electron microscope.

〈ゲッター剤〉
ゲッター剤は、真空断熱材および被覆材の信頼性を向上させる目的で使用される。ゲッター剤としては、二酸化炭素,酸素,窒素等のガス,水蒸気を吸収するものであればよく、ドーソナイト,ハイドロタルサイト,金属水酸化物のゲッター剤またはモレキュラーシーブス,シリカゲル,酸化カルシウム,ゼオライト,疎水性ゼオライト,活性炭,水酸化リチウム等の吸収剤が利用できる。
<Getter agent>
A getter agent is used for the purpose of improving the reliability of a vacuum heat insulating material and a coating material. As the getter agent, any agent that absorbs gas such as carbon dioxide, oxygen, nitrogen, and water vapor can be used. Absorbents such as functional zeolite, activated carbon, and lithium hydroxide can be used.

〈被覆材〉
本発明の連通気泡を有する被覆材としては、発泡体が好ましくウレタンフォーム,イソシアヌレートフォーム,フェノールフォーム,チレンフォーム等が利用できる。例えば、ウレタンフォームは、ウレタン結合やウレア結合とイソシアヌレート結合を有するものである。イソシアヌレート結合は、イソシアネート基を触媒により三量化させて生成され機械的強度や耐熱性を向上させることができる。通常の方法で得られる硬質ポリウレタンフォームとしては、独立気泡率が概ね80%以上であり独立気泡率を上げれば断熱性能は向上する。しかし、断熱性能よりも被覆材として寸法安定性や収縮を改善するため、発泡体気泡の大部分を連続化させることで断熱性能と圧縮強度等が両立できることがわかった。ここで、連通気泡率としては、発泡体の気泡のうち連通気泡の割合が70%以上であることが望ましい。
<Coating material>
As the covering material having open cells according to the present invention, a foam is preferable, and urethane foam, isocyanurate foam, phenol foam, styrene foam and the like can be used. For example, a urethane foam has a urethane bond, a urea bond, and an isocyanurate bond. The isocyanurate bond is generated by trimerizing an isocyanate group with a catalyst and can improve mechanical strength and heat resistance. The rigid polyurethane foam obtained by a normal method has a closed cell ratio of approximately 80% or more, and if the closed cell ratio is increased, the heat insulation performance is improved. However, in order to improve the dimensional stability and shrinkage as a coating material rather than the heat insulation performance, it was found that the heat insulation performance and the compressive strength can be compatible by making most of the foam bubbles continuous. Here, as the open cell ratio, it is desirable that the ratio of open cells in the foam is 70% or more.

気泡の連続体としては、例えばグリセリンにプロピレンオキシドを付加させた長鎖ポリエーテルポリオールの配合、ステアリン酸カルシウムやミスチリン酸カルシウムのようなモノカルボン酸の金属塩を配合して気泡の連続化を促す方法がある。ウレタンフォームを作製するには、ポリオール液とイソシアネート液を均一に混合可能であれば種々の装置が使用でき、例えば小型ミキサー,注入発泡用の低圧や高圧発泡機,スラブ発泡用の低圧や高圧発泡機,連続ライン用の低圧や高圧発泡機,吹き付け用のスプレー発泡機等があげられる。即ち、ポリウレタンの連通フォームは、ポリオール混合物とポリイソシアネートを触媒,発泡剤,整泡剤,連通化剤の存在下において反応させることで、フォーム密度が約25〜35kg/m3程度の被覆材のパネルが得られる。発泡剤には水,炭酸ガス,イソシアネートと水との反応で発生する炭酸ガスが使用され、地球温暖化やCO2発生量の削減といった環境保護に対しても考慮したものである。なお、無機繊維等を発泡体と併用することも可能である。 For example, there are a method of promoting the continuation of bubbles by blending a long-chain polyether polyol obtained by adding propylene oxide to glycerin, and a metal salt of a monocarboxylic acid such as calcium stearate or calcium myristylate. is there. In order to produce urethane foam, various apparatuses can be used as long as the polyol liquid and the isocyanate liquid can be mixed uniformly. For example, a small mixer, a low pressure or high pressure foaming machine for injection foaming, a low pressure or high pressure foaming for slab foaming. Machine, low pressure or high pressure foaming machine for continuous line, spray foaming machine for spraying, etc. That is, a polyurethane continuous foam is obtained by reacting a polyol mixture and a polyisocyanate in the presence of a catalyst, a foaming agent, a foam stabilizer, and a communicating agent, so that the foam density is about 25 to 35 kg / m 3. A panel is obtained. As the blowing agent, water, carbon dioxide gas, or carbon dioxide gas generated by the reaction between isocyanate and water is used, and environmental protection such as global warming and reduction of CO 2 generation is considered. It is also possible to use inorganic fibers or the like in combination with the foam.

〈外包材,外被材〉
また、ハイバリア性を有する外包材や外被材としては、内部に気密部を設け芯材や被覆材を覆うものであり、減圧封止で芯材の形状を反映する材質が好ましい。外包材に用いるラミネートフィルムは最内層を熱溶着層として、中間層にガスバリア層のアルミニウム箔またはアルミニウム蒸着層を有し、最外層に表面保護層を設けたラミネートフィルムが適用できる。しかし、アルミニウム箔やアルミニウム蒸着層はそれ自身が熱の良伝導物質であるため、ヒートブリッジによる断熱性能の低下を抑制させるために厚さを10μm以下とすることが好ましい。具体的には、最外層にはポリアミドフィルムで耐突き刺し性を向上し、中間層にアルミニウム蒸着層を有するエチレン−ビニルアルコール共重合体フィルムを設け、最内層には高密度ポリエチレンや直鎖状低密度ポリエチレンや高密度ポリプロピレン等を設けたプラスチックラミネートフィルムである。
<Outer packaging materials, outer jacket materials>
Further, as the outer packaging material or covering material having a high barrier property, an airtight portion is provided inside to cover the core material or the covering material, and a material that reflects the shape of the core material by decompression sealing is preferable. As the laminate film used for the outer packaging material, a laminate film having an innermost layer as a heat welding layer, an intermediate layer having a gas barrier layer aluminum foil or an aluminum vapor deposition layer, and an outermost layer having a surface protective layer can be applied. However, since the aluminum foil or the aluminum vapor deposition layer itself is a heat conductive material, the thickness is preferably 10 μm or less in order to suppress a decrease in heat insulation performance due to the heat bridge. Specifically, the outermost layer is made of a polyamide film to improve puncture resistance, the intermediate layer is provided with an ethylene-vinyl alcohol copolymer film having an aluminum vapor deposition layer, and the innermost layer is made of high-density polyethylene or linear low It is a plastic laminate film provided with high density polyethylene or high density polypropylene.

また、被覆材を包む外被材としては、真空断熱材のガスバリア性を十分に保護させるため、ステンレス箔やアルミ合金箔等の金属箔が好ましい。熱伝導率の観点からステンレス箔の箔厚は約20〜50μm、アルミ合金箔の箔厚は約15〜30μmとすることが好ましい。また、金属箔の溶着層には可溶性のポリイミドワニスを用い、太さが約10〜30mm、厚みが約10〜50μmになるように塗布形成し、ヒートシールしたものである。具体的には、ステンレス箔上に印刷機等を用いポリイミドワニスを周縁部に額縁状に塗布し、その塗膜を約70℃で半固化して一対のステンレス箔同士を熱プレス機で約200℃の温度と約1.0kg/cm2の圧力をかけ、密閉シールしたハイバリア性の外被材である。 In addition, as the jacket material that wraps the covering material, a metal foil such as a stainless steel foil or an aluminum alloy foil is preferable in order to sufficiently protect the gas barrier property of the vacuum heat insulating material. From the viewpoint of thermal conductivity, the thickness of the stainless steel foil is preferably about 20 to 50 μm, and the thickness of the aluminum alloy foil is preferably about 15 to 30 μm. In addition, a soluble polyimide varnish is used for the weld layer of the metal foil, and is applied and formed so as to have a thickness of about 10 to 30 mm and a thickness of about 10 to 50 μm, and is heat-sealed. Specifically, a polyimide varnish is applied to the peripheral part in a frame shape using a printing machine or the like on a stainless steel foil, the coating film is semi-solidified at about 70 ° C., and a pair of stainless steel foils is about 200 by a hot press machine. It is a high barrier coating material that is hermetically sealed by applying a temperature of ℃ and a pressure of about 1.0 kg / cm 2 .

以下、本発明による実施例について説明する。なお、この実施例によって発明が限定されるものではない。   Examples of the present invention will be described below. The invention is not limited to the embodiments.

図1は、本発明の断熱部材の断面模式図である。また、図2は従来の断熱部材の断面模式図である。   FIG. 1 is a schematic cross-sectional view of a heat insulating member of the present invention. FIG. 2 is a schematic sectional view of a conventional heat insulating member.

本実施例の断熱部材は、真空断熱材1および連通気泡を有する被覆材9を組み合わせた断熱部材7である。真空断熱材1は、グラスウールの芯材3とゲッター剤4を外包材2で包み、外包材2の内部を減圧密封して構成される。この真空断熱材1の周囲を被覆材9で覆い、更に被覆材9の外周を外被材5で包み、減圧密封した断熱部材である。被覆材9には連通気泡を有するウレタン発泡体等を用いている。   The heat insulating member of the present embodiment is a heat insulating member 7 in which the vacuum heat insulating material 1 and the covering material 9 having open air bubbles are combined. The vacuum heat insulating material 1 is configured by wrapping a glass wool core material 3 and a getter agent 4 with an outer packaging material 2 and sealing the inside of the outer packaging material 2 under reduced pressure. The vacuum heat insulating material 1 is a heat insulating member that is covered with a covering material 9 and the outer periphery of the covering material 9 is covered with an outer covering material 5 and sealed under reduced pressure. For the covering material 9, a urethane foam having open cells is used.

一方、従来(比較例)の断熱部材は、図1と同様の真空断熱材の周囲を独立気泡の発泡体で構成される被覆材8で覆ったものである。   On the other hand, the conventional (comparative example) heat insulating member is obtained by covering the periphery of a vacuum heat insulating material similar to that shown in FIG. 1 with a covering material 8 formed of a foam of closed cells.

図3は、本実施例の断熱部材を用いた建築構造物の概略断面図である。本実施例の建築構造物は、コンクリート基礎12上の土台13に柱14を組み、柱14と柱間に設けられている門柱15との間に断熱部材10が配置されている。この際、断熱部材10に釘打ち可能部を設けることで、柱または門柱への釘打ちによる固定ができ、建築構造物の断熱性能を長期にわたり高める効果を有する。   FIG. 3 is a schematic cross-sectional view of a building structure using the heat insulating member of this embodiment. In the building structure of this embodiment, a pillar 14 is assembled on a base 13 on a concrete foundation 12, and a heat insulating member 10 is disposed between the pillar 14 and a gate pillar 15 provided between the pillars. At this time, by providing the heat-insulating member 10 with a nailable portion, it can be fixed to the pillar or the gate pillar by nail driving, and has an effect of improving the heat insulation performance of the building structure over a long period of time.

(実施例1)
実施例1の断熱パネルは以下のように作製した。まず、真空断熱材を以下の手順で作製した。芯材としては、平均繊維径が4.5μmのグラスウールを250℃,1時間のエージング処理したものを使用した。また、ガス吸着のゲッター剤としてモレキュラーシーブス13Xを用いた。また、外包材としては、熱溶着層の高密度ポリエチレンとアルミ箔(約6μm)とナイロンおよびポリエチレンテレフタレートのラミネートフィルムを用いた。まず、外包材の中に芯材とゲッター剤を入れ、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内の内部圧力が1.5Paになるまで排気した後、外包材の端部をヒートシールによって真空封止した。作製した真空断熱材の大きさは、400mm×400mm×10mmであった。英弘精機(株)製のAUTO−Λを用い、測定温度条件10℃で熱伝導率を測定したところ、熱伝導率は1.5mW/m・Kであった。
Example 1
The heat insulation panel of Example 1 was produced as follows. First, the vacuum heat insulating material was produced in the following procedures. As the core material, a glass wool having an average fiber diameter of 4.5 μm and subjected to an aging treatment at 250 ° C. for 1 hour was used. Further, molecular sieve 13X was used as a gas adsorption getter agent. Further, as the outer packaging material, a laminate film of high-density polyethylene, aluminum foil (about 6 μm), nylon and polyethylene terephthalate as a heat-welding layer was used. First, the core material and the getter agent are put into the outer packaging material, and after evacuating until the internal pressure in the vacuum chamber becomes 1.5 Pa for 10 minutes with the rotary pump of the vacuum packaging machine and 10 minutes with the diffusion pump, the outer packaging material The end of was vacuum sealed by heat sealing. The size of the produced vacuum heat insulating material was 400 mm × 400 mm × 10 mm. The thermal conductivity was 1.5 mW / m · K when measured using an AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. under a measurement temperature condition of 10 ° C.

次に、真空断熱材を保護する被覆材には、イソシアネートと水との反応で発生する炭酸ガスを発泡剤とした連通気泡を有する発泡ウレタンの連通パネルを用いた。この連通気泡を有する発泡ウレタンは、ポリオールと、水と、触媒と、整泡剤と、連通化剤とを混合したプレミックス成分とイソシアネートを高圧発泡機で混合撹拌して、型に充填注入させて発泡したものである。このような発泡ウレタンの作製方法の一例としては以下である。m−トリレンジアミン系にプロピレンオキサイドを付加したポリエーテルポリオールを30重量部、トリエタノールアミン系にプロピレンオキサイドを付加したポリエーテルポリオールを20重量部、o−トリレンジアミン系にプロピレンオキサイドを付加したポリエーテルポリオールを30重量部、蔗糖系にプロピレンオキサイドを付加したポリエーテルポリオールを20重量部の混合ポリオール成分100重量部に、水15部および反応触媒としてテトラメチルヘキサメチレンジアミン1.2重量部とトリメチルアミノエチルピペラジン2部、整泡剤として有機シリコーン化合物X−20−1614を2重量部、連通化剤のステアリン酸カルシウムを10重量部、イソシアネートとしてミリオネートMRのジフェニルメタンイソシアネート多核体を125部用いて、型に充填注入させて発泡させることで作製できる。   Next, as a covering material for protecting the vacuum heat insulating material, a urethane foam communication panel having open cells using carbon dioxide gas generated by the reaction of isocyanate and water as a foaming agent was used. This urethane foam having open cells is filled and injected into a mold by mixing and stirring a premix component and isocyanate mixed with polyol, water, catalyst, foam stabilizer and communication agent in a high-pressure foaming machine. Foamed. An example of a method for producing such urethane foam is as follows. 30 parts by weight of polyether polyol with propylene oxide added to m-tolylenediamine system, 20 parts by weight of polyether polyol with propylene oxide added to triethanolamine system, and propylene oxide added to o-tolylenediamine system 30 parts by weight of a polyether polyol, 20 parts by weight of a polyether polyol obtained by adding propylene oxide to a sucrose system, 100 parts by weight of a mixed polyol component, 15 parts of water and 1.2 parts by weight of tetramethylhexamethylenediamine as a reaction catalyst 2 parts by weight of trimethylaminoethylpiperazine, 2 parts by weight of organic silicone compound X-20-1614 as a foam stabilizer, 10 parts by weight of calcium stearate as a communicating agent, diphenylmethane isocyanate of Millionate MR as isocyanate It can be produced by filling and injecting 125 parts of a polynuclear body into a mold.

更に、断熱部材を断熱パネルとするため、上記作製の真空断熱材と連通ウレタンパネルの被覆材を組み合わせて断熱性能を長期間維持するため、ハイバリア性の外被材として金属箔を選定して用いた。その際、金属箔として厚さ30μmのステンレス箔上にポリイミドワニスを額縁状に塗膜し半固化させ、一対のステンレス箔同士を熱プレス機で圧力をかけ三方を密閉シールした。その後、連通ウレタンの被覆材パネル(大きさ:500mm×500mm×30mm)中に真空断熱材とゼオライトを外被材に入れ、真空包装機のロータリーポンプで8分、拡散ポンプで8分、真空チャンバー内の内部圧力が1.0Paになるまで排気後、外被材の最終端部をヒートシールで減圧封止した。   Furthermore, in order to use a heat insulating member as a heat insulating panel, the above-mentioned vacuum heat insulating material and a continuous urethane panel covering material are combined to maintain the heat insulating performance for a long time. It was. At that time, a polyimide varnish was coated in a frame shape on a stainless foil having a thickness of 30 μm as a metal foil to be semi-solidified, and a pair of stainless foils were pressed with a hot press machine and hermetically sealed. After that, vacuum insulation and zeolite are put into the jacket material in a urethane cover panel (size: 500mm x 500mm x 30mm), 8 minutes by rotary pump of vacuum packaging machine, 8 minutes by diffusion pump, vacuum chamber After exhausting until the internal pressure of the inside became 1.0 Pa, the final end portion of the outer cover material was sealed under reduced pressure by heat sealing.

連通パネルの減圧下における熱伝導率および圧縮強度を調べたところ、独立気泡を有する発泡ウレタンに比べて5.5mW/m・Kと0.18MPaと優れるものであった。また、断熱パネルの初期熱伝導率を測定したところ、4.0mW/m・Kであった。その後、断熱パネルを60℃の恒温槽中に約90日間放置後の熱伝導率を再測定したところ、7.2mW/m・Kと劣化が小さいものであった。このことから、真空断熱材を連通ウレタンの被覆材に挿入した断熱パネルは、従来の独立気泡のウレタンパネルに比べ被覆材として熱伝導率が5.5mW/m・Kと優れた連通パネルを用い、更にハイバリア性の外被材で保ったことから、高性能な断熱パネルとなり施工までの保管等でも寸法変化や収縮が小さく、熱伝導率が長期間でも劣化が少ない断熱部材の断熱パネルが提供できる。   When the thermal conductivity and compressive strength under reduced pressure of the communication panel were examined, it was excellent at 5.5 mW / m · K and 0.18 MPa as compared with urethane foam having closed cells. Moreover, it was 4.0 mW / m * K when the initial thermal conductivity of the heat insulation panel was measured. Thereafter, the thermal conductivity of the heat insulation panel after being left in a constant temperature bath at 60 ° C. for about 90 days was remeasured. As a result, the deterioration was as small as 7.2 mW / m · K. For this reason, a heat insulating panel in which a vacuum heat insulating material is inserted into a continuous urethane covering material uses a communication panel with a thermal conductivity of 5.5 mW / m · K, which is superior to a conventional closed cell urethane panel. In addition, because it is kept with a high-barrier outer covering material, it becomes a high-performance thermal insulation panel, providing a thermal insulation panel with a thermal insulation member that has little dimensional change and shrinkage even during storage until construction, etc. it can.

なお、表1の各物性・特性は下記のようにして調べた。真空断熱材と、被覆材と、真空断熱材と被覆材を組み合わせた断熱パネルの熱伝導率は、英弘精機社製HC−071型(熱流計法、平均温度10℃)を用いて評価した。更に、低温や高温での寸法変化率および収縮については、150mm×300mm×25tmmに切断したフォームを−20℃で48時間放置、70℃で48時間放置した時の厚さを寸法変化率、収縮を評価した。なお、圧縮強度は50mm×50mm×25tmmに切断した各々のフォームを送り速度4mm/minで負荷して、10%変形時の荷重を元の受圧面積で除した値を圧縮強度として評価したものである。   In addition, each physical property and characteristic of Table 1 were investigated as follows. The heat conductivity of the heat insulation panel which combined the vacuum heat insulating material, the coating material, and the vacuum heat insulating material and the coating material was evaluated using HC-071 type (heat flow meter method, average temperature 10 ° C.) manufactured by Eiko Seiki Co., Ltd. Furthermore, with respect to the dimensional change rate and shrinkage at low and high temperatures, the thickness of the foam cut to 150 mm × 300 mm × 25 tmm was allowed to stand at −20 ° C. for 48 hours, and left at 70 ° C. for 48 hours. Evaluated. The compressive strength was evaluated as the compressive strength obtained by loading each foam cut at 50 mm x 50 mm x 25 tmm at a feed rate of 4 mm / min and dividing the load at 10% deformation by the original pressure-receiving area. is there.

Figure 2012013114
Figure 2012013114

(比較例1)
比較例1の断熱パネルは以下のように作製した。まず、真空断熱材を以下の手順で作製した。芯材としては、繊維径が5.5μmのグラスウールを使用した。ガス吸着のゲッター剤としてモレキュラーシーブス13Xを用いた。また、外包材としては、熱溶着層の高密度ポリエチレンとアルミ箔(約6μm)とナイロンおよびポリエチレンテレフタレートのラミネートフィルムを用いた。外包材の中に芯材とゲッター剤を入れ、真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内に入れ、チャンバーの内部圧力が1.5Paになるまで排気後、外包材の端部をヒートシールし真空封止で作製した。真空断熱材を測定温度条件10℃で熱伝導率を測定したところ、1.7mW/m・Kであった。
(Comparative Example 1)
The heat insulation panel of the comparative example 1 was produced as follows. First, the vacuum heat insulating material was produced in the following procedures. As the core material, glass wool having a fiber diameter of 5.5 μm was used. Molecular sieves 13X was used as a gas adsorption getter agent. Further, as the outer packaging material, a laminate film of high-density polyethylene, aluminum foil (about 6 μm), nylon and polyethylene terephthalate as a heat-welding layer was used. Put the core material and getter agent in the outer packaging material, put it in the vacuum chamber for 10 minutes with the rotary pump of the vacuum packaging machine and 10 minutes with the diffusion pump, exhaust it until the internal pressure of the chamber becomes 1.5 Pa, and then enclose the outer packaging The end of the material was heat sealed and fabricated by vacuum sealing. It was 1.7 mW / m * K when the heat conductivity was measured for the vacuum heat insulating material on measurement temperature conditions 10 degreeC.

また、真空断熱材を保護する被覆材としては、ポリオールと、代替フロンの発泡剤(HFC−141b)と、触媒と、整泡剤をプレミックス成分とイソシアネートを高圧発泡機で混合撹拌して、型に充填注入させて発泡して作製した独立気泡の発泡ポリウレタンとした。真空断熱材を型内にセットして、上記の発泡ポリウレタンを充填注入させた建材用部材の断熱パネルを作製した。発泡ポリウレタンの熱伝導率と圧縮強度を測定したところ、20.5mW/m・Kで0.12MPaと劣った。また、表1のように代替フロンを発泡剤に使用しているため、環境負荷(CO2排出量,エコリサイクル性)が不良で、ウレタンフォームの寸法変化率や収縮(−20℃および70℃に48h放置した時の厚さ変化率)が大きく劣るものであった。また、測定温度条件10℃で初期の熱伝導率を測定したところ、8.2mW/m・Kと高くなる。更に、60℃の恒温槽中に90日間放置後の熱伝導率を再測定したところ、18.2mW/m・Kまで劣化した。このことから、長期間での断熱性能が大きく劣る建材用部材の断熱パネルであった。 Moreover, as a coating material for protecting the vacuum heat insulating material, a polyol, a substitute freon blowing agent (HFC-141b), a catalyst, a foam stabilizer, a premix component and an isocyanate are mixed and stirred in a high-pressure foaming machine, A closed-cell foamed polyurethane produced by filling and injecting into a mold was used. A vacuum heat insulating material was set in the mold, and a heat insulating panel for a building material member filled and injected with the above polyurethane foam was produced. When the thermal conductivity and compressive strength of the polyurethane foam were measured, it was inferior to 0.12 MPa at 20.5 mW / m · K. In addition, as shown in Table 1, substitute chlorofluorocarbons are used as foaming agents, so the environmental impact (CO 2 emissions, eco-recyclability) is poor, and the dimensional change rate and shrinkage (-20 ° C and 70 ° C) of urethane foam. (Thickness change rate when left for 48 hours). Further, when the initial thermal conductivity was measured at a measurement temperature condition of 10 ° C., it was as high as 8.2 mW / m · K. Furthermore, when the thermal conductivity after being left for 90 days in a constant temperature bath at 60 ° C. was measured again, it deteriorated to 18.2 mW / m · K. From this, it was the heat insulation panel of the member for building materials in which the heat insulation performance in a long term is greatly inferior.

(実施例2)
実施例2の断熱パネルは以下のように作製した。まず、真空断熱材は平均繊維径が5.6μmのグラスウールからなる芯材を、300℃1時間のエージング処理後に実施例1と同様にラミネートフィルムを用いて真空断熱材を作製した。測定温度条件10℃で熱伝導率を測定したところ、1.6mW/m・Kであった。また、真空断熱材を保護する被覆材には、炭酸ガスを発泡剤とする連通気泡を有するウレタン発泡体の連通パネルを用いた。
このウレタン発泡体は、ポリオールと、少量の水と、触媒と、整泡剤と、連通化剤を混合したプレミックス成分とイソシアネートを高圧発泡機で混合撹拌し、型に充填注入させて発泡したものである。
(Example 2)
The heat insulation panel of Example 2 was produced as follows. First, the vacuum heat insulating material produced the vacuum heat insulating material from the core material which consists of glass wool with an average fiber diameter of 5.6 micrometers using the laminated film similarly to Example 1 after the aging process of 300 degreeC for 1 hour. It was 1.6 mW / m * K when the heat conductivity was measured on measurement temperature conditions 10 degreeC. In addition, a urethane foam communication panel having open cells using carbon dioxide as a foaming agent was used as a covering material for protecting the vacuum heat insulating material.
This urethane foam was foamed by mixing and stirring a premix component mixed with a polyol, a small amount of water, a catalyst, a foam stabilizer, a communicating agent, and an isocyanate with a high-pressure foaming machine, filling and injecting into a mold. Is.

断熱パネルとするため、上記作製の真空断熱材と連通ウレタンパネルの被覆材を組み合わせて断熱性能を長期間維持するため、ハイバリア性の外被材として金属箔を用いた。その際、金属箔として厚さ30μmのステンレス箔上にポリイミドワニスを額縁状に塗膜し半固化させ、一対のステンレス箔同士を熱プレス機で圧力をかけ三方を密閉シールした。
その後、連通ウレタンの被覆材パネル(大きさ:500mm×500mm×30mm)中に真空断熱材とゼオライトを外被材に入れ、真空包装機のロータリーポンプで8分、拡散ポンプで8分、真空チャンバー内の内部圧力が1.0Paになるまで排気後、外被材の最終端部をヒートシールで減圧封止した。
In order to obtain a heat insulating panel, a metal foil was used as a high barrier covering material in order to maintain the heat insulating performance for a long time by combining the vacuum heat insulating material produced above and the covering material of the continuous urethane panel. At that time, a polyimide varnish was coated in a frame shape on a stainless foil having a thickness of 30 μm as a metal foil to be semi-solidified, and a pair of stainless foils were pressed with a hot press machine and hermetically sealed.
After that, vacuum insulation and zeolite are put into the jacket material in a urethane cover panel (size: 500mm x 500mm x 30mm), 8 minutes by rotary pump of vacuum packaging machine, 8 minutes by diffusion pump, vacuum chamber After exhausting until the internal pressure of the inside became 1.0 Pa, the final end portion of the outer cover material was sealed under reduced pressure by heat sealing.

連通パネルの減圧下における熱伝導率および圧縮強度を調べたところ、独立気泡を有する発泡ウレタンに比べ4.8mW/m・Kと0.19MPaと優れるものであった。また、断熱パネルの初期熱伝導率を測定したところ、4.2mW/m・Kであった。その後、断熱パネルを60℃の恒温槽中に約90日間放置後の熱伝導率を再測定したところ、8.4mW/m・Kと劣化が小さいものであった。このことから、真空断熱材を連通ウレタンの被覆材に挿入した断熱パネルは、従来の独立気泡のウレタンパネルに比べ被覆材として熱伝導率が4.8mW/m・Kと優れた連通パネルを用いて、更にハイバリア性の外被材で保ったことから、高性能な断熱パネルとなり施工までの保管等でも寸法変化や収縮が少なく、熱伝導率が長期間でも劣化が小さい断熱部材の断熱パネルが提供できる。   When the thermal conductivity and compressive strength under reduced pressure of the communication panel were examined, they were excellent at 4.8 mW / m · K and 0.19 MPa as compared with urethane foam having closed cells. Moreover, it was 4.2 mW / m * K when the initial thermal conductivity of the heat insulation panel was measured. Thereafter, the thermal conductivity of the heat insulation panel after being left in a constant temperature bath at 60 ° C. for about 90 days was remeasured. As a result, the deterioration was as small as 8.4 mW / m · K. For this reason, a heat insulating panel in which a vacuum heat insulating material is inserted into a continuous urethane covering material uses a communication panel with a thermal conductivity of 4.8 mW / m · K, which is superior to a conventional closed cell urethane panel. In addition, because it is kept with a high barrier coating material, it becomes a high-performance heat insulation panel, and there is a heat insulation panel with a heat insulation member that has little dimensional change and shrinkage even during storage until construction, etc. Can be provided.

(比較例2)
比較例2の断熱パネルは以下のように作製した。繊維径が7.2μmのグラスウールからなる芯材とガス吸着のゲッター剤(モレキュラーシーブス13X)を、ラミネートフィルムからなる外包材内に挿入し真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内に入れ、チャンバーの内部圧力が1.5Paになるまで排気後、外包材の端部をヒートシールして真空封止で真空断熱材を作製した。測定温度条件10℃で真空断熱材の熱伝導率を測定したところ、2.6mW/m・Kであった。また、真空断熱材を保護する独立気泡のイソシアヌレート発泡体としては、ポリオールに炭化水素のシクロペンタン発泡剤と、触媒と、整泡剤をプレミックス成分とイソシアネートを高圧発泡機で混合撹拌して、型に充填注入させて発泡した独立気泡のパネルとした。真空断熱材を型内にセットして、上記の発泡イソシアヌレートを充填注入させた建材用部材の断熱パネルを作製した。発泡イソシアヌレートの熱伝導率と圧縮強度を測定したところ、24.2mW/m・Kで0.11MPaと劣った。また、表1のように炭化水素を発泡剤に使用しているため、シクロペンタンの可燃性や環境負荷(CO2排出量,エコリサイクル性)が不良で、イソシアヌレートフォームの寸法変化率や収縮(−20℃および70℃に48h放置した時の厚さ変化率)が大きく劣るものであった。また、測定温度条件10℃で初期の熱伝導率を測定したところ、7.6mW/m・Kと高くなる。更に、60℃の恒温槽中に90日間放置後の熱伝導率を再測定したところ、17.8mW/m・Kまで劣化した。
このことから、長期間での断熱性能が大きく劣る建材用部材の断熱パネルであった。
(Comparative Example 2)
The heat insulation panel of the comparative example 2 was produced as follows. A core material made of glass wool with a fiber diameter of 7.2 μm and a gas adsorption getter agent (Molecular Sieves 13X) are inserted into an outer packaging material made of a laminate film, and 10 minutes by a rotary pump of a vacuum packaging machine and 10 minutes by a diffusion pump. After putting in a vacuum chamber and evacuating until the internal pressure of the chamber became 1.5 Pa, the end of the outer packaging material was heat sealed and a vacuum heat insulating material was produced by vacuum sealing. When the thermal conductivity of the vacuum heat insulating material was measured at a measurement temperature condition of 10 ° C., it was 2.6 mW / m · K. The closed cell isocyanurate foam that protects the vacuum insulation material is prepared by mixing and stirring a hydrocarbon cyclopentane foaming agent, a catalyst, a foam stabilizer, a premix component and an isocyanate in a high pressure foaming machine. A closed cell panel was formed by filling and injecting into a mold. A vacuum heat insulating material was set in the mold, and a heat insulating panel for a building material member filled and injected with the foamed isocyanurate was produced. When the thermal conductivity and compressive strength of the foamed isocyanurate were measured, it was inferior to 0.11 MPa at 24.2 mW / m · K. In addition, as shown in Table 1, hydrocarbons are used as blowing agents, so the flammability and environmental impact (CO 2 emissions, eco-recyclability) of cyclopentane are poor, and the dimensional change rate and shrinkage of isocyanurate foam. (Thickness change rate when left at −20 ° C. and 70 ° C. for 48 hours) was greatly inferior. Further, when the initial thermal conductivity was measured at a measurement temperature condition of 10 ° C., it was as high as 7.6 mW / m · K. Furthermore, when the thermal conductivity after being left in a constant temperature bath at 60 ° C. for 90 days was measured again, it deteriorated to 17.8 mW / m · K.
From this, it was the heat insulation panel of the member for building materials in which the heat insulation performance in a long term is greatly inferior.

(実施例3)
実施例3の断熱パネルは以下のように作製した。まず、真空断熱材には平均繊維径が3.0μmのグラスウールからなる芯材を、250℃で1時間のエージング処理後に実施例1と同様にラミネートフィルムを用い真空断熱材を作製した。10℃の初期熱伝導率を測定したところ1.3mW/m・Kであった。また、真空断熱材を保護する被覆材には、イソシアネートと水との反応で発生する炭酸ガスを発泡剤とした連通気泡を有するイソシアヌレート発泡体の連通パネルを用いた。このイソシアヌレート発泡体は、ポリオールと、水と、触媒と、整泡剤と、連通化剤とを混合したプレミックス成分とイソシアネートを高圧発泡機で混合撹拌して、型に充填注入させて発泡したものである。このような発泡イソシアヌレートの作製方法の一例としては以下である。グリセリン系にプロピレンオキサイドを付加したポリエーテルポリオールを30重量部、プロピレングリコール系にプロピレンオキサイドを付加したポリエーテルポリオールを30重量部、ペンタエリスリトール系にプロピレンオキサイドを付加したポリエーテルポリオールを20重量部、ソルビトール系にプロピレンオキサイドを付加したポリエーテルポリオールを20重量部の混合ポリオール成分100重量部に、水13部および反応触媒として三量化のテトラメチルヘキサメチレンジアミン1.0重量部とペンタメチルジエチレントリアミン2部、整泡剤として有機シリコーン化合物X−20−1614を2重量部、連通化剤のミスチリン酸カルシウムを10重量部、イソシアネートとしてポリメチレンポリフェニルイソシアネートを125部用いて、型に充填注入し、発泡させることで作製できる。
(Example 3)
The heat insulation panel of Example 3 was produced as follows. First, a vacuum heat insulating material was manufactured using a laminated film in the same manner as in Example 1 after aging treatment at 250 ° C. for 1 hour with a core material made of glass wool having an average fiber diameter of 3.0 μm as the vacuum heat insulating material. The initial thermal conductivity at 10 ° C. was measured and found to be 1.3 mW / m · K. As the covering material for protecting the vacuum heat insulating material, a continuous panel of isocyanurate foam having open cells using carbon dioxide gas generated by reaction of isocyanate and water as a foaming agent was used. This isocyanurate foam is foamed by mixing and agitating a premix component, which is a mixture of polyol, water, catalyst, foam stabilizer, and communicating agent, and isocyanate in a high-pressure foaming machine, and filling and injecting into a mold. It is a thing. An example of a method for producing such foamed isocyanurate is as follows. 30 parts by weight of a polyether polyol obtained by adding propylene oxide to a glycerin system, 30 parts by weight of a polyether polyol obtained by adding propylene oxide to a propylene glycol system, 20 parts by weight of a polyether polyol obtained by adding propylene oxide to a pentaerythritol system, Polyether polyol obtained by adding propylene oxide to sorbitol is added to 100 parts by weight of a mixed polyol component of 20 parts by weight, 13 parts of water, 1.0 part by weight of tetramethylhexamethylenediamine as a reaction catalyst, and 2 parts of pentamethyldiethylenetriamine. 2 parts by weight of organosilicone compound X-20-1614 as a foam stabilizer, 10 parts by weight of calcium myristylate as a communication agent, and 1 polymethylene polyphenyl isocyanate as an isocyanate Using 25 parts, it can be produced by filling and injecting into a mold and foaming.

更に、断熱部材の断熱パネルとするため、上記作製の真空断熱材と連通イソシアヌレートパネルの被覆材を組み合わせて断熱性能を長期間維持するため、ハイバリア性の外被材として金属箔を選定して用いた。その際、金属箔として厚さ20μmのアルミ合金箔上にポリイミドワニスを額縁状に塗膜し半固化させ、一対のアルミ合金箔同士を熱プレス機で圧力をかけ三方を密閉シールした。その後、連通イソシアヌレートの被覆材パネル(大きさ:500mm×500mm×30mm)中に真空断熱材とゼオライトを外被材に入れ、真空包装機のロータリーポンプで8分、拡散ポンプで8分、真空チャンバー内の内部圧力が1.0Paになるまで排気後、外被材の最終端部をヒートシールで減圧封止した。   Furthermore, in order to make a heat insulating panel of the heat insulating member, in order to maintain the heat insulating performance for a long time by combining the vacuum heat insulating material produced above and the covering material of the communication isocyanurate panel, a metal foil is selected as a high barrier covering material. Using. At that time, a polyimide varnish was coated in a frame shape on a 20 μm thick aluminum alloy foil as a metal foil and semi-solidified, and a pair of aluminum alloy foils were pressurized with a hot press machine and hermetically sealed. After that, put the vacuum insulation and zeolite into the outer cover material in a continuous isocyanurate covering panel (size: 500mm x 500mm x 30mm), vacuum for 8 minutes with the rotary pump of the vacuum packaging machine, and 8 minutes with the diffusion pump. After exhausting until the internal pressure in the chamber became 1.0 Pa, the final end portion of the outer cover material was sealed under reduced pressure by heat sealing.

連通パネルの減圧下における熱伝導率および圧縮強度を調べたところ、独立気泡を有する発泡ウレタンに比べ5.1mW/m・Kと0.23MPaと優れるものであった。また、断熱パネルの初期熱伝導率を測定したところ、4.1mW/m・Kであった。その後、断熱パネルを60℃の恒温槽中に約90日間放置後の熱伝導率を再測定したところ、7.5mW/m・Kと劣化が小さいものであった。このことから、真空断熱材を連通ウレタンの被覆材に挿入した断熱パネルは、従来の独立気泡のウレタンパネルに比べ被覆材として熱伝導率が5.1mW/m・Kと優れた連通パネル体を用いて、更にハイバリア性の外被材で保ったことから、高性能な断熱パネルとなり施工までの保管等でも寸法変化や収縮が少なく、熱伝導率が長期間でも劣化が小さい断熱部材の断熱パネルが提供できる。   When the thermal conductivity and compressive strength under reduced pressure of the communication panel were examined, it was excellent at 5.1 mW / m · K and 0.23 MPa compared to urethane foam having closed cells. Moreover, it was 4.1 mW / m * K when the initial thermal conductivity of the heat insulation panel was measured. Thereafter, the thermal conductivity of the heat insulation panel after being left in a constant temperature bath at 60 ° C. for about 90 days was remeasured. As a result, the degradation was as small as 7.5 mW / m · K. For this reason, a heat insulating panel in which a vacuum heat insulating material is inserted into a continuous urethane covering material has a communication panel body having an excellent thermal conductivity of 5.1 mW / m · K as a covering material compared to a conventional closed cell urethane panel. In addition, because it is kept with a high-barrier jacket material, it becomes a high-performance thermal insulation panel with little dimensional change and shrinkage even during storage until construction, etc. Can be provided.

(実施例4)
実施例4の断熱パネルは以下のように作製した。まず、真空断熱材には平均繊維径が6.0μmのグラスウールからなる芯材を、300℃1時間のエージング処理後に実施例1と同様にラミネートフィルムからなる外包材を用い真空断熱材を形成した。測定温度条件10℃で熱伝導率を測定したところ、1.6mW/m・Kであった。また、真空断熱材を保護する被覆材には、炭酸ガスを発泡剤とする連通気泡を有するイソシアヌレート発泡体の連通パネルを用いた。このイソシアヌレート発泡体は、ポリオールと、少量の水と、触媒と、整泡剤と、連通化剤とを混合したプレミックス成分とイソシアネートを高圧発泡機で混合撹拌して、型に充填注入させて発泡したものである。
Example 4
The heat insulation panel of Example 4 was produced as follows. First, a vacuum heat insulating material was formed by using a core material made of glass wool having an average fiber diameter of 6.0 μm as the vacuum heat insulating material and using an outer packaging material made of a laminate film in the same manner as in Example 1 after aging treatment at 300 ° C. for 1 hour. . It was 1.6 mW / m * K when the heat conductivity was measured on measurement temperature conditions 10 degreeC. As the covering material for protecting the vacuum heat insulating material, a communication panel of isocyanurate foam having open cells using carbon dioxide as a foaming agent was used. This isocyanurate foam is prepared by mixing and agitating a premix component, which is a mixture of a polyol, a small amount of water, a catalyst, a foam stabilizer, and a communicating agent, and an isocyanate with a high-pressure foaming machine, and filling the mold. Foamed.

更に、断熱部材の断熱パネルとするため、上記作製の真空断熱材と連通イソシアヌレートパネルの被覆材を組み合わせて断熱性能を長期間維持するため、ハイバリア性の外被材として金属箔等を選定して用いた。その際、金属箔として厚さ30μmのステンレス箔上にポリイミドワニスを額縁状に塗膜し半固化させ、一対のステンレス箔同士を熱プレス機で圧力をかけ三方を密閉シールした。その後、連通イソシアヌレートの被覆材パネル(大きさ:500mm×500mm×30mm)中に真空断熱材とゼオライトを外被材に入れ、真空包装機のロータリーポンプで8分、拡散ポンプで8分、真空チャンバー内の内部圧力が1.0Paになるまで排気後、外被材の最終端部をヒートシールで減圧封止した。   Furthermore, in order to maintain the heat insulating performance for a long time by combining the vacuum heat insulating material produced above and the covering material of the communication isocyanurate panel in order to make the heat insulating panel of the heat insulating member, metal foil etc. is selected as a high barrier covering material Used. At that time, a polyimide varnish was coated in a frame shape on a stainless foil having a thickness of 30 μm as a metal foil to be semi-solidified, and a pair of stainless foils were pressed with a hot press machine and hermetically sealed. After that, put the vacuum insulation and zeolite into the outer cover material in a continuous isocyanurate covering panel (size: 500mm x 500mm x 30mm), vacuum for 8 minutes with the rotary pump of the vacuum packaging machine, and 8 minutes with the diffusion pump. After exhausting until the internal pressure in the chamber became 1.0 Pa, the final end portion of the outer cover material was sealed under reduced pressure by heat sealing.

連通パネルの減圧下における熱伝導率および圧縮強度を調べたところ、独立気泡を有する発泡ウレタンに比べ4.6mW/m・Kと0.25MPaと優れるものであった。また、断熱パネルの初期熱伝導率を測定したところ3.9mW/m・Kであった。その後、断熱パネルを60℃の恒温槽中に約90日間放置後の熱伝導率を再測定したところ、7.3mW/m・Kと劣化が小さいものであった。このことから、真空断熱材を連通イソシアヌレートの被覆材に挿入した断熱パネルは、従来の独立気泡のウレタン断熱パネルに比べ被覆材として熱伝導率が4.6mW/m・Kと優れた連通パネルを用いて、更にハイバリア性の外被材で保ったことから、高性能な断熱パネルとなり施工までの保管等でも寸法変化や収縮が少なく、熱伝導率が長期間でも劣化が小さい断熱部材の断熱パネルが提供できる。   When the thermal conductivity and compressive strength under reduced pressure of the communication panel were examined, it was 4.6 mW / m · K and 0.25 MPa, which were superior to the urethane foam having closed cells. The initial thermal conductivity of the heat insulating panel was measured and found to be 3.9 mW / m · K. Thereafter, the thermal conductivity of the heat insulation panel after being left in a constant temperature bath at 60 ° C. for about 90 days was remeasured. As a result, the deterioration was as small as 7.3 mW / m · K. For this reason, the heat insulating panel in which the vacuum heat insulating material is inserted into the continuous isocyanurate covering material has a thermal conductivity of 4.6 mW / m · K as a covering material superior to the conventional closed cell urethane heat insulating panel. Because it is kept with a high-barrier jacket material, it becomes a high-performance thermal insulation panel, and there is little dimensional change and shrinkage even during storage until construction, etc. Panels can be provided.

(実施例5)
実施例5の断熱パネルは以下のように作製した。まず、真空断熱材には平均繊維径が5.2μmのグラスウールからなる芯材を、280℃で1時間のエージング処理後にラミネートフィルムを用い真空断熱材を形成した。測定温度条件10℃で熱伝導率を測定したところ、1.7mW/m・Kであった。また、真空断熱材を保護する被覆材には、フェノールとホルムアルデヒドを反応させて得られるレゾール型フェノール樹脂を水の発泡剤と、ヒマシ油系イオン性界面活性剤の整泡剤と、フェノールスルホン酸の酸硬化剤と、ステアリン酸カルシウムの連通化剤とを混合撹拌して、型に充填注入させて発泡した連通気泡を有するフェノール発泡体の連通パネルを用いた。
(Example 5)
The heat insulation panel of Example 5 was produced as follows. First, as the vacuum heat insulating material, a core material made of glass wool having an average fiber diameter of 5.2 μm was subjected to an aging treatment at 280 ° C. for 1 hour, and a laminate film was used to form a vacuum heat insulating material. It was 1.7 mW / m * K when the heat conductivity was measured on measurement temperature conditions 10 degreeC. In addition, for the covering material for protecting the vacuum heat insulating material, a resol type phenol resin obtained by reacting phenol and formaldehyde with water foaming agent, castor oil based ionic surfactant foam stabilizer, phenolsulfonic acid A phenol foam continuous panel having open cells foamed by mixing and stirring the acid curing agent and calcium stearate continuous agent, filling and injecting into a mold, was used.

更に、断熱部材の断熱パネルとするため、上記作製の真空断熱材と連通フェノールパネルの被覆材を組み合わせ真空断熱材の断熱性能を長期間維持するため、ハイバリア性の外被材として金属箔等を選定して用いた。その際、金属箔として厚さ20μmのアルミ合金箔上にポリイミドワニスを額縁状に塗膜し半固化させ、一対のアルミ合金箔同士を熱プレス機で圧力をかけて三方を密閉シールした。その後、連通フェノールの被覆材パネル(大きさ:500mm×500mm×30mm)中に真空断熱材とゼオライトを外被材に入れ、真空包装機のロータリーポンプで8分、拡散ポンプで8分、真空チャンバー内の内部圧力が1.0Paになるまで排気後、外被材の最終端部をヒートシールで減圧封止した。   Furthermore, in order to make a heat insulating panel of the heat insulating member, a metal foil or the like is used as a high barrier covering material in order to maintain the heat insulating performance of the vacuum heat insulating material for a long time by combining the above-prepared vacuum heat insulating material and the covering material of the continuous phenol panel. Selected and used. At that time, polyimide varnish was coated in a frame shape on a 20 μm-thick aluminum alloy foil as a metal foil and semi-solidified, and a pair of aluminum alloy foils were pressed with a hot press machine to hermetically seal the three sides. After that, vacuum insulation and zeolite are put into the jacket material in a phenolic covering panel (size: 500mm x 500mm x 30mm), 8 minutes by rotary pump of vacuum packaging machine, 8 minutes by diffusion pump, vacuum chamber After exhausting until the internal pressure of the inside became 1.0 Pa, the final end portion of the outer cover material was sealed under reduced pressure by heat sealing.

連通パネルの減圧下における熱伝導率および圧縮強度を調べたところ、独立気泡を有する発泡ウレタンに比べ5.3mW/m・Kと0.17MPaと優れるものであった。また、断熱パネルの初期熱伝導率を測定したところ、4.5mW/m・Kであった。その後、断熱パネルを60℃の恒温槽中に約90日間放置後の熱伝導率を再測定したところ、8.6mW/m・Kと劣化が小さいものであった。このことから、真空断熱材を連通フェノールの被覆材に挿入した断熱パネルは、従来の独立気泡のウレタン断熱パネルに比べ被覆材として熱伝導率が5.3mW/m・Kと優れた連通パネルを用いて、更にハイバリア性の外被材で保ったことから、高性能な断熱パネルとなり施工までの保管等でも寸法変化や収縮が少なく、熱伝導率が長期間でも劣化が小さい断熱部材の断熱パネルが提供できる。   When the thermal conductivity and compressive strength under reduced pressure of the communication panel were examined, it was excellent at 5.3 mW / m · K and 0.17 MPa as compared with foamed urethane having closed cells. The initial thermal conductivity of the heat insulating panel was measured and found to be 4.5 mW / m · K. Thereafter, the thermal conductivity of the heat insulation panel after being left in a constant temperature bath at 60 ° C. for about 90 days was remeasured. As a result, the degradation was as small as 8.6 mW / m · K. For this reason, a heat insulating panel in which a vacuum heat insulating material is inserted into a continuous phenolic covering material has an excellent communication panel with a thermal conductivity of 5.3 mW / m · K as a covering material compared to a conventional closed cell urethane heat insulating panel. In addition, because it is kept with a high-barrier jacket material, it becomes a high-performance thermal insulation panel with little dimensional change and shrinkage even during storage until construction, etc. Can be provided.

(実施例6)
実施例6の断熱パネルは以下のようにして作製した。まず、真空断熱材には平均繊維径が4.8μmのグラスウールからなる芯材を、250℃1時間のエージング処理後に実施例1と同様にラミネートフィルムからなる外包材を用い真空断熱材を形成した。測定温度条件10℃で熱伝導率を測定したところ、1.5mW/m・Kであった。また、真空断熱材を保護する被覆材には、炭酸ガスと水を発泡剤とする連通気泡を有するスチレン発泡体の連通パネルを用いた。この発泡スチレンフォームは、ポリスチレン樹脂100重量部に対し滑剤としてステアリン酸バリウム0.5重量部を約200℃に加熱して溶融混練し、発泡剤として水2重量部と炭酸ガス2重量部を樹脂中に圧入した。その後、押し出し機、冷却機で混練しながら冷却し、スリットダイより発泡樹脂温度を約110〜140℃にて大気中へ発泡させた後、スリットダイに密着させて設置した成形金型と成型ロールにより、押出し発泡充填したものである。
(Example 6)
The heat insulation panel of Example 6 was produced as follows. First, a vacuum heat insulating material was formed by using a core material made of glass wool having an average fiber diameter of 4.8 μm as the vacuum heat insulating material, and using an outer packaging material made of a laminate film in the same manner as in Example 1 after aging treatment at 250 ° C. for 1 hour. . It was 1.5 mW / m * K when the heat conductivity was measured on measurement temperature conditions 10 degreeC. As the covering material for protecting the vacuum heat insulating material, a styrene foam communication panel having open cells using carbon dioxide gas and water as a foaming agent was used. This foamed styrene foam is prepared by melting and kneading 0.5 parts by weight of barium stearate as a lubricant to about 200 ° C. with respect to 100 parts by weight of a polystyrene resin, and adding 2 parts by weight of water and 2 parts by weight of carbon dioxide as a foaming agent. Press fit inside. After that, cooling is performed while kneading with an extruder and a cooler, the foamed resin temperature is foamed from the slit die to the atmosphere at about 110 to 140 ° C., and then the molding die and the molding roll are installed in close contact with the slit die. By extrusion foam filling.

更に、断熱パネルとするため、上記作製の真空断熱材と連通スチレンパネルの被覆材を組み合わせて断熱性能を長期間維持するため、ハイバリア性の外被材として金属箔を選定して用いた。その際、金属箔として厚さ30μmのステンレス箔上にポリイミドワニスを額縁状に塗膜し半固化させ、一対のステンレス箔同士を熱プレス機で圧力をかけ三方を密閉シールした。その後、連通スチレンの被覆材パネル(大きさ:500mm×500mm×30mm)中に真空断熱材とゼオライトを外被材に入れ、真空包装機のロータリーポンプで8分、拡散ポンプで8分、真空チャンバー内の内部圧力が1.0Paになるまで排気後、外被材の最終端部をヒートシールで減圧封止した。   Furthermore, in order to obtain a heat insulating panel, a metal foil was selected and used as a high barrier coating material in order to maintain the heat insulating performance for a long time by combining the vacuum heat insulating material produced above and a covering material of a continuous styrene panel. At that time, a polyimide varnish was coated in a frame shape on a stainless foil having a thickness of 30 μm as a metal foil to be semi-solidified, and a pair of stainless foils were pressed with a hot press machine and hermetically sealed. After that, put the vacuum insulation and zeolite into the jacket material in a continuous styrene coating panel (size: 500mm x 500mm x 30mm), 8 minutes with the rotary pump of the vacuum packaging machine, 8 minutes with the diffusion pump, vacuum chamber After exhausting until the internal pressure of the inside became 1.0 Pa, the final end portion of the outer cover material was sealed under reduced pressure by heat sealing.

連通パネルの減圧下における熱伝導率および圧縮強度を調べたところ、独立気泡を有する発泡ウレタンに比べ3.9mW/m・Kと0.16MPaと優れるものであった。また、断熱パネルの初期熱伝導率を測定したところ3.8mW/m・Kであった。その後、断熱パネルを60℃の恒温槽中に約90日間放置後の熱伝導率を再測定したところ、7.0mW/m・Kと劣化が小さいものであった。このことから、真空断熱材を連通スチレンの被覆材に挿入した断熱パネルは、従来の独立気泡のウレタン断熱パネルに比べ被覆材として熱伝導率が3.9mW/m・Kと優れた連通パネルを用いて、更にハイバリア性の外被材を保ったことから、高性能な断熱パネルとなり施工までの保管等でも寸法変化や収縮が少なく、熱伝導率が長期間でも劣化が小さい断熱部材の断熱パネルが提供できる。   When the thermal conductivity and compressive strength under reduced pressure of the communication panel were examined, they were excellent at 3.9 mW / m · K and 0.16 MPa compared to urethane foam having closed cells. The initial thermal conductivity of the heat insulating panel was measured and found to be 3.8 mW / m · K. Thereafter, the thermal conductivity after the thermal insulation panel was left in a constant temperature bath at 60 ° C. for about 90 days was remeasured. As a result, the degradation was as small as 7.0 mW / m · K. For this reason, a heat insulating panel in which a vacuum heat insulating material is inserted into a continuous styrene coating material has a thermal conductivity of 3.9 mW / m · K, which is superior to a conventional closed cell urethane heat insulating panel. In addition, since the high-barrier jacket material is used, it becomes a high-performance heat insulation panel, and there is little dimensional change or shrinkage even during storage until construction, etc. Can be provided.

(比較例3)
比較例3の断熱パネルは以下のように作製した。繊維径が6.1μmのグラスウールからなる芯材とガス吸着のゲッター剤(モレキュラーシーブス13X)を、ラミネートフィルムからなる外包材内に挿入し真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内に入れ、チャンバーの内部圧力が1.5Paになるまで排気後、外包材の端部をヒートシールし真空封止で真空断熱材を作製した。測定温度条件10℃で真空断熱材の熱伝導率を測定したところ、2.3mW/m・Kであった。また、真空断熱材を保護する被覆材には独立気泡のフェノール発泡体を用いた。このフェノール発泡体は、フェノールとホルムアルデヒドを反応させて得られるレゾール型フェノール樹脂のシクロペンタン発泡剤と、ヒマシ油系イオン性界面活性剤の整泡剤と、フェノールスルホン酸の酸硬化剤をプレミックスして型に充填注入させて発泡したものである。このフェノール発泡体の熱伝導率と圧縮強度を測定したところ、26.5mW/m・K,0.10MPaと劣った。また、表1のようにシクロペンタンは可燃性を有し環境負荷(CO2排出量,エコリサイクル性)が不良で、フェノールフォームの寸法変化率や収縮(−20℃および70℃に48h放置した時の厚さ変化率)が大きく劣るものであった。その後、真空断熱材を型内にセットして、上記のフェノール発泡体を充填注入させた建材用部材の断熱パネルを作製した。測定温度条件10℃で初期の熱伝導率を測定したところ、8.5mW/m・Kと高くなり、更に60℃の恒温槽中に90日間放置後の熱伝導率を再測定したところ、18.5mW/m・Kまで劣化した。このことから、長期間での断熱性能が大きく劣る建材用部材の断熱パネルであった。
(Comparative Example 3)
The heat insulation panel of the comparative example 3 was produced as follows. A core material made of glass wool having a fiber diameter of 6.1 μm and a gas adsorption getter agent (Molecular Sieves 13X) are inserted into an outer packaging material made of a laminate film, and 10 minutes by a rotary pump of a vacuum packaging machine and 10 minutes by a diffusion pump. After putting in a vacuum chamber and exhausting until the internal pressure of the chamber became 1.5 Pa, the end of the outer packaging material was heat-sealed, and a vacuum heat insulating material was produced by vacuum sealing. When the thermal conductivity of the vacuum heat insulating material was measured at a measurement temperature condition of 10 ° C., it was 2.3 mW / m · K. In addition, a closed cell phenol foam was used as a covering material for protecting the vacuum heat insulating material. This phenol foam is a pre-mixed cyclopentane foaming agent of resol-type phenolic resin obtained by reacting phenol and formaldehyde, a foam stabilizer of castor oil based ionic surfactant, and an acid curing agent of phenolsulfonic acid. Then, it is filled and injected into a mold and foamed. When the thermal conductivity and compressive strength of this phenol foam were measured, it was inferior at 26.5 mW / m · K and 0.10 MPa. In addition, as shown in Table 1, cyclopentane is flammable and has a poor environmental load (CO 2 emissions, eco-recyclability). The dimensional change rate and shrinkage of phenol foam (-20 ° C and 70 ° C were left for 48 hours). The thickness change rate at the time was greatly inferior. Then, the heat insulation panel of the member for building materials which set the vacuum heat insulating material in the type | mold and was made to inject | pour and inject said phenol foam was produced. When the initial thermal conductivity was measured at a measurement temperature condition of 10 ° C., it was as high as 8.5 mW / m · K, and when the thermal conductivity after being left in a constant temperature bath at 60 ° C. for 90 days was measured again, 18 Deteriorated to 0.5 mW / m · K. From this, it was the heat insulation panel of the member for building materials in which the heat insulation performance in a long term is greatly inferior.

(比較例4)
比較例4の断熱パネルは以下のように作製した。繊維径が2.9μmのグラスウールからなる芯材とガス吸着のゲッター剤(モレキュラーシーブス13X)を、ラミネートフィルムからなる外包材内に挿入し真空包装機のロータリーポンプで10分、拡散ポンプで10分、真空チャンバー内に入れ、チャンバーの内部圧力が1.5Paになるまで排気後、外包材の端部をヒートシールし真空封止で真空断熱材を作製した。測定温度条件10℃で真空断熱材の熱伝導率を測定したところ、1.5mW/m・Kであった。また、真空断熱材を保護する被覆材には独立気泡のスチレン発泡体を用いた。このスチレン発泡体は、スチレン系単量体を分散剤等により水中に分散させ重合開始剤を加え、懸濁重合により重合したスチレン樹脂に脂肪族炭化水素のイソブタン発泡剤を含侵させた粒子(粒径0.5〜1.0mm程)を成形金型内に入れ、粒子を蒸気等により予備発泡後に加熱して作製したものである。このスチレン発泡体の熱伝導率と圧縮強度を測定したところ、29.5mW/m・K,0.08MPaと劣った。また、表1のようにイソブタンは可燃性を有し環境負荷(CO2排出量,エコリサイクル性)が不良で、スチレンフォームの寸法変化率や収縮(−20℃および70℃に48h放置した時の厚さ変化率)が大きく劣るものであった。
その後、真空断熱材を型内にセットして、上記のスチレン発泡体を充填注入させた建材用部材の断熱パネルを作製した。測定温度条件10℃で初期の熱伝導率を測定したところ、9.2mW/m・Kと高くなり、更に60℃の恒温槽中に90日間放置後の熱伝導率を再測定したところ、19.8mW/m・Kまで劣化した。このことから、長期間での断熱性能が大きく劣る建材用部材の断熱パネルであった。
(Comparative Example 4)
The heat insulation panel of the comparative example 4 was produced as follows. A core material made of glass wool having a fiber diameter of 2.9 μm and a gas adsorption getter agent (Molecular Sieves 13X) are inserted into an outer packaging material made of a laminate film, 10 minutes by a rotary pump of a vacuum packaging machine, and 10 minutes by a diffusion pump. After putting in a vacuum chamber and exhausting until the internal pressure of the chamber became 1.5 Pa, the end of the outer packaging material was heat-sealed, and a vacuum heat insulating material was produced by vacuum sealing. It was 1.5 mW / m * K when the heat conductivity of the vacuum heat insulating material was measured on measurement temperature conditions 10 degreeC. In addition, a closed cell styrene foam was used as a covering material for protecting the vacuum heat insulating material. This styrene foam is a particle obtained by dispersing a styrene monomer in water with a dispersant and the like, adding a polymerization initiator, and impregnating an aliphatic hydrocarbon isobutane foaming agent into a styrene resin polymerized by suspension polymerization ( (Particle diameter of about 0.5 to 1.0 mm) is placed in a molding die, and the particles are preheated with steam or the like and heated. When the thermal conductivity and compressive strength of this styrene foam were measured, it was inferior to 29.5 mW / m · K, 0.08 MPa. In addition, as shown in Table 1, isobutane is flammable and has a poor environmental load (CO 2 emissions, eco-recyclability). When styrene foam is left to stand at -20 ° C and 70 ° C for 48 hours. The rate of change in thickness) was greatly inferior.
Then, the heat insulating panel of the member for building materials which set the vacuum heat insulating material in the type | mold and was made to inject | pour and inject said styrene foam was produced. When the initial thermal conductivity was measured at a measurement temperature condition of 10 ° C., it was as high as 9.2 mW / m · K, and when the thermal conductivity after being left in a constant temperature bath at 60 ° C. for 90 days was measured again, 19 Deteriorated to 0.8 mW / m · K. From this, it was the heat insulation panel of the member for building materials in which the heat insulation performance in a long term is greatly inferior.

(実施例7)
実施例7は、図3に示すように断熱部材を用いて建築構造物に使用した例である。図3は建築構造物の概略断面図である。建築構造物では、コンクリート基礎上の土台に柱を組み、柱および柱間に設けられている門柱に熱伝導率が優れる断熱パネルを断熱部材として使用し、釘等により固定する。本実施例の断熱部材は、真空断熱材および連通気泡を有する被覆材を組み合わせた断熱パネルからなるものであって、真空断熱材としてはグラスウールからなる芯材、被覆材としては連通気泡を有するウレタン発泡体等で形成され、真空断熱材が連通体の被覆材中に配置される建材用部材の断熱パネルである。この時、断熱部材の断熱パネルとしては、以下のように作製したものである。真空断熱材にはグラスウールからなる芯材およびガス吸着のゲッター剤をラミネートフィルムからなる外包材に入れ、真空包装機で真空封止して熱伝導率が約1.5mW/m・K程の高性能な真空断熱材を用いたものである。また、真空断熱材を保護する被覆材には、イソシアネートと水との反応で発生する炭酸ガスを発泡剤とする連通気泡を有するウレタン発泡体の連通パネルを用いた。このウレタン発泡体は、ポリオールと、水と、触媒と、整泡剤と、連通化剤とを混合したプレミックス成分とイソシアネートを高圧発泡機で混合撹拌して、型に充填注入させて発泡したものである。発泡ウレタンとしては、ポリオールがm−トリレンジアミン系にプロピレンオキサイドを付加したポリエーテルポリオールを30重量部、トリエタノールアミン系にプロピレンオキサイドを付加したポリエーテルポリオールを20重量部、o−トリレンジアミン系にプロピレンオキサイドを付加したポリエーテルポリオールを30重量部、蔗糖系にプロピレンオキサイドを付加したポリエーテルポリオールを20重量部の混合ポリオール成分100重量部に、水15部および反応触媒としてテトラメチルヘキサメチレンジアミン1.2重量部とトリメチルアミノエチルピペラジン2部、整泡剤として有機シリコーン化合物X−20−1614を2重量部、連通化剤のステアリン酸カルシウムを10重量部、イソシアネートとしてミリオネートMRのジフェニルメタンイソシアネート多核体を125部で発泡充填した。
(Example 7)
Example 7 is the example used for the building structure using the heat insulation member as shown in FIG. FIG. 3 is a schematic sectional view of a building structure. In a building structure, a pillar is assembled on a foundation on a concrete foundation, and a heat insulating panel having excellent thermal conductivity is used as a heat insulating member on a gate pillar provided between the pillars and fixed with nails or the like. The heat insulating member of the present embodiment is composed of a heat insulating panel in which a vacuum heat insulating material and a covering material having open cells are combined. The vacuum heat insulating material is a core made of glass wool, and the covering material is urethane having open air bubbles. It is a heat insulating panel of a building material member formed of a foam or the like and having a vacuum heat insulating material disposed in a covering material of a communicating body. At this time, as a heat insulation panel of a heat insulation member, it produced as follows. For the vacuum insulation material, a glass wool core and a gas adsorption getter agent are placed in an outer packaging material made of a laminate film, which is vacuum sealed with a vacuum packaging machine and has a high thermal conductivity of about 1.5 mW / m · K. It uses high performance vacuum insulation. In addition, a urethane foam communication panel having open cells using carbon dioxide gas generated by the reaction of isocyanate and water as a foaming agent was used as the covering material for protecting the vacuum heat insulating material. This urethane foam was foamed by mixing and agitating a premix component in which a polyol, water, a catalyst, a foam stabilizer, and a communicating agent were mixed with an isocyanate in a high-pressure foaming machine, filling and injecting into a mold. Is. As the urethane foam, 30 parts by weight of a polyether polyol in which propylene oxide is added to m-tolylenediamine type, 20 parts by weight of polyether polyol in which propylene oxide is added to triethanolamine type, o-tolylenediamine 30 parts by weight of polyether polyol with propylene oxide added to the system, 20 parts by weight of polyether polyol with propylene oxide added to the sucrose system, 100 parts by weight of the mixed polyol component, 15 parts of water and tetramethylhexamethylene as the reaction catalyst 1.2 parts by weight of diamine and 2 parts of trimethylaminoethylpiperazine, 2 parts by weight of organosilicone compound X-20-1614 as a foam stabilizer, 10 parts by weight of calcium stearate as a communicating agent, Millionate M as an isocyanate 125 parts of diphenylmethane isocyanate polynuclear R was foam filled.

この連通ウレタンパネルを真空断熱材と同様に外包材に入れ、真空包装機で真空封止して熱伝導率が5.5mW/m・K程の高性能な被覆材を用いたものである。更に、真空断熱材と連通ウレタンパネルの被覆材を組み合わせて断熱性能を長期間維持するため、ステンレス箔等とポリイミドワニスでハイバリア性の外被材を作製し連通ウレタンの被覆材中に真空断熱材を入れ、真空包装機で減圧封止して熱伝導率が約4.0mW/m・K程の高性能な断熱パネルを断熱部材に用いたものである。外壁との間に通気層を設けるため、断熱部材、柱や門柱の順に設けられ、外壁仕上げ材を固定する。断熱部材を柱と柱または柱と門柱または門柱と門柱に固定する場合、断熱部材の端部近傍を釘等で固定し建築構造物の完成後における熱伝導率が低く有効に機能する断熱パネルを断熱部材に適用することで、断熱パネルを挿入しなかったものに比べて断熱性能を長期間維持する効果が得られ、環境に優れる住宅等の省エネルギー化の建築構造物が提供できる。   This continuous urethane panel is put in an outer packaging material in the same manner as the vacuum heat insulating material, and is vacuum-sealed by a vacuum packaging machine, and a high-performance coating material having a thermal conductivity of about 5.5 mW / m · K is used. Furthermore, in order to maintain the heat insulation performance for a long time by combining a vacuum insulation material and a continuous urethane panel coating material, a high barrier coating material is made of stainless steel foil and polyimide varnish, and the vacuum insulation material is connected to the continuous urethane coating material. And a high-performance heat-insulating panel having a thermal conductivity of about 4.0 mW / m · K is used as a heat-insulating member. In order to provide a ventilation layer between the outer wall and the outer wall, the heat insulating member, the pillar and the gate pillar are provided in this order to fix the outer wall finishing material. When fixing a heat insulating member to a pillar and a pillar or a pillar and a gate pillar or a gate pillar and a gate pillar, a heat insulating panel that functions effectively with a low thermal conductivity after completion of the building structure by fixing the vicinity of the end of the heat insulating member with a nail or the like. By applying to a heat insulating member, the effect which maintains heat insulation performance for a long period of time compared with the thing which did not insert a heat insulation panel is acquired, and energy-saving building structures, such as a house excellent in an environment, can be provided.

本発明によれば、真空断熱材と連通気泡の発泡体を組み合わせて構成することにより、長期の断熱性能における劣化が小さい断熱部材とすることができる。真空断熱材を覆う断熱材が独立気泡の発泡体を充填注入しないため、型セットやウレタン発泡体の反応温度(約120℃)が真空断熱材におよぼすダメージを受けることなく長期の性能維持が可能となる。しかも、真空断熱材と連通気泡を有する被覆材が共に真空層中に存在するため、空気侵入や空気中の水分吸着もなくフォームの寸法変化や収縮が抑えられ、水やそりに強い効果を有する。また、真空断熱材を覆う被覆材に熱伝導率(10mW/m・K以下)、圧縮強度(0.15MPa以上)が優れる連通体を使用すること、および、ハイバリア性の外被材としたことで高性能な断熱パネルとなり、施工までの保管(約50℃)等においても圧縮強度や熱伝導率を長期間維持することができる断熱部材を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, it can be set as the heat insulation member with little deterioration in long-term heat insulation performance by comprising combining a vacuum heat insulating material and the foam of an open cell. Since the insulation covering the vacuum insulation does not fill and inject closed-cell foam, the reaction temperature of the mold set and urethane foam (approximately 120 ° C) can be maintained for a long time without being damaged by the vacuum insulation. It becomes. Moreover, since both the vacuum heat insulating material and the covering material having open air bubbles are present in the vacuum layer, there is no intrusion of air and no moisture adsorption in the air, and the dimensional change and shrinkage of the foam are suppressed, and it has a strong effect on water and sled. . In addition, the use of a continuous body with excellent thermal conductivity (10 mW / m · K or less) and compressive strength (0.15 MPa or more) for the covering material covering the vacuum heat insulating material, and a high barrier coating material Thus, a heat insulating member capable of maintaining the compressive strength and thermal conductivity for a long period of time can be obtained even during storage (about 50 ° C.) until construction.

さらに、建築構造物の完成後における熱伝導率が低く有効に機能する断熱パネルを断熱部材に適用することで、環境に優れる住宅等の省エネルギー化に有効な建築構造物である。   Furthermore, by applying to the heat insulating member a heat insulating panel that has a low thermal conductivity after completion of the building structure and functions effectively, the building structure is effective for energy saving such as a house that is excellent in the environment.

また、この断熱部材は、保温や保冷が必要な各製品にも適用することが可能であり、たとえば車両,建築部材,自動車,医療機器等である。特に、熱交換部を含み断熱性が必要な機器全般に有効であり、車両等に適用することで断熱壁の省スペース化が可能となり、車内空間が拡大されるとともに断熱効果で結露等の問題が解決される。   Moreover, this heat insulating member can be applied to each product that needs to be kept warm or cold, such as a vehicle, a building member, an automobile, or a medical device. In particular, it is effective for all equipment that requires heat insulation, including heat exchange parts, and it can be applied to vehicles, etc., to save space on the heat insulation wall, expand the interior space of the vehicle and increase the heat insulation effect. Is resolved.

1 真空断熱材
2 外包材
3 芯材
4 ゲッター剤
5 外被材
6,7,10 断熱部材
8 被覆材(独立気泡フォーム)
9 被覆材(連通気泡フォーム)
11 建築構造物
12 コンクリート基礎
13 土台
14 柱
15 門柱
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulating material 2 Outer packaging material 3 Core material 4 Getter agent 5 Cover material 6, 7, 10 Thermal insulation member 8 Coating material (closed cell foam)
9 Coating material (open cell foam)
11 Building Structure 12 Concrete Foundation 13 Base 14 Pillar 15 Gate Pillar

Claims (6)

グラスウールの芯材と、ゲッター剤と、前記芯材および前記ゲッター剤を収納するガスバリア性の外包材とを備え、前記外包材の内部を減圧密封した真空断熱材と、
前記真空断熱材の周囲を覆うように配置され、連通気泡を有する発砲体で構成される被覆材と、
前記断熱パネル及び前記被覆材を収納する外被材と、を備え、
前記外被剤の内部が減圧密封された断熱部材。
A glass wool core material, a getter agent, a gas barrier outer packaging material containing the core material and the getter agent, and a vacuum heat insulating material that seals the inside of the outer packaging material under reduced pressure,
A covering material that is arranged so as to cover the periphery of the vacuum heat insulating material and is composed of a foamed body having open air bubbles,
An outer jacket material for housing the heat insulating panel and the covering material;
A heat insulating member in which the inside of the covering agent is sealed under reduced pressure.
請求項1において、減圧下における前記被覆材の熱伝導率が10mW/m・K以下であることを特徴とする断熱部材。   The heat insulating member according to claim 1, wherein the thermal conductivity of the covering material under reduced pressure is 10 mW / m · K or less. 請求項1において、前記被覆材の圧縮強度が0.15MPa以上であることを特徴とする断熱部材。   The heat insulating member according to claim 1, wherein the covering material has a compressive strength of 0.15 MPa or more. 請求項1において、前記発泡体が水または炭酸ガスからなる発泡剤により形成されたことを特徴とする断熱部材。   2. The heat insulating member according to claim 1, wherein the foam is formed of a foaming agent made of water or carbon dioxide. 請求項1において、前記外被材が金属箔からなることを特徴とする断熱部材。   The heat insulating member according to claim 1, wherein the jacket material is made of a metal foil. 請求項1に記載の断熱部材を用いた建築用部材。   A building member using the heat insulating member according to claim 1.
JP2010148466A 2010-06-30 2010-06-30 Heat insulating member and building member using the same Pending JP2012013114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010148466A JP2012013114A (en) 2010-06-30 2010-06-30 Heat insulating member and building member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010148466A JP2012013114A (en) 2010-06-30 2010-06-30 Heat insulating member and building member using the same

Publications (1)

Publication Number Publication Date
JP2012013114A true JP2012013114A (en) 2012-01-19

Family

ID=45599795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010148466A Pending JP2012013114A (en) 2010-06-30 2010-06-30 Heat insulating member and building member using the same

Country Status (1)

Country Link
JP (1) JP2012013114A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739232A (en) * 2013-12-12 2014-04-23 青岛无为保温材料有限公司 Novel composite heat-preservation energy-saving material
WO2017068633A1 (en) * 2015-10-19 2017-04-27 株式会社アーク Prefabricated house
JP2018053497A (en) * 2016-09-27 2018-04-05 マグ・イゾベール株式会社 Heat insulation panel and construction method thereof
JP2020133816A (en) * 2019-02-22 2020-08-31 旭ファイバーグラス株式会社 Vacuum heat insulating material
KR102391996B1 (en) * 2021-06-25 2022-04-29 변병열 Manufacturing method of panel for building

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103739232A (en) * 2013-12-12 2014-04-23 青岛无为保温材料有限公司 Novel composite heat-preservation energy-saving material
WO2017068633A1 (en) * 2015-10-19 2017-04-27 株式会社アーク Prefabricated house
JP2018053497A (en) * 2016-09-27 2018-04-05 マグ・イゾベール株式会社 Heat insulation panel and construction method thereof
JP2020133816A (en) * 2019-02-22 2020-08-31 旭ファイバーグラス株式会社 Vacuum heat insulating material
JP7454827B2 (en) 2019-02-22 2024-03-25 旭ファイバーグラス株式会社 vacuum insulation
KR102391996B1 (en) * 2021-06-25 2022-04-29 변병열 Manufacturing method of panel for building

Similar Documents

Publication Publication Date Title
JP2011241988A (en) Heat insulation box and refrigerator
US20150260331A1 (en) Heat-insulating material and manufacturing process therefor, and insulating method
US20130068990A1 (en) Composite materials comprising a polymer matrix and granules embedded therein
JP4580844B2 (en) Vacuum heat insulating material and refrigerator using the same
TWI471516B (en) Insulation, insulation box, insulated doors and frozen storage
JP2007263186A (en) Heat insulating panel and equipment using the same
CN100580303C (en) Method for the production of vacuum insulation panels
JP2012013114A (en) Heat insulating member and building member using the same
JP2007506041A (en) Molded product for heat insulation
US20180306375A1 (en) Heat-insulating wall, and heat-insulating housing and method for producing the same
US5965231A (en) Gas mixtures for thermal insulation
JP2010008011A (en) Vacuum heat insulating box
JP2012102894A (en) Insulated box, and insulated wall
JP2746069B2 (en) Foam insulation and method of manufacturing the same
JP2559014B2 (en) Foam insulation and manufacturing method thereof
JPH06213561A (en) Insulating material and refrigerator using the same
JP2000018486A (en) Thermally insulated casing and manufacture thereof
JPH11201375A (en) Vacuum heat insulating panel insertion type box body for refrigerator/freezer
CN101928375A (en) Environmentally friendly polyurethane-isocyurnate material
KR100710981B1 (en) Heat Insulating Materials of Cargo Tank for Liquefied Natural Gas Carriers
KR100356540B1 (en) vacuum adiabatic panel is adapted
JP2002174485A (en) Refrigerator
KR100389397B1 (en) Composite vacuum insulation panel and product method that
KR101345275B1 (en) Core material for vacuum insulator using fumed silica with high purity and vacuum insulator using the same
KR101476783B1 (en) Foamed polyurethane-insulation material in high temperature for heat transporting pipe and its manufacturing method