JP2012158781A - Method for melting cold iron source by combined arc melting furnace and combined arc melting furnace - Google Patents

Method for melting cold iron source by combined arc melting furnace and combined arc melting furnace Download PDF

Info

Publication number
JP2012158781A
JP2012158781A JP2011017366A JP2011017366A JP2012158781A JP 2012158781 A JP2012158781 A JP 2012158781A JP 2011017366 A JP2011017366 A JP 2011017366A JP 2011017366 A JP2011017366 A JP 2011017366A JP 2012158781 A JP2012158781 A JP 2012158781A
Authority
JP
Japan
Prior art keywords
melting
chamber
iron source
cold iron
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011017366A
Other languages
Japanese (ja)
Other versions
JP5617666B2 (en
Inventor
Sumihito Ozawa
純仁 小澤
Katsuhiko Takagi
克彦 高木
Eiju Matsuno
英寿 松野
Minoru Asanuma
稔 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011017366A priority Critical patent/JP5617666B2/en
Publication of JP2012158781A publication Critical patent/JP2012158781A/en
Application granted granted Critical
Publication of JP5617666B2 publication Critical patent/JP5617666B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for melting a cold iron source by a combined arc melting furnace for the cold iron source which can effectively utilize exhaust gas generated in a combined arc melting furnace for pre-heating of the cold iron source without causing oxidation of the cold iron source, can reform the exhaust gas and reduce the electric power consumption rate, when melting the cold iron source in the combined arc melting furnace, and to provide the combined arc melting furnace.SOLUTION: In the method for melting the cold iron source using the combined arc melting furnace comprising a melting chamber and a shaft-type pre-heating chamber which is vertically provided on the upper part thereof and communicates to the melting chamber, the cold iron source successively lowers inside of a pre-heating chamber, is pre-heated by using a high temperature exhaust gas generated in a combined arc melting furnace to arc melt and is continuously introduced into the melting chamber, where an ammonia gas is blown into the pre-heating chamber under conditions wherein the cold iron source is present striding over the pre-heating chamber and the upper part in the melting chamber.

Description

本発明は、鉄のスクラップや直接還元鉄等の冷鉄源を、シャフト形予熱室を備える複合アーク溶解炉を用いて溶解する方法、およびその複合アーク溶解炉に関するものである。   The present invention relates to a method for melting a cold iron source such as iron scrap or directly reduced iron using a combined arc melting furnace having a shaft-type preheating chamber, and to the combined arc melting furnace.

鉄スクラップ等の冷鉄源は、従来、各種アーク炉を使って加熱溶解して、精錬した後、溶鋼として再生させている。ただし、アーク炉によって冷鉄源を溶解するには、多くの電力が必要とされるため、近年では電力使用量の削減を目的として、アーク炉の溶解室から発生する高温の排ガスで冷鉄源を予熱しながら溶解する新規な方法がが提案されている。   Conventionally, cold iron sources such as iron scrap are heated and melted using various arc furnaces, refined, and then regenerated as molten steel. However, since a large amount of electric power is required to melt the cold iron source by the arc furnace, in recent years, the cold iron source is generated by the high-temperature exhaust gas generated from the melting chamber of the arc furnace for the purpose of reducing the power consumption. There has been proposed a new method of melting while preheating.

その代表的なものとして、特許文献1では、溶解室と、この溶解室で発生する排ガスを導入するシャフト形予熱室とを備えた複合アーク溶解炉を提案している。この複合アーク溶解炉の操業では、装入される鉄スクラップが予熱室と溶解室とに跨って存在するようにすると共に、その鉄スクラップを溶解室内にてアーク熱によって加熱溶解し、該溶解室に少なくとも1ヒート分の溶湯が溜まった時点で、溶鋼を出湯することを特徴とする鉄スクラップの溶解方法である。   As a typical example, Patent Document 1 proposes a composite arc melting furnace including a melting chamber and a shaft-type preheating chamber for introducing exhaust gas generated in the melting chamber. In the operation of this combined arc melting furnace, the iron scrap to be charged exists between the preheating chamber and the melting chamber, and the iron scrap is heated and melted by arc heat in the melting chamber. This is a method for melting iron scrap, characterized in that molten steel is discharged when at least one heat of molten metal has accumulated.

また、特許文献2では、前記複合アーク溶解炉から発生する排ガスの利用に当たり、予熱室に酸素含有ガスを供給して未燃焼ガスを燃焼させ、その燃焼熱を利用して鉄スクラップを予熱することで、鉄スクラップの溶解に係る電力原単位を削減する方法が開示されている。   Moreover, in patent document 2, in using the exhaust gas generated from the composite arc melting furnace, an oxygen-containing gas is supplied to the preheating chamber to burn the unburned gas, and the iron scrap is preheated using the combustion heat. And the method of reducing the electric power consumption unit which melt | dissolves iron scrap is disclosed.

特開平10−292990号公報JP-A-10-292990 特開平10−310814号公報Japanese Patent Laid-Open No. 10-310814

しかし、特許文献1に開示の方法では、溶解室で発生する排ガスが未燃焼のまま排出されることになるので、排ガスの有効利用という点で課題がある。また、特許文献2に開示の方法では、予熱シャフト部に供給したOガスにより冷鉄源の酸化が起こり、その結果、歩留まりが低下したり、酸化により生成したFeOをコークス等で還元する作業が必要になり、電力原単位が低下するという課題がある。 However, the method disclosed in Patent Document 1 has a problem in terms of effective use of exhaust gas because the exhaust gas generated in the melting chamber is discharged without being burned. Further, in the method disclosed in Patent Document 2, the cold iron source is oxidized by the O 2 gas supplied to the preheating shaft portion. As a result, the yield is reduced, or the work of reducing FeO generated by the oxidation with coke or the like is performed. Is required, and there is a problem that the power consumption rate is reduced.

本発明は、従来技術が抱えている前記のような事情に鑑みて開発した技術であって、その目的とするところは、複合アーク溶解炉における冷鉄源の溶解に際し、複合アーク溶解炉内で発生する排ガスを、冷鉄源の酸化を招くことなく、冷鉄源の予熱に有効に利用すること、及び電力原単位を削減することのできる、冷鉄源の複合アーク溶解炉による冷鉄源の溶解方法およびその複合アーク溶解炉を提案することにある。   The present invention is a technology developed in view of the above-described circumstances of the prior art, and the object of the present invention is to provide a composite arc melting furnace in the melting of a cold iron source in a composite arc melting furnace. Cold iron source by combined arc melting furnace of cold iron source, which can effectively use the generated exhaust gas for preheating the cold iron source without causing oxidation of the cold iron source and reduce the power intensity The present invention is to propose a melting method and a combined arc melting furnace.

前記目的を達成するため、本発明では、特許文献2で提案しているような酸素含有ガスの導入に代えて、アンモニアガスを導入することで、このアンモニアガスと排ガス中の未燃焼ガス成分とによる反応を導いて、このとき発生する熱を冷鉄源の予熱に利用する方法とそのためのアーク溶解炉を提案するものである。   In order to achieve the object, in the present invention, instead of introducing the oxygen-containing gas as proposed in Patent Document 2, by introducing ammonia gas, the ammonia gas and the unburned gas component in the exhaust gas We propose a method that uses the heat generated at this time to preheat the cold iron source and an arc melting furnace for that purpose.

なお、アンモニアガスは、一酸化炭素と反応して、各種炭化水素やメタノール、ジメチルエーテルなどに改質されることが知られている。下記(1)式にその化学反応式の一例を示す。
2NH+CO→CH+HO+N ・・・ (1)
It is known that ammonia gas reacts with carbon monoxide and is reformed into various hydrocarbons, methanol, dimethyl ether, and the like. An example of the chemical reaction formula is shown in the following formula (1).
2NH 3 + CO → CH 4 + H 2 O + N 2 (1)

上記(1)式のNH1モルあたりの標準エンタルピー変化は、−13.6kcal/mol―NHであり、この反応は発熱反応である。 The standard enthalpy change per mole of NH 3 in the formula (1) is −13.6 kcal / mol—NH 3 , and this reaction is an exothermic reaction.

即ち、本発明は、溶解室と、その上部に立設されて溶解室とは連通するシャフト形予熱室とからなる複合アーク溶解炉によって、該予熱室内を順次に降下する冷鉄源を、溶解室で発生した高温排ガスを使って予熱すると共に、引き続き溶解室に導いてアーク溶解するようにしてなる複合アーク溶解炉を用いた冷鉄源の溶解方法において、前記冷鉄源が、予熱室内と溶解室内上部とに跨って存在する状態の下で、該予熱室内に、アンモニアガスを吹き込むことを特徴とする冷鉄源の複合アーク溶解炉による溶解方法を提案する。   That is, the present invention uses a complex arc melting furnace comprising a melting chamber and a shaft-type preheating chamber that stands upright and communicates with the melting chamber to dissolve a cold iron source that descends sequentially in the preheating chamber. In the method for melting a cold iron source using a composite arc melting furnace that is preheated using high-temperature exhaust gas generated in the chamber and is subsequently guided to the melting chamber and melted in the arc, the cold iron source includes a preheating chamber and A melting method using a combined arc melting furnace of a cold iron source is proposed, in which ammonia gas is blown into the preheating chamber under a condition that extends over the upper portion of the melting chamber.

なお、上記冷鉄源の複合アーク溶解炉による溶解方法においては、
(1)前記予熱室内において、アンモニアガスと溶解室から発生する排ガスとの反応を導いて、該排ガスの未燃焼成分を改質すると共に、この反応時に発生する熱を、該予熱室内の冷鉄源の予熱に利用すること、
(2)前記アンモニアガスは、予熱室の溶解室内の湯面の位置から予熱室上部の冷鉄源の堆積層上端位置までの領域において、1もしくは複数箇所に設けられたアンモニアガス導入口から吹き込むこと
(3)前記アンモニアガスの吹き込み量は、溶解室から発生する排ガス量の5〜25%とすること、
がより好ましい解決手段になる。
In the melting method of the cold iron source by the combined arc melting furnace,
(1) In the preheating chamber, a reaction between ammonia gas and exhaust gas generated from the melting chamber is guided to reform unburned components of the exhaust gas, and heat generated during this reaction is converted into cold iron in the preheating chamber. To preheat the source,
(2) The ammonia gas is blown from an ammonia gas introduction port provided at one or a plurality of locations in a region from the position of the molten metal surface in the melting chamber of the preheating chamber to the upper end position of the deposition layer of the cold iron source in the upper portion of the preheating chamber. (3) The amount of ammonia gas blown is 5 to 25% of the amount of exhaust gas generated from the dissolution chamber,
Is a more preferable solution.

また、本発明では、冷鉄源をアーク溶解するためのアーク電極を備える溶解室と、その溶解室の上方に立設されていて該溶解室内とは連通し、装入し充填された冷鉄源を予熱するシャフト形予熱室とからなり、予熱室の溶解室内の湯面の位置から予熱室上部の冷鉄源の堆積層上端位置までの領域において、1もしくは複数個のアンモニアガス導入口を設けてなることを特徴とする複合アーク溶解炉を提案する。   Further, in the present invention, a melting chamber provided with an arc electrode for arc melting of a cold iron source, and a cold iron that is installed above and is connected to the melting chamber and is charged and filled. A shaft type preheating chamber that preheats the source, and one or a plurality of ammonia gas inlets are provided in the region from the position of the molten metal surface in the melting chamber of the preheating chamber to the top end position of the cold iron source deposition layer in the upper portion of the preheating chamber A composite arc melting furnace is provided.

上記のように構成される本発明によれば、冷鉄源をアーク溶解して溶鋼を製造する際に、該冷鉄源の溶解時に発生する排ガス(未燃焼ガス)にアンモニア(NH)ガスを導入して反応を起こさせ、その反応の際に発生する反応熱を冷鉄源の予熱に利用できるので、冷鉄源の酸化を招くことなく、しかも、排ガスのもつ熱エネルギーを有効に利用することができる。
また、本発明によれば、電力原単位の削減に有効な複合アーク溶解炉を提供することができる。
According to the present invention configured as described above, when producing a molten steel by arc melting of a cold iron source, ammonia (NH 3 ) gas is added to the exhaust gas (unburned gas) generated when the cold iron source is melted. The reaction heat generated during the reaction can be used to preheat the cold iron source, so that the cold iron source is not oxidized and the heat energy of the exhaust gas is used effectively. can do.
Moreover, according to the present invention, it is possible to provide a composite arc melting furnace that is effective in reducing the power consumption.

本発明の複合アーク溶解炉の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the composite arc melting furnace of this invention. 本発明の実施例に用いた複合アーク溶解炉を示す概略断面図である。It is a schematic sectional drawing which shows the composite arc melting furnace used for the Example of this invention.

本発明の一実施形態について図面に基づいて説明する。図1は、本発明において用いる複合アーク溶解炉の一例を示す縦断面の概略図である。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of a longitudinal section showing an example of a combined arc melting furnace used in the present invention.

図示したように、本発明で用いる複合アーク溶解炉1とは、溶解室2とその上部の一部から上方に立設したシャフト形予熱室3とからなり、その内部は、耐火物でライニングされている。溶解室2は、底部に炉底電極6を備え、上部には、該溶解室2内に連通する前記のシャフト形予熱室3および水冷構造の炉壁4とを有し、この炉壁4上部の開口部を覆うように炉蓋5が設けられている。炉蓋5は、開閉可能な水冷構造からなり、この炉蓋5を貫通するように配設された黒鉛製上部電極7が、溶解室2内へ上下動可能に設けられている。この上部電極7と前記炉底電極6とが、炉内の冷鉄源を介して直流電源(図示せず)により通電されることで、その間にアーク19を発生させることができるような構造となっている。   As shown in the figure, the composite arc melting furnace 1 used in the present invention comprises a melting chamber 2 and a shaft-type preheating chamber 3 standing upward from a part of the upper portion thereof, and the inside thereof is lined with a refractory. ing. The melting chamber 2 has a furnace bottom electrode 6 at the bottom, and has the shaft-shaped preheating chamber 3 and the water-cooled furnace wall 4 communicating with the melting chamber 2 at the top. A furnace lid 5 is provided so as to cover the opening. The furnace lid 5 has a water-cooling structure that can be opened and closed, and a graphite upper electrode 7 disposed so as to penetrate the furnace lid 5 is provided in the melting chamber 2 so as to be vertically movable. The upper electrode 7 and the furnace bottom electrode 6 are energized by a direct current power source (not shown) through a cold iron source in the furnace so that an arc 19 can be generated therebetween. It has become.

なお、予熱室3の上方には、走行台車24に吊り下げられた底開き型の供給用バケット13が設けられ、この供給用バケット13から、予熱室3の上部に設けた開閉可能な供給口20を介して、冷鉄源(例えば、鉄スクラップ等)15が予熱室3内に装入される。   Above the preheating chamber 3, a bottom-opening type supply bucket 13 suspended from the traveling carriage 24 is provided, and from this supply bucket 13, an openable and closable supply port provided at the top of the preheating chamber 3 A cold iron source (for example, iron scrap) 15 is charged into the preheating chamber 3 through 20.

予熱室3内に装入された冷鉄源15は時間とともに順次に降下する間に予熱され、やがて溶解室2に達した後、上部電極7から発生したアーク19の熱によって溶解される。前記冷鉄源15の溶解に際し、溶解室2内には、高温の排ガス(未燃焼ガス)が発生する。その排ガスは、予熱室3上方に設けられたダクト21の上流に設けられたブロアーや集塵機(図示せず)によって、予熱室3を経てダクト21に吸引されるが、その過程で、予熱室3内の冷鉄源15が高温の排ガスによって予熱されることになる。なお、予熱された予熱室3内の冷鉄源15は、溶解室2内で溶解される速度に応じ、自由落下して溶解室2内に順次に連続的または間欠的に移動する。   The cold iron source 15 charged in the preheating chamber 3 is preheated while descending sequentially with time, and eventually reaches the melting chamber 2 and is then melted by the heat of the arc 19 generated from the upper electrode 7. When the cold iron source 15 is melted, high-temperature exhaust gas (unburned gas) is generated in the melting chamber 2. The exhaust gas is sucked into the duct 21 through the preheating chamber 3 by a blower or a dust collector (not shown) provided upstream of the duct 21 provided above the preheating chamber 3. The cold iron source 15 is preheated by the high temperature exhaust gas. The preheated cold iron source 15 in the preheating chamber 3 falls freely according to the speed of melting in the melting chamber 2 and moves sequentially or intermittently into the melting chamber 2 sequentially.

本発明は、上記のように、溶解室2で発生した高温の排ガスが、予熱室3を通ってダクト21に吸引されていく過程で、予熱室3内にアンモニアガスを吹き込む方法である。このことによって、本発明では、アンモニアガスと、予熱室3内を上昇する排ガス中の未燃焼ガス(COなど)とが上記(1)式のような反応を起し、その反応によって炭化水素系ガスを発生すると共に、このときに発生する前記反応熱を、予熱室3内の冷鉄源15の予熱に利用するところに特徴がある。   As described above, the present invention is a method in which ammonia gas is blown into the preheating chamber 3 while the high-temperature exhaust gas generated in the melting chamber 2 is sucked into the duct 21 through the preheating chamber 3. As a result, in the present invention, ammonia gas and unburned gas (such as CO) in the exhaust gas rising in the preheating chamber 3 cause a reaction as expressed by the above formula (1), and the reaction causes a hydrocarbon system. It is characterized in that gas is generated and the reaction heat generated at this time is used for preheating the cold iron source 15 in the preheating chamber 3.

なお、このような一連の反応によれば、溶解室2内で発生する高温(400〜1000℃程度)の排ガス顕熱を利用した前記の改質反応が起こることから、未燃焼ガスを有効に利用することができるだけでなく、予熱室3内の冷鉄源15を酸化させることなく効率的に予熱することができる。そして、このようにして予熱された冷鉄源15は、溶解室2内で溶解されることになるため、効率の良い冷鉄源15の予熱−溶解と同時に、電力原単位の削減をも達成することができる。   In addition, according to such a series of reaction, since the said reforming reaction using the exhaust gas sensible heat of the high temperature (about 400-1000 degreeC) generate | occur | produced in the melting chamber 2 occurs, unburned gas is made effective. Not only can it be used, but the cold iron source 15 in the preheating chamber 3 can be efficiently preheated without being oxidized. And since the cold iron source 15 preheated in this way is melted in the melting chamber 2, the reduction of the power consumption is achieved simultaneously with the efficient preheating and melting of the cold iron source 15. can do.

予熱室3内では、前記(1)式に示す反応と共に、この反応によって発生した炭化水素系ガスと排ガス中のCOとの反応(下記(2)式)や、アンモニアガスの排ガス顕熱を利用した熱分解反応(下記(3)式)が生じ、排ガス中のCOおよびHの量が増加して、排ガスの改質を図ることができる。
CH+CO → 2CO+2H ・・・・(2)
2NH → N+3H ・・・・(3)
In the preheating chamber 3, in addition to the reaction shown in the above equation (1), the reaction between the hydrocarbon gas generated by this reaction and CO 2 in the exhaust gas (the following equation (2)), and the exhaust gas sensible heat of ammonia gas The utilized thermal decomposition reaction (the following formula (3)) occurs, the amount of CO and H 2 in the exhaust gas increases, and the exhaust gas can be reformed.
CH 4 + CO 2 → 2CO + 2H 2 (2)
2NH 3 → N 2 + 3H 2 (3)

なお、アンモニアガスは、予熱室3の側壁に設けられたアンモニアガス導入口25から吹き込む。このアンモニア導入口25は、溶解室2内の湯面位置から予熱室3内の冷鉄源15の堆積層上端位置までの領域における、側壁の周方向および縦方向の、1もしくは複数箇所に設ける。それは、溶解室2から発生した排ガスとアンモニアガスとの反応を、それぞれの位置レベルで確実に行わせることができ、また、複数箇所にアンモニア導入口25を設けることで、予熱室3内の冷鉄源15の温度が偏ることなく、その反応熱を冷鉄源15の予熱に有効に利用できるからである。   Ammonia gas is blown from an ammonia gas inlet 25 provided on the side wall of the preheating chamber 3. The ammonia inlet 25 is provided at one or a plurality of locations in the circumferential direction and the longitudinal direction of the side wall in the region from the molten metal surface position in the melting chamber 2 to the top position of the deposition layer of the cold iron source 15 in the preheating chamber 3. . That is, the reaction between the exhaust gas generated from the melting chamber 2 and the ammonia gas can be reliably performed at each position level, and by providing the ammonia introduction ports 25 at a plurality of positions, the cooling in the preheating chamber 3 can be performed. This is because the heat of reaction can be effectively used for preheating the cold iron source 15 without the temperature of the iron source 15 being biased.

なお、溶解室2の炉蓋5には、それを貫通するように酸素吹き込みランス8と炭材吹き込みランス9とが設けられおり、酸素吹き込みランス8からは、冷鉄源15の溶解を補助するための酸素が供給され、一方、炭材吹き込みランス9からは空気や窒素等を介してコークスやチャー、石炭、木炭、黒鉛、バイオマス炭等の粉、もしくはこれらの混合物の炭材などの補助熱源が吹き込まれる。このことによって、発生排ガス中には、常に未燃焼分(COガス)が含まれる。   The furnace lid 5 of the melting chamber 2 is provided with an oxygen blowing lance 8 and a charcoal blowing lance 9 so as to penetrate the furnace lid 5, and the oxygen blowing lance 8 assists the melting of the cold iron source 15. On the other hand, an auxiliary heat source such as coke, char, coal, charcoal, graphite, biomass charcoal powder, or a mixture of these from the charcoal blowing lance 9 via air, nitrogen, etc. Is blown. As a result, the generated exhaust gas always contains an unburned component (CO gas).

また、溶解室2の、予熱室3とは反対側の部位の炉底部は、扉22にて閉止されており、その内部側に詰め砂またはマッド剤を充填した出鋼口11を有し、また側壁部には、扉23にて閉止され、内側に詰め砂またはマッド剤を充填する出滓口12が設けられている。   In addition, the furnace bottom portion of the melting chamber 2 on the side opposite to the preheating chamber 3 is closed by a door 22 and has a steel outlet 11 filled with stuffed sand or mud agent on the inner side thereof, Further, the side wall portion is provided with an outlet 12 which is closed by a door 23 and is filled with stuffed sand or mud agent.

前記出鋼口11の上方に対応する位置の炉蓋5には、バーナー10が取り付けられ、このバーナー10にて重油、灯油、微粉炭、プロパンガス、天然ガス等の化石燃料やバイオマス燃料を、空気または酸素、もしくは酸素富化空気により溶解室2内で燃焼させることで、出鋼する溶鋼の温度を上昇させることができる。   A burner 10 is attached to the furnace lid 5 at a position corresponding to the upper portion of the steel outlet 11, and fossil fuel or biomass fuel such as heavy oil, kerosene, pulverized coal, propane gas, natural gas, etc. By burning in the melting chamber 2 with air, oxygen, or oxygen-enriched air, the temperature of the molten steel to be output can be raised.

以下、直流式のアーク炉1における冷鉄源の溶解手順について説明する。
先ず、供給用バケット13より予熱室3内に冷鉄源15を装入する。装入された冷鉄源15は、予熱室3を通って、まず溶解室2内に装入された後、次第に予熱室3内にまで充填される。なお、溶解室2内へ冷鉄源15を均一に装入するため、炉蓋5を開けた状態で、予熱室3が直結した側とは反対側の溶解室2内に冷鉄源15を装入することもできる。また、冷鉄源15の装入の際に、溶銑を溶解室2に装入してもよく、これによれば、溶銑の有する熱により電力使用量を大幅に削減することができる。なお、溶銑は、供給用取鍋(図示せず)や溶解室2に連結する溶銑樋(図示せず)により溶解室2に装入する。
Hereinafter, a procedure for melting the cold iron source in the DC arc furnace 1 will be described.
First, the cold iron source 15 is charged into the preheating chamber 3 from the supply bucket 13. The charged cold iron source 15 passes through the preheating chamber 3 and is first charged into the melting chamber 2 and then gradually filled into the preheating chamber 3. In order to uniformly charge the cold iron source 15 into the melting chamber 2, the cold iron source 15 is placed in the melting chamber 2 on the side opposite to the side directly connected to the preheating chamber 3 with the furnace lid 5 opened. It can also be charged. In addition, hot metal may be charged into the melting chamber 2 when the cold iron source 15 is charged, and according to this, the amount of power used can be significantly reduced by the heat of the hot metal. The hot metal is charged into the melting chamber 2 with a ladle for supply (not shown) or hot metal (not shown) connected to the melting chamber 2.

次いで、溶解室2の炉底電極6と上部電極7との間に直流電流を給電しつつ、上部電極7を昇降させ、炉底電極6と上部電極7との間、または、装入された冷鉄源15と上部電極7との間でアーク19を発生させ、そのアーク19の熱によって冷鉄源15を溶解する。このとき、フラックスを溶解して溶融スラグ18を生成させることが好ましい。これは、溶融スラグ18によって溶湯17を保温することができるからである。なお、溶融スラグ18の生成量が多すぎる場合には、操業中でも出滓口12から溶融スラグ18を排滓してもよい。   Next, while feeding a direct current between the furnace bottom electrode 6 and the upper electrode 7 in the melting chamber 2, the upper electrode 7 was moved up and down, and was inserted between the furnace bottom electrode 6 and the upper electrode 7 or charged. An arc 19 is generated between the cold iron source 15 and the upper electrode 7, and the cold iron source 15 is melted by the heat of the arc 19. At this time, it is preferable to generate the molten slag 18 by melting the flux. This is because the molten metal 17 can be kept warm by the molten slag 18. In addition, when there is too much production amount of the molten slag 18, you may discharge the molten slag 18 from the spout 12 during operation.

炉底電極6と上部電極7との通電後、溶解室2内に酸素吹き込みランス8および炭材吹き込みランス9の挿入が可能になったら、酸素吹き込みランス8から酸素を供給して、冷鉄源15の溶解を補助すると共に、炭材吹き込みランス9からは、溶融スラグ18中に補助熱源として炭材を吹き込むことが好ましい。なお、酸素の吹き込み量は、溶解開始から出湯までの間に溶解室2内に滞留する溶湯17のトン当たり15Nm以上とすることが好ましい。これは、酸素の吹き込み量が、溶湯のトン当たり15Nm未満では、冷鉄源の溶解や後述する炭材の酸化反応による電力原単位削減の効果が小さいためである。 After the furnace bottom electrode 6 and the upper electrode 7 are energized, when the oxygen blowing lance 8 and the carbonaceous material blowing lance 9 can be inserted into the melting chamber 2, oxygen is supplied from the oxygen blowing lance 8, and a cold iron source is supplied. It is preferable that carbon material is blown into the molten slag 18 as an auxiliary heat source from the carbon material blowing lance 9 while assisting the melting of 15. The amount of oxygen blown is preferably 15 Nm 3 or more per ton of the molten metal 17 staying in the melting chamber 2 between the start of melting and the tapping. This is because when the amount of oxygen blown is less than 15 Nm 3 per ton of molten metal, the effect of reducing the power intensity by melting the cold iron source and the oxidation reaction of the carbonaceous material described later is small.

溶湯17中に溶解した炭材または溶融スラグ18中に懸濁した炭材は、酸素吹き込みランス8から吹き込まれた酸素と反応して脱炭してCOガスとなると共に、その反応熱は補助熱源となり、電力消費量の削減に寄与することになる。また、溶融スラグ18は、前記反応生成物であるCOガスによってフォーミングして膨張するため、該上部電極7の先端が溶融スラグ18中に埋没することになる。そのため、上部電極7から発生したアーク19は、溶融スラグ18によって包まれるようになり、アーク19の着熱効率が上昇すると共に、冷鉄源15の予熱効率を向上させることができる。   The carbon material dissolved in the molten metal 17 or the carbon material suspended in the molten slag 18 reacts with oxygen blown from the oxygen blowing lance 8 to be decarburized to become CO gas, and its reaction heat is an auxiliary heat source. This will contribute to the reduction of power consumption. Further, the molten slag 18 is expanded by forming with the CO gas as the reaction product, so that the tip of the upper electrode 7 is buried in the molten slag 18. Therefore, the arc 19 generated from the upper electrode 7 is wrapped by the molten slag 18, so that the heat receiving efficiency of the arc 19 is increased and the preheating efficiency of the cold iron source 15 can be improved.

前記炭材吹き込みランス9による炭材の添加は、酸素吹き込みランス8から吹き込まれる酸素量に応じて決定され、吹き込まれる酸素の化学等量に等しい、またはそれ以上となるようにすることが好ましい。これは、炭材の炭素量が、吹き込まれる酸素ガスに比べて少ないと、溶湯17が過剰に酸化したり、炭素濃度が低下してしまうからである。   The addition of the carbon material by the carbon material blowing lance 9 is determined according to the amount of oxygen blown from the oxygen blowing lance 8, and is preferably equal to or more than the chemical equivalent of the blown oxygen. This is because if the carbon content of the carbon material is smaller than the oxygen gas to be blown, the molten metal 17 is excessively oxidized or the carbon concentration is lowered.

上記のようにして冷鉄源15を溶融した際に発生する大量の高温排ガスは、予熱室3に供給された後、予熱室3の側壁に設けられたアンモニアガス導入口25から吹き込まれたアンモニアガスと反応して各種炭化水素やメタノールなどの含酸素化合物等に改質されると同時に、このときに発生する熱によって予熱室3内の冷鉄源15が効率良く予熱されることになる。   A large amount of high-temperature exhaust gas generated when the cold iron source 15 is melted as described above is supplied to the preheating chamber 3 and then blown from the ammonia gas inlet 25 provided on the side wall of the preheating chamber 3. The cold iron source 15 in the preheating chamber 3 is efficiently preheated by the heat generated at the same time as it is reformed by reacting with gas to various hydrocarbons, oxygenated compounds such as methanol.

なお、溶解室2から発生する排ガスの組成は、CO:2〜8%、CO:5〜15%、O:1〜15%、N:50〜80%、HO:0〜5%、H:0〜3%である。 The composition of exhaust gas generated from the melting chamber 2, CO: 2~8%, CO 2: 5~15%, O 2: 1~15%, N 2: 50~80%, H 2 O: 0~ 5%, H 2: 0 to 3%.

予熱室3内へのアンモニアガスの吹き込み量は、溶解室2から発生する排ガス流量の5〜25%程度であり、好ましくは8〜18%である。これは、アンモニアガスの吹き込み量が、排ガス流量の5%未満では、排ガス量に対してアンモニアガス量が不足し、改質反応が十分起きないためであり、一方、25%超では、アンモニアガスが過剰となり、未反応のまま放出され、臭気の問題が起こるからである。   The amount of ammonia gas blown into the preheating chamber 3 is about 5 to 25%, preferably 8 to 18%, of the flow rate of the exhaust gas generated from the melting chamber 2. This is because when the amount of ammonia gas blown is less than 5% of the exhaust gas flow rate, the amount of ammonia gas is insufficient with respect to the amount of exhaust gas, and the reforming reaction does not occur sufficiently. Is excessive and is released unreacted, resulting in odor problems.

また、予熱室3内の冷鉄源15は、溶解室2内の冷鉄源15の溶解量に応じて溶解室2内に自由落下して減少するので、この減少分は、供給用バケット13から予熱室3へ冷鉄源15を順次に装入することで補う。この冷鉄源15の予熱室3内への装入は、冷鉄源15が予熱室3と溶解室2とに跨って(連続して)存在する状態が保てるように、連続的または断続的に行う。その際に、予熱室3および溶解室2内に、1回の出湯量の50mass%以上の冷鉄源15が残存していることが好ましい。この理由は、溶解室2から発生する高温の排ガスを、冷鉄源15の予熱に効率的に利用するためである。   Further, since the cold iron source 15 in the preheating chamber 3 falls and freely falls into the melting chamber 2 in accordance with the amount of the cold iron source 15 in the melting chamber 2, this decrease is reduced by the supply bucket 13. Is supplemented by sequentially charging the cold iron source 15 into the preheating chamber 3. The charging of the cold iron source 15 into the preheating chamber 3 is continuous or intermittent so that the cold iron source 15 can be maintained (continuously) across the preheating chamber 3 and the melting chamber 2. To do. At that time, it is preferable that the cold iron source 15 remains in the preheating chamber 3 and the melting chamber 2 at 50 mass% or more of the amount of the hot water discharged at one time. This is because the high-temperature exhaust gas generated from the melting chamber 2 is efficiently used for preheating the cold iron source 15.

以上、アーク炉1が直流式の場合について説明したが、交流式アーク炉を用いる場合であっても全く支障なく本発明を適用することができる。   Although the case where the arc furnace 1 is a direct current type has been described above, the present invention can be applied without any problem even when an alternating current type arc furnace is used.

本実施例では、図2に示す溶解室2(炉径7.2m、高さ4m)と予熱室3(幅3m、長さ5m、高さ7m)とからなる炉容量が180トンの直流式の複合アーク溶解炉1において、まず予熱室3に、約70トンの常温の鉄スクラップ15を装入し、次いで、溶解室2に70トンの常温の鉄スクラップ15とを装入し、直径30インチの黒鉛製上部電極7を用いて、最大750V、130KAの電源容量のアーク19を発生させて溶解室2内の鉄スクラップのアーク溶解を開始した。鉄スクラップ15の溶解操業中、予熱室3の側壁に設けられたアンモニアガス導入口25からアンモニアガスを表1の条件で吹き込み、予熱室3下端入口(アンモニアガスによる改質反応前)および予熱室上部の排気ダクト21入口位置(アンモニアガスによる改質反応後)において排ガスのガス組成を測定すると共に、排気ダクト21入口において、排ガス温度を測定した。アンモニアガス導入口25は、A:溶解室内の湯面位置、C:予熱室上部の冷鉄源の上端位置、B:AとCの中間位置の3箇所に設けた。   In this example, the DC capacity of the furnace having a melting capacity of 180 tons comprising the melting chamber 2 (furnace diameter 7.2 m, height 4 m) and the preheating chamber 3 (width 3 m, length 5 m, height 7 m) shown in FIG. In the combined arc melting furnace 1, first, about 70 tons of normal-temperature iron scrap 15 is charged into the preheating chamber 3, and then 70 tons of normal-temperature iron scrap 15 is charged into the melting chamber 2 with a diameter of 30 The arc melting of iron scrap in the melting chamber 2 was started by generating an arc 19 having a maximum power source capacity of 750 V and 130 KA using the inch upper graphite electrode 7. During melting operation of the iron scrap 15, ammonia gas is blown from the ammonia gas inlet 25 provided on the side wall of the preheating chamber 3 under the conditions shown in Table 1, and the lower end inlet of the preheating chamber 3 (before the reforming reaction with ammonia gas) and the preheating chamber The gas composition of the exhaust gas was measured at the upper exhaust duct 21 inlet position (after the reforming reaction with ammonia gas), and the exhaust gas temperature was measured at the exhaust duct 21 inlet. The ammonia gas inlets 25 were provided at three locations: A: the position of the molten metal in the melting chamber, C: the upper end position of the cold iron source in the upper part of the preheating chamber, and B: the intermediate position between A and C.

この実施例では、通電直後に、溶解室内に生石灰と蛍石とを添加すると共に、酸素吹き込みランス8から酸素を6000Nm/hr、炭材吹き込みランス9からコークスを80kg/min吹き込んだ。前記生石灰及び蛍石は、加熱されて溶融スラグ18となった後、酸素とコークスの吹き込みによりフォーミングされ、上部電極7の先端は、溶融スラグ18中に埋没した状態となった。この時の電圧を550Vに設定した。なお、鉄スクラップのアーク溶解に際し、酸素吹き込み量は30Nm/t、コークス吹き込み量は30kg/tとした。 In this example, immediately after energization, quick lime and fluorite were added into the melting chamber, oxygen was blown from the oxygen blowing lance 8 at 6000 Nm 3 / hr, and coke was blown from the carbonaceous material blowing lance 9 at 80 kg / min. The quicklime and fluorite were heated to form molten slag 18 and then formed by blowing oxygen and coke, and the tip of upper electrode 7 was buried in molten slag 18. The voltage at this time was set to 550V. In the arc melting of iron scrap, the oxygen blowing rate was 30 Nm 3 / t and the coke blowing rate was 30 kg / t.

本発明の結果を比較例(アンモニアガスの導入なし)とともに表1に示す。
なお、アンモニアガス吹き込み時の、アンモニアガス導入口25の温度は、Aでは800〜1300℃、Bは500〜800℃、Cは300〜500℃であった。アンモニアガスの吹き込み量は、発明例1〜5では、排ガス流量の7%相当である38Nm/分、発明例6では、15%相当である57Nm/分とした。
The results of the present invention are shown in Table 1 together with a comparative example (no introduction of ammonia gas).
The temperature of the ammonia gas inlet 25 when the ammonia gas was blown was 800 to 1300 ° C. for A, 500 to 800 ° C. for B, and 300 to 500 ° C. for C. Blowing amount of ammonia gas, the invention examples 1 to 5, 38 Nm 3 / min reasonable 7% of the exhaust gas flow rate, the invention example 6, was 57 nm 3 / min is equivalent to 15%.

Figure 2012158781
Figure 2012158781

表1の結果から、発明例1〜6では、予熱室内にアンモニアガスを導入し、排ガスと反応させて改質を行ったことにより、予熱室内の鉄スクラップの予熱を効率良く行うことができると共に、電力原単位を低減できることが確認された。この中でも特に、発明例6では、アンモニアガスの吹き込みをA〜Cの3箇所から行ったことにより、アンモニアガスの吹き込みを行わなかった比較例と比べて、排ガス温度が200℃も高くなり、また電力原単位を40kWh/t-s以上も削減することができた。   From the results of Table 1, in Invention Examples 1 to 6, by introducing ammonia gas into the preheating chamber and reacting with the exhaust gas to perform reforming, iron scrap in the preheating chamber can be preheated efficiently. It was confirmed that the power consumption can be reduced. Among these, in particular, in Invention Example 6, the ammonia gas was blown from three locations A to C, so that the exhaust gas temperature was 200 ° C. higher than the comparative example in which the ammonia gas was not blown, The power consumption can be reduced by 40 kWh / ts or more.

本発明の係る技術は、例示した複合アーク溶解炉によって鉄スクラップや直接還元鉄など冷鉄源を有効に利用する方法として有用であるが、排ガスを発生する他の溶解炉にもその考え方を適用することは可能である。   The technology according to the present invention is useful as a method of effectively using a cold iron source such as iron scrap and direct reduced iron by the exemplified composite arc melting furnace, but the idea is applied to other melting furnaces that generate exhaust gas. It is possible to do.

1 アーク炉
2 溶解室
3 予熱室
4 炉壁
5 炉蓋
6 炉底電極
7 上部電極
8 酸素吹き込みランス
9 炭材吹き込みランス
10 バーナー
11 出湯口
12 出滓口
13 供給用バケット
15 冷鉄源
17 溶湯
18 溶融スラグ
19 アーク
20 供給口
21 ダクト
22 扉
23 扉
24 走行台車
25 アンモニアガス導入口
DESCRIPTION OF SYMBOLS 1 Arc furnace 2 Melting room 3 Preheating room 4 Furnace wall 5 Furnace lid 6 Furnace bottom electrode 7 Upper electrode 8 Oxygen blowing lance 9 Carbon material blowing lance 10 Burner 11 Outlet 12 Outlet 13 Supply bucket 15 Cold iron source 17 Molten metal 18 Molten slag 19 Arc 20 Supply port 21 Duct 22 Door 23 Door 24 Traveling carriage 25 Ammonia gas introduction port

Claims (5)

溶解室と、その上部に立設されて溶解室とは連通するシャフト形予熱室とからなる複合アーク溶解炉によって、該予熱室内を順次に降下する冷鉄源を、溶解室で発生した高温排ガスを使って予熱すると共に、引き続き溶解室に導いてアーク溶解するようにしてなる複合アーク溶解炉を用いた冷鉄源の溶解方法において、
前記冷鉄源が、予熱室内と溶解室内上部とに跨って存在する状態の下で、該予熱室内に、アンモニアガスを吹き込むことを特徴とする冷鉄源の複合アーク溶解炉による溶解方法。
High-temperature exhaust gas generated in the melting chamber by a combined arc melting furnace composed of a melting chamber and a shaft-type preheating chamber standing on the upper side thereof and communicating with the melting chamber. In the melting method of the cold iron source using the composite arc melting furnace, which is preheated with the use of, and subsequently led to the melting chamber and arc melting.
A melting method using a combined arc melting furnace for a cold iron source, wherein ammonia gas is blown into the preheating chamber in a state in which the cold iron source exists across the preheating chamber and the upper part of the melting chamber.
前記予熱室内において、アンモニアガスと溶解室から発生する排ガスとの改質反応を導いて、該排ガスの未燃焼成分を改質すると共に、この反応時に発生する熱を、該予熱室内の冷鉄源の予熱に利用することを特徴とする請求項1に記載の冷鉄源の複合アーク溶解炉による溶解方法。   In the preheating chamber, a reforming reaction between the ammonia gas and the exhaust gas generated from the melting chamber is guided to reform unburned components of the exhaust gas, and heat generated during the reaction is supplied to a cold iron source in the preheating chamber. The melting method by the composite arc melting furnace of the cold iron source of Claim 1 characterized by using for the preheating of this. 前記アンモニアガスは、予熱室の溶解室内の湯面の位置から予熱室上部の冷鉄源の堆積層上端位置までの領域において、1もしくは複数箇所に設けられたアンモニアガス導入口から吹き込むことを特徴とする請求項1または2に記載の冷鉄源の複合アーク溶解炉による溶解方法。   The ammonia gas is blown from one or a plurality of ammonia gas inlets in a region from the position of the molten metal surface in the melting chamber of the preheating chamber to the upper end position of the cold iron source deposition layer in the upper portion of the preheating chamber. The melting method by the composite arc melting furnace of the cold iron source of Claim 1 or 2. 前記アンモニアガスの吹き込み量は、溶解室から発生する排ガス量の5〜25%とすることを特徴とする請求項1〜3のいずれか1項に記載の冷鉄源の複合アーク溶解炉による溶解方法。   The melting amount of the cold iron source according to any one of claims 1 to 3, wherein the ammonia gas is blown in an amount of 5 to 25% of the amount of exhaust gas generated from the melting chamber. Method. 冷鉄源をアーク溶解するためのアーク電極を備える溶解室と、その溶解室の上方に立設されていて該溶解室内とは連通し、装入し充填された冷鉄源を予熱するシャフト形予熱室とからなり、予熱室の溶解室内の湯面の位置から予熱室上部の冷鉄源の堆積層上端位置までの領域において、1もしくは複数個のアンモニアガス導入口を設けてなることを特徴とする複合アーク溶解炉。 A melting chamber provided with an arc electrode for arc melting of a cold iron source, and a shaft type which is installed above the melting chamber and communicates with the melting chamber and preheats the charged and filled cold iron source It is composed of a preheating chamber, and is provided with one or a plurality of ammonia gas inlets in a region from the position of the molten metal surface in the melting chamber of the preheating chamber to the upper end position of the deposited layer of the cold iron source in the upper portion of the preheating chamber. Combined arc melting furnace.
JP2011017366A 2011-01-31 2011-01-31 Method of melting cold iron source by combined arc melting furnace and combined arc melting furnace Expired - Fee Related JP5617666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011017366A JP5617666B2 (en) 2011-01-31 2011-01-31 Method of melting cold iron source by combined arc melting furnace and combined arc melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011017366A JP5617666B2 (en) 2011-01-31 2011-01-31 Method of melting cold iron source by combined arc melting furnace and combined arc melting furnace

Publications (2)

Publication Number Publication Date
JP2012158781A true JP2012158781A (en) 2012-08-23
JP5617666B2 JP5617666B2 (en) 2014-11-05

Family

ID=46839552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011017366A Expired - Fee Related JP5617666B2 (en) 2011-01-31 2011-01-31 Method of melting cold iron source by combined arc melting furnace and combined arc melting furnace

Country Status (1)

Country Link
JP (1) JP5617666B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111996331A (en) * 2020-08-27 2020-11-27 达力普石油专用管有限公司 Smelting method for reducing consumption of ultrahigh-power graphite electrode of electric arc furnace
WO2024087365A1 (en) * 2022-10-24 2024-05-02 王守国 Hot water heating furnace based on ammonia gas combustion

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199196A (en) * 1989-01-27 1990-08-07 Nkk Corp Treatment of ammonia
JPH10292990A (en) * 1997-02-24 1998-11-04 Nkk Corp Method and facility for melting cold iron source
JPH10310814A (en) * 1997-03-13 1998-11-24 Nkk Corp Method for melting cold iron source and melting equipment thereof
JP2001226295A (en) * 2000-02-15 2001-08-21 Nkk Corp Method for producing methane from blast furnace gas using ammonia
JP2011225969A (en) * 2010-03-29 2011-11-10 Jfe Steel Corp Method for operating blast furnace or iron mill
JP2012012679A (en) * 2010-07-02 2012-01-19 Jfe Steel Corp Method for reducing carbon dioxide emissions

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02199196A (en) * 1989-01-27 1990-08-07 Nkk Corp Treatment of ammonia
JPH10292990A (en) * 1997-02-24 1998-11-04 Nkk Corp Method and facility for melting cold iron source
JPH10310814A (en) * 1997-03-13 1998-11-24 Nkk Corp Method for melting cold iron source and melting equipment thereof
JP2001226295A (en) * 2000-02-15 2001-08-21 Nkk Corp Method for producing methane from blast furnace gas using ammonia
JP2011225969A (en) * 2010-03-29 2011-11-10 Jfe Steel Corp Method for operating blast furnace or iron mill
JP2012012679A (en) * 2010-07-02 2012-01-19 Jfe Steel Corp Method for reducing carbon dioxide emissions

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111996331A (en) * 2020-08-27 2020-11-27 达力普石油专用管有限公司 Smelting method for reducing consumption of ultrahigh-power graphite electrode of electric arc furnace
CN111996331B (en) * 2020-08-27 2022-03-01 达力普石油专用管有限公司 Smelting method for reducing consumption of ultrahigh-power graphite electrode of electric arc furnace
WO2024087365A1 (en) * 2022-10-24 2024-05-02 王守国 Hot water heating furnace based on ammonia gas combustion

Also Published As

Publication number Publication date
JP5617666B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5552754B2 (en) Arc furnace operation method
JP5236926B2 (en) Manufacturing method of molten steel
JP5617666B2 (en) Method of melting cold iron source by combined arc melting furnace and combined arc melting furnace
CA2858176C (en) Starting a smelting process
CZ284179B6 (en) Process of melting materials based on iron metals and cupola for making the same
JP5892103B2 (en) Method for smelting reduction of chromium ore
US20160208350A1 (en) Smelting apparatus and method of using the same
JP5617667B2 (en) Method for reforming combined arc melting furnace exhaust gas and combined arc melting furnace
US3964897A (en) Method and arrangement for melting charges, particularly for use in the production of steel
JPS6040488B2 (en) Method for improving heat utilization efficiency when producing steel from solid ferrous raw materials
WO2022234762A1 (en) Electric furnace and steelmaking method
JP7259803B2 (en) Manufacturing method of molten iron by electric furnace
JP4992257B2 (en) Method for producing reduced metal
JP6237664B2 (en) Arc furnace operating method and molten steel manufacturing method
EP2668301A1 (en) Method and apparatus for making liquid iron and steel
JP2013028826A (en) Method for melting cold iron source using composite arc melting furnace
JP2000008115A (en) Melting of cold iron source
JPH06228623A (en) Steelmaking method having small energy consumption
JPS58171515A (en) Method and device for production of pig iron
JPH0723503B2 (en) Hot metal manufacturing method
JP2010100926A (en) Smelting-reduction method
JPH10330812A (en) Smelting reduction equipment and operating method thereof
JPH1150118A (en) Smelting reduction equipment and its operation
JPS62267407A (en) Method and apparatus for blowing solid fuel to electric furnace and converter
MXPA01000804A (en) A direct smelting process and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5617666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees