JP2012011398A - Resistance welding method - Google Patents

Resistance welding method Download PDF

Info

Publication number
JP2012011398A
JP2012011398A JP2010147493A JP2010147493A JP2012011398A JP 2012011398 A JP2012011398 A JP 2012011398A JP 2010147493 A JP2010147493 A JP 2010147493A JP 2010147493 A JP2010147493 A JP 2010147493A JP 2012011398 A JP2012011398 A JP 2012011398A
Authority
JP
Japan
Prior art keywords
electrode
welding
current
energization
energizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010147493A
Other languages
Japanese (ja)
Inventor
Ryosuke Date
亮介 伊達
Soichiro Wakitani
聡一郎 脇谷
Hideyo Takeuchi
英世 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2010147493A priority Critical patent/JP2012011398A/en
Publication of JP2012011398A publication Critical patent/JP2012011398A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resistance welding method capable of forming a suitable welding part by preventing occurrence of welding defects irrespective of types of sheet assemblies.SOLUTION: When forming a welding part 70 by allowing a plurality of electrodes to contact with a plurality of mutually overlapped metal sheets (for example two sheets) 50, 60 and energizing them, a welding electrode 20 supplying electric current enough to form the welding part 70 at the metal sheet 50 by contacting with the one metal sheet 50 and a first energization electrode 30 and a second energization electrode 40 for achieving energization between themselves and the welding electrode 20 by contacting with the respective different metal sheets 50, 60 are used as the plurality of the electrodes. Both the energization electrodes 30, 40 are energized between themselves and the welding electrode 20, so that the electric current supplied from the welding electrode 20 to the one metal sheet 50 is divided to the first energization electrode 30 to the second energization electrode 40.

Description

本発明は、抵抗溶接方法に関する。   The present invention relates to a resistance welding method.

近年、自動車部品の溶接工程においては、生産性や汎用性の向上等を目的として、シリーズ溶接やインダイレクト溶接が、ダイレクト溶接に代えて用いられる傾向にある。   In recent years, in the welding process of automobile parts, series welding and indirect welding tend to be used instead of direct welding for the purpose of improving productivity and versatility.

ここで、シリーズ溶接の一例として、例えば図7に示すように、重ね合わせた鋼板150,160を、何れも一方の鋼板150側に配置した一対の電極110,120にて一方向から加圧して通電し、点状の溶接部を得るものがある(例えば、下記特許文献1を参照)。この種の溶接方法は、多数の電極を用いて多点を同時に溶接することができ、溶接の高速化を図り得るため、自動車のボデーパネルの溶接等に好適に用いられつつある。   Here, as an example of series welding, for example, as shown in FIG. 7, the stacked steel plates 150 and 160 are pressed from one direction with a pair of electrodes 110 and 120 arranged on one steel plate 150 side. There is one that energizes and obtains a spot-like weld (for example, see Patent Document 1 below). This type of welding method can be welded at multiple points simultaneously using a large number of electrodes, and the speed of welding can be increased. Therefore, this type of welding method is being suitably used for welding body panels of automobiles.

また、インダイレクト溶接は、図8に示すように、溶接用の電極110を鋼板150,160の重ね合わせ部に押し当てると共に、重ね合わせ部から離れた位置で集電用の電極130を他方の鋼板160に当接させた状態で通電することにより、上記重ね合わせ部に点状の溶接部を形成するものである(例えば、下記特許文献2を参照)。そのため、他方の鋼板160側の表面に圧痕を残したくない場合や、鋼板150,160の重ね合わせ部を挟み込むように一対の電極を配置できない場合に好適に使用される傾向にある。   Indirect welding, as shown in FIG. 8, the welding electrode 110 is pressed against the overlapping portion of the steel plates 150 and 160, and the current collecting electrode 130 is placed at the position away from the overlapping portion on the other side. By energizing the steel plate 160 in contact with the steel plate 160, a spot-like welded portion is formed in the overlapped portion (see, for example, Patent Document 2 below). Therefore, it tends to be preferably used when it is not desired to leave an indentation on the surface of the other steel plate 160 or when a pair of electrodes cannot be disposed so as to sandwich the overlapping portion of the steel plates 150 and 160.

特開平11−333569号公報Japanese Patent Laid-Open No. 11-333569 特開2007−14968号公報JP 2007-14968 A

ところで、上記シリーズ溶接では、一方の鋼板150と電極110,120との接点で生じた抵抗発熱を鋼板150,160間の接触部分に伝えることで、当該接触部分に溶接部を溶融形成していることから、通常、電極110,120側の一方の鋼板150にはその厚み方向に沿って所定の温度勾配が生じる。この場合、鋼板150,160間の接触部分において十分な大きさの溶接部(いわゆるナゲット)を得るためには、相応の通電量が必要となるが、そうすると、必然的に一方の鋼板150と電極110,120との接点における抵抗発熱が過大となるため、過熱による板切れやチリと呼ばれる溶損が一方の鋼板150に発生し易くなる問題がある。   By the way, in the above series welding, the resistance heat generated at the contact point between one steel plate 150 and the electrodes 110 and 120 is transmitted to the contact portion between the steel plates 150 and 160, so that the welded portion is melt-formed at the contact portion. Therefore, usually, a predetermined temperature gradient is generated along the thickness direction of one of the steel plates 150 on the electrode 110, 120 side. In this case, in order to obtain a sufficiently large welded portion (so-called nugget) at the contact portion between the steel plates 150 and 160, a corresponding energization amount is necessary. Since the resistance heat generation at the contact points 110 and 120 becomes excessive, there is a problem in that one of the steel plates 150 is liable to generate a plate breakage due to overheating or a melting damage called dust.

例えば上記特許文献1では、この種の問題を解消するべく、溶接初期の印加電流を、その後の定常電流の1.5倍以上に印加すると共に、溶接初期の電極110,120の一方の鋼板150に対する加圧力を、その後の定常加圧力の1.1倍以上にする等の対策を講じている。しかしながら、この種の対策は限られた板組みの場合にのみ有効であって、板組みの多様化が進んでいる今日においては、この種の対策では不十分である。すなわち、最近の溶接に供する板組みにおいては、その機能面とコスト面との両立を図る目的で、異なる板厚の板組みや、異材同士の板組みなど、当該板組みの多様化が進んでいる実情がある。そのため、例えば一対の電極110,120が配置される側の鋼板(一方の鋼板150)が相対的に薄く、あるいは、溶損に対する感受性の高い材質で形成されたものであると、たとえ上記対策を講じていたとしても、溶接不良を生じるおそれが残る。   For example, in Patent Document 1, in order to solve this type of problem, the applied current at the initial stage of welding is applied to 1.5 times or more of the subsequent steady current, and one steel plate 150 of the electrodes 110 and 120 at the initial stage of welding. Measures are taken such that the pressure applied to is 1.1 times or more of the subsequent steady pressure. However, this type of countermeasure is effective only in the case of a limited board assembly, and this type of countermeasure is not sufficient in today's diversified board assembly. In other words, in plate assemblies used for recent welding, for the purpose of achieving both functional and cost aspects, diversification of such plate assemblies, such as plate assemblies with different plate thicknesses and plates made of different materials, has progressed. There is a real situation. Therefore, for example, if the steel plate (one steel plate 150) on which the pair of electrodes 110 and 120 is disposed is relatively thin or formed of a material that is highly sensitive to melting damage, the above countermeasure is taken. Even if it is taken, there is a risk of poor welding.

一方、インダイレクト溶接は、上述したように、一方の鋼板150側に設置した溶接用電極110と、他方の鋼板160側に設置した集電用電極130(アース電極)との間を通電することで、鋼板150,160の重ね合わせ部のうち溶接用電極110の直下に対応する位置に溶接部を形成するものであるが、板組みの状態によっては、鋼板150,160の重ね合わせ部に隙間(板隙)が生じ、溶接用電極110と集電用電極130との間の通電経路が確保できない場合が起こり得る。この場合には、溶接用電極110の直下に十分な電流が流れないため、有効な溶接部が形成できないおそれがある。   On the other hand, as described above, indirect welding energizes between the welding electrode 110 installed on one steel plate 150 side and the current collecting electrode 130 (earth electrode) installed on the other steel plate 160 side. Thus, a welded portion is formed at a position corresponding to a position directly below the welding electrode 110 in the overlapped portion of the steel plates 150, 160. Depending on the state of the plate assembly, a gap may be formed between the overlapped portions of the steel plates 150, 160. (Plate gap) may be generated, and there may be a case where the energization path between the welding electrode 110 and the current collecting electrode 130 cannot be secured. In this case, since a sufficient current does not flow directly under the welding electrode 110, an effective welded portion may not be formed.

ここで、例えば上記特許文献2には、図9(a)(b)に示すように、先に、溶接予定位置の近傍に一対の予備電極140,140を当接させた状態で通電することで鋼板150,160同士の接触状態を良好にした後、主電極となる溶接用電極110を溶接予定位置に当接させて当該位置に溶接電流(溶接可能な程度の電流)を流す技術が記載されている。よって、この方法を用いれば、先に行なう予備通電により上記板隙を詰めた状態で適正な溶接を行えるようにも思われる。しかしながら、この種の溶接方法においては、たとえ上記予備通電を利用した溶接方法を採用した場合であっても、鋼板150,160間に溶接部を形成するのに十分な入熱を図ろうとすると他方の鋼板160側が入熱過大となり、板組みの種類によっては、上記板切れや溶損等が他方の鋼板160に生じる場合が起こり得る。   Here, for example, in Patent Document 2 above, as shown in FIGS. 9A and 9B, the pair of preliminary electrodes 140 and 140 are first energized in the vicinity of the planned welding position. After making the contact state between the steel plates 150 and 160 good, a technique is described in which a welding electrode 110 serving as a main electrode is brought into contact with a planned welding position and a welding current (current that can be welded) is supplied to the position. Has been. Therefore, if this method is used, it seems that proper welding can be performed in a state in which the gap is filled by the preliminary energization performed first. However, in this type of welding method, even if the welding method utilizing the pre-energization is employed, if the heat input sufficient to form a welded portion between the steel plates 150 and 160 is attempted, However, depending on the type of plate assembly, the above-mentioned plate breakage, melting damage, etc. may occur in the other steel plate 160.

以上の事情に鑑み、板組みの種類に関係なく、溶接不良の発生を防止して、適正な溶接部を形成することのできる抵抗溶接方法を提供することを、本発明により解決すべき技術的課題とする。   In view of the above circumstances, the technical problem to be solved by the present invention is to provide a resistance welding method capable of preventing the occurrence of welding failure and forming an appropriate welded portion regardless of the type of plate assembly. Let it be an issue.

前記課題の解決は、本発明に係る抵抗溶接方法により達成される。すなわち、この溶接方法は、相互に重ね合わせた複数枚の金属板に複数個の電極を接触させて通電することにより溶接部を形成する抵抗溶接方法において、複数個の電極として、複数枚の金属板のうち、最表面側の金属板に接触させる溶接用電極と、最表面側の金属板に接触させて溶接用電極との間で通電を図るための第一通電用電極と、複数枚の金属板のうち、最裏面側の金属板に接触させて溶接用電極との間で通電を図るための第二通電用電極とを使用し、双方の通電用電極を何れも溶接用電極との間で通電させることで、溶接用電極から最表面側の金属板に供給された電流を、第一通電用電極と第二通電用電極とに分流させる点をもって特徴付けられる。尚、最表面側及び最裏面側の金属板とは、複数枚の金属板のうち、厚さ方向で両端に位置する金属板のことであり、溶接した金属板の使用態様を限定する趣旨ではない。   The solution to the above problem is achieved by the resistance welding method according to the present invention. That is, this welding method is a resistance welding method in which a plurality of electrodes are brought into contact with each other and a plurality of electrodes are brought into contact with each other and energized to form a welded portion. Among the plates, a welding electrode to be brought into contact with the outermost metal plate, a first current-carrying electrode to be in contact with the welding electrode in contact with the outermost metal plate, and a plurality of sheets Among the metal plates, a second current-carrying electrode for contacting the welding electrode with the metal plate on the backmost side is used, and both the current-carrying electrodes are connected to the welding electrode. It is characterized in that the current supplied from the welding electrode to the outermost metal plate is shunted to the first energizing electrode and the second energizing electrode. In addition, the metal plate on the outermost surface side and the outermost surface side is a metal plate located at both ends in the thickness direction among the plurality of metal plates, and is intended to limit the usage mode of the welded metal plate. Absent.

このように、本発明は、従来、敬遠されてきた溶接電流の分流状態を、適正な溶接部の形成のために積極的に利用した、新規かつ独創的な溶接方法を提供するものである。すなわち、これまでの溶接工程においては、溶接用電極から金属板に供給された電流の全てを、溶接部を形成するための抵抗発熱にロスなく用いることを前提に電極間の通電が行われていたのに対し、本発明では、2個の通電用電極を用いることにより、複数枚の金属板内に電流の分流状態を積極的に発生させるようにしたことを技術的な特徴としている。そのため、この方法によれば、溶接用電極から最表面側の金属板に供給された電流のうち、一方の分流に係る電流がそのまま最表面側の金属板を通じて第一通電用電極に向けて流れると共に、他方の分流に係る電流が、金属板間の接触部分を通過して最裏面側の金属板へと供給されることになる。この場合、溶接用電極から第一通電用電極へと流れた電流は主に溶接用電極と最表面側の金属板との間の抵抗発熱に利用され、第二通電用電極へと流れた電流は主に溶接用電極の直下に位置する金属板間の接触部分の抵抗発熱に利用される。そのため、上記分流通電を積極的に図ることで、予期しない(望まない)分流等による電流のロスが生じる事態を可及的に防止して、金属板間の抵抗発熱に利用される電流量を調整することができる。これにより、上記2ヶ所の抵抗発熱により生じる金属板内の板厚方向の温度分布をある程度制御することができ、例えば金属板間の接触部分における温度が最大となるように通電することが可能となる。従って、各金属板に溶損などの溶接不良が発生する事態を可及的に回避しつつも、金属板間の接触部分に有効な抵抗発熱をもたらすことができ、これにより、当該接触部分又はその近傍に適正な溶接部を効率よく形成することができる。   As described above, the present invention provides a novel and original welding method that actively utilizes the shunted state of welding current that has been avoided in the past for the formation of an appropriate welded portion. That is, in the conventional welding process, energization between the electrodes is performed on the premise that all of the current supplied from the welding electrode to the metal plate is used without loss for resistance heating for forming the welded portion. On the other hand, the present invention has a technical feature that a current shunting state is positively generated in a plurality of metal plates by using two energizing electrodes. Therefore, according to this method, among the currents supplied from the welding electrode to the outermost metal plate, the current related to one shunt flows directly through the outermost metal plate toward the first energizing electrode. At the same time, the current related to the other shunt flows through the contact portion between the metal plates and is supplied to the metal plate on the backmost side. In this case, the current flowing from the welding electrode to the first energizing electrode is mainly used for resistance heating between the welding electrode and the outermost metal plate, and the current flowing to the second energizing electrode. Is mainly used for resistance heat generation at the contact portion between the metal plates located directly under the welding electrode. Therefore, the amount of current used for resistance heating between the metal plates is prevented as much as possible by preventing the occurrence of current loss due to unexpected (undesired) shunting, etc. by actively carrying out the shunt current. Can be adjusted. As a result, the temperature distribution in the thickness direction in the metal plate generated by the resistance heating at the two locations can be controlled to some extent, and for example, it is possible to energize so that the temperature at the contact portion between the metal plates is maximized. Become. Therefore, it is possible to bring about effective resistance heat generation at the contact portion between the metal plates while avoiding as much as possible the occurrence of welding failure such as melting damage on each metal plate, and thereby the contact portion or An appropriate welded portion can be efficiently formed in the vicinity thereof.

この場合、分流通電時において各通電用電極へと流れる電流量の比を制御する分流比制御手段を用いてもよい。具体的には、第一および第二通電用電極の一方又は双方に可変抵抗部を電気的に接続する方法などを例示することができる。このように、少なくとも一方の通電用電極を含む通電経路の抵抗を加減等することで、相対的に各通電用電極へと流れる電流量の比、すなわち分流比が変化するので、当該抵抗の大きさを適宜調整することにより、分流比を制御することができる。従って、板組みの種類に応じて分流比を制御することで金属板内の板厚方向の温度分布を制御して、金属板間の接触部分又はその近傍に溶接部を形成することが可能となる。   In this case, a diversion ratio control means for controlling the ratio of the amount of current flowing to each energization electrode during diversion energization may be used. Specifically, the method etc. which electrically connect a variable resistance part to one or both of the electrode for 1st and 2nd electricity supply can be illustrated. In this way, by adjusting the resistance of the energization path including at least one of the energization electrodes, the ratio of the amount of current flowing to each energization electrode, that is, the shunt ratio is relatively changed. By appropriately adjusting the thickness, the diversion ratio can be controlled. Therefore, it is possible to control the temperature distribution in the plate thickness direction within the metal plate by controlling the diversion ratio according to the type of plate assembly, and to form a weld at or near the contact portion between the metal plates. Become.

また、複数枚の金属板に対して複数の点で溶接部を形成する場合、第一通電用電極を、既に形成した溶接部のうち溶接用電極に最も近接する溶接部よりも溶接用電極に近づけた位置で最表面側の金属板と接触させ、この接触位置で分流通電を行うようにしてもよい。例えば図6に示すように、これから溶接部を形成しようとする位置(溶接予定位置70’)の近傍に、既に溶接部70が形成されている場合には、上下の金属板(鋼板50,60)にそれぞれ通電用電極30,40を設置して上記分流通電を行なったとしても、第一通電用電極30の設置箇所(例えば図6中一点鎖線で示す位置)によっては、先に形成された溶接部70が予期しない分流を引き起こすことがあり、これにより、本来溶接を施すべき位置(溶接予定位置70’)に溶接電流を供給できない事態を招くおそれがある。これに対して、上記のように、第一通電用電極30を既存の溶接部70よりも溶接用電極20に近づけた位置に設置するようにすれば(図6中実線で示す位置)、電流量のロスや分流比の乱れが生じることなく、第一、第二通電用電極に向けて所定量の電流を流すことができる。そのため、複数の点で上記抵抗溶接を行う場合であっても、常に一定の条件下で溶接作業を実施することができ、安定した品質の溶接部を形成することが可能となる。   In addition, when forming a welded portion at a plurality of points on a plurality of metal plates, the first energizing electrode is made a welding electrode rather than the welded portion closest to the welding electrode among the already formed welded portions. The metal plate on the outermost surface side may be brought into contact with the close position, and diversion energization may be performed at this contact position. For example, as shown in FIG. 6, when the welded portion 70 has already been formed in the vicinity of the position where the welded portion is to be formed (the planned welding position 70 ′), the upper and lower metal plates (steel plates 50, 60). Even if the current-carrying electrodes 30 and 40 are respectively installed in the above-mentioned currents, the first current-carrying electrode 30 is formed first depending on the location of the first current-carrying electrode 30 (for example, the position indicated by the one-dot chain line in FIG. The welded portion 70 may cause an unexpected diversion, which may lead to a situation in which the welding current cannot be supplied to a position where welding should be performed (the planned welding position 70 ′). On the other hand, as described above, if the first energizing electrode 30 is installed at a position closer to the welding electrode 20 than the existing welding portion 70 (position indicated by a solid line in FIG. 6), the current flows. A predetermined amount of current can flow toward the first and second energization electrodes without causing loss of quantity or disturbance of the diversion ratio. Therefore, even when the resistance welding is performed at a plurality of points, the welding operation can always be performed under a certain condition, and it is possible to form a stable quality welded portion.

また、この場合、第一通電用電極を、溶接用電極の周囲で最表面側の金属板と接触させるようにしてもよい。例えば図6のように、第一通電用電極30を溶接用電極20と最表面側の金属板(一方の金属板50)側に並べて配置した場合には、同図中一点鎖線で示す向きの電流の流れが一方の金属板50中に生じることから、溶接用電極20の発熱領域がどうしても第一通電用電極30寄りに偏ってしまう問題がある。これに対して、上記のように第一通電用電極を溶接用電極の周囲に配置すれば、溶接用電極と第一通電用電極との間の電流密度を周方向で均等に分布させることができる(後述する図2を参照)。この場合には、溶接用電極と金属板との接触部における発熱量にそれほど大きな差は生じないため、上記接触部における温度分布を周方向で均一化できる。よって、比較的高い溶接温度を必要とする金属板を溶接する場合であっても、最表面側の金属板に割れ等の溶接不良を発生させることなく、適正な溶接部を形成することが可能となる。   In this case, the first energizing electrode may be brought into contact with the outermost metal plate around the welding electrode. For example, as shown in FIG. 6, when the first energizing electrode 30 is arranged side by side on the welding electrode 20 and the outermost metal plate (one metal plate 50) side, the direction indicated by the alternate long and short dash line in FIG. Since a current flow occurs in one metal plate 50, there is a problem that the heat generation region of the welding electrode 20 is inevitably biased toward the first energizing electrode 30. In contrast, if the first energizing electrode is arranged around the welding electrode as described above, the current density between the welding electrode and the first energizing electrode can be evenly distributed in the circumferential direction. Yes (see FIG. 2 below). In this case, since the heat generation amount at the contact portion between the welding electrode and the metal plate is not so large, the temperature distribution at the contact portion can be made uniform in the circumferential direction. Therefore, even when welding a metal plate that requires a relatively high welding temperature, it is possible to form an appropriate welded portion without causing welding defects such as cracks in the outermost metal plate. It becomes.

また、本発明に係る抵抗溶接方法は、分流通電の前工程として、溶接用電極と第一通電用電極を最表面側の金属板に押し当てた状態で、これら電極間に電流を流すことにより、複数枚の金属板間の隙間を詰める工程を含むものであってもよい。このような前工程を設けることで、溶接予定部位における金属板間に良好な接触状態が形成されると同時に、第二通電用電極と溶接用電極との通電、ひいては分流通電も自動的かつ連続的に開始される。そのため、これら電極の移動操作や通電操作を途中で変更する手間を省いて、一連の溶接作業に要するサイクルタイムを短縮できると共に、その際の消費電力を低減して、生産性を向上させることができる。   In addition, the resistance welding method according to the present invention allows a current to flow between these electrodes in a state in which the welding electrode and the first current-carrying electrode are pressed against the outermost metal plate as a pre-process of shunting current. Thus, the method may include a step of closing gaps between the plurality of metal plates. By providing such a pre-process, a good contact state is formed between the metal plates at the site to be welded, and at the same time, the energization between the second energization electrode and the welding electrode, and thus the diversion energization is automatically and Started continuously. Therefore, it is possible to reduce the cycle time required for a series of welding operations by reducing the trouble of changing the movement operation and energization operation of these electrodes in the middle, and to reduce the power consumption at that time and improve the productivity. it can.

以上のように、本発明に係る抵抗溶接方法によれば、板組みの種類に関係なく、溶接不良の発生を防止して、適正な溶接部を形成することのできる抵抗溶接方法を提供することができる。   As described above, according to the resistance welding method according to the present invention, it is possible to provide a resistance welding method capable of preventing the occurrence of welding failure and forming an appropriate welded portion regardless of the type of plate assembly. Can do.

本発明の一実施形態に係る抵抗溶接方法の全体構成を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the whole structure of the resistance welding method which concerns on one Embodiment of this invention. 分流通電工程の前工程となる予備通電工程を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the preliminary | backup energization process used as the pre-process of a shunt energization process. 分流通電工程を説明するための要部断面図である。It is principal part sectional drawing for demonstrating a shunt electric current supply process. 分流通電時の抵抗発熱状態を説明するための要部拡大断面図である。It is a principal part expanded sectional view for demonstrating the resistance heating state at the time of shunt energization. 図4に示す金属板内部の板厚方向における温度分布を模式的に表したグラフである。It is the graph which represented typically the temperature distribution in the plate | board thickness direction inside a metal plate shown in FIG. 本発明に係る抵抗溶接方法で2枚の金属板に対して複数の点で溶接部を形成する場合の通電状態を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the energization state in the case of forming a welding part in two or more points with respect to two metal plates with the resistance welding method which concerns on this invention. 従来の抵抗溶接方法であるシリーズ溶接方法を説明するための要部断面図である。It is principal part sectional drawing for demonstrating the series welding method which is the conventional resistance welding method. 従来の抵抗溶接方法である一のインダイレクト溶接方法を説明するための要部断面図である。It is principal part sectional drawing for demonstrating one indirect welding method which is the conventional resistance welding method. 従来の抵抗溶接方法である他のインダイレクト溶接方法を説明するための要部断面図であって、(a)は予備電極による通電時における要部断面図、(b)は主電極による通電時における要部断面図である。It is principal part sectional drawing for demonstrating the other indirect welding method which is the conventional resistance welding method, Comprising: (a) is principal part sectional drawing at the time of electricity supply by a preliminary electrode, (b) is at the time of electricity supply by a main electrode FIG.

以下、本発明に係る抵抗溶接方法の一実施形態を図面に基づき説明する。この実施形態では、自動車のボデーパネルとなる2枚の鋼板を溶接対象とする場合を例にとって説明する。なお、これ以降の説明においては、特に断りのない限り、鉛直方向を単に上下方向というものとする。   Hereinafter, an embodiment of a resistance welding method according to the present invention will be described with reference to the drawings. In this embodiment, a case where two steel plates to be a body panel of an automobile are to be welded will be described as an example. In the following description, the vertical direction is simply referred to as the vertical direction unless otherwise specified.

図1は、本発明の一実施形態に係る抵抗溶接方法を実施するための抵抗溶接装置10を示している。同図に示すように、この抵抗溶接装置10は、複数個の電極20,30,40を備えたもので、互いに重ね合わせた複数枚の金属板(図示例では2枚の鋼板50,60)にこれら複数個の電極20,30,40を接触させて通電させることにより、鋼板50,60間に溶接部70(後述する図4を参照)を形成するための装置である。ここで、複数個の電極20,30,40は、最表面側の金属板(図示例では一方の鋼板50)に接触させて所定量の電流を供給する溶接用電極20と、一方の鋼板50に接触させて溶接用電極20との間で通電を図るための第一通電用電極30、および、最裏面側の金属板(図示例では他方の鋼板60)に接触させて溶接用電極20との間で通電を図るための第二通電用電極40から成っている。   FIG. 1 shows a resistance welding apparatus 10 for carrying out a resistance welding method according to an embodiment of the present invention. As shown in the figure, this resistance welding apparatus 10 includes a plurality of electrodes 20, 30, and 40, and a plurality of metal plates (two steel plates 50 and 60 in the illustrated example) overlapped with each other. This is an apparatus for forming a welded portion 70 (see FIG. 4 described later) between the steel plates 50 and 60 by bringing the plurality of electrodes 20, 30 and 40 into contact with each other and energizing them. Here, the plurality of electrodes 20, 30, 40 are brought into contact with the outermost metal plate (one steel plate 50 in the illustrated example) to supply a predetermined amount of current, and one steel plate 50. And the first electrode 30 for energization with the welding electrode 20 and the metal plate on the back side (the other steel plate 60 in the illustrated example) and the welding electrode 20. It consists of the electrode 40 for the 2nd electricity supply for energizing between.

このうち、溶接用電極20の先端部21は、先端側(下方)に向かうにつれて徐々に外径が小さくなるいわゆる先細り形状を呈している。この図示例では、先端部21は、図1に示すように、頂部に形成された平坦面と、平坦面から基端側(上方)へ向けて外径を徐々に大きくした円錐面とで構成されている。なお、円錐面の頂角の大きさは任意であり、例えば100度以上170度以下の範囲内に設定される。   Among these, the front-end | tip part 21 of the electrode 20 for welding is exhibiting what is called a taper shape where an outer diameter becomes small gradually as it goes to the front end side (downward). In the illustrated example, the distal end portion 21 is composed of a flat surface formed at the top and a conical surface with an outer diameter gradually increasing from the flat surface toward the base end side (upward), as shown in FIG. Has been. In addition, the magnitude | size of the vertex angle of a conical surface is arbitrary, for example, is set in the range of 100 degree | times or more and 170 degrees or less.

第一通電用電極30は、溶接用電極20と共に、その先端部31を一方の鋼板50の上側表面51に向けて配置しており、軸方向への相対移動により先端部31を上側表面51に押圧できるようになっている。また、この実施形態では、第一通電用電極30は筒状をなすもので、その内周に配設された溶接用電極20と共にいわゆる同軸電極を構成している。この場合、第一通電用電極30の先端部31は、その先端側(下方)へ向かうにつれて徐々に肉厚が小さくなる形状を成しており、この図示例では、図2に示すように、軸方向断面で下向きに膨らんだ円弧状を呈している。また、第一通電用電極30には、図1および図2に示すように、先端部31から基端側(上方)に向けて伸びる切り欠き部32が円周方向等間隔で複数箇所(図示例では6箇所)に形成されている。   The first current-carrying electrode 30, together with the welding electrode 20, has its tip 31 directed toward the upper surface 51 of one steel plate 50, and the tip 31 is moved to the upper surface 51 by relative movement in the axial direction. It can be pressed. Further, in this embodiment, the first energizing electrode 30 has a cylindrical shape, and constitutes a so-called coaxial electrode together with the welding electrode 20 disposed on the inner periphery thereof. In this case, the distal end portion 31 of the first energizing electrode 30 has a shape that gradually decreases in thickness toward the distal end side (downward). In this illustrated example, as shown in FIG. It has an arc shape that bulges downward in the axial section. Further, as shown in FIGS. 1 and 2, the first energizing electrode 30 has a plurality of cutout portions 32 extending from the distal end portion 31 toward the proximal end side (upward) at equal intervals in the circumferential direction (see FIG. In the example shown, it is formed at 6 locations).

第一通電用電極30には、図示は省略するが、例えばスプリングやシリンダ等で構成される軸方向移動手段が設けられており、溶接用電極20とは独立して軸方向に移動できるように構成されている。また、溶接用電極20についても同様の軸方向移動手段が設けられており、第一通電用電極30とは独立して軸方向に移動できるように構成されている。この実施形態では、何ら軸方向の力を受けない状態(鋼板50,60に押し付けていない状態)では、図1に示すように、溶接用電極20の先端部21が、その周囲に配置される第一通電用電極30の先端部31よりも一段低い位置(一方の鋼板50に近い位置)にあるように設定されている。   Although not shown in the figure, the first energizing electrode 30 is provided with an axial direction moving means composed of, for example, a spring or a cylinder so that it can move in the axial direction independently of the welding electrode 20. It is configured. The welding electrode 20 is also provided with the same axial movement means, and can be moved in the axial direction independently of the first energization electrode 30. In this embodiment, in a state where no axial force is received (the state where the steel plate 50, 60 is not pressed), the tip 21 of the welding electrode 20 is disposed around the periphery as shown in FIG. The first energization electrode 30 is set so as to be one level lower than the tip 31 (position close to one steel plate 50).

第二通電用電極40は、いわゆるアース電極であって、他方の鋼板60との接触部分における抵抗発熱が問題とならない程度の電流密度となるよう、その接触面積を十分に広く取ったものである。この図示例では、第二通電用電極40の接触面41を、他方の鋼板60の上側表面61(一方の鋼板50の下側表面52と対向する面)のうち、一方の鋼板50との重ね合わせ部から外れた領域に接触させるようにしている。   The second current-carrying electrode 40 is a so-called ground electrode and has a sufficiently large contact area so that the resistance heat generation at the contact portion with the other steel plate 60 does not cause a problem. . In this illustrated example, the contact surface 41 of the second energizing electrode 40 is overlapped with one steel plate 50 among the upper surface 61 of the other steel plate 60 (the surface facing the lower surface 52 of one steel plate 50). It is made to contact the area | region remove | deviated from the fitting part.

これら溶接用電極20と双方の通電用電極30,40は相互に電気的に接続されている。具体的には、溶接用電極20と第一通電用電極30とが電源80に接続されている。また、第二通電用電極40は第一通電用電極30を介して電源80に接続されている。また、この実施形態では、後述する分流比制御手段としての可変抵抗90が第一通電用電極30と第二通電用電極40との間に配設されている。   The welding electrode 20 and the current-carrying electrodes 30 and 40 are electrically connected to each other. Specifically, the welding electrode 20 and the first energizing electrode 30 are connected to a power source 80. The second energizing electrode 40 is connected to the power source 80 via the first energizing electrode 30. Further, in this embodiment, a variable resistor 90 as a diversion ratio control means described later is disposed between the first energizing electrode 30 and the second energizing electrode 40.

以下、上記構成の抵抗溶接装置10を用いた本発明に係る抵抗溶接方法の一例を説明する。なお、この実施形態では、同軸電極としての溶接用電極20および第一通電用電極30の中心軸方向と、各電極20,30の先端部21,31と一方の鋼板50の接触部分における当該鋼板50の法線方向(厚み方向)とが一致するように、各電極20,30を配置および移動するものとする。   Hereinafter, an example of the resistance welding method according to the present invention using the resistance welding apparatus 10 having the above configuration will be described. In this embodiment, the steel plate in the central axis direction of the welding electrode 20 and the first energizing electrode 30 as coaxial electrodes and the contact portion between the tip portions 21 and 31 of the electrodes 20 and 30 and one steel plate 50 are used. Each electrode 20 and 30 shall be arrange | positioned and moved so that 50 normal line direction (thickness direction) may correspond.

まず、図1に示す状態から、溶接用電極20および第一通電用電極30を降下させて、各々の先端部21,31を一方の鋼板50の上側表面51に所定の加圧力で押し当てる。そして、各先端部21,31が一方の鋼板50に接触した状態で電極20,30間を通電する。これにより、図2に示すように、溶接用電極20、一方の鋼板50、第一通電用電極30、電源80が電気的に接続され、これら電気的素子を有する第一の閉ループ回路が形成される。このようにして加圧通電を行なうことにより、一方の鋼板50のうち溶接用電極20との接触部分に抵抗発熱が生じ、この抵抗発熱により上記接触部分とその周辺領域が軟化する。これにより、一方の鋼板50の軟化部分が対向する他方の鋼板60に向けて変形し始める。なお、この段階では、溶接用電極20と第一通電用電極30間に通電する電流量は、一対の鋼板50,60間に後述する溶接部70を形成可能な程度の大きさに設定されていてもよく、あるいは、この後の通電工程で通電量を増加させることを前提として、当該段階では、溶接部70が形成されない程度の大きさに抑えておいてもよい。   First, from the state shown in FIG. 1, the welding electrode 20 and the first energizing electrode 30 are lowered, and the respective tip portions 21 and 31 are pressed against the upper surface 51 of one steel plate 50 with a predetermined pressure. Then, the electrodes 20 and 30 are energized while the tip portions 21 and 31 are in contact with one steel plate 50. As a result, as shown in FIG. 2, the welding electrode 20, one steel plate 50, the first energizing electrode 30, and the power source 80 are electrically connected, and a first closed loop circuit having these electrical elements is formed. The By applying pressure and energizing in this way, resistance heat is generated in the contact portion of the one steel plate 50 with the welding electrode 20, and the contact portion and its peripheral region are softened by this resistance heat generation. Thereby, the softening part of one steel plate 50 begins to deform | transform toward the other steel plate 60 which opposes. At this stage, the amount of current to be passed between the welding electrode 20 and the first current-carrying electrode 30 is set to such a size that a welded portion 70 described later can be formed between the pair of steel plates 50 and 60. Alternatively, on the premise that the energization amount is increased in the energization process thereafter, the size may be suppressed to such a level that the welded portion 70 is not formed.

そして、当該加圧通電を所定期間続けることで、図3に示すように、一方の鋼板50のうち軟化した部分が、対向する他方の鋼板60に向けて押し込まれ、他方の鋼板60の上側表面61と接触する。これにより、双方の鋼板50,60間の隙間(板隙)が詰められると共に、双方の鋼板50,60間が電気的に接続された状態となる。従って、この段階では、上記した第一の閉ループ回路に加えて、溶接用電極20、一方の鋼板50、他方の鋼板60、第二通電用電極40、可変抵抗90、そして第一通電用電極30が電気的に接続され、これら電気的素子を有する第二の閉ループ回路が形成される。そして、このように2つの閉ループ回路を形成することによって、溶接用電極20から一方の鋼板50に供給された溶接電流A(鋼板50,60間に溶接部70を形成可能な大きさの電流)の一部がそのまま溶接用電極20の周囲で接触する第一通電用電極30に向けて流れる(図3中一点鎖線で示す流れ)と共に、残部が一方の鋼板50と他方の鋼板60との接触部分を介して他方の鋼板60へと流れ込み、この鋼板60の上側表面61に当接させた第二通電用電極40に向けて流れる(図3中二点鎖線で示す流れ)こととなる。   And by continuing the said pressurization energization for a predetermined period, as shown in FIG. 3, the softened part is pushed toward the other steel plate 60 which opposes, and the upper surface of the other steel plate 60 is shown. 61 is contacted. Thereby, a gap (plate gap) between both the steel plates 50 and 60 is filled, and the both steel plates 50 and 60 are electrically connected. Therefore, in this stage, in addition to the first closed loop circuit described above, the welding electrode 20, one steel plate 50, the other steel plate 60, the second energizing electrode 40, the variable resistor 90, and the first energizing electrode 30 are provided. Are electrically connected to form a second closed loop circuit having these electrical elements. And by forming two closed loop circuits in this way, the welding current A supplied to the one steel plate 50 from the welding electrode 20 (current having a magnitude capable of forming the welded portion 70 between the steel plates 50, 60). Part flows toward the first energizing electrode 30 that is in contact with the periphery of the welding electrode 20 (a flow indicated by a one-dot chain line in FIG. 3), and the remaining part is in contact with one steel plate 50 and the other steel plate 60. It flows into the other steel plate 60 through the portion, and flows toward the second energizing electrode 40 in contact with the upper surface 61 of this steel plate 60 (a flow indicated by a two-dot chain line in FIG. 3).

このようにして溶接用電極20と双方の通電用電極30,40との間で分流通電を行った場合の鋼板50,60内部の発熱状態(温度分布)を、図4に模式的に示す。同図において、色の濃い部分(ハッチングの細かい部分)ほど発熱量が多い、すなわち温度が高いことを意味している。ここで、溶接用電極20から第一通電用電極30へと流れた電流(第一分流)A1は主に溶接用電極20と一方の鋼板50との間の抵抗発熱に利用され、第二通電用電極40へと流れた電流(第二分流)A2は主に溶接用電極20の直下に位置する鋼板50,60間の接触部分の抵抗発熱に利用されることから、図4に示すように、双方の鋼板50,60間の接触部分で最も高い温度分布を示す。また、溶接用電極20と一方の鋼板50との接触部分のうち、第一通電用電極30との距離が近い先端部21の周囲(この実施形態でいえば先端部21の円錐面と鋼板50との接触部分)でも高い温度分布を示すこととなる。 FIG. 4 schematically shows the heat generation state (temperature distribution) inside the steel plates 50 and 60 when the shunt current is applied between the welding electrode 20 and the current-carrying electrodes 30 and 40 in this way. . In the figure, the darker portions (the hatched portions) have a greater amount of heat generation, that is, a higher temperature. Here, the current (first shunt) A 1 flowing from the welding electrode 20 to the first energizing electrode 30 is mainly used for resistance heating between the welding electrode 20 and one of the steel plates 50, and the second The current (second shunt) A 2 flowing to the energizing electrode 40 is mainly used for resistance heat generation at the contact portion between the steel plates 50 and 60 located immediately below the welding electrode 20, and is shown in FIG. Thus, the highest temperature distribution is shown in the contact part between both the steel plates 50 and 60. FIG. Of the contact portion between the welding electrode 20 and one of the steel plates 50, the periphery of the tip portion 21 that is close to the first energizing electrode 30 (in this embodiment, the conical surface of the tip portion 21 and the steel plate 50). Even the contact portion) shows a high temperature distribution.

ここで、各分流A1,A2ごとの図4に示す温度分布への寄与の度合いについては、例えば図5に示すグラフを用いて説明することができる。同グラフの縦軸には、溶接用電極20と一方の鋼板50との中央接触部分を基準(零点)とした場合の板厚方向位置(基準点からの深さ)を示している。また、同グラフ中、破線は分流A1による抵抗発熱の分布を、一点鎖線は分流A2による抵抗発熱の分布をそれぞれ示しており、実線は、これら抵抗発熱の分布を踏まえた鋼板50,60内部の温度勾配を示している。このように、鋼板50,60の温度上昇に寄与する抵抗発熱が主に第一通電用電極30への分流A1と、第二通電用電極40への分流A2とで大部分を占めると考える場合、鋼板50,60内部の温度勾配は、上記分流A1による抵抗発熱と分流A2による抵抗発熱の総和として捉えることができる。そのため、上述のように分流通電を図ることにより、各分流A1,A2による抵抗発熱が板厚方向の中心部と表面部とに分散する。また、この際の分流A1,A2の大きさ(電流量)は、上記のように各閉ループ回路中の抵抗等を調整することで各自容易に変更することができる。例えば第一通電用電極30に流れる分流A1の電流量を小さくすることで、図5に示すA1の抵抗発熱分布を全体的に縮小する方向(図5でいえば左側)に移行させることができ、また、これに伴い、第二通電用電極40に流れる分流A2の電流量が大きくなるので、図5に示すA2の抵抗発熱分布を全体的に拡大する方向(図5でいえば右側)にシフトすることができる。この場合、鋼板50,60のピーク温度位置がX1からX2へと移動するので、例えば双方の鋼板50,60間の接触部分が位置X2の近傍にある場合には、上述のように、分流比を調整することで、適正な深さ位置にピーク温度をもってくることが可能となる。従って、各鋼板50,60への局所的な過熱等により溶損などの溶接不良が発生する事態を可及的に回避しつつも、鋼板50,60間の接触部分に有効な抵抗発熱をもたらして、当該接触部分又はその近傍に適正な大きさの溶接部70を効率よく形成することができる。また、上述のように、溶接用電極20と第一通電用電極30との加圧通電により、自動的に上記双方の通電用電極30,40を用いた分流通電に切り換わるので、短い作業時間で効率よく一連の溶接作業を実施することができる。そのため、生産性の面でも好適である。 Here, the degree of contribution to the temperature distribution shown in FIG. 4 for each of the diversions A 1 and A 2 can be described using, for example, the graph shown in FIG. The vertical axis of the graph shows the plate thickness direction position (depth from the reference point) when the center contact portion between the welding electrode 20 and one steel plate 50 is used as the reference (zero point). In the graph, the broken line indicates the distribution of resistance heat generated by the shunt A 1 , and the alternate long and short dash line indicates the distribution of resistance heat generated by the shunt A 2 , and the solid lines indicate the steel plates 50 and 60 based on the distribution of resistance heat generated. The internal temperature gradient is shown. Thus, the diversion A 1 to contribute resistance heating is mainly first current-carrying electrode 30 to the temperature rise of the steel sheet 50 and 60, when the majority in the shunt A 2 to the second current-carrying electrodes 40 When considering, the temperature gradient inside the steel plates 50 and 60 can be considered as the sum of the resistance heat generation by the above-mentioned split flow A 1 and the resistance heat generation by the split flow A 2 . Therefore, by carrying out the diversion energization as described above, the resistance heat generated by the diversions A 1 and A 2 is dispersed in the central portion and the surface portion in the plate thickness direction. Further, the magnitudes (current amounts) of the shunts A 1 and A 2 at this time can be easily changed by adjusting the resistance in each closed loop circuit as described above. For example, by reducing the amount of current of the shunt A 1 flowing through the first energization electrode 30, the resistance heat generation distribution of A 1 shown in FIG. 5 is shifted in the direction of overall reduction (left side in FIG. 5). Accordingly, since the amount of current of the shunt A 2 flowing through the second energizing electrode 40 is increased, the resistance heating distribution of A 2 shown in FIG. Right). In this case, since the peak temperature position of the steel plates 50 and 60 moves from X 1 to X 2 , for example, when the contact portion between both the steel plates 50 and 60 is in the vicinity of the position X 2 , as described above. By adjusting the diversion ratio, it is possible to bring the peak temperature to an appropriate depth position. Therefore, effective resistance heat generation is brought about at the contact portion between the steel plates 50 and 60 while avoiding as much as possible the occurrence of welding failure such as melting damage due to local overheating to the steel plates 50 and 60. Thus, it is possible to efficiently form the weld portion 70 having an appropriate size at or near the contact portion. In addition, as described above, the pressurization energization of the welding electrode 20 and the first energization electrode 30 automatically switches to the diversion energization using both the energization electrodes 30 and 40, so that a short work is required. A series of welding operations can be performed efficiently in time. Therefore, it is suitable also in terms of productivity.

また、この実施形態では、筒状をなすと共に、先端部31がその先端側に向かうにつれて徐々に先細りする形状の第一通電用電極30を使用し、かつ、これを略軸状をなす溶接用電極20の外周に配設したので、分流A1は、溶接用電極20から第一通電用電極30に向けて全周にわたって均等に生じる。これにより、分流A1の電流密度は周方向で均等に分布することになるので、溶接用電極20と一方の鋼板50との接触部分における抵抗発熱、ひいては温度分布をほぼ均一化できる。よって、比較的高い溶接温度を必要とする種類の金属板を溶接する場合においても、一方の鋼板50に割れ等の溶接不良を発生させずに済む。 In this embodiment, the first current-carrying electrode 30 having a cylindrical shape and gradually tapering as the distal end portion 31 moves toward the distal end side is used, and this is used for welding that has a substantially axial shape. Since it is disposed on the outer periphery of the electrode 20, the diversion A 1 is uniformly generated from the welding electrode 20 toward the first energization electrode 30 over the entire periphery. As a result, the current density of the shunt A 1 is evenly distributed in the circumferential direction, so that the resistance heat generation at the contact portion between the welding electrode 20 and one of the steel plates 50 and the temperature distribution can be made substantially uniform. Therefore, even when a metal plate of a type that requires a relatively high welding temperature is welded, it is not necessary to cause a welding failure such as a crack in one of the steel plates 50.

また、上記分流比の調整に関し、この実施形態では、分流比制御手段として第一通電用電極30と第二通電用電極40との間に可変抵抗90を設置するようにした。このように、第二の閉ループ回路に含まれる可変抵抗90の値を鋼板50,60の板組みに応じて適宜調整することにより、相対的に各閉ループ回路を流れる電流量の比、すなわち分流比A2/A1を制御できるので、板組みの種類に関らず、常に鋼板50,60間の接触部分又はその近傍に溶接部70を形成することができる。 Regarding the adjustment of the diversion ratio, in this embodiment, the variable resistor 90 is installed between the first energization electrode 30 and the second energization electrode 40 as the diversion ratio control means. Thus, by appropriately adjusting the value of the variable resistor 90 included in the second closed loop circuit in accordance with the plate assembly of the steel plates 50 and 60, the ratio of the amount of current flowing through each closed loop circuit, that is, the shunt ratio Since A 2 / A 1 can be controlled, the welded portion 70 can always be formed at or near the contact portion between the steel plates 50 and 60 regardless of the type of plate assembly.

以上、本発明に係る抵抗溶接方法の一実施形態を説明したが、この抵抗溶接方法及びこの方法に用いる抵抗溶接装置は、上記例示の形態に限定されることなく、本発明の範囲内において任意の形態を採ることが可能である。   As mentioned above, although one embodiment of the resistance welding method according to the present invention has been described, the resistance welding method and the resistance welding apparatus used in this method are not limited to the above-described embodiments, and are arbitrary within the scope of the present invention. It is possible to take the form.

例えば第一通電用電極30の形状に関し、上記実施形態では、全体として筒状を呈しかつその先端部31が先細り形状をなすものを使用した場合を説明したが、もちろん、これ以外の形状を有する電極を第一通電用電極30として使用することも可能である。例えば、上記実施形態における第二通電用電極40のように、金属板との接触部分における抵抗発熱が問題とならない程度の電流密度となるよう、その接触面積を十分に広く取った形状の電極を第一通電用電極30として使用することも可能である。図6はその一例を示すもので、この図示例では、第一通電用電極30に、上記第二通電用電極40と同一の形状を有する電極を使用している。そして、この場合においても、第一通電用電極30を一方の鋼板50に接触させて溶接用電極20との間で通電を図ると共に、第二通電用電極40を他方の鋼板60に接触させて溶接用電極20との間で通電を図ることで、溶接用電極20から一方の鋼板50に供給された電流を、第一通電用電極30と第二通電用電極40とに分流させることができる。従って、これにより、溶接不良が発生する事態を可及的に回避しつつも、鋼板50,60間の接触部分に有効な抵抗発熱をもたらして、当該接触部分又はその近傍に適正な大きさの溶接部70を効率よく形成することができる。   For example, regarding the shape of the first energizing electrode 30, the above embodiment has described the case of using a cylindrical shape as a whole and the tip portion 31 having a tapered shape. Of course, it has other shapes. It is also possible to use an electrode as the first energizing electrode 30. For example, like the second energizing electrode 40 in the above embodiment, an electrode having a shape with a sufficiently large contact area so that the resistance heat generation at the contact portion with the metal plate does not cause a problem. It can also be used as the first energizing electrode 30. FIG. 6 shows an example thereof. In this illustrated example, an electrode having the same shape as the second energizing electrode 40 is used as the first energizing electrode 30. Even in this case, the first energizing electrode 30 is brought into contact with one steel plate 50 to energize with the welding electrode 20, and the second energizing electrode 40 is brought into contact with the other steel plate 60. By energizing between the welding electrode 20, the current supplied from the welding electrode 20 to the one steel plate 50 can be divided into the first energizing electrode 30 and the second energizing electrode 40. . Therefore, while avoiding the occurrence of poor welding as much as possible, effective resistance heat is generated in the contact portion between the steel plates 50 and 60, and the contact portion or the vicinity thereof has an appropriate size. The welding part 70 can be formed efficiently.

なお、この図示例の如き形状の電極を第一通電用電極30に使用する場合、この第一通電用電極30を必ずしも溶接用電極20の周囲に配置する必要はないが、例えば図6中一点鎖線で示す如き位置に配置した場合には、一方の鋼板50を通じて溶接用電極20から第一通電用電極30へと向かう電流の流れが、既に形成されている溶接部70により乱される可能性がある。そのため、図6のように、2枚の鋼板50,60に対して複数の点で溶接部70を形成する場合には、第一通電用電極30を、既に形成した溶接部70のうち溶接用電極20に最も近接する溶接部70よりも溶接用電極20に近づけた位置(図6でいえば実線で示す位置)で一方の鋼板50と接触させ、この接触位置で分流通電を行うようにするのがよい。このように第一通電用電極30を設置することで、電流量のロスや分流比の乱れが生じることなく、第一、第二通電用電極30,40に向けてそれぞれ所定量の電流を流すことができる。そのため、複数の点で上記抵抗溶接を行う場合であっても、常に一定の条件下で溶接作業を実施することができ、安定した品質の溶接部70を連続して形成することが可能となる。   When the electrode having the shape as shown in the illustrated example is used for the first energizing electrode 30, it is not always necessary to dispose the first energizing electrode 30 around the welding electrode 20. For example, one point in FIG. When arranged at a position indicated by a chain line, the current flow from the welding electrode 20 to the first energizing electrode 30 through one steel plate 50 may be disturbed by the weld 70 that has already been formed. There is. Therefore, as shown in FIG. 6, when forming the welded portion 70 at a plurality of points on the two steel plates 50, 60, the first energizing electrode 30 is used for welding among the welded portions 70 that have already been formed. It is made to contact with one steel plate 50 at a position closer to the welding electrode 20 than the welding portion 70 closest to the electrode 20 (a position indicated by a solid line in FIG. 6), and shunt energization is performed at this contact position. It is good to do. By installing the first current-carrying electrode 30 in this way, a predetermined amount of current flows to the first and second current-carrying electrodes 30 and 40 without causing a loss of current amount or disturbance of the shunt ratio. be able to. Therefore, even when the resistance welding is performed at a plurality of points, the welding operation can always be performed under a certain condition, and a stable quality welded portion 70 can be continuously formed. .

また、上記実施形態では、分流比制御手段として可変抵抗90を使用した場合を説明したが、もちろんこれ以外の要素で分流比制御手段を構成することも可能である。例えば、可変抵抗90に限らず、固定抵抗を双方の通電用電極30,40間に設置することも可能である。また、各々の閉ループ回路を上記形態とは異なる形態に構成することで(例えば、第二通電用電極40を、第一通電用電極30を介さず直接的に電源80と接続する等して)、上記各種抵抗を第一通電用電極30と電源80との間に設置しても構わない。   In the above embodiment, the case where the variable resistor 90 is used as the diversion ratio control means has been described. Of course, it is possible to configure the diversion ratio control means with other elements. For example, not only the variable resistor 90 but also a fixed resistor can be installed between the current-carrying electrodes 30 and 40. Further, by configuring each closed loop circuit in a form different from the above form (for example, by directly connecting the second energizing electrode 40 to the power source 80 without passing through the first energizing electrode 30). The various resistors may be installed between the first energizing electrode 30 and the power source 80.

また、上記実施形態では、自動車のボデーパネルとなる2枚の鋼板の溶接工程に本発明に係る抵抗溶接方法を適用した場合を例にとって説明を行ったが、本発明は、上記以外の部品の溶接工程にも当然に適用することが可能である。   Moreover, although the said embodiment demonstrated taking the case where the resistance welding method which concerns on this invention was applied to the welding process of the two steel plates used as the body panel of a motor vehicle as an example, this invention is a part other than the above. Of course, it can also be applied to the welding process.

また、上記実施形態では、2枚の金属板を溶接する場合を示しているが、これに限らず、3枚以上の金属板を溶接する際に本発明に係る溶接加工方法を適用することもできる。具体的には、図示は省略するが、最表面側の金属板に溶接用電極及び第一通電用電極を当接させると共に、最裏面側の金属板に第二通電用電極を当接させる。この場合、溶接用電極から最表面側の金属板を通って第一通電用電極に流れる第一分流、及び溶接用電極から最裏面側の金属板を通って第二通電用電極に流れる第二分流の大きさを調整することで、複数の金属板の厚さ方向の最適位置に溶接部を形成することができる。これにより、隣接する金属板同士を確実に溶接し、且つ、最表面側あるいは最裏面側の金属板に板切れや溶損が生じる事態を防止することができる。   Moreover, although the case where two metal plates are welded is shown in the above embodiment, the present invention is not limited to this, and the welding method according to the present invention may be applied when welding three or more metal plates. it can. Specifically, although not shown, the welding electrode and the first energizing electrode are brought into contact with the outermost metal plate, and the second energizing electrode is brought into contact with the outermost metal plate. In this case, a first shunt flowing from the welding electrode through the outermost metal plate to the first energizing electrode, and a second diverting from the welding electrode through the outermost metal plate to the second energizing electrode. By adjusting the size of the diversion, the welded portion can be formed at the optimum position in the thickness direction of the plurality of metal plates. As a result, adjacent metal plates can be reliably welded, and a situation in which the plate is cut or melted on the outermost metal plate or the outermost metal plate can be prevented.

また、上記以外の事項についても、本発明の技術的意義を没却しない限りにおいて他の具体的形態を採り得ることはもちろんである。   Of course, other specific forms can be adopted for matters other than the above as long as the technical significance of the present invention is not lost.

10 抵抗溶接装置
20 溶接用電極
30 第一通電用電極
40 第二通電用電極
50,60 鋼板
70 溶接部
70’ 溶接予定位置
80 電源
90 可変抵抗
110,120 電極(溶接用電極)
130 集電用電極
140 予備電極
150,160 鋼板
A 溶接電流
1 分流(第一通電用電極)
2 分流(第二通電用電極)
DESCRIPTION OF SYMBOLS 10 Resistance welding apparatus 20 Welding electrode 30 1st electricity supply electrode 40 2nd electricity supply electrode 50, 60 Steel plate 70 Welding part 70 'Welding planned position 80 Power supply 90 Variable resistance 110,120 Electrode (welding electrode)
130 Electrode for current collection 140 Spare electrode 150,160 Steel plate A Welding current A 1 current split (electrode for first energization)
A 2 split flow (second energizing electrode)

Claims (2)

相互に重ね合わせた複数枚の金属板に複数個の電極を接触させて通電することにより溶接部を形成する抵抗溶接方法において、
前記複数個の電極として、前記複数枚の金属板のうち、最表面側の金属板に接触させる溶接用電極と、前記最表面側の金属板に接触させて前記溶接用電極との間で通電を図るための第一通電用電極と、前記複数枚の金属板のうち、最裏面側の金属板に接触させて前記溶接用電極との間で通電を図るための第二通電用電極とを使用し、
前記双方の通電用電極を何れも前記溶接用電極との間で通電させることで、前記溶接用電極から前記最表面側の金属板に供給された電流を、前記第一通電用電極と前記第二通電用電極とに分流させることを特徴とする抵抗溶接方法。
In a resistance welding method for forming a welded portion by energizing a plurality of electrodes in contact with a plurality of metal plates stacked on each other,
As the plurality of electrodes, among the plurality of metal plates, a welding electrode to be brought into contact with the outermost metal plate and an electric current between the welding electrode to be brought into contact with the outermost metal plate A first current-carrying electrode and a second current-carrying electrode for contacting the welding electrode with the metal plate on the backmost side of the plurality of metal plates. use,
By energizing both the energizing electrodes with the welding electrode, the current supplied from the welding electrode to the outermost metal plate is changed to the first energizing electrode and the first energizing electrode. A resistance welding method characterized by diverting a current to an electrode for two energizations.
前記複数枚の金属板に対して複数の点で前記溶接部を形成するに際して、
前記第一通電用電極を、既に形成した前記溶接部のうち前記溶接用電極に最も近接する前記溶接部よりも前記溶接用電極に近づけた位置で前記最表面側の金属板と接触させ、該接触位置で前記分流通電を行う請求項1に記載の抵抗溶接方法。
When forming the welded portion at a plurality of points with respect to the plurality of metal plates,
The first energization electrode is brought into contact with the outermost metal plate at a position closer to the welding electrode than the welding portion closest to the welding electrode among the already formed welding portions; The resistance welding method according to claim 1, wherein the shunt energization is performed at a contact position.
JP2010147493A 2010-06-29 2010-06-29 Resistance welding method Pending JP2012011398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010147493A JP2012011398A (en) 2010-06-29 2010-06-29 Resistance welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010147493A JP2012011398A (en) 2010-06-29 2010-06-29 Resistance welding method

Publications (1)

Publication Number Publication Date
JP2012011398A true JP2012011398A (en) 2012-01-19

Family

ID=45598452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010147493A Pending JP2012011398A (en) 2010-06-29 2010-06-29 Resistance welding method

Country Status (1)

Country Link
JP (1) JP2012011398A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076124A (en) * 2010-10-01 2012-04-19 Honda Motor Co Ltd Indirect feeding type welding device
WO2013172202A1 (en) 2012-05-18 2013-11-21 本田技研工業株式会社 Switching electrode and resistance welding device using same, spot welding device and spot welding method
WO2014002947A1 (en) * 2012-06-29 2014-01-03 株式会社神戸製鋼所 Spot welding method
CN103862157A (en) * 2012-12-10 2014-06-18 本田技研工业株式会社 One-side resistance spot welding method and apparatus for carrying out the same
JP2015044215A (en) * 2013-08-28 2015-03-12 株式会社神戸製鋼所 Series spot welding or indirect spot welding method
WO2016013212A1 (en) * 2014-07-23 2016-01-28 Jfeスチール株式会社 Resistance spot welding method
JP2016068096A (en) * 2014-09-26 2016-05-09 富士重工業株式会社 Electric welding device
KR20160055864A (en) 2013-09-12 2016-05-18 신닛테츠스미킨 카부시키카이샤 Resistance spot welding method and welded structure
JP2016101591A (en) * 2014-11-27 2016-06-02 ダイハツ工業株式会社 One-side spot welding method
JP6032285B2 (en) * 2013-04-09 2016-11-24 Jfeスチール株式会社 Indirect spot welding method
KR20180071163A (en) * 2017-11-17 2018-06-27 부경대학교 산학협력단 Electric resistance spot welding machine by multi current supply and multi pressure
JP2019171461A (en) * 2018-03-29 2019-10-10 ダイハツ工業株式会社 Resistance welding system
JP2020069497A (en) * 2018-10-30 2020-05-07 ダイハツ工業株式会社 Indirect spot welding method
US10646951B2 (en) 2010-09-30 2020-05-12 Honda Motor Co., Ltd. Welding device
CN117884816A (en) * 2024-03-18 2024-04-16 苏芯物联技术(南京)有限公司 Rapid process recommendation method based on historical welding current process interval

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10646951B2 (en) 2010-09-30 2020-05-12 Honda Motor Co., Ltd. Welding device
JP2012076124A (en) * 2010-10-01 2012-04-19 Honda Motor Co Ltd Indirect feeding type welding device
WO2013172202A1 (en) 2012-05-18 2013-11-21 本田技研工業株式会社 Switching electrode and resistance welding device using same, spot welding device and spot welding method
US10399174B2 (en) 2012-05-18 2019-09-03 Honda Motor Co., Ltd. Switching electrode and resistance welding device using same, spot welding device and spot welding method
WO2014002947A1 (en) * 2012-06-29 2014-01-03 株式会社神戸製鋼所 Spot welding method
US10040144B2 (en) 2012-06-29 2018-08-07 Kobe Steel, Ltd. Spot welding method
CN103862157A (en) * 2012-12-10 2014-06-18 本田技研工业株式会社 One-side resistance spot welding method and apparatus for carrying out the same
JP2014113617A (en) * 2012-12-10 2014-06-26 Honda Motor Co Ltd Resistance welding method and resistance welding apparatus
CN103862157B (en) * 2012-12-10 2016-04-06 本田技研工业株式会社 Electric resistance welding method and electric resistance welder
US9694437B2 (en) 2012-12-10 2017-07-04 Honda Motor Co., Ltd. One-side resistance spot welding method and apparatus for carrying out the same
US10207353B2 (en) 2013-04-09 2019-02-19 Jfe Steel Corporation Indirect spot welding method
JP6032285B2 (en) * 2013-04-09 2016-11-24 Jfeスチール株式会社 Indirect spot welding method
JP2015044215A (en) * 2013-08-28 2015-03-12 株式会社神戸製鋼所 Series spot welding or indirect spot welding method
US10252370B2 (en) 2013-09-12 2019-04-09 Nippon Steel & Sumitomo Metal Corportion Resistance spot welding method and welded structure
KR20160055864A (en) 2013-09-12 2016-05-18 신닛테츠스미킨 카부시키카이샤 Resistance spot welding method and welded structure
JP5991444B2 (en) * 2014-07-23 2016-09-14 Jfeスチール株式会社 Resistance spot welding method
WO2016013212A1 (en) * 2014-07-23 2016-01-28 Jfeスチール株式会社 Resistance spot welding method
JP2016068096A (en) * 2014-09-26 2016-05-09 富士重工業株式会社 Electric welding device
JP2016101591A (en) * 2014-11-27 2016-06-02 ダイハツ工業株式会社 One-side spot welding method
KR20180071163A (en) * 2017-11-17 2018-06-27 부경대학교 산학협력단 Electric resistance spot welding machine by multi current supply and multi pressure
KR101953998B1 (en) 2017-11-17 2019-03-04 부경대학교 산학협력단 Electric resistance spot welding machine by multi current supply and multi pressure
JP2019171461A (en) * 2018-03-29 2019-10-10 ダイハツ工業株式会社 Resistance welding system
JP2020069497A (en) * 2018-10-30 2020-05-07 ダイハツ工業株式会社 Indirect spot welding method
JP7240135B2 (en) 2018-10-30 2023-03-15 ダイハツ工業株式会社 Indirect spot welding method
CN117884816A (en) * 2024-03-18 2024-04-16 苏芯物联技术(南京)有限公司 Rapid process recommendation method based on historical welding current process interval
CN117884816B (en) * 2024-03-18 2024-05-17 苏芯物联技术(南京)有限公司 Rapid process recommendation method based on historical welding current process interval

Similar Documents

Publication Publication Date Title
JP2012011398A (en) Resistance welding method
JP6108030B2 (en) Resistance spot welding method
KR101562484B1 (en) Indirect spot welding method
US10399174B2 (en) Switching electrode and resistance welding device using same, spot welding device and spot welding method
JP6471841B1 (en) Resistance spot welding method and manufacturing method of welded member
WO2017212916A1 (en) Resistance spot welding method
JP2008246538A (en) Resistance welding method
JP6112209B2 (en) Resistance spot welding method and manufacturing method of welded structure
JP5549153B2 (en) Indirect spot welding method
KR102305750B1 (en) resistance welding device
JP6590121B1 (en) Resistance spot welding method and manufacturing method of welded member
JP2012187616A (en) Resistance welding apparatus and resistance welding method
JP6519510B2 (en) Method of manufacturing spot welds and manufacturing apparatus therefor
JP5991444B2 (en) Resistance spot welding method
JP5930839B2 (en) Resistance welding apparatus and resistance welding method
JP6969649B2 (en) Resistance spot welding method and welding member manufacturing method
CN112334261B (en) Resistance spot welding method and method for manufacturing welded member
JP2012135775A (en) Spot welding apparatus
JPWO2020004117A1 (en) Resistance spot welding method and welding member manufacturing method
KR101739947B1 (en) Spot welding control method
KR20160054594A (en) Resistance spot welding method and welded structure
JP6135703B2 (en) Resistance spot welding method for automobile and manufacturing method of welding joint for automobile
CN205129199U (en) For multilayer first structure of welder , for multilayer welder and for multilayer welder system
KR102617967B1 (en) Resistance spot welding method and weld member production method
JP5928508B2 (en) Indirect spot welding method