JP2008246538A - Resistance welding method - Google Patents

Resistance welding method Download PDF

Info

Publication number
JP2008246538A
JP2008246538A JP2007091468A JP2007091468A JP2008246538A JP 2008246538 A JP2008246538 A JP 2008246538A JP 2007091468 A JP2007091468 A JP 2007091468A JP 2007091468 A JP2007091468 A JP 2007091468A JP 2008246538 A JP2008246538 A JP 2008246538A
Authority
JP
Japan
Prior art keywords
welding
electrodes
pair
magnetic field
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007091468A
Other languages
Japanese (ja)
Other versions
JP5128159B2 (en
Inventor
Akira Goto
彰 後藤
Junya Tanabe
順也 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007091468A priority Critical patent/JP5128159B2/en
Publication of JP2008246538A publication Critical patent/JP2008246538A/en
Application granted granted Critical
Publication of JP5128159B2 publication Critical patent/JP5128159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resistance welding method that can surely join a plurality of sheet materials of different rigidity. <P>SOLUTION: In the resistance welding method, a plurality of sheet materials 21, 22, 23 are superimposed on each other as a welding workpiece 2. With this workpiece 2 held between a pair of welding electrodes 31, 32 and, by energizing the pair of welding electrodes 31, 32 with electricity, the workpiece 2 is resistance-welded. In this method, during the energization between the pair of welding electrodes 31, 32, a magnetic field is generated in the manner traversing the electric current route between the pair of welding electrodes 31, 32. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、抵抗溶接方法に関する。詳しくは、複数の板材を重ね合わせたワークをスポット溶接する抵抗溶接方法に関する。   The present invention relates to a resistance welding method. Specifically, the present invention relates to a resistance welding method for spot welding a workpiece in which a plurality of plate materials are overlapped.

従来より、自動車の製造工程では、複数枚の板材を重ねて抵抗溶接することが行われている。例えば、自動車のボディを製造する際には、剛性が高く厚い2枚のインナパネルと、このインナパネルよりも剛性が低く薄いアウタパネルと、を重ねて抵抗溶接する。
抵抗溶接では、複数枚の金属の板材を重ね合わせた溶接ワークを一対の電極間に挟んで加圧することにより局部的に接触面積を小さくする。そして、一対の電極間に電流を流すことで、この狭い接触面に大電流を流して、板材間の接触面に溶融部を生じさせる。
特開2003−251469号公報
Conventionally, in a manufacturing process of an automobile, a plurality of plate materials are stacked and resistance-welded. For example, when manufacturing an automobile body, two inner panels having a high rigidity and a thick inner panel and a thin outer panel having a lower rigidity than the inner panel are overlapped and resistance-welded.
In resistance welding, the contact area is locally reduced by pressing a welding work in which a plurality of metal plates are overlapped between a pair of electrodes. And by flowing an electric current between a pair of electrodes, a large electric current is caused to flow through this narrow contact surface, and a melted portion is generated at the contact surface between the plate members.
JP 2003-251469 A

しかしながら、上述のように、高剛性の2枚のパネルに重ねて低剛性のパネルを抵抗溶接する場合には、以下のような問題がある。   However, as described above, when resistance welding a low-rigidity panel over two high-rigidity panels, there are the following problems.

すなわち、高剛性の2枚のパネルを重ね、さらに、この2枚の高剛性のパネルの一方に低剛性のパネルを重ねて、溶接ワークを形成する。次に、一対の電極でこの溶接ワークを挟持すると、高剛性のパネル同士は撓んで互いに反り返り、これら高剛性のパネル同士の接触面積は小さくなる。これに対し、低剛性のパネルは、高剛性のパネルの一方に重ねて配置されているため、この高剛性のパネルになじんで変形する。その結果、低剛性のパネルと高剛性のパネルとの接触面積は、高剛性のパネル同士の接触面積に比べて大きくなり、低剛性のパネルと高剛性のパネルとの接触抵抗は、高剛性のパネル同士の接触抵抗よりも小さくなる。   That is, two high-rigidity panels are overlapped, and a low-rigidity panel is overlapped on one of the two high-rigidity panels to form a welded workpiece. Next, when this welding work is sandwiched between a pair of electrodes, the high-rigidity panels bend and warp each other, and the contact area between these high-rigidity panels decreases. On the other hand, since the low-rigidity panel is arranged so as to overlap one of the high-rigidity panels, it deforms in conformity with the high-rigidity panel. As a result, the contact area between the low rigidity panel and the high rigidity panel is larger than the contact area between the high rigidity panels, and the contact resistance between the low rigidity panel and the high rigidity panel is high. It becomes smaller than the contact resistance between panels.

したがって、この状態で電極間に通電すると、低剛性のパネルと高剛性のパネルとの間の発熱量は、高剛性のパネル間の発熱量よりも小さくなる。よって、高剛性のパネル同士を溶接できても、高剛性のパネルと低剛性のパネルとを確実に溶接できないおそれがあった。   Therefore, when electricity is applied between the electrodes in this state, the amount of heat generated between the low-rigidity panel and the high-rigidity panel is smaller than the amount of heat generated between the high-rigidity panels. Therefore, even if the high-rigidity panels can be welded together, there is a possibility that the high-rigidity panel and the low-rigidity panel cannot be reliably welded.

本発明は、剛性の異なる複数の板材を確実に溶接できる抵抗溶接方法を提供することを目的とする。   An object of this invention is to provide the resistance welding method which can weld reliably several board | plate materials from which rigidity differs.

本発明の抵抗溶接方法は、複数の板材を重ね合わせて溶接ワークとし、この溶接ワークを一対の電極で挟んだ状態で、当該一対の電極間に通電することで、前記溶接ワークを抵抗溶接する抵抗溶接方法であって、前記一対の電極間に通電中、当該一対の電極間の電流経路を横断するように磁場を生じさせることを特徴とする。   In the resistance welding method of the present invention, a plurality of plate materials are overlapped to form a welded workpiece, and the welded workpiece is resistance welded by energizing the pair of electrodes with the welded workpiece sandwiched between the pair of electrodes. In the resistance welding method, a magnetic field is generated so as to cross a current path between the pair of electrodes while the pair of electrodes is energized.

この発明によれば、一対の電極間に通電するとともに、これら一対の電極間の電流経路を横断するように磁場を生じさせた。よって、一対の電極間に流れる電流には、磁場によりローレンツ力が作用し、電流の経路が乱れて、電子の移動距離が長くなる。その結果、溶接ワークの内部抵抗が増大し、溶接ワークの内部の発熱が促進されることとなる。よって、板材の剛性が異なることにより接触面積が広くなる場合でも、板材の内部抵抗を増大して板材内部の発熱を促進できるから、これらの板材同士を確実に溶接できる。   According to the present invention, a current is applied between the pair of electrodes, and a magnetic field is generated so as to traverse the current path between the pair of electrodes. Therefore, the Lorentz force acts on the current flowing between the pair of electrodes due to the magnetic field, the current path is disturbed, and the moving distance of the electrons becomes long. As a result, the internal resistance of the welded workpiece increases, and heat generation inside the welded workpiece is promoted. Therefore, even when the contact area is widened due to the difference in rigidity of the plate materials, the internal resistance of the plate materials can be increased to promote the heat generation inside the plate materials, so that these plate materials can be reliably welded to each other.

この場合、前記磁場の強さおよび向きのうち少なくとも一方を変化させることが好ましい。   In this case, it is preferable to change at least one of the strength and direction of the magnetic field.

磁場の強さや向きを一定にすると、ローレンツ力の作用する方向が一定方向になってしまい、電子の移動経路を長くできないため、内部抵抗が大きくならず、発熱量を増大させることが困難となる。
しかしながら、この発明によれば、磁場の強さおよび向きのうち少なくとも一方を変化させたので、ローレンツ力の作用する方向が変化するので、電子の移動経路を長くすることができ、内部抵抗を大きくして、発熱量を増大できる。
If the strength and direction of the magnetic field are made constant, the direction in which the Lorentz force acts becomes constant and the electron movement path cannot be lengthened, so the internal resistance does not increase and it is difficult to increase the amount of heat generation. .
However, according to the present invention, since at least one of the strength and direction of the magnetic field is changed, the direction in which the Lorentz force acts changes, so that the electron movement path can be lengthened and the internal resistance is increased. Thus, the heat generation amount can be increased.

本発明によれば、一対の電極間に通電するとともに、これら一対の電極間の電流経路を横断するように磁場を生じさせた。よって、一対の電極間に流れる電流には、磁場によりローレンツ力が作用し、電流の経路が乱れて、電子の移動距離が長くなる。その結果、溶接ワークの内部抵抗が増大し、溶接ワークの内部の発熱が促進されることとなる。   According to the present invention, a current is applied between the pair of electrodes, and a magnetic field is generated so as to traverse the current path between the pair of electrodes. Therefore, the Lorentz force acts on the current flowing between the pair of electrodes due to the magnetic field, the current path is disturbed, and the moving distance of the electrons becomes long. As a result, the internal resistance of the welded workpiece increases, and heat generation inside the welded workpiece is promoted.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の一実施形態に係る抵抗溶接方法が適用されたスポット溶接システム1の構成を示す図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a spot welding system 1 to which a resistance welding method according to an embodiment of the present invention is applied.

スポット溶接システム1は、剛性の異なる複数の板材、ここでは3枚の板材を重ね合わせて形成された溶接ワーク2を抵抗溶接するものである。
ここで、溶接ワーク2は、金属製の板材としての厚板21と、この厚板21と剛性および厚みが等しい金属製の厚板22と、厚板21、22よりも剛性が低く薄い金属製の板材としての薄板23と、を重ね合わせて形成されている。
The spot welding system 1 resistance welds a plurality of plate materials having different rigidity, in this case, a weld work 2 formed by superposing three plate materials.
Here, the welding work 2 includes a thick plate 21 as a metal plate material, a thick metal plate 22 having the same rigidity and thickness as the thick plate 21, and a thin metal having a lower rigidity than the thick plates 21 and 22. And a thin plate 23 as a plate material.

スポット溶接システム1は、溶接ワーク2を抵抗溶接する抵抗溶接部3と、溶接ワーク2の内部に磁場を生じさせる磁場発生部4と、を備える。   The spot welding system 1 includes a resistance welding part 3 for resistance welding the welding work 2 and a magnetic field generation part 4 for generating a magnetic field inside the welding work 2.

抵抗溶接部3は、溶接ワーク2を挟んで配置された一対の溶接電極31、32と、これら溶接電極31、32を互いに接近、離隔させる駆動機構33と、溶接電極31、32に電流を供給する溶接電源34と、を備える。
具体的には、溶接電極31は、厚板21側に配置され、溶接電極32は、薄板23側に配置されている。
The resistance welding part 3 supplies a current to the pair of welding electrodes 31 and 32 arranged with the welding workpiece 2 sandwiched therebetween, the drive mechanism 33 that moves the welding electrodes 31 and 32 apart from each other, and the welding electrodes 31 and 32. A welding power source 34.
Specifically, the welding electrode 31 is disposed on the thick plate 21 side, and the welding electrode 32 is disposed on the thin plate 23 side.

図2は、磁場発生部4の構成を示す図である。
磁場発生部4は、電磁石であり、馬蹄形の芯部41と、この芯部41に電線が巻かれて形成されたコイル42と、コイル42に接続された電磁石用電源43と、を備える。
芯部41の両端は、磁極411、412であり、溶接ワーク2の薄板23の表面上に溶接電極32を挟んで配置される。
なお、磁極411、412は、直接、薄板23に接触しておらず、溶接ワーク2の表面に対して絶縁されている。具体的には、磁極411、412と薄板23との間に絶縁材44が介装されている(図1参照)。なお、本実施形態では、絶縁材44を介装したが、これに限らず、磁極411、412を薄板23から離して配置してもよい。
FIG. 2 is a diagram illustrating a configuration of the magnetic field generation unit 4.
The magnetic field generation unit 4 is an electromagnet, and includes a horseshoe-shaped core 41, a coil 42 formed by winding an electric wire around the core 41, and an electromagnet power supply 43 connected to the coil 42.
Both ends of the core portion 41 are magnetic poles 411 and 412, and are arranged on the surface of the thin plate 23 of the welding work 2 with the welding electrode 32 interposed therebetween.
The magnetic poles 411 and 412 are not in direct contact with the thin plate 23 and are insulated from the surface of the welding workpiece 2. Specifically, an insulating material 44 is interposed between the magnetic poles 411 and 412 and the thin plate 23 (see FIG. 1). In this embodiment, the insulating material 44 is interposed. However, the present invention is not limited to this, and the magnetic poles 411 and 412 may be disposed away from the thin plate 23.

電磁石用電源43は、交流電源であり、交流を供給することにより、磁極411、412間に磁場を発生させる。この磁力の変化を示す波形は、図3に示すように、サインカーブであり、磁場の強さや向きが常に変化する。   The electromagnet power supply 43 is an AC power supply, and generates a magnetic field between the magnetic poles 411 and 412 by supplying AC. The waveform indicating the change in magnetic force is a sine curve as shown in FIG. 3, and the strength and direction of the magnetic field always change.

以上のスポット溶接システム1の動作を説明する。
まず、図4に模式的に示すように、駆動機構33を駆動して、溶接電極31、32で溶接ワーク2を加圧して、この溶接ワーク2を挟持する。
The operation of the above spot welding system 1 will be described.
First, as schematically shown in FIG. 4, the driving mechanism 33 is driven to pressurize the welding workpiece 2 with the welding electrodes 31 and 32, and the welding workpiece 2 is clamped.

すると、厚板21、22は撓んで互いに反り返り、これら厚板21、22同士の接触面積は、A1となる。これに対し、薄板23は、厚板22に重ねて配置されているため、この厚板22になじんで変形する。その結果、薄板23と厚板22との接触面積は、厚板21、22同士の接触面積A1よりも大きいA2となり、薄板23と厚板22との接触抵抗は、厚板21、22同士の接触抵抗よりも小さくなる。   Then, the thick plates 21 and 22 bend and warp each other, and the contact area between the thick plates 21 and 22 is A1. On the other hand, since the thin plate 23 is disposed so as to overlap the thick plate 22, the thin plate 23 is deformed by being familiar with the thick plate 22. As a result, the contact area between the thin plate 23 and the thick plate 22 is A2 larger than the contact area A1 between the thick plates 21 and 22, and the contact resistance between the thin plate 23 and the thick plate 22 is between the thick plates 21 and 22. It becomes smaller than the contact resistance.

この状態で、図5に示すように、溶接電源34を駆動して、溶接電極31、32間に通電するとともに、電磁石用電源43を駆動して、磁極411、412間に磁場を生じさせる。すると、この磁場は、薄板23内部において、溶接電極31、32間に流れる電流の経路を横断することになる。   In this state, as shown in FIG. 5, the welding power source 34 is driven to energize the welding electrodes 31 and 32, and the electromagnet power source 43 is driven to generate a magnetic field between the magnetic poles 411 and 412. Then, this magnetic field traverses the path of the current flowing between the welding electrodes 31 and 32 inside the thin plate 23.

すると、厚板21、22間の接触抵抗は、薄板23と厚板22との接触抵抗よりも大きいため、図6に示すように、主に厚板21、22間で発熱し、この厚板21、22間には、溶融部24が生じる。   Then, since the contact resistance between the thick plates 21 and 22 is larger than the contact resistance between the thin plate 23 and the thick plate 22, heat is generated mainly between the thick plates 21 and 22, as shown in FIG. A melted portion 24 is generated between 21 and 22.

また、磁極411、412間に生じた磁場は、薄板23内部において、溶接電極31、32間の電流経路を横断するので、溶接電極31、32間を流れる電流には、磁場によりローレンツ力が作用する。よって、図7に模式的に示すように、薄板23内部では、電流の経路が乱れて、電子の移動距離が長くなるので、薄板23の内部抵抗が増大し、薄板23の内部には、発熱により溶融部25が生じる。   Further, since the magnetic field generated between the magnetic poles 411 and 412 traverses the current path between the welding electrodes 31 and 32 inside the thin plate 23, the Lorentz force acts on the current flowing between the welding electrodes 31 and 32 by the magnetic field. To do. Therefore, as schematically shown in FIG. 7, the current path is disturbed inside the thin plate 23, and the moving distance of electrons becomes long, so that the internal resistance of the thin plate 23 increases, and heat is generated inside the thin plate 23. As a result, a melted portion 25 is generated.

その後、厚板21、22間に生じた溶融部24は、次第に成長し、図8に示すように、薄板23内部の溶融部25まで到達する。その結果、図9に示すように、溶融部24は、溶融部25と完全に一体化し、薄板23にも十分な溶け込みが得られる。   Thereafter, the melted portion 24 generated between the thick plates 21 and 22 gradually grows and reaches the melted portion 25 inside the thin plate 23 as shown in FIG. As a result, as shown in FIG. 9, the melting portion 24 is completely integrated with the melting portion 25, and sufficient penetration can be obtained in the thin plate 23.

本実施形態によれば、以下のような効果がある。
(1)溶接電極31、32間に通電するとともに、これら溶接電極31、32間の電流経路を横断するように磁場を生じさせた。よって、溶接電極間に流れる電流には、磁場によりローレンツ力が作用し、電流の経路が乱れて、電子の移動距離が長くなる。その結果、溶接ワーク2の内部抵抗が増大し、溶接ワーク2の内部の発熱が促進されることとなる。よって、厚板22と薄板23との剛性が異なることにより接触面積が広くなっても、薄板23の内部抵抗を増大して薄板23内部の発熱を促進できるから、これらの板材21、22、23を確実に溶接できる。
According to this embodiment, there are the following effects.
(1) While energizing between the welding electrodes 31, 32, a magnetic field was generated so as to cross the current path between the welding electrodes 31, 32. Therefore, the Lorentz force acts on the current flowing between the welding electrodes due to the magnetic field, the current path is disturbed, and the moving distance of electrons becomes long. As a result, the internal resistance of the welding workpiece 2 increases, and the heat generation inside the welding workpiece 2 is promoted. Therefore, even if the contact area is widened due to the difference in rigidity between the thick plate 22 and the thin plate 23, the internal resistance of the thin plate 23 can be increased and the heat generation inside the thin plate 23 can be promoted. Therefore, these plate materials 21, 22, 23 Can be reliably welded.

(2)磁場発生部4により、磁力をサインカーブに沿って変化させたので、磁場の強さや向きが常に変化し、ローレンツ力の作用する方向が常に変化するから、電子の移動経路を長くすることができ、内部抵抗を大きくして、薄板23内部での発熱量を増大できる。   (2) Since the magnetic force is changed along the sine curve by the magnetic field generator 4, the strength and direction of the magnetic field always change, and the direction in which the Lorentz force acts always changes, so the electron movement path is lengthened. The internal resistance can be increased, and the amount of heat generated in the thin plate 23 can be increased.

なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、上述の実施形態では、磁場における磁力の波形をサインカーブとしたが、これに限らず、矩形状としてもよい。
It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.
For example, in the above-described embodiment, the waveform of the magnetic force in the magnetic field is a sine curve, but the present invention is not limited to this and may be a rectangular shape.

また、本実施形態では、厚板21、22間に生じた溶融部24を成長させて、薄板23内部の溶融部25まで到達させたが、これに限らない。すなわち、溶接電源34および電磁石用電源43を調整することにより、厚板21、22間に生じた溶融部24だけではなく、薄板23内部の溶融部25も成長させて、これら溶融部24と溶融部25とを一体化させてもよい。   Further, in the present embodiment, the melted portion 24 generated between the thick plates 21 and 22 is grown and reaches the melted portion 25 inside the thin plate 23, but is not limited thereto. That is, by adjusting the welding power source 34 and the electromagnet power source 43, not only the melting portion 24 generated between the thick plates 21 and 22 but also the melting portion 25 inside the thin plate 23 is grown, and the melting portion 24 and the melting portion 24 are melted. The unit 25 may be integrated.

また、本実施形態では、3枚の板材21、22、23を重ね合わせて溶接ワーク2を形成したが、これに限らない。例えば、溶接ワークを2枚の板材で形成してもよい。具体的には、図10に示すように、溶接ワーク2Aを、厚板51と、この厚板51よりも剛性が低く薄い薄板52と、を重ね合わせて形成する。そして、この溶接ワーク2Aを溶接電極31、32で挟持し、溶接電極31、32間に通電するとともに、磁極411、412間に磁場を生じさせる。すると、厚板51と薄板52との間で発熱するとともに、薄板52の内部でも発熱し、薄板52の内部から厚板51に亘って溶融部26が発生する。   In the present embodiment, the three workpieces 21, 22, and 23 are overlapped to form the welding workpiece 2, but the present invention is not limited to this. For example, the welding workpiece may be formed of two plate materials. Specifically, as shown in FIG. 10, the welding work 2 </ b> A is formed by superposing a thick plate 51 and a thin plate 52 having a rigidity lower than that of the thick plate 51 and thin. Then, the welding workpiece 2A is sandwiched between the welding electrodes 31 and 32, energized between the welding electrodes 31 and 32, and a magnetic field is generated between the magnetic poles 411 and 412. Then, heat is generated between the thick plate 51 and the thin plate 52, and heat is also generated inside the thin plate 52, and the melting part 26 is generated from the inside of the thin plate 52 to the thick plate 51.

本発明の一実施形態に係る抵抗溶接方法が適用されたスポット溶接システムの構成を示す図である。It is a figure which shows the structure of the spot welding system to which the resistance welding method which concerns on one Embodiment of this invention was applied. 前記実施形態に係るスポット溶接システムの磁場発生部の構成を示す図である。It is a figure which shows the structure of the magnetic field generation part of the spot welding system which concerns on the said embodiment. 前記実施形態に係るスポット溶接システムの磁場発生部により発生する磁力の変化を示す図である。It is a figure which shows the change of the magnetic force generated by the magnetic field generation part of the spot welding system which concerns on the said embodiment. 前記実施形態に係るスポット溶接システムの駆動機構により溶接ワークを加圧した状態を示す模式図である。It is a schematic diagram which shows the state which pressurized the welding workpiece with the drive mechanism of the spot welding system which concerns on the said embodiment. 前記実施形態に係るスポット溶接システムの溶接電極間に通電した状態を示す図である。It is a figure which shows the state which electrically supplied between the welding electrodes of the spot welding system which concerns on the said embodiment. 前記実施形態に係るスポット溶接システムにより溶接ワークに溶融部を発生させた状態を示す図である。It is a figure which shows the state which generated the fusion | melting part in the welding workpiece with the spot welding system which concerns on the said embodiment. 前記実施形態に係るスポット溶接システムの溶接電極間の電流経路を示す模式図である。It is a schematic diagram which shows the electric current path between the welding electrodes of the spot welding system which concerns on the said embodiment. 前記実施形態に係るスポット溶接システムにより溶融部を成長させた状態を示す図である。It is a figure which shows the state which made the molten part grow with the spot welding system which concerns on the said embodiment. 前記実施形態に係るスポット溶接システムにより溶接が完了した状態を示す図である。It is a figure which shows the state which welding was completed by the spot welding system which concerns on the said embodiment. 本発明の変形例に係る抵抗溶接方法が適用されたスポット溶接システムにより溶融部を発生させた状態を示す図である。It is a figure which shows the state which generated the fusion | melting part with the spot welding system to which the resistance welding method which concerns on the modification of this invention was applied.

符号の説明Explanation of symbols

2 溶接ワーク
21、22 厚板(板材)
23 薄板(板材)
31、32 溶接電極(電極)

2 Welding work 21, 22 Thick plate (plate material)
23 Thin plate (plate material)
31, 32 Welding electrode (electrode)

Claims (2)

複数の板材を重ね合わせて溶接ワークとし、この溶接ワークを一対の電極で挟んだ状態で、当該一対の電極間に通電することで、前記溶接ワークを抵抗溶接する抵抗溶接方法であって、
前記一対の電極間に通電中、当該一対の電極間の電流経路を横断するように磁場を生じさせることを特徴とする抵抗溶接方法。
A resistance welding method for resistance welding the welded workpiece by energizing between the pair of electrodes in a state where a plurality of plate materials are overlapped to form a welded workpiece and the welded workpiece is sandwiched between the pair of electrodes,
A resistance welding method, wherein a magnetic field is generated so as to cross a current path between the pair of electrodes during energization between the pair of electrodes.
請求項1に記載の抵抗溶接方法において、
前記磁場の強さおよび向きのうち少なくとも一方を変化させることを特徴とする抵抗溶接方法。
The resistance welding method according to claim 1,
A resistance welding method, wherein at least one of the strength and direction of the magnetic field is changed.
JP2007091468A 2007-03-30 2007-03-30 Resistance welding method Active JP5128159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007091468A JP5128159B2 (en) 2007-03-30 2007-03-30 Resistance welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007091468A JP5128159B2 (en) 2007-03-30 2007-03-30 Resistance welding method

Publications (2)

Publication Number Publication Date
JP2008246538A true JP2008246538A (en) 2008-10-16
JP5128159B2 JP5128159B2 (en) 2013-01-23

Family

ID=39972106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007091468A Active JP5128159B2 (en) 2007-03-30 2007-03-30 Resistance welding method

Country Status (1)

Country Link
JP (1) JP5128159B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101850468A (en) * 2009-03-31 2010-10-06 本田技研工业株式会社 Electric resistance welding method and electric resistance welder
CN102198562A (en) * 2010-03-23 2011-09-28 本田技研工业株式会社 Seam welding method and machine therefor
CN102554434A (en) * 2010-09-29 2012-07-11 本田技研工业株式会社 Spot welding method and spot welding apparatus
CN103028829A (en) * 2012-12-14 2013-04-10 浙江天齐电气有限公司 Quick and accurate welding system for distribution box body
WO2014002947A1 (en) * 2012-06-29 2014-01-03 株式会社神戸製鋼所 Spot welding method
KR101406547B1 (en) 2012-08-22 2014-06-11 주식회사 포스코 Welding apparatus and welding electrode
CN104607783A (en) * 2013-09-05 2015-05-13 通用汽车环球科技运作有限责任公司 Welding Device for Welding a Connecting Portion and Method for Welding the Connecting Portion with the Welding Assembly
DE112010002236B4 (en) * 2009-06-05 2017-11-16 Honda Motor Co., Ltd. Resistance welding device and method therefor
US10399174B2 (en) 2012-05-18 2019-09-03 Honda Motor Co., Ltd. Switching electrode and resistance welding device using same, spot welding device and spot welding method
WO2024070459A1 (en) * 2022-09-29 2024-04-04 Jfeスチール株式会社 Resistance spot welding method and welded joint manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3139742A1 (en) * 2022-09-16 2024-03-22 Gaming Engineering Spot welding process

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8253056B2 (en) 2009-03-31 2012-08-28 Honda Motor Co., Ltd. Resistance welding method and resistance welding apparatus
CN101850468A (en) * 2009-03-31 2010-10-06 本田技研工业株式会社 Electric resistance welding method and electric resistance welder
DE112010002236B4 (en) * 2009-06-05 2017-11-16 Honda Motor Co., Ltd. Resistance welding device and method therefor
CN102198562A (en) * 2010-03-23 2011-09-28 本田技研工业株式会社 Seam welding method and machine therefor
US20110233173A1 (en) * 2010-03-23 2011-09-29 Honda Motor Co., Ltd. Seam welding method and machine therefor
CN102554434A (en) * 2010-09-29 2012-07-11 本田技研工业株式会社 Spot welding method and spot welding apparatus
CN102554434B (en) * 2010-09-29 2014-04-16 本田技研工业株式会社 Spot welding method and spot welding apparatus
US10399174B2 (en) 2012-05-18 2019-09-03 Honda Motor Co., Ltd. Switching electrode and resistance welding device using same, spot welding device and spot welding method
WO2014002947A1 (en) * 2012-06-29 2014-01-03 株式会社神戸製鋼所 Spot welding method
US10040144B2 (en) 2012-06-29 2018-08-07 Kobe Steel, Ltd. Spot welding method
KR101406547B1 (en) 2012-08-22 2014-06-11 주식회사 포스코 Welding apparatus and welding electrode
CN103028829B (en) * 2012-12-14 2015-09-09 浙江天齐电气有限公司 The quick accurate welding system of distributing box
CN103028829A (en) * 2012-12-14 2013-04-10 浙江天齐电气有限公司 Quick and accurate welding system for distribution box body
CN104607783A (en) * 2013-09-05 2015-05-13 通用汽车环球科技运作有限责任公司 Welding Device for Welding a Connecting Portion and Method for Welding the Connecting Portion with the Welding Assembly
WO2024070459A1 (en) * 2022-09-29 2024-04-04 Jfeスチール株式会社 Resistance spot welding method and welded joint manufacturing method

Also Published As

Publication number Publication date
JP5128159B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5128159B2 (en) Resistance welding method
JP3530322B2 (en) Upward / vertical welding method
JP2011125928A (en) Laser welding method for steel sheet
CN104684676B (en) Non-consumable electrode welding system and its welding method
JP2013035037A (en) Spot welding apparatus
JP2014501177A (en) Method and method for welding using curtain and strip electrodes
JP5803116B2 (en) Indirect spot welding method
JP2011161509A (en) Plasma arc welding method, multi-pass welding method, and equipment therefor
JP2011050977A (en) Indirect spot welding method
JPWO2015037652A1 (en) Resistance spot welding method and welded structure
JP2004243333A (en) Welding apparatus and welding method
JP4753411B2 (en) Energization control method for spot resistance welding
JP2012187616A (en) Resistance welding apparatus and resistance welding method
JP2014113617A (en) Resistance welding method and resistance welding apparatus
JP2019111552A (en) Laser welding method
JP2016059937A (en) Spot weld device
JP5871675B2 (en) Arc welding apparatus and arc welding method
JP7255119B2 (en) Indirect spot welding device and welding method
JP2907317B2 (en) Laser welding method for railway vehicle structures
JP2007069231A (en) Method of vertical position welding, and structure welded by vertical position welding
JP2013240810A (en) Apparatus and method for resistance welding
JP2013182881A (en) Magnetic channel
JP2012135775A (en) Spot welding apparatus
JP2007216292A (en) Laser welding equipment and gap control method upon laser welding
JP2014034059A (en) Electromagnetic welding method for colliding metallic jets, and magnetic flux generating coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5128159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250