JP2012012679A - Method for reducing carbon dioxide emissions - Google Patents

Method for reducing carbon dioxide emissions Download PDF

Info

Publication number
JP2012012679A
JP2012012679A JP2010151591A JP2010151591A JP2012012679A JP 2012012679 A JP2012012679 A JP 2012012679A JP 2010151591 A JP2010151591 A JP 2010151591A JP 2010151591 A JP2010151591 A JP 2010151591A JP 2012012679 A JP2012012679 A JP 2012012679A
Authority
JP
Japan
Prior art keywords
carbon
ammonia
carbon dioxide
reducing
produced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010151591A
Other languages
Japanese (ja)
Other versions
JP5593883B2 (en
Inventor
Minoru Asanuma
稔 浅沼
Yasuhei Nouchi
泰平 野内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010151591A priority Critical patent/JP5593883B2/en
Publication of JP2012012679A publication Critical patent/JP2012012679A/en
Application granted granted Critical
Publication of JP5593883B2 publication Critical patent/JP5593883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Landscapes

  • Manufacture Of Iron (AREA)
  • Incineration Of Waste (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for reducing carbon dioxide emissions, by which a greater reduction of carbon dioxide emission can be achieved in equipment that uses and blows a carbon-containing reducing material and/or a carbon-containing fuel, such as in blast furnace operation, without considerably increasing the cost for transporting reducing materials or fuels.SOLUTION: The method for reducing carbon dioxide emissions comprises: producing ammonia using hydrogen gas as a raw material in 2; cooling the ammonia produced in 3 to obtain liquid ammonia; transporting the ammonia to the equipment 5 that uses and blows the carbon-containing reducing material and/or the carbon-containing fuel by 4; and evaporating the liquid ammonia and blowing the same into the equipment 5 as at least a partial substitute for the carbon-containing reducing material and/or the carbon-containing fuel. Preferably, the hydrogen gas is produced by electrolysis 1 of water using natural energy, particularly solar energy.

Description

本発明は炭素含有燃料や炭素含有還元材を吹き込み使用する設備で用いる、炭酸ガス排出量の削減方法に関する。   The present invention relates to a method for reducing carbon dioxide emission, which is used in equipment that uses carbon-containing fuel or carbon-containing reducing material.

近年、炭酸ガス排出量の増加による地球温暖化が問題となっており、製鉄業においても排出CO2の抑制は重要な課題である。 In recent years, global warming due to an increase in carbon dioxide emissions has become a problem, and the suppression of emitted CO 2 is an important issue even in the steel industry.

従来、製鉄業では鉄鉱石を、炭素を還元材として鉄に還元し、鉄鋼製品を製造している。わが国の製鉄業においては、鉄鉱石は主に豪州、ブラジルより海上輸送により輸入し、鉄鉱石還元材としてコークス用の原料炭(強粘結炭)、補助還元剤として羽口吹込み用一般炭も海上輸送で輸入している。原料炭はコークス炉にて約1000℃で乾留し、コークスとし、一般炭は粉砕処理を行い微粉炭として利用している。以上のように、日本の鉄鋼業は海外より製鉄原料資源を輸入し、鉄鋼製品を生産しているのが現状である。   Conventionally, in the steel industry, iron ore is reduced to iron using carbon as a reducing material to produce steel products. In Japan's steel industry, iron ore is mainly imported from Australia and Brazil by sea transport, coking coal (coking coal) as iron ore reducing material, and tuyere blowing steam coal as auxiliary reducing agent. Are also imported by sea transport. Coking coal is carbonized at about 1000 ° C. in a coke oven to produce coke, and general coal is pulverized and used as pulverized coal. As described above, the current situation is that the Japanese steel industry imports steelmaking raw materials from overseas and produces steel products.

このような環境にある国内製鉄業は省エネルギー、省資源などの技術開発により積極的にCO2削減に取り組んでいる。特に、最近の高炉操業では低還元材比操業においてCO2排出量を削減する方法が強力に推進されている。高炉は主にコークスおよび微粉炭を還元材として使用しており、低還元材比、ひいては炭酸ガス排出抑制を達成するためにはコークス等を廃プラスチック、LNG(Liquefied Natural Gas:液化天然ガス)、重油等の水素含有率の高い還元材で置換する方策が有効である。炭素の代わりに水素を還元材として利用することにより、発生するCO2を大幅に削減することが可能と考えられている。水素含有率の高い還元材を高炉で用いる技術として、高炉にLNGを羽口より吹き込み、製銑工程で排出される炭酸ガスを低減させる低炭酸ガス排出製鉄法が知られている(例えば、特許文献1、特許文献2参照。)。 In this environment, the domestic steel industry is actively working to reduce CO 2 by developing technologies such as energy saving and resource saving. In particular, in recent blast furnace operations, methods for reducing CO 2 emissions are being strongly promoted in operations with a low reducing material ratio. Blast furnaces mainly use coke and pulverized coal as reducing materials. In order to achieve a low reducing material ratio, and in order to reduce carbon dioxide emission, coke is used as waste plastic, LNG (Liquefied Natural Gas), It is effective to replace with a reducing material having a high hydrogen content such as heavy oil. It is considered that CO 2 generated can be significantly reduced by using hydrogen as a reducing material instead of carbon. As a technique for using a reducing material having a high hydrogen content in a blast furnace, a low carbon dioxide exhaust iron manufacturing method is known in which LNG is blown into the blast furnace from the tuyere to reduce the carbon dioxide discharged in the ironmaking process (for example, patents). Reference 1 and Patent Reference 2).

また、水素ガスを補助還元材として利用する方法も知られている(例えば、特許文献3参照。)   A method of using hydrogen gas as an auxiliary reducing material is also known (see, for example, Patent Document 3).

特開平03−240906号公報Japanese Patent Laid-Open No. 03-240906 特開2006−241586号公報JP 2006-241586 A 特開2008−082516号公報JP 2008-082516 A 特開2010−047812号公報JP 2010-047812 A

日本エネルギー学会誌 2009年、第88巻第5号、p.391Journal of the Japan Institute of Energy 2009, Vol. 88, No. 5, p. 391 日本エネルギー学会誌 2009年、第88巻第5号、p.385 尚、特許文献4、非特許文献1、2については、下記の発明を実施するための形態で参照する。Journal of the Japan Institute of Energy 2009, Vol. 88, No. 5, p. In addition, about patent document 4, nonpatent literature 1, 2, it refers with the form for implementing the following invention.

上記のように、海外より石炭(原料炭、一般炭)を国内に海上輸送し、コークス炉等で事前処理後、鉄鉱石の還元材として使用し、鉄鋼製品を製造する、従来技術のままでは炭酸ガスの多量発生は避けることができない。また、石炭等資源の有限性を考慮すると、炭酸ガス排出量を大幅に削減可能な、従来方法によらない新たな鉄鉱石還元方法が必要である。   As described above, coal (coking coal, steaming coal) is shipped overseas from abroad, pre-treated in a coke oven, etc., and then used as a reducing material for iron ore to produce steel products. A large amount of carbon dioxide is inevitable. In addition, considering the finite nature of resources such as coal, a new iron ore reduction method that does not rely on the conventional method and that can significantly reduce carbon dioxide emissions is required.

そこで上記のように、水素含有率の高い還元材を高炉の羽口から補助還元材として吹き込むことで、コークス、微粉炭等の炭素系還元材を削減し、排出CO2を抑制することが可能となるが、例えばLNGの主成分はメタン(CH4)であり、CH4由来の炭素も還元材として利用されることから、大幅な炭酸ガス削減量は期待できない。これに対して、水素ガス単体を補助還元材として用いれば、炭酸ガス削減量を大幅に増やすことができることになる。 Therefore, as described above, reducing materials with a high hydrogen content can be blown from the tuyere's tuyere as auxiliary reducing materials to reduce carbon-based reducing materials such as coke and pulverized coal, and to suppress CO 2 emissions. However, for example, the main component of LNG is methane (CH 4 ), and since carbon derived from CH 4 is also used as a reducing material, a significant reduction in carbon dioxide gas cannot be expected. On the other hand, if hydrogen gas alone is used as an auxiliary reducing material, the carbon dioxide gas reduction amount can be greatly increased.

しかし、水素は輸送が困難であるという問題がある。気体還元材として用いるものであっても、気体の状態での輸送は体積が大きく効率的でないため、LNGのように液体の状態で輸送することが望ましいが、このためには低温の貯蔵タンクが必要となる。LNGの場合、主成分のCH4の沸点が−162℃であるのに対し、水素の沸点は−253℃であるため、水素の輸送には極低温の貯蔵タンクが必要となり、このようなタンクを用いてトラック等で輸送を行なうことは非常にコスト高であり現実的でない。したがって、水素ガスの利用は、製鉄所内に水素ガスの発生設備があるような、限られた場合にのみ有効な手段であり、炭素を含まない補助還元材を高炉の羽口から大量に吹き込み、排出CO2を抑制することは現状では困難である。 However, there is a problem that hydrogen is difficult to transport. Even if it is used as a gas reducing material, it is desirable to transport in a liquid state such as LNG because transportation in a gas state is large and inefficient, but for this purpose, a low-temperature storage tank is used. Necessary. In the case of LNG, the boiling point of CH 4 as a main component is −162 ° C., whereas the boiling point of hydrogen is −253 ° C. Therefore, a cryogenic storage tank is required for transporting hydrogen, and such a tank It is very expensive and unrealistic to transport the vehicle using a truck or the like. Therefore, the use of hydrogen gas is an effective means only in a limited case where there is a hydrogen gas generation facility in the steelworks, and a large amount of auxiliary reducing material containing no carbon is blown from the tuyere's tuyere, It is difficult to suppress the exhausted CO 2 at present.

したがって本発明の目的は、このような従来技術の課題を解決し、高炉操業のような、炭素含有還元材及び/又は炭素含有燃料を吹き込み使用する設備において、還元材や燃料の輸送コストを大幅に増加させること無く、従来以上に炭酸ガスの削減効果の大きい、炭酸ガス排出量の削減方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art and greatly reduce the transportation cost of the reducing material and fuel in the facility for blowing and using the carbon-containing reducing material and / or the carbon-containing fuel, such as blast furnace operation. It is an object of the present invention to provide a method for reducing the amount of carbon dioxide emission that has a greater carbon dioxide reduction effect than before without increasing the amount of carbon dioxide.

上記の課題を解決するために、本発明では極低温で液化させる必要がないため輸送が容易であり、炭素を含有しないアンモニア(NH3)を還元材または燃料として用いることに想到し、本発明を完成した。アンモニアは沸点が−33℃であるため水素に比較して安価な設備を用いた簡単な方法で液化することができ、LNGに比較しても液化が容易である。したがって液化したアンモニアも、輸送に用いる設備が安価となり、貯蔵の際の設備も低コストで建設することができる。またH2に比較して、単位体積あたりの水素含有率が高いという特徴もある。 In order to solve the above problems, the present invention does not need to be liquefied at an extremely low temperature, and therefore is easily transported, and it has been conceived that ammonia containing no carbon (NH 3 ) is used as a reducing material or fuel. Was completed. Since ammonia has a boiling point of −33 ° C., it can be liquefied by a simple method using cheaper equipment than hydrogen, and liquefaction is also easier than LNG. Therefore, liquefied ammonia can also be used at low cost for transportation equipment, and equipment for storage can be constructed at low cost. In addition, the hydrogen content per unit volume is higher than that of H 2 .

本発明はこのような知見に基づきなされたもので、その特徴は以下の通りである。
(1)水素ガスを原料としてアンモニアを製造し、
該製造したアンモニアを冷却して液体アンモニアとし、
該液体アンモニアを、炭素含有還元材及び/又は炭素含有燃料を吹き込み使用する設備まで輸送し、
前記炭素含有還元材及び/又は前記炭素含有燃料の少なくとも一部の代替として前記液体アンモニアを気化して前記設備に吹き込むことを特徴とする炭酸ガス排出量の削減方法。
(2)水素ガスが自然エネルギーを利用して製造されたものであることを特徴とする(1)に記載の炭酸ガス排出量の削減方法。
(3)水素ガスが太陽エネルギーを用いた水の電気分解により製造されたものであることを特徴とする(2)に記載の炭酸ガス排出量の削減方法。
(4)液体アンモニアを鉄鉱石還元材の代替として鉄鉱石還元プロセスで用いることを特徴とする(1)ないし(3)のいずれかに記載の炭酸ガス排出量の削減方法。
The present invention has been made based on such findings, and the features thereof are as follows.
(1) Ammonia is produced using hydrogen gas as a raw material,
The produced ammonia is cooled to liquid ammonia,
Transporting the liquid ammonia to a facility that uses carbon-containing reducing material and / or carbon-containing fuel,
A method for reducing carbon dioxide emission, wherein the liquid ammonia is vaporized and blown into the facility as an alternative to at least a part of the carbon-containing reducing material and / or the carbon-containing fuel.
(2) The method for reducing carbon dioxide emission according to (1), wherein the hydrogen gas is produced using natural energy.
(3) The method for reducing carbon dioxide emission according to (2), wherein the hydrogen gas is produced by electrolysis of water using solar energy.
(4) The method for reducing carbon dioxide emission according to any one of (1) to (3), wherein liquid ammonia is used in an iron ore reduction process as a substitute for an iron ore reducing material.

本発明によれば、炭素を含有する還元材や燃料を用いる設備において、還元材や燃料としてアンモニアを用いることで、還元材や燃料の輸送コストを大幅に増加させること無く、炭素を含有する還元材や燃料を用いる場合に比較して、排出CO2量を大幅に削減することが可能となる。 According to the present invention, in equipment using a reducing material or fuel containing carbon, by using ammonia as the reducing material or fuel, reduction containing carbon without greatly increasing the transportation cost of the reducing material or fuel. Compared to the case of using materials and fuels, the amount of exhausted CO 2 can be greatly reduced.

アンモニア原料としてカーボンフリーのクリーンな水素を用いる場合には、地球全体としての排出CO2量削減に一層貢献できる。 When carbon-free clean hydrogen is used as an ammonia raw material, it can further contribute to the reduction of the amount of CO 2 emission as a whole.

本発明の一実施形態を示すフロー図。The flowchart which shows one Embodiment of this invention. アンモニア電解合成法の説明図。Explanatory drawing of the ammonia electrosynthesis method.

本発明では、まず、液化が困難である水素ガス(H2)を原料としてアンモニア(NH3)を製造し、製造したアンモニアを冷却して液体アンモニアとする。アンモニアは沸点が−33℃であるため、沸点以下に冷却することが比較的容易である。水素の製造は、例えばアルカリ水電解や、水蒸気電解等により行なうことができる。水素からアンモニアを製造するには、通常のアンモニア合成法を用いればよい。具体的なアンモニア合成は、例えば二重促進鉄触媒(Fe−Al23−K2O)を用いて、圧力3.4〜14.7MPa、温度:400〜470℃で行えばよい。また、図2に示すような電解合成法によりアンモニアを合成してもよい。図2において、11は電源、12は陽極、13は陰極、14は溶融塩化物(電解質)であり、電解質にプロトン伝導性固体電解質(例えば、SrCe0.95Yb0.053)を用い、常圧、850KでNH3を合成できる。 In the present invention, first, ammonia (NH 3 ) is produced using hydrogen gas (H 2 ), which is difficult to be liquefied, as a raw material, and the produced ammonia is cooled to liquid ammonia. Since ammonia has a boiling point of −33 ° C., it is relatively easy to cool it below the boiling point. Hydrogen can be produced, for example, by alkaline water electrolysis or steam electrolysis. In order to produce ammonia from hydrogen, a normal ammonia synthesis method may be used. Specific ammonia synthesis may be performed using, for example, a double promoted iron catalyst (Fe—Al 2 O 3 —K 2 O) at a pressure of 3.4 to 14.7 MPa and a temperature of 400 to 470 ° C. Further, ammonia may be synthesized by an electrolytic synthesis method as shown in FIG. In FIG. 2, 11 is a power source, 12 is an anode, 13 is a cathode, 14 is a molten chloride (electrolyte), a proton conductive solid electrolyte (for example, SrCe 0.95 Yb 0.05 O 3 ) is used as an electrolyte, NH 3 can be synthesized at 850K.

アンモニアの液化は冷却して、液化しても良い。または、アンモニアは20℃、0.857MPa(8.46気圧)に加圧することで液化する。したがって、加圧することで液体アンモニアを製造することが可能である。   The ammonia liquefaction may be cooled and liquefied. Or ammonia liquefies by pressurizing to 20 ° C. and 0.857 MPa (8.46 atm). Therefore, liquid ammonia can be produced by pressurization.

この液体アンモニアを、炭素含有還元材及び/又は炭素含有燃料を吹き込み使用する設備まで輸送する。液体であれば、気体の状態に比較して単位体積あたりの輸送質量を大幅に増加させることが可能となる。輸送に用いる輸送手段には、車両、船舶等を用いることができる。   The liquid ammonia is transported to a facility that uses the carbon-containing reducing material and / or carbon-containing fuel. If it is a liquid, it becomes possible to greatly increase the transport mass per unit volume as compared with the gaseous state. A vehicle, a ship, etc. can be used for the transportation means used for transportation.

本発明の炭酸ガス排出量の削減方法では、水素をアンモニアに変換することで輸送が容易となるために、遠隔地の水素ガスであっても、例えば外国で製造された水素ガスであっても日本国内でアンモニアとして大量に使用することが可能となる。   In the carbon dioxide emission reduction method of the present invention, since hydrogen is converted into ammonia to facilitate transportation, even if it is a remote hydrogen gas, for example, a hydrogen gas produced in a foreign country, It can be used in large quantities as ammonia in Japan.

輸送された液体アンモニアを気化して、炭素含有還元材及び/又は炭素含有燃料を吹き込み使用する設備で、炭素含有還元材及び/又は炭素含有燃料の少なくとも一部の代替として吹き込み使用する。炭素含有還元材及び/又は炭素含有燃料を吹き込み使用する設備とは、例えば微粉炭や廃プラスチックのような炭素を含有する固体やLNG等の炭素含有ガスを還元材として吹き込む高炉等の竪型炉や、LNGや重油等の炭素含有燃料を燃焼する設備であり、このような設備で炭素含有還元材及び/又は炭素含有燃料の少なくとも一部の代替としてアンモニアガスを用いることで、炭素の使用を削減して、炭酸ガス排出量を削減できる。   The transported liquid ammonia is vaporized and used as a substitute for at least a part of the carbon-containing reducing material and / or the carbon-containing fuel in an equipment that uses the carbon-containing reducing material and / or the carbon-containing fuel. A facility that blows and uses a carbon-containing reducing material and / or carbon-containing fuel is, for example, a vertical furnace such as a blast furnace that blows carbon-containing gas such as pulverized coal or waste plastic containing carbon or a carbon-containing gas such as LNG Or a facility for burning carbon-containing fuels such as LNG and heavy oil, and by using ammonia gas as an alternative to at least part of the carbon-containing reducing material and / or carbon-containing fuel in such facilities, the use of carbon can be reduced. This will reduce carbon dioxide emissions.

アンモニアの原料である水素ガスは、自然エネルギーを利用して製造されたものであることが好ましい。太陽エネルギー、水力、風力などの自然エネルギ−を利用して、水電気分解により水素を製造することができる。あるいは原子力エネルギーを利用して水電気分解により水素を製造することもできる。太陽エネルギーを用いて水を原料として電気分解して製造された水素ガスを用いることが特に好ましい。自然エネルギーを利用して製造された水素を用いることが好ましいのは、製造過程で炭素が発生するような方法で製造された水素を用いると、実質的には排出CO2量削減とならないような場合があるので、炭素に由来しない、カーボンフリーのクリーンな水素を用いて本発明方法を実施することが望ましいためである。太陽エネルギーの利用が効果的な地域、例えば砂漠地帯などで水素を製造することで、低コストで大量に水素を製造することが可能となる。太陽エネルギーは電力等に変換した形で水素ガスの製造に利用することができる。また、太陽熱を集光し、その熱を利用して水素を製造してもよい(例えば、非特許文献1参照。)。太陽エネルギーを利用する以外に、実施的にCO2を排出しない原子力エネルギーを用いて水素を製造することも可能である(例えば、非特許文献2参照。)。炭酸ガスを排出しない、太陽エネルギー以外の自然エネルギー(水力、風力、波力、海洋の温度差等)を利用して、電気を生産し、水を電気分解し水素を製造してもよい。風力を用いる場合は常時風速が5m/s以上である立地が好ましく、風力発電により電気を製造し、該電気を用いた水電気分解により水素を製造する。 The hydrogen gas that is a raw material of ammonia is preferably produced using natural energy. Hydrogen can be produced by water electrolysis using natural energy such as solar energy, hydropower, and wind power. Alternatively, hydrogen can be produced by water electrolysis using nuclear energy. It is particularly preferable to use hydrogen gas produced by electrolysis using water as a raw material using solar energy. It is preferable to use hydrogen produced by utilizing natural energy. If hydrogen produced by a method in which carbon is generated in the production process is used, the amount of CO 2 emission is not substantially reduced. This is because it is desirable to carry out the method of the present invention using carbon-free clean hydrogen that is not derived from carbon. By producing hydrogen in an area where solar energy is effectively used, such as a desert area, it is possible to produce a large amount of hydrogen at a low cost. Solar energy can be used for the production of hydrogen gas in the form of electricity. Alternatively, solar heat may be collected and hydrogen may be produced using the heat (see, for example, Non-Patent Document 1). Besides using solar energy, it is also possible to produce hydrogen using nuclear energy that does not effectively emit CO 2 (see, for example, Non-Patent Document 2). Electricity may be produced using natural energy other than solar energy (hydropower, wind power, wave power, ocean temperature difference, etc.) that does not discharge carbon dioxide, and water may be electrolyzed to produce hydrogen. When wind power is used, a location where the wind speed is always 5 m / s or more is preferable. Electricity is produced by wind power generation, and hydrogen is produced by water electrolysis using the electricity.

上記のように、本発明方法は炭素含有還元材及び/又は炭素含有燃料を吹き込み使用する様々な設備で用いることが可能であるが、炭素含有還元材を大量に使用する鉄鉱石還元プロセスに用いると、特に効果的である。鉄鉱石還元プロセスに用いる場合の一実施形態を図1を用いて説明する。   As described above, the method of the present invention can be used in various facilities that use carbon-containing reducing material and / or carbon-containing fuel, but it is used in iron ore reduction processes that use a large amount of carbon-containing reducing material. And is particularly effective. One embodiment when used in the iron ore reduction process will be described with reference to FIG.

図1は本発明の一実施形態を示すフロー図であり、水素製造工程1において、水(H2O)を太陽エネルギーを用いて分解して水素ガスを製造する。そしてこの水素ガス(H2)を用いて、アンモニア合成工程2でアンモニア(NH3)を製造する。製造したアンモニアはアンモニア液化工程3で液化する。液体アンモニアを輸送手段4により製鉄所に輸送する。そして製鉄所内の鉄鉱石還元プロセス5で石炭や天然ガスの代わりに使用し、鉄鋼製品を製造する。鉄鉱石還元プロセス5として高炉を用いる場合には、アンモニアガスを高炉の羽口から吹き込んで使用する。 FIG. 1 is a flowchart showing an embodiment of the present invention. In a hydrogen production process 1, water (H 2 O) is decomposed using solar energy to produce hydrogen gas. Then, using this hydrogen gas (H 2 ), ammonia (NH 3 ) is produced in the ammonia synthesis step 2. The produced ammonia is liquefied in the ammonia liquefaction step 3. Liquid ammonia is transported to the steelworks by the transport means 4. In the iron ore reduction process 5 in the steelworks, it is used in place of coal and natural gas to produce steel products. When a blast furnace is used as the iron ore reduction process 5, ammonia gas is blown from the tuyere of the blast furnace.

鉄鉱石還元プロセス5として転炉を用いる場合には、通常底吹転炉ではプロパンを羽口から吹き込み、その分解熱で羽口を冷却するとともに熱源としても利用しているので、プロパンの代替としてアンモニアを用いることができる。焼結機を用いる場合には、鉄鉱石粉、石灰石及びドロマイトなどの含CaO系副原料、生石灰等の造粒助剤など、およびコークス粉などで造粒した造粒物の点火材に用いることが可能であり、希釈気体燃料として吹き込むことでコークス粉の使用量を減らすこともできる(例えば、特許文献4参照。)。また、粉鉱石を造粒して還元鉄を製造するプロセスでは、通常、天然ガスあるいは石炭を改質してCOおよびH2に変換し、これを還元材として還元鉄を製造する。この還元鉄製造プロセスにCO、H2の代替としてアンモニアを還元材として用いることができる。 When a converter is used as the iron ore reduction process 5, propane is usually blown from the tuyere in the bottom blowing converter, and the tuyere is cooled by the heat of decomposition and used as a heat source. Ammonia can be used. When using a sintering machine, it should be used for igniters of granulated products granulated with iron ore powder, CaO-containing auxiliary materials such as limestone and dolomite, granulation aids such as quick lime, and coke powder. It is possible to reduce the amount of coke powder used by blowing it as a diluted gas fuel (see, for example, Patent Document 4). In the process of granulating fine ore to produce reduced iron, natural gas or coal is usually reformed and converted to CO and H 2 , and reduced iron is produced using this as a reducing material. In this reduced iron production process, ammonia can be used as a reducing material as an alternative to CO and H 2 .

太陽電池を用いて発電し、得られた電気によりアルカリ水の電気分解を行ない、製造した水素ガスを原料として、二重促進鉄触媒(Fe−Al23−K2O)を用いたアンモニア合成法で、圧力:20MPa、温度:500℃、空間速度(SV):1000h-1でアンモニアガスを製造した。このアンモニアガスを−33℃に冷却して液体とし、トラックに積載した保冷容器で液体のまま製鉄所に輸送し、炉内容積約5000m3の高炉の側に設置した貯蔵タンクに保管し、吹き込みの際に気化して、羽口からの吹き込み原料として用いた。 Ammonia using a double-promoted iron catalyst (Fe—Al 2 O 3 —K 2 O), using the generated hydrogen gas as a raw material. Ammonia gas was produced by a synthesis method at a pressure of 20 MPa, a temperature of 500 ° C., and a space velocity (SV) of 1000 h −1 . This ammonia gas is cooled to -33 ° C to form a liquid, which is then transported to the ironworks as a liquid in a cool container loaded on a truck, stored in a storage tank installed on the blast furnace side with a furnace volume of about 5000 m 3 , and blown in Vaporized at the time of use and used as a raw material blown from the tuyere.

アンモニア以外の補助還元材としては微粉炭を130kg/t−p(溶銑)とし、羽口先理論燃焼温度は2249℃になるように酸素富化率を調整して、条件1〜3の操業試験を実施した。表1に各操業条件と結果を示す。条件1は比較例であり、アンモニア(NH3)吹込みを行なわない従来の操業の場合である。アンモニア吹込み量は条件2で25kg/t−p(溶銑)、条件3で50kg/t−p(溶銑)、条件4で100kg/t−p(溶銑)、条件5で130kg/t−p(溶銑)である。 As an auxiliary reducing material other than ammonia, pulverized coal is 130 kg / tp (molten metal), the oxygen enrichment is adjusted so that the theoretical combustion temperature at the tuyere is 2249 ° C., and the operation test under conditions 1 to 3 is performed. Carried out. Table 1 shows the operating conditions and results. Condition 1 is a comparative example, which is a case of conventional operation in which ammonia (NH 3 ) blowing is not performed. The ammonia blowing rate was 25 kg / tp (molten metal) in condition 2, 50 kg / tp (molten metal) in condition 3, 100 kg / tp (molten metal) in condition 4, 130 kg / tp (condition) in condition 5 Hot metal).

Figure 2012012679
Figure 2012012679

アンモニアを吹き込むことで、還元材比(RAR)は上昇するが、C投入量は減少する。これに伴い、条件2ではCO2発生削減量は16kg−CO2/t−p(溶銑)、条件3では32kg−CO2/t−p(溶銑)、条件4では63kg−CO2/t−p(溶銑)、条件5では82kg−CO2/t−p(溶銑)となり、CO2発生量を大幅に削減することができた。 By blowing ammonia, the reducing material ratio (RAR) increases, but the amount of C input decreases. Accordingly, the CO 2 generation reduction amount is 16 kg-CO 2 / tp (hot metal) in condition 2 , 32 kg-CO 2 / tp (hot metal) in condition 3, and 63 kg-CO 2 / t- in condition 4. Under p (molten metal) and condition 5, the amount was 82 kg-CO 2 / tp (molten metal), and the amount of generated CO 2 could be greatly reduced.

また、炉内ボッシュ部でのガス密度は、条件1(比較例)で1.17kg/Nm3、条件2で1.13kg/Nm3、条件3で1.09kg/Nm3、条件4で1.00kg/Nm3、条件5で0.94kg/Nm3となり、ガス密度の低下から炉内通気性が改善されたものと考えられる。 The gas density in the furnace Bosch unit, condition 1 (Comparative Example) 1.17kg / Nm 3, 1.13kg / Nm 3 in condition 2, the condition 3 1.09 kg / Nm 3, the condition 4 1 0.004 kg / Nm 3 under condition 5 and 0.94 kg / Nm 3 , and it is considered that the air permeability in the furnace was improved due to the decrease in gas density.

1 水素製造工程
2 アンモニア合成工程
3 アンモニア液化工程
4 輸送手段
5 鉄鉱石還元プロセス
11 電源
12 陽極
13 陰極
14 溶融塩化物
1 Hydrogen Production Process 2 Ammonia Synthesis Process 3 Ammonia Liquefaction Process 4 Transport Means 5 Iron Ore Reduction Process 11 Power Supply 12 Anode 13 Cathode 14 Molten Chloride

Claims (4)

水素ガスを原料としてアンモニアを製造し、
該製造したアンモニアを冷却して液体アンモニアとし、
該液体アンモニアを、炭素含有還元材及び/又は炭素含有燃料を吹き込み使用する設備まで輸送し、
前記炭素含有還元材及び/又は前記炭素含有燃料の少なくとも一部の代替として、前記液体アンモニアを気化して前記設備に吹き込むことを特徴とする炭酸ガス排出量の削減方法。
Ammonia is produced using hydrogen gas as a raw material,
The produced ammonia is cooled to liquid ammonia,
Transporting the liquid ammonia to a facility that uses carbon-containing reducing material and / or carbon-containing fuel,
A carbon dioxide emission reduction method, wherein the liquid ammonia is vaporized and blown into the facility as an alternative to at least a part of the carbon-containing reducing material and / or the carbon-containing fuel.
水素ガスが自然エネルギーを利用して製造されたものであることを特徴とする請求項1に記載の炭酸ガス排出量の削減方法。   2. The method for reducing carbon dioxide emission according to claim 1, wherein the hydrogen gas is produced using natural energy. 水素ガスが太陽エネルギーを用いた水の電気分解により製造されたものであることを特徴とする請求項2に記載の炭酸ガス排出量の削減方法。   The method for reducing carbon dioxide emission according to claim 2, wherein the hydrogen gas is produced by electrolysis of water using solar energy. 液体アンモニアを鉄鉱石還元材の代替として鉄鉱石還元プロセスで用いることを特徴とする請求項1ないし請求項3のいずれかに記載の炭酸ガス排出量の削減方法。   The method for reducing carbon dioxide emission according to any one of claims 1 to 3, wherein liquid ammonia is used in an iron ore reduction process as an alternative to an iron ore reducing material.
JP2010151591A 2010-07-02 2010-07-02 How to reduce carbon dioxide emissions Active JP5593883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010151591A JP5593883B2 (en) 2010-07-02 2010-07-02 How to reduce carbon dioxide emissions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010151591A JP5593883B2 (en) 2010-07-02 2010-07-02 How to reduce carbon dioxide emissions

Publications (2)

Publication Number Publication Date
JP2012012679A true JP2012012679A (en) 2012-01-19
JP5593883B2 JP5593883B2 (en) 2014-09-24

Family

ID=45599453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010151591A Active JP5593883B2 (en) 2010-07-02 2010-07-02 How to reduce carbon dioxide emissions

Country Status (1)

Country Link
JP (1) JP5593883B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158781A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Method for melting cold iron source by combined arc melting furnace and combined arc melting furnace
JP2012158782A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Method for reforming exhaust gas of combined arc melting furnace and combined arc melting furnace
JP2015529751A (en) * 2012-09-14 2015-10-08 フェストアルピネ シュタール ゲーエムベーハーVoestalpine Stahl Gmbh Steel manufacturing method
JP2020152989A (en) * 2019-03-22 2020-09-24 日本製鉄株式会社 Operation method of blast furnace and manufacturing method of pig iron
CN115478122A (en) * 2022-10-10 2022-12-16 北京首钢国际工程技术有限公司 Ammonia-rich raw fuel for blast furnace iron making and blast furnace iron making method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164019A (en) * 1979-06-07 1980-12-20 Japan Metals & Chem Co Ltd Nitrogen adding agent for iron and steel and preparation thereof
JPH07331265A (en) * 1994-06-13 1995-12-19 Mikio Sugiyama Method for utilizing liquid ammonia as hydrogen fuel
JPH11228101A (en) * 1998-02-09 1999-08-24 Shinko Pantec Co Ltd Hydrogen/oxygen production process and application process of hydrogen
JP2002013700A (en) * 2000-06-30 2002-01-18 Iwatani Internatl Corp Method for detecting completion of liquefied gas transfer
JP2003267725A (en) * 2002-03-15 2003-09-25 Hitachi Zosen Corp Method of manufacturing ammonia, its apparatus and flue gas denitrification using the manufactured ammonia
JP2008274413A (en) * 2007-03-30 2008-11-13 Tohoku Univ Method for recovering metal
JP2010159194A (en) * 2009-01-09 2010-07-22 Toyota Motor Corp Ammonia synthesis method
JP2011179089A (en) * 2010-03-03 2011-09-15 Hokkaido Univ Iron-manufacturing method and system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55164019A (en) * 1979-06-07 1980-12-20 Japan Metals & Chem Co Ltd Nitrogen adding agent for iron and steel and preparation thereof
JPH07331265A (en) * 1994-06-13 1995-12-19 Mikio Sugiyama Method for utilizing liquid ammonia as hydrogen fuel
JPH11228101A (en) * 1998-02-09 1999-08-24 Shinko Pantec Co Ltd Hydrogen/oxygen production process and application process of hydrogen
JP2002013700A (en) * 2000-06-30 2002-01-18 Iwatani Internatl Corp Method for detecting completion of liquefied gas transfer
JP2003267725A (en) * 2002-03-15 2003-09-25 Hitachi Zosen Corp Method of manufacturing ammonia, its apparatus and flue gas denitrification using the manufactured ammonia
JP2008274413A (en) * 2007-03-30 2008-11-13 Tohoku Univ Method for recovering metal
JP2010159194A (en) * 2009-01-09 2010-07-22 Toyota Motor Corp Ammonia synthesis method
JP2011179089A (en) * 2010-03-03 2011-09-15 Hokkaido Univ Iron-manufacturing method and system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CSNC201000295604; 細貝 聡、秋山 友宏: 'ヘマタイトのアンモニア還元特性 Characteristics of hematite reduction with ammonia' 材料とプロセス Vol.23(2010)No.1[CD-ROM] Vol.23, No.1, 20100301, page.119 *
JPN6014005496; 細貝 聡、秋山 友宏: 'ヘマタイトのアンモニア還元特性 Characteristics of hematite reduction with ammonia' 材料とプロセス Vol.23(2010)No.1[CD-ROM] Vol.23, No.1, 20100301, page.119 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158781A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Method for melting cold iron source by combined arc melting furnace and combined arc melting furnace
JP2012158782A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp Method for reforming exhaust gas of combined arc melting furnace and combined arc melting furnace
JP2015529751A (en) * 2012-09-14 2015-10-08 フェストアルピネ シュタール ゲーエムベーハーVoestalpine Stahl Gmbh Steel manufacturing method
JP2020152989A (en) * 2019-03-22 2020-09-24 日本製鉄株式会社 Operation method of blast furnace and manufacturing method of pig iron
CN115478122A (en) * 2022-10-10 2022-12-16 北京首钢国际工程技术有限公司 Ammonia-rich raw fuel for blast furnace iron making and blast furnace iron making method

Also Published As

Publication number Publication date
JP5593883B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
RU2770105C2 (en) Method for operating plant for cast iron or steel production
TWI660072B (en) Method for reducing co2 emissions in the operation of a metallurgical plant
JP5593883B2 (en) How to reduce carbon dioxide emissions
JP6229863B2 (en) Oxygen blast furnace operation method
US20200047120A1 (en) Method for separating off and immobilizing carbon dioxide and/or carbon monoxide from an exhaust gas
JP2004309067A (en) Method of using blast furnace gas
JP2014005510A (en) Blast furnace operation method
JP5935605B2 (en) Steelworks operating method and carbon dioxide gas decomposition apparatus
CN103608469A (en) Carbon dioxide reduction in steelworks
JP7028373B1 (en) Ironmaking equipment and method of manufacturing reduced iron
WO2021106579A1 (en) Method for operating blast furnace, and facility equipped with blast furnace
JP6011014B2 (en) Carbon dioxide gas decomposition apparatus and decomposition method
JP5640786B2 (en) How to operate a blast furnace or steelworks
JP2019501103A (en) Method for decomposing and recycling carbon dioxide using a hot stove
JP5509676B2 (en) How to operate a vertical furnace
EP3687941A1 (en) Method for producing hot synthesis gas, in particular for use in blast furnace operation
JP5510199B2 (en) Production and use of hydrogen and oxygen
JP2014028984A (en) Operation method of blast furnace
EP4228806A1 (en) Catalytic materials for pyrolysis of methane and production of hydrogen and solid carbon with substantially zero atmospheric carbon emissions
JP2009221549A (en) Method for operating blast furnace
JP5565150B2 (en) Blast furnace operation method
CN220149500U (en) Long-process negative carbon steel iron device taking biomass molten iron bath gasification as source
JP7272312B2 (en) Method for producing reduced iron
JP2013095923A (en) Blast furnace operation method
Bailera et al. Decarbonization of ironmaking through power to gas and oxy-fuel combustion

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R150 Certificate of patent or registration of utility model

Ref document number: 5593883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250