JP2011513437A - ミトコンドリア由来の抗ガン化合物 - Google Patents

ミトコンドリア由来の抗ガン化合物 Download PDF

Info

Publication number
JP2011513437A
JP2011513437A JP2010550000A JP2010550000A JP2011513437A JP 2011513437 A JP2011513437 A JP 2011513437A JP 2010550000 A JP2010550000 A JP 2010550000A JP 2010550000 A JP2010550000 A JP 2010550000A JP 2011513437 A JP2011513437 A JP 2011513437A
Authority
JP
Japan
Prior art keywords
cells
cancer
moiety
prooxidant
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010550000A
Other languages
English (en)
Other versions
JP2011513437A5 (ja
JP5616798B2 (ja
Inventor
スティーブン・ジョン・ラルフ
イリ・ネウジル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2008901261A external-priority patent/AU2008901261A0/en
Application filed by Individual filed Critical Individual
Publication of JP2011513437A publication Critical patent/JP2011513437A/ja
Publication of JP2011513437A5 publication Critical patent/JP2011513437A5/ja
Application granted granted Critical
Publication of JP5616798B2 publication Critical patent/JP5616798B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/6552Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a six-membered ring
    • C07F9/65522Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a six-membered ring condensed with carbocyclic rings or carbocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • A61K31/355Tocopherols, e.g. vitamin E
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/55Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds
    • A61K47/551Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound the modifying agent being also a pharmacologically or therapeutically active agent, i.e. the entire conjugate being a codrug, i.e. a dimer, oligomer or polymer of pharmacologically or therapeutically active compounds one of the codrug's components being a vitamin, e.g. niacinamide, vitamin B3, cobalamin, vitamin B12, folate, vitamin A or retinoic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • C07D311/70Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with two hydrocarbon radicals attached in position 2 and elements other than carbon and hydrogen in position 6
    • C07D311/723,4-Dihydro derivatives having in position 2 at least one methyl radical and in position 6 one oxygen atom, e.g. tocopherols

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)

Abstract

本発明は、抗ガン化合物およびガンを治療または予防する方法に関する。1つの態様において、本発明は、活性酸素種を生成し、ガン細胞のアポトーシスを誘発するミトコンドリア由来のプロオキシダント抗ガン化合物に関する。デリバリー部分は、脂溶性カチオンであり得、プロオキシダント部分は、α-コハク酸トコフェリル、α-マレイン酸トコフェリル、α-トコフェリルマレイルアミドまたは2,5,7,8-テトラメチル-2R-(4R,8R,12-トリメチルトリデシル)-クロマン-6-イルオキシ酢酸(α-トコフェリルオキシ酢酸)などのプロオキシダントビタミンE類縁体であり得る。

Description

本発明は、特に、抗ガン化合物およびガンを治療または予防する方法に関する。さらに詳しくは、本発明は、活性酸素種を生成し、ガン性細胞のアポトーシスを誘発するミトコンドリア由来のプロオキシダント(酸化促進性)抗ガン化合物に関する。に関する。
分子医学の発達とともに、ガンの開始、進行および治療の分子生物学についての我々の理解は改善されており、よりよい治療的手段をもたらしている。しかしながら、新生細胞は、染色体不安定性をもつ脱分化した正常細胞として特徴付けられるので、新たな突然変異が起こり、定着した抗がん剤を時代遅れにしてしまう。悪性中皮腫(MMs)などの特定の悪性腫瘍は、現在のところ、治療することができない(Robinson BW、Musk AW、Lake A (2005) Lancet 366、397-408)。HER2陽性乳ガン(Piccart-Gebhart MJら、(2005) N Engl J Med 353、1659-1672)などの他のガンは、著しい心臓毒性を示す非常に高価なハーセプチン(Herceptine)(登録商標)に頼っている。したがって、現在の治療手段の問題を克服する新たな薬物および方策が必要とされている。
それによってミトコンドリアの標的化が前途有望で、有効性の高い抗がん手段としてますます評価されるようになってきている新規な概念が出現している(Don AS、 Hogg PJ (2004) Trends Mol Med 10、372-378;Armstrong JS (2007) Br J Pharmacol 151、1154-1165)。近年、本発明者らは、ガン細胞内のミトコンドリアを不安定にすることによってアポトーシスを誘発する抗ガン活性を有する小分子を指す「マイトカン(mitocan)」という用語を提案している(Neuzil J、Wang XF、Dong LF、Low P、Ralph SJ (2006) FEBS Lett 580、5125-5129;Neuzil Jら、(2007) J Bioenerg Biomembr 39、65-72;Neuzil Jら、(2007) Mol Pharmacol 71、1185-1199)。本発明者らは、第I表に示すように、これらの分子を、それらの作用機序によって分類している(Neuzil Jら、(2007) Mol Pharmacol 71、1185-1199)。
第I表:マイトカンの分類
Figure 2011513437
マイトカンのリストは、現在、7つのグループを包含し、それぞれ、ミトコンドリア不安定化および続いての内因性アポトーシス経路の誘発を引き起こす別個の活性をもつ作用剤を含む(Neuzil Jら、(2007) Mol Pharmacol 71、1185-1199).
マイトカンは、これらの化合物のいくつかは、正常細胞において少ない影響しかもたない強力で選択的な抗ガン剤なので、ガンの治療にとって魅力があることがわかっている (Neuzil Jら、(2007) Mol Pharmacol 71、1185-119;Ko YHら、(2004) Biochem Biophys Res Commun 324、269-275;Bonnet Sら、(2007) Cancer Cell 11、37-51)。このような薬物の主要な例として、ガン細胞の選択的アポトーシスを誘発するα-コハク酸トコフェリル(α-TOS)が挙げられる(Neuzil J、Weber T、Gellert N、Weber C (2001) Br J Cancer 84、87-89;Neuzil Jら、(2004) Curr Cancer Drug Targets 4、267-284) as well as 3-bromopyruvate (3BP) (Ko YHら、(2004) Biochem Biophys Res Commun 324、269-275;Geschwind JFら、(2002) Cancer Res 62、3909-3913)、dichloroacetate (DCA) (Bonnet Sら、(2007) Cancer Cell 11、37-51) and β -phenylethyl isothiocyanate (PITC) (Trachootham Dら、(2006) Cancer Cell 10、241-252)。
3BPは、主にミトコンドリアの外面に結合する解糖経路の酵素であるヘキソキナーゼを阻害し、また、ミトコンドリア酵素コハク酸デヒドロゲナーゼ(SDH)を阻害し、細胞内ATP産生およびミトコンドリア呼吸を抑制する(Ko YHら、(2004) Biochem Biophys Res Commun 324、269-275;Xu RHら、(2005) Cancer Res 65、613-621)。
DCAは、ミトコンドリアピルビン酸デヒドロゲナーゼキナーゼを阻害することによってガン細胞を選択的に標的化すると思われる(Bonnet Sら、(2007) Cancer Cell 11、37-51)。PITCは、活性酸素種(ROS)の生成を引き起こすことによってガン細胞を選択的に殺す(Trachootham Dら、(2006) Cancer Cell 10、241-252)。これらすべてのマイトカンの例は、改善された高度に選択的な新規な抗ガン剤を開発するための実質的な有望性および新しい方向性をもつ新たない一群を反映する。
マイトカンの1つのグループとして、ビタミンEのプロオキシダント類縁体が挙げられる(Wang XF、Dong LF、Zhao Y、Tomasetti M、Wu K、Neuzil J (2006) Vitamin E analogues as anti-cancer agents: Lessons from studies with α-tocopheryl succinate. Mol Nutr Food Res 50:675-685)。α-TOSに代表されるプロオキシダントビタミンE類縁体の、抗ガン剤としての大きな有望性は、それらが悪性腫瘍を抑制することがわかっているヌードマウスで増殖するヒト異種移植片などの実験的に作り出されたガンを用いる研究から生じる(Neuzil J、Tomasetti M、Mellick AS、Alleva R、Salvatore BA、Birringer M、Fariss MW (2004) Vitamin E analogues: A new class of inducers of apoptosis with selective 抗ガン effects. Curr Cancer Drug Targets 4:355-372に掲載)。このような研究として、結腸直腸ガン(Neuzil J、Weber T、Gellert N、Weber C (2001) Selective cancer cell killing by α-コハク酸トコフェリル。Br J Cancer 84:87-89;Neuzil J、Weber T、Schroder A、Lu M、Ostermann G、Gellert N、Mayne GC、Olejnicka B、Negre-Salvayre A、Sticha M、Coffey RJ、Weber C (2001) Induction of apoptosis in cancer cells by α-コハク酸トコフェリル: Molecular pathways and structural requirements. FASEB J 15:403-415;Weber T、Lu M、Andera L、Lahm H、Gellert N、Fariss MW、Korinek V、Sattler W、Ucker DS、Terman A、Schroder A、Erl W、Brunk UT、Coffey RJ、Weber C、Neuzil J (2002) Vitamin E succinate is a potent novel anti-neoplastic agent with high tumor selectivity and cooperativity with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL、Apo2L) in vivo. Clin Cancer Res 8:863-869)および肺ガン(Quin J、Engle D、Litwiller A、Peralta E、Grasch A、Boley T、Hazelrigg S (2005) Vitamin E succinate decreases lung cancer tumor growth in mice。J Surg Res 127:139-143)、melanomas (Malafa MP、Fokum FD、Mowlavi A、Abusief M、King M (2002) Vitamin E inhibits melanoma growth in mice. Surgery 131:85-91)ならびに中皮腫(Tomasetti M、Gellert N、Procopio A、Neuzil J (2004) A vitamin E analogue suppresses malignant mesothelioma in a pre-clinical model: A prototype of a future drug against a fatal neoplastic disease? Int J Cancer 109:641-642;Stapelberg M、Gellert N、Swettenham E、Tomasetti M、Witting PK、Procopio A、Neuzil J (2005) α-Tocopheryl succinate inhibits malignant mesothelioma by disruption of the FGF autocrine signaling loop: Mechanism and the role of oxidative stress. J Biol Chem 280:25369-25376)が挙げられる。α-TOSもまた、乳ガンの休眠を促進し(Malafa et al、2000)、結腸ガンの肝臓への転移を抑制することがわかっている(Barnett KT、Fokum FD、Malafa MP (2002) Vitamin E succinate inhibits colon cancer liver metastases。J Surg Res 106:292-298)。
ビタミンE(α-トコフェロール、α-TOH)は、細胞において強力な抗酸化剤として働くが、エステル化された、酸化還元をしないプロオキシダントビタミンE類縁体であるα-TOSは、別個の特性を有する。α-TOHとは対照的に、α-TOSは、さまざまな異なるガン細胞株においてROSの急速な産生を引き起こす強い細胞ストレッサーとして働く(Neuzil J、Tomasetti M、Mellick AS、Alleva R、Salvatore BA、Birringer M、Fariss MW (2004) Vitamin E analogues: A new class of inducers of apoptosis with selective anti-cancer effects. Curr Cancer Drug Targets 4:355-372; Weber T、Dalen H、Andera L、Negre-Salvayre A、Auge N、Sticha M、Lloret A、Terman A、Witting PK、Higuchi M、Plasilova M、Zivny J、Gellert N、Weber C、Neuzil J (2003) Mitochondria play a central role in apoptosis induced by α-tocopheryl succinate、an agent with anticancer activity. Comparison with receptor-mediated pro-apoptotic signaling. Biochemistry 42:4277-4291;Wang XF、Witting PK、Salvatore BA、Neuzil J (2005) α-Tocopheryl succinate induces apoptosis in HER2/erbB2-overexpressing breast cancer cells by signalling via the mitochondrial pathway。Biochem Biophys Res Commun 326:282-289;Swettenham E、Witting PK、Salvatore BA、Neuzil J (2005) α-Tocopheryl succinate selectively induces apoptosis in neuroblastoma cells: Potential therapy of malignancies of the nervous system? J Neurochem 94:1448-1456;Stapelberg M、Gellert N、Swettenham E、Tomasetti M、Witting PK、Procopio A、Neuzil J (2005) α-Tocopheryl succinate inhibits malignant mesothelioma by disruption of the FGF autocrine signaling loop: Mechanism and the role of oxidative stress. J Biol Chem 280:25369-25376)。また、α-TOSは、Bcl-2/Bcl-xLに結合して阻害する能力を有する(Dong LF、Wang XF、Zhao Y、Tomasetti M、Wu K、Neuzil J (2006) Vitamin E analogues as anti-cancer agents: the role of modulation of apoptosis signalling pathways. Cancer Therapy 4:35-46)。これまでの証拠は、α-TOSのガン細胞特異的性質および正常細胞における毒性効果の欠如が、正常細胞がより大きい抗酸化防御に恵まれており(Allen RG、Balin AK (2003) Effects of oxygen on the antioxidant responses of normal and transformed cells. Exp Cell Res 289:307-316;Safford SE、Oberley TD、Urano M、St Clair DK (1994) Suppression of fibrosarcoma metastasis by elevated expression of manganese superoxide dismutase. Cancer Res 54:4261-4265;Church SL、Grant JW、Ridnour LA、Oberley LW、Swanson PE、Meltzer PS、Trent JM (1993) Increased manganese superoxide dismutase expression supresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci USA 90:3113-3117)、および/または、コハク酸部分を放出して、酸化還元活性があり、非アポトーシス性であるα-TOHによって、α-TOSを不活化する高レベルのエステラーゼを含むゆえに起こる(Fariss MW、Nicholls-Grzemski FA、Tirmenstein MA、Zhang JG (2001) Enhanced antioxidant and cytoprotective abilities of vitamin E succinate is associated with a rapid uptake advantage in rat hepatocytes and mitochondria. Free Radic Biol Med 31:530-541;Neuzil J、Tomasetti M、Mellick AS、Alleva R、Salvatore BA、Birringer M、Fariss MW (2004) Vitamin E analogues: A new class of inducers of apoptosis with selective anti-cancer effects. Curr Cancer Drug Targets 4:355-372;Neuzil J、Massa H (2005) Hepatic processing determines dual activity of vitamin E succinate. Biochem Biophys Res Commun 327:1024-1027)ことを示唆する。
天然のビタミンEは、クロマノール環のメチル化パターン(α-、β -、γ-、Δ-トコフェロール)およびフィチル側鎖の二重結合の数(α-、β -、γ-、Δ-トコトリエノール)によって異なる8種の化合物の混合物からなる。インビトロおよびインビボの親油性抗酸化剤としてのこれらの分子の役割は、広く認められている。さらに、VEファミリーのメンバーの非抗酸化剤特性もまた、研究されている(Azzi A、Ricciarelli R and Zingg JM (2002) Non-antioxidant molecular functions of α-tocopherol (vitamin E). FEBS Lett 519:8-10)。
ビタミンE分子は、3つの異なるドメインに分割することができる。機能的ドメイン(I)は、クロマノール環のC6位における置換パターンから生じる。遊離のヒドロキシ基は、ビタミンEが抗酸化剤として機能するために必須であるので、この位置は、分子が酸化還元活性または酸化還元サイレントとして振る舞うかどうかを決定する。文書で十分に立証された、4種のトコフェロール異性体の抗酸化特性は、ガン臨床試験への適用をもたらした。これらの研究は、ガンの予防における遊離トコフェロールの使用に関して肯定的な結果を明らかにしなかった(Pham DQ and Plakogiannis R (2005) Vitamin E supplementation in cardiovascular disease and cancer prevention: Part 1。Ann Pharmacother 39:1870-8)。しかし、C6における特定の化学的修飾は、強力な抗腫瘍剤であることが立証されたエーテル(RO-)、エステル(RCOO-)およびアミド(RCONH-)をもたらした。下記の第II表を参照。
第II表:
ビタミンE類縁体の抗増殖活性
化合物は、シグナル伝達ドメインによって分類される。
Figure 2011513437
Figure 2011513437
Figure 2011513437
a無効;b細胞増殖の阻害;cα-TOSよりも細胞毒性が高い;d54よりも効果が低い;eエーテル類縁体がα-TOS自体よりも効果が低い;fα-TOSと同程度;gEC50 [μg/ml];hα-TOSよりも効率的。
第III表:
修飾疎水性ドメインを有するビタミンE類縁体の抗増殖活性
Figure 2011513437
a無効;b50 μMにおいて弱い阻害;c10 μMにおいて82%阻害。
第IV表:
ビタミンE類縁体の抗増殖活性
化合物は、シグナル伝達ドメインによって分類される。
Figure 2011513437
Figure 2011513437
a0-40 μMの範囲において細胞毒性;b非常に強力;c完全阻害;dα-TOSと同程度;eγ-トコトリエノールよりも2倍強力;f細胞増殖の阻害。
シグナル伝達ドメイン(II)と称される第2のドメインは、トコフェロールの抗酸化特性とは無関係である活性を示す。これらの特性は、芳香環のメチル化パターンに由来する。たとえば、α-トコフェロールは、ジアシルグリセロール(DAG)レベルを低下させることによってタンパク質キナーゼC(PKC)を阻害することが報告されているが、同様の抗酸化能力を有する他のトコフェロール(たとえば、β -トコフェロール)は、PKCを阻害しない。したがって、α-トコフェロールのPKC阻害活性は、その抗酸化能力とは無関係である(Tasinato A、Boscoboinik D、Bartoli GM、Maroni P and Azzi A (1995) d-α-Tocopherol inhibition of vascular smooth muscle cell proliferation occurs at physiological concentrations、correlates with protein kinase C inhibition、and is independent of its antioxidant properties. Proc Natl Acad Sci USA 92:12190-12194;Kunisaki M、Bursell SE、Clermont AC、Ishii H、Ballas LM、Jirousek MR、Umeda F、Nawata H and King GL (1995) Vitamin E prevents diabetes-induced abnormal retinal blood flow via the diacylglycerol-protein kinase C pathway. Am J Physiol 269:E239-246)。しかし、いくつかの場合、種々のトコフェロールの生物活性は、実際に特定の種に対する抗ガン活性において重大な影響を有する、シグナル伝達ドメインにおける構造的差異によって影響を及ぼされる。たとえば、γ-トコフェロールは、α-トコフェロールよりも非常によい活性酸化窒素種(たとえば、ペルオキシ亜硝酸)のスカベンジャーである。したがって、C5にメチル基を欠いているγ-分子は、その部位において容易にニトロ化される(Morton LW、Ward NC、Croft KD、Puddey IB. (2002) Evidence for the nitration of gamma-tocopherol in vivo: 5-nitro-gamma-tocopherol is elevated in the plasma of subjects with coronary heart disease. Biochem J. Jun 15;364(Pt 3):625-8;Christen S、Woodall AA、Shigenaga MK、Southwell-Keely PT、Duncan MW、Ames BN. (1997) gamma-tocopherol traps mutagenic electrophiles such as NO(X) and complements alpha-tocopherol: physiological implications. Proc Natl Acad Sci U S A。Apr 1;94(7):3217-22)。
ビタミンE異性体の親油性側鎖は、飽和イソプレニルユニットを有するトコフェロールと飽和イソプレニルユニットを有するトコトリエノールを区別する。疎水性ドメイン(III)は、分子がリポタンパク質および膜にそれぞれ結合することができるかどうか、または第1相酵素によって分解されうるかどうかを決定する (Birringer M、Pfluger P、Kluth D、Landes N and Brigelius-Flohe R (2002) Identities and differences in the metabolism of tocotrienols and tocopherols in HepG2 cells. J Nutr 132:3113-3118;Neuzil J、Massa H (2005) Hepatic processing determines dual activity of vitamin E succinate. Biochem Biophys Res Commun 327:1024-1027)。
修飾ヒドロキシル基を有する多くのトコフェロール誘導体が、それらのアポトーシス促進活性について試験されている(第II表)。試験されたもののうち最も優れた誘導体は、クロマノール環のC6位にスクシニルエステルを有するα-TOS(エントリー1)である。その低いpKa(<6)により、α-TOSは、生理的条件下で完全に脱プロトン化され、ミトコンドリア膜を不安定にし、複合体IIにおける効果を有する界面活性剤様分子をもたらす。トコフェロールのジカルボン酸エステルは、構造と活性の関係(SAR)について最もよく研究された化合物を提供する。強いアポトーシス性化合物として、コハク酸α-トコフェロール(1)、シュウ酸トコフェロール(10)、およびマロン酸トコフェロール(11)が挙げられ、後の2つは、B16-F1黒色腫細胞を接種されたマウスにおいて非選択的細胞毒性を誘発する(Kogure K、Manabe S、Suzuki I、Tokumura A and Fukuzawa K (2005) Cytotoxicity of α-tocopheryl succinate、malonate and oxalate in normal and cancer cells in vitro and their anti-cancer effects on mouse melanoma in vivo. J Nutr Sci Vitaminol 51:392-397)。さらに大きいアポトーシス促進活性が、不飽和ジカルボン酸様α-マレイン酸トコフェリル(3)(Birringer M、EyTina JH、Salvatore BA and Neuzil J (2003) Vitamin E analogues as inducers of apoptosis: Structure-function relationship. Br J Cancer 88:1948-1955)およびα-フマル酸トコフェリルに観察されている。ジカルボン酸の鎖長の増加は、グルタミン酸(5)、メチル化グルタル酸(6、7、8)(Birringerら、2003)において明らかにされたように活性の低下をもたらし、ピメリン酸(24)(Kogure K、Hama S、Kisaki M、Takemasa H、Tokumura A、Suzuki I and Fukuzawa K (2004) Structural characteristic of terminal dicarboxylic moiety required for apoptogenic activity of α-tocopheryl esters. Biochim Biophys Acta 1672: 93-99)はまったく活性を示さかった。
全α-TOS分子が、その完全なアポトーシス誘発活性に必要であることが確立されている(Birringer M、EyTina JH、Salvatore BA and Neuzil J (2003) Vitamin E analogues as inducers of apoptosis: Structure-function relationship. Br J Cancer 88:1948-1955)。遊離カルボキシル基のエステル化は、アポトーシス促進活性のない非荷電誘導体(9、25)をもたらす。酢酸トコフェリルおよびプロピオン酸トコフェリル(19)などの脂肪族カルボン酸は、それぞれ、メチルエーテル(18)と同様に不活性であった。α-TOSは腸内エステラーゼによって切断されるので、この化合物の経口投与は効果的ではない(Wu Y、Zu K、Ni J、Yeh S、Kasi D、James NS、Chemler S and Ip C (2004) Cellular and molecular effects of α-tocopheryloxybutyrate: lessons for the design of vitamin E analog for cancer prevention. Anticancer Res 24:3795-3802;Cheeseman KH、Holley AE、Kelly FJ、Wasil M、Hughes L and Burton G (1995) Biokinetics in humans of RRR-α-tocopherol: the free phenol、acetate ester、and succinate ester forms of vitamin E. Free Radic Biol Med 19:591-598)。エステル結合切断の問題を解消するために、エステル結合を加水分解に耐性があるのでエーテル結合と置き換えて、化合物(20、21)および側鎖切断型(truncated)誘導体(42)が合成されている(Wu Y、Zu K、Ni J、Yeh S、Kasi D、James NS、Chemler S and Ip C (2004) Cellular and molecular effects of α-tocopheryloxybutyrate: lessons for the design of vitamin E analog for cancer prevention. Anticancer Res 24:3795-3802;Nishikawa K、Satoh H、Hirai A、Suzuzki K、Asano R、Kumadaki I、Hagiwara K and Yano T (2003) α-Tocopheryloxybutyric acid enhances necrotic cell death in breast cancer cells treated with chemotherapy agent. Cancer Lett 201:51-56;Shun MC、Yu W、Gapor A、Parsons R、Atkinson J、Sanders BG and Kline K (2004) Pro-apoptotic mechanisms of action of a novel vitamin E analog (α-TEA) and a naturally occurring form of vitamin E (Δ-tocotrienol) in MDA-MB-435 human breast cancer cells. Nutr Cancer 48:95-105;Shiau CW、Huang JW、Wang DS、Weng JR、Yang CC、Lin CH、Li C、Chen CS (2006) alpha-tocopheryl succinate induces apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 function. J Biol Chem 281:11819-11825)。メチレン基によるエーテル結合の置き換えは、アポトーシスを促進するのに十分であることに留意すべきである(22)(Sanders G.、ら (2001) Preparation of tocopherols、tocotrienols、other chroman and side chain derivatives that induce cell apoptosis for therapeutic use as antiproliferative agents。2001: PCT Int。Appl。WO 2001058889。p。120)。
エステル結合をアミド結合と置き換える場合、さらに増強されたアポトーシス促進活性が観察された(12、13、37、38)(Tomic-Vatic A、EyTina JH、Chapmann JM、Mahdavian E、Neuzil J and Salvatore BA (2005) Vitamin E amides、a new class of vitamin E analogues with enhanced pro-apoptotic activity. Int J Cancer 117:118-193)。また、不飽和アミド(13、38)は、飽和アミドよりも優れていた。エステル結合の代わりにアミド結合を導入する理論的根拠は、アニリンアミドは、対応するフェノールエステルよりも加水分解する傾向がほとんどないという十分に確立された事実に基づいていた。これらのトコフェリルエステル誘導体の安定性を増強することは、インビボにおいてこれらの分子を保護し、より長く無傷でいることを可能にし、そのことによってそれらのバイオアベイラビリティが増加する。アミドによるエステルのイソステリック置換は、その連結を酵素加水分解しにくくもする。いくつかの非特異的エステラーゼは、腸内粘膜細胞および血液中に存在する。対照的に、ペプチドは、より狭い特異性を示す。たとえば、アミド結合にアミノ酸を有するプロドラッグは、腸および血液内で、それらの対応するエステル類縁体よりも安定である(Sugawara M、Huang W、Fei Y-J、Leibach FH、Ganapathy V and Ganapathy ME (2000) Transport of valganciclovir、a ganciclovir prodrug、via peptide transporters PEPT1 and PEPT2. J Pharm Sci 89:781-789)。
化合物の最後のグループは、一連のプラスに荷電したN-末端を有するリシンα-トコフェリルエステルからなった(15-17)。親水性アンモニウム官能基は、そのカルボキシレート対応物と同様のアポトーシス促進効果を発揮したが、一般的モチーフが、親油性側鎖および親水性頭部基からなる活性にとって必要であることを示唆する。しかし、長鎖脂肪族アルコールのスクシニルエステル(たとえば、フィトールおよびオレオール)は、どのような活性も示さなかった(Birringer M、EyTina JH、Salvatore BA and Neuzil J (2003) Vitamin E analogues as inducers of apoptosis: Structure-function relationship. Br J Cancer 88:1948-1955)。
一般的な構造と活性の関係は、第II表に示すデータから引き出すことができる。
1.絶大なプロオキシダントおよびアポトーシス促進活性を得るために、機能的ドメインIの修飾は、解離した酸または荷電したアンモニウム基からなる親水性頭部基を要求した。
2.機能的ドメインの鎖長および不飽和の程度が、アポトーシス活性を決定した。コンホメーション的制限が、活性を増強するように見えた。
3.機能的ドメインの化学結合は、エステルに限定されず、他の官能基は、誘導体の酵素的分解を防止した。
クロマノール環の置換パターンは、トコフェロールの抗酸化特性に関係するのみではないことが多い(Azzi A、Ricciarelli R and Zingg JM (2002) Non-antioxidant molecular functions of α-tocopherol (vitamin E). FEBS Lett 519:8-10)。異なる生化学的観察が、シグナル伝達および代謝過程におけるα-トコフェロールの役割を強調している。したがって、α-トコフェロールは、肝臓内で、他のトコフェロールおよびトコトリエノールと比べてα-トコフェロールに高い親和性をもつ32 kDaのタンパク質であるα-トコフェロールトランスファータンパク質(α-TTP)によって選択的に認識される。α-TTPへの相対的親和性は、クロマノール環のメチルバイオアベイラビリティの損失とともに減少する (α-トコフェロール 100 %、β -トコフェロール 38%、γ-トコフェロール 9%およびΔ-トコフェロール 2%)(Hosomi A、Arita M、Sato Y、Kiyose C、Ueda T、Igarashi O、Arai H and Inoue K (1997) Affinity for α-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett 409:105-108)。近年発見されたトコフェロール関連タンパク質(TAPs)は、トコフェロール結合に同様の優先傾向を示している(Yamauchi J、Iwamoto T、Kida S、Masushige S、Yamada K and Esashi T (2001) Tocopherol-associated protein is a ligand-dependent transcriptional activator. Biochem Biophys Res Commun 285:295-299)。内皮細胞において、トロンビン誘発PKC活性化およびエンドセリン分泌は、α-トコフェロールによって阻害されるが、β -トコフェロールによっては阻害されない(Martin-Nizard F、Boullier A、Fruchart JC and Duriez P (1998) α-Tocopherol but not β -tocopherol inhibits thrombin-induced PKC activation and endothelin secretion in endothelial cells. J Cardiovasc Risk 5:339-345)。転写レベルにおいて、α-トコフェロールは、α-トロポミオシン発現のアップレギュレーション(Aratri E、Spycher SE、Breyer I and Azzi A (1999) Modulation of α-tropomyosin expression by α-tocopherol in rat vascular smooth muscle cells. FEBS Lett 447:91-94)ならびにLDLスカベンジャー受容体SR-AおよびCD36のダウンレギュレーションを引き起こすが、β -トコフェロールは、効果はない(Ricciarelli R、Zingg JM and Azzi A (2000) Vitamin E reduces the uptake of oxidized LDL by inhibiting CD36 scavenger receptor expression in cultured aortic smooth muscle cells. Circulation 102:82-87;Devaraj S、Hugou I and Jialal I (2001) α-Tocopherol decreases CD36 expression in human monocyte-derived macrophages. J Lipid Res 42:521-527)。さらに、細胞培養において、γ-およびΔ-トコフェロールは、α-またはβ -トコフェロールよりも、より速く分解されるので(Birringer M、Drogan D and Brigelius-Flohe R (2001) Tocopherols are metabolized in HepG2 cells by side chain ω-oxidation and consecutive β -oxidation. Free Radic Biol Med 31:226-232)、置換パターンは、側鎖分解の速度に関与すると思われる。4つのトコフェロール異性体のスクシニル化は、化合物1、32、33および35を生成する。これらのα-TOS(1)が、最も高いアポトーシス活性を有し、β -TOS(32)、γ-TOS(33)と続き、Δ-TOS(35)が最も効果が低いことは驚くには当たらない(Birringer M、Drogan D and Brigelius-Flohe R (2001) Tocopherols are metabolized in HepG2 cells by side chain ω-oxidation and consecutive β -oxidation. Free Radic Biol Med 31:226-232)。一般に、トコフェロールファミリーのメチル化の程度の高いメンバーが、最も強力であるが、この傾向は、トコトリエノールでは逆である(後記参照)。
短縮された側鎖を有する水溶性ビタミンE誘導体であるトロロックスのスクシニル化は、アポトーシス促進活性の完全な損失をもたらした。前立腺ガン細胞において、最高レベルのアポトーシス活性を示した、切断されたフィトール側鎖を有する種々のコハク酸トコフェロールの構造と活性の関係のSAR実験(第III表、43、44、45)は、側鎖長が2つのイソプレニルユニットである誘導体(43、44)から得られた。コンピューターを使った分子モデリングおよび免疫共沈降実験は、Bcl-xLおよびBcl-2へのBak BH3ペプチドの結合が、トコフェロール類縁体によって阻害されたことを示した(Shiau CW、Huang JW、Wang DS、Weng JR、Yang CC、Lin CH、Li C、Chen CS (2006) alpha-Tocopheryl succinate induces apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 function. J Biol Chem 281:11819-11825)。抗腫瘍活性のための中心的要求は、クロマノール環のスクシニル化および1つのイソプレニルユニットの最短の鎖長であった(42、46)。ドメインIII側鎖に結合したエーテル/エステルを有する一連のトコフェリルリシンエステルは、鎖長とIC50(47-50)との間に負の相関関係を示した(Arya P、Alibhai N、Qin H、Burton GW、Batist G、You SX and Alaoui-Jamali MA (1998) Design and synthesis of analogues of vitamin E: antiproliferative activity against human breast adenocarcinoma cells. Bioorg Med Chem Lett 8:2433-2438)。
トコトリエノールは、効率的な抗ガン剤であり、そのアポトーシス促進特性は、タンパク質のRasファミリーの不活性化に関連する。トコトリエノールは、機能的ドメインを修飾することなく、そのアポトーシス促進活性を示す。シグナル伝達ドメインにおける階層も逆転され、Δ-トコトリエノール(59)をマウスB16-F10黒色腫細胞モデルにおける最も強力な作用剤にし、次に、γ-(56)およびα-トコトリエノール(53)が続く(第IV表;He L、Mo H、Hadisusilo S、Qureshi AA and Elson CE (1997) Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. J Nutr 127:668-674)。興味深いことに、すべての芳香族メチル基を欠いているデスメチルトコトリエノール(60)は、IC50が0.9 μMという幾分高い活性を示す。この化合物は、米ぬかから単離されている(Qureshi AA、Mo H、Packer L and Peterson DM (2000) Isolation and identification of novel tocotrienols from rice bran with hypocholesterolemic、antioxidant、and antitumor properties. J Agric Food Chem 48:3130-3140)。Rasタンパク質の膜係留システインが、通例の構造エレメントであるファルネシル鎖によって修飾されるので、トコトリエノールの直接阻害作用が提案されている。したがって、活性化しているRas突然変異を含むヒト肺腺ガン細胞系であるA549細胞において、トコトリエノールによって、Rasファルネシル化およびRhoAプレニル化が阻害された(Yano Y、Satoh H、Fukumoto K、Kumadaki I、Ichikawa T、Yamada K、Hagiwara K and Yano T (2005) Induction of cytotoxicity in human lung adenocarcinoma cells by 6-O-carboxy-propyl-α-tocotrienol、a redox-silent derivative of α-tocotrienol. Int J Cancer 115:839-846)。トコトリエノールの短いインビボ半減期を延ばすために、機能的ドメインが導入されている。これらの修飾は、分子の抗増殖活性も増強した(54、57、58)。側鎖の切断もまた、化合物55について見られたのと同様に、活性を改良した。
機能的ドメインに修飾が行われた化合物の多くは、抗増殖活性を示し、さらなる特殊化された特性を提供した。たとえば、α-トコフェリルポリエチレングリコールコハク酸エステル(23)は、ドラッグデリバリーシステムのためのビヒクルとして用いられている。この化合物は、ヌードマウスに移植されたヒト肺ガン細胞に対する抗ガン活性を有することが明らかにされた。この化合物のアポトーシス誘発効果は、その細胞への取り込みの増加によるものではなく、むしろ、活性酸素種を生成する能力の増大によるものであった(Youk HJ、Lee E、Choi MK、Lee YJ、Chung JH、Kim SH、Lee CH and Lim SJ (2005) Enhanced anticancer efficacy of α-コハク酸トコフェリル by conjugation with polyethylene glycol. J Control Release 107:43-52)。α-トコフェリルホスフェート(30)は、トコフェロール関連シグナル伝達中に起こる代謝から得られると考えられている(Negis Y、Zingg JM、Ogru E、Gianello R、Libinaki R and Azzi A (2005) On the existence of cellular tocopheryl phosphate、its synthesis、degradation and cellular roles: a hypothesis. IUBMB Life 57:23-25)。30およびジ-α-トコフェリルホスフェート(31)の混合物は、ラット大動脈平滑筋細胞およびヒトTHP-1単球白血病細胞の増殖を阻害した(Munteanu A、Zingg JM、Ogru E、Libinaki R、Gianello R、West S、Negis Y and Azzi (2004) Modulation of cell proliferation and gene expression by α-tocopheryl phosphates: relevance to atherosclerosis and inflammation. Biochem Biophys Res Commun 318:311-316)。著者らは、コハク酸トコフェリルおよびマレイン酸トコフェリルが、リン酸トコフェリルを模倣し、置換することによって、ガンにおいて作用し、それによって細胞シグナル伝達の持続的活性化を引き起こすことを提案した。
すべてトランスのレチノイン酸(28)および9-cisレチノイン酸(29)という2つの実験的α-トコフェリルエステルをそれぞれ用いて、急性前骨髄球性白血病細胞の増殖を減少させている(Makishima M、Umesono K、Shudo K、Naoe T、Kishi K and Honma Y (1998) Induction of differentiation in acute promyelocytic leukemia cells by 9-cis retinoic acid α-tocopherol ester (9-cis tretinoin tocoferil). Blood 91:4715-4726)。レチノイド受容体反応性リポーター構築物を用いるトランス活性化実験は、これらの化合物の両方が、レチノイン酸受容体(RARs)に対するアゴニストとして作用したことを明らかにした。尿中に分泌されているのが見出されることが多いγ-トコフェロールの分解産物であるカルボキシエチルヒドロキシクロマン(52)は、サイクリンD1発現を阻害することによってPC-3前立腺ガン細胞の細胞増殖を低下させることができる(Galli F、Stabile AM、Betti M、Conte C、Pistilli A、Rende M、Floridi A and Azzi A (2004) The effect of α- and γ-tocopherol and their carboxyethyl hydroxychroman metabolites on prostate cancer cell proliferation。Arch Biochem Biophys 423:97-102)。
正常細胞ミトコンドリアと比較してのガン細胞において通常観察できる差異は、ガン細胞においてミトコンドリア内部膜電位(Δψm,i)が、より大きいことである。たとえば、ガン細胞およびそのミトコンドリアの内側で起こっている代謝性変化の結果として、癌細胞において、Δψm,iは、MIMを横切って〜60 mV相違する、より大きい負の値へと増加する(-150〜-170 mV、マトリックスの内側で負)(Summerhayes、I.C.、Lampidis、T.J.、Bernal、S.D.、Nadakavukaren、J.J.、Nadakavukaren、K.K.、Shepherd、E.L. and Chen、L.B. (1982) Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cells. Proc Natl Acad Sci USA 79:5292-5296;Lampidis、T.J.、Bernal、S.D.、Summerhayes、I.C. and Chen、L.B. 1983. Selective toxicity of rhodamine 123 in carcinoma cells in vitro. Cancer Res. 43:716-720;Chen、L.B. 1988. Mitochondrial membrane potential in living cells. Annu Rev Cell Biol. 4:155-181;Modica-Napolitano、J.S. and Aprille、J.R. 1987. Basis for the selective cytotoxicity of rhodamine 123. Cancer Res. 47:4361-4365;Modica-Napolitano、J.S. and Aprille、J.R. 2001. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev. 49:63-70)。膜電位におけるこの差異に対する理由を説明するための多くの提案がなされている。分子レベルにおいて、これらは、ミトコンドリア呼吸酵素複合体、電子伝達体、ATPアーゼ、ANTおよび/または膜脂質代謝の変化における差異を包含する。ガン細胞におけるミトコンドリア膜電位の増加に対する他の提案として、電子伝達活性、プロトン転移および利用または伝導度の変化が挙げられる。たとえば、肝細胞ガンから単離されたミトコンドリアは、正常な肝細胞と比べて、脱共役剤刺激性ATP加水分解の低下、呼吸連鎖ATP合成の減少およびリン酸化能力の低下を示す[Pedersen、P.L. and Morris、H.P. 1974. Uncoupler stimulated adenosine triphosphatase activity. Deficiency in intact mitochondria from Morris hepatomas and ascites tumor cells. J Biol Chem. 249:3327-3334;Capuano、F.、Varone、D.、D'Eri、N.、Russo、E.、Tommasi、S.、Montemurro、S.、Prete、F. and Papa、S. 1996. Oxidative phosphorylation and F0F1 ATP synthase activity of human hepatocellular carcinoma. Biochem Mol Biol Int. 38:1013-1022;Capuano、F.、Guerrieri、F. and Papa、S. 1997. Oxidative phosphorylation enzymes in normal and neoplastic cell growth. J Bioenerg Biomembr. 29:379-384;Cuezva、J.M.、Ostronoff、L.K.、Ricart、J.、Lopez de Heredia、M.、Di Ligero、C.M. and Izquierdo、J.M. 1997. Mitochondrial biogenesis in the liver during development and oncogenesis. J Bioenerg Biomembr. 29:365-377]。
酵素機能、特に、ATPアーゼにおける著しい変化が、ガン細胞ミトコンドリアにおいて起こることが明らかにされている。したがって、ガンから単離されたATPアーゼの製造は、最大速度の減少、ミトコンドリアATPアーゼのF1成分のβサブユニットの免疫検出可能なレベルの減少および/またはATPアーゼインヒビタータンパク質(IF1)の過剰発現を示す(Pedersen、P.L. and Morris、H.P. 1974. Uncoupler stimulated adenosine triphosphatase activity. Deficiency in intact mitochondria from Morris hepatomas and ascites tumor cells. J Biol Chem. 249:3327-3334;Capuano、F.、Varone、D.、D'Eri、N.、Russo、E.、Tommasi、S.、Montemurro、S.、Prete、F. and Papa、S. 1996. Oxidative phosphorylation and F0F1 ATP synthase activity of human hepatocellular carcinoma. Biochem Mol Biol Int. 38:1013-1022;Capuano、F.、Guerrieri、F. and Papa、S. 1997. Oxidative phosphorylation enzymes in normal and neoplastic cell growth. J Bioenerg Biomembr. 29:379-384;Cuezva、J.M.、Ostronoff、L.K.、Ricart、J.、Lopez de Heredia、M.、Di Ligero、C.M. and Izquierdo、J.M. 1997. Mitochondrial biogenesis in the liver during development and oncogenesis. J Bioenerg Biomembr. 29:365-377;reviewed in Modica-Napolitano、J.S. and Singh、K. 2002. Mitochondria as targets for detection and treatment of cancer. Expert Rev Mol Med. 2002:1-19)。MIM内のプロトンにおける得られる蓄積をともなう、ATPを作成するためのプロトン勾配の利用能力の低下は、腫瘍ミトコンドリアに存在するΔψm,iの増加の主な原因となる。ガン細胞におけるΔψm,iの増加の主な原因となりうるもう1つの可能性は、アセトンが、腫瘍細胞においてクエン酸を生成する反応速度をほとんど二倍するATP依存性反応を被ることであり(Baggetto、L.G. and Lehninger、A.L. 1987. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes. Biochem Biophys Res Commun. 145:153-159;Baggetto、L.G. and Testa-Parussini、R. 1990. Role of acetoin on the regulation of intermediate metabolism of Ehrlich ascites tumor mitochondria: its contribution to membrane cholesterol enrichment modifying passive proton permeability. Arch Biochem Biophys. 283:241-248)、次いで、トリカルボン酸塩またはクエン酸塩伝達体(CIC)によって、オキサロ酢酸塩およびアセチル-coAに切断される細胞質ゾルへ運び去られる。正味の効果は、ステロール生合成のための高レベルの細胞質アセチル-coA前駆体の供与であり、さらに詳しくは、すでに上昇したガン細胞によるコレステロールの生成を促進するのを補助することである(Baggetto、L.G. and Testa-Parussini、R. 1990. Role of acetoin on the regulation of intermediate metabolism of Ehrlich ascites tumor mitochondria: its contribution to membrane cholesterol enrichment modifying passive proton permeability. Arch Biochem Biophys. 283:241-248)。内部MIMにおいて得られるコレステロールの蓄積は、受動的プロトン透過性を数倍減少させ、ガン細胞における膜電位の増加の確立を補助する(Baggetto、L.G. and Testa-Parussini、R. 1990. Role of acetoin on the regulation of intermediate metabolism of Ehrlich ascites tumor mitochondria: its contribution to membrane cholesterol enrichment modifying passive proton permeability. Arch Biochem Biophys. 283:241-248;Baggetto、L.G. 1992. Deviant energetic metabolism of glycolytic cancer cells. Biochimie. 74:959-974)。
非常に高いエネルギー要求による解糖活性の増強は、ガン細胞における乳酸生成物の細胞質レベルを増加させる。細胞質の中性pHを維持するために、これらの細胞は、細胞外酸性化を引き起こす細胞膜プロトンポンプを活性化させる。代表的には、腫瘍間質のpHは、6.2-6.5であるが、正常組織間質のpHは、中性である(Gerweck、L.E. 2000. The pH difference between tumor and normal tissue offers a tumor specific target for the treatment of cancer. Drug Resist Updat. 3:49-50;Gerweck、L.E.、Vijayappa、S. and Kozin、S. 2006. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther. 5:1275-1279)。ガン細胞の中性細胞質pHを維持するためにガン細胞によって用いられるプロトンポンプの主要なタイプは、クラスV ATPアーゼである(Sennoune、S.R.、Luo、D. and Martinez-Zaguilan、R. 2004. Plasmalemmal vacuolar-type H+-ATPase in cancer biology. Cell Biochem Biophys. 40:185-206). This ATPase has relatively low activity in non-malignant cells、while its activity is increased in cancer cells (Izumi、H.、Torigoe、T.、Ishiguchi、H.、Uramoto、H.、Yoshida、Y.、Tanabe、M.、Ise、T.、Murakami、T.、Yoshida、T.、Nomoto、M. and Kohno、K. 2003. Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer Treat Rev. 29:541-549;Bowman、E.J. and Bowman、B.J. 2005. V-ATPases as drug targets. J Bioenerg Biomembr. 37:431-435)。これらの観察から、ATPアーゼのプロトンポンプ活性を阻害し、ガン細胞の細胞質の酸性化を引き起こし、次いで、細胞死をもたらすことによる新規な抗ガン方策の開発が導かれる。たとえば、コンドロプシン化合物(Bowman、E.J.、Gustafson、K.R.、Bowman、B.J. and Boyd、M.R. 2003. Identification of a new chondropsin class of antitumor compound that selectively inhibits V-ATPases. J Biol Chem. 278:44147-44152) and siRNA targeting the ATPase subunit ATP6L (Lu、X.、Qin、W.、Li、J.、Tan、N.、Pan、D.、Zhang、H.、Xie、L.、Yao、G.、Shu、H.、Yao、M.、Wan、D.、Gu、J. and Yang、S. (2005) The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Res. 65:6843-6849)が、ガン細胞を殺すのに成功裏に用いられている。他の重要な細胞質pHの調節は、Na+/H+アンチポーターである(Slepkov、E.R.、Rainey、J.K.、Sykes、B.D. and Fliegel、L. 2007. Structural and functional analysis of the Na+/H+ exchanger. Biochem J. 401:623-633)、the H+/lactate symporter (Cardone、R.A.、Casavola、V. and Reshkin、S.J. 2005. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer. 5:786-795)、and the Na+-dependent Cl-/HCO3- exchanger (Lee、A.H. and Tannock、I.F. 1998. Heterogeneity of intracellular pH and of mechanisms that regulate intracellular pH in populations of cultured cells. Cancer Res. 58:1901-1908)。VクラスATPアーゼと同様に、これらの輸送体は、抗ガン剤のための標的として提案されている(Izumi、H.、Torigoe、T.、Ishiguchi、H.、Uramoto、H.、Yoshida、Y.、Tanabe、M.、Ise、T.、Murakami、T.、Yoshida、T.、Nomoto、M. and Kohno、K. 2003. Cellular pH regulators: potentially promising molecular targets for cancer chemotherapy. Cancer Treat Rev. 29:541-549 Cardone、R.A.、Casavola、V. and Reshkin、S.J. 2005. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer. 5:786-795;Harguindey、S.、Orive、G.、Luis Pedraz、J.、Paradiso、A. and Reshkin、S.J. 2005. The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin - one single nature. Biochim Biophys Acta. 1756:1-24)。
ガン細胞の細胞膜を横切るpH勾配における差異は、pKa値が<6であり、典型的に、中性pHにおいて脱プロトン化されるが、腫瘍間質のpHにおいてプロトンを受け取る弱酸として分類できる薬物類の設計に用いられている(Gerweck、L.E.、Vijayappa、S. and Kozin、S. 2006. Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics. Mol Cancer Ther. 5:1275-1279). A prototypic example of such a drug is the weak acid chlorambucil (Skarsgard、L.D.、Chaplin、D.J.、Wilson、D.J.、Skwarchuk、M.W.、Vinczan、A. and Kristl、J. 1992. The effect of hypoxia and low pH on the cytotoxicity of chlorambucil. Int J Radiat Oncol Biol Phys. 22:737-741)。クロラムブシルの比較的選択的な取り込みおよび抗ガン有効性が、実験的腫瘍を有するマウスへのグルコースの注射によって増強され、それによって腫瘍細胞の解糖系活性をさらに促進し、腫瘍細胞細胞質ゾルのpHに影響を及ぼすことなく腫瘍間質のpHを低下させることができることが報告された(Kozin、S.V.、Shkarin、P. and Gerweck、L.E. (2001) The cell transmembrane pH gradient in tumors enhances cytotoxicity of specific weak acid chemotherapeutics. Cancer Res. 61:4740-4743)。
本発明物らは、マイトカンであるpKa5.6を有するα-コハク酸トコフェリル(α TOS)について同様の効果を観察している(Neuzil、J.、Zhao、M.、Ostermann、G.、Sticha、M.、Gellert、N.、Weber、C.、Eaton、J.W. and Brunk、U.T. 2002 α-Tocopheryl succinate、an agent with in vivo anti-tumour activity、induces apoptosis by causing lysosomal instability. Biochem J. 362:709-715)。ビタミンE類縁体は、腫瘍間質の6.2-6.4という酸性pHにおけるプロトン化体において、10-15倍高いパーセンテージで、中性pHにて〜98%が脱プロトン化される弱酸である。α-TOSのような化合物に対する既知の輸送体は無いので、恐らく、それが細胞膜を横切って、細胞の内側で自由に拡散し、そのアポトーシス活性を放出するものと思われる。したがって、本発明者らは、組織培養培地のpHが、より酸性(pH 〜6.2)である場合に、pH7.2における培地と比べて、3倍以上大きいα-TOSのTリンパ腫細胞に対するアポトーシス効果がもたらされることを見出している。培地のpHが7.4である場合と比べて、約2倍多いα-TOSが、pH6.2において入ることが見出されたので、有望な理由は、低pHにおける化合物のより速い取り込みである(Neuzil、J.、Zhao、M.、Ostermann、G.、Sticha、M.、Gellert、N.、Weber、C.、Eaton、J.W. and Brunk、U.T. 2002 α-Tocopheryl succinate、an agent with in vivo anti-tumour activity、induces apoptosis by causing lysosomal instability. Biochem J. 362:709-715)。したがって、細胞膜を横切るpHの差異は、特定の抗ガン剤が、悪性組織に対する選択性を発揮する標的化デリバリーのための重要なパラダイムでありうる。
第I表に記載の第6のクラスのマイトカンは、ミトコンドリアマトリックス内に、細胞質内よりもはるかに高い濃度で蓄積する非局在化された脂溶性カチオンである分子を包含する(Smith、R.A.、Porteous、C.M.、Gane、A.M. and Murphy、M.P. 2003. Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci USA 100:5407-5412)。非悪性細胞と比べて、ガン細胞の細胞膜を横切る膜電位がより大きく、ガン細胞のミトコンドリアがより大きいΔψm,iをもってより分極されているので、これらの作用剤は、ガン細胞のミトコンドリアマトリックス内に選択的に蓄積される(Davis、S.、Weiss、M.J.、Wong、J.R.、Lampidis、T.J. and Chen、L.B. 1985. Mitochondrial and plasma membrane potentials cause unusual accumulation and retention of rhodamine 123 by human breast adenocarcinoma-derived MCF-7 cells. J Biol Chem. 260:13844-13850;Lampidis、T.J.、Hasin、Y.、Weiss、M.J. and Chen、L.B. 1985. Selective killing of carcinoma cells “in vitro” by lipophilic-cationic compounds: a cellular basis. Biomed Pharmacother. 39:220-226;Ralph、S.J.、Low、P.、Dong、L.、Lawen、A. and Neuzil、J. 2006. Mitocans: mitochondrial targeted anticancer drugs as improved therapies and related patent documents. Recent Patents Anti-cancer Drug Discovery 1:327-346)。
脂溶性カチオンベースのマイトカンの標的は、ATPアーゼ上の阻害性結合部位の1つである(Gledhill、J.R. and Walker、J.E. 2005. Inhibition sites in F1-ATPase from bovine heart mitochondria. Biochem J. 386:591-598)。その抗ガン活性を同定されている化合物のこのクラスの最も初期のメンバーは、ローダミン-123であった(Bernal、S.D.、Lampidis、T.J.、Summerhayes、I.C. and Chen、L.B. 1982. Rhodamine-123 selectively reduces clonal growth of carcinoma cells in vitro. Science 218:1117-1119;Bernal、S.D.、Lampidis、T.J.、McIsaac、R.M. and Chen、L.B. 1983. Anticarcinoma activity in vivo of rhodamine 123、a mitochondrial-specific dye. Science 222:169-172)。近年、それは、前立腺ガンのための第I相臨床試験に入り、最小の副作用と患者の血清における検出可能な蓄積のない1か月間隔での安全な投与が明らかとなった(Jones、L.W.、Narayan、K.S.、Shapiro、C.E. and Sweatman、T.W. 2005. Rhodamine-123: therapy for hormone refractory prostate cancer、a phase I clinical trial. J Chemother. 17:435-440)。関連化合物であるローズベンガルは、ローダミン123と同様の様式で機能すると思われ、現在、転移性黒色腫および再発乳ガンの療法として同様に臨床試験にあり、いくらかの患者において完全寛解を引き起こしている(Provectus PV-10-MM-01、www.ClinicalTrials.gov)。
F16という薬物は、このマイトカンのクラスのメカニズム的により特徴付けられた例であり、マイクロモルレンジで適用した場合に、ROS生成を増加させ、弱いプロトノフォアとしてミトコンドリアを脱分極させ、Δψm,iを崩壊させて、ミトコンドリア透過性転移および番細胞の選択的アポトーシスをもたらすことが明らかとなった(Fantin、V.R.、Berardi、M.J.、Scorrano、L.、Korsmeyer、S.J. and Leder、P. (2002) A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell 2:29-42)。F16は、マウスの乳ガンの増殖を阻害する研究においても報告された。ロドシアニン色素類縁体であるMKT-077は、腎臓毒性により打ち切られたが、臨床試験の第I相に入ったこのタイプのマイトカンのもう1つの例である(Britten、C.D.、Rowinsky、E.K.、Baker、S.D.、Weiss、G.R.、Smith、L.、Stephenson、J.、Rothenberg、M.、Smetzer、L.、Cramer、J.、Collins、W.、Von Hoff、D.D. and Eckhardt、S.G. 2000. A phase I and pharmacokinetic study of the mitochondrial-specific rhodacyanine dye analog MKT 077. Clin Cancer Res. 6:42-49)。
これは、クラスVIのマイトカンの多くによる毒性という問題を提起する。注意深く評価しなければならない毒性の可能性の警戒的な例は、黒質線条体のドーパミン作動性ニューロンの選択的破壊によって引き起こされる、薬物MPTP (1-メチル-4-フェニル-1,2,3,6-テトラヒドロピリジン)によるパーキンソン様の影響の産生である。この毒性は、これらの細胞上のドーパミン輸送体による選択的取り込みならびにドーパミン作動性ニューロンにおいて非常に多く発現される酵素モノアミンオキシダーゼBの作用によって形成される代謝物によるものであった。ドーパミン作動性ニューロンこれらの2つのユニークな特性の結果として、複合体IのNADH-ユビキノン酸化還元酵素部位を遮断することによってミトコンドリア呼吸のインヒビターとして作用するミトコンドリア毒性薬物MPP+ (1-メチル-4-フェニルピリジン)が産生される。MPP+は、Δψm,iを崩壊させて細胞破壊をもたらすプロトノフォア(Davey、G.P.、Tipton、K.F. and Murphy、M.P. 1992. Uptake and accumulation of 1-methyl-4-phenylpyridinium by rat liver mitochondria measured using an ion-selective electrode. Biochem J. 288:439-443;Albores、R.、Neafsey、E.J.、Drucker、G.、Fields、J.Z. and Collins、M.A. 1990. Mitochondrial respiratory inhibition by N-methylated β -carboline derivatives structurally resembling N-methyl-4-phenylpyridine. Proc Natl Acad Sci USA 87:9368-9372)でもあると思われる。これは、もう1つの脂溶性カチオンに関連する非選択的細胞毒性および既知のミトコンドリア毒である塩化デカリニウム(Gamboa-Vujicic、G.、Emma、D.A.、Liao、S.Y.、Fuchtner、C. and Manetta、A. 1993. Toxicity of the mitochondrial poison dequalinium chloride in a murine model system. J Pharm Sci. 82:231-235)とともに、これは、近年、Trapp、S. and Horobin、R.W.によるそれらの構造に基づく予測モデル(2005. A predictive model for the selective accumulation of chemicals in tumor cells. Eur Biophys J. 34:959-966)において記載されているように、それらの取り込みおよび細胞毒性の観点からガン細胞特異的であるクラスVIのマイトカンを同定することの重要性を提起する。
両親媒性で正に荷電したα-ヘリックスアポトーシス促進性ペプチド(KLAKLAK)2もまた、非局在化脂溶性カチオンとして、このクラスのマイトカンに包含されている。しかしながら、該ペプチドは、マイトカンとして機能することができる前に、表面受容体結合およびガン細胞への取り込みのための標的化デリバリーシステムにまず結合しなければならない(Ellerby、H.M.、Arap、W.、Ellerby、L.M.、Kain、R.、Andrusiak、R.、Rio、G.D.、Krajewski、S.、Lombardo、C.R.、Rao、R.、Ruoslahti、E.、Bredesen、D.E. and Pasqualini、R. 1999. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med. 5:1032-1038;Fantin ら. 2005)。このクラスのマイトカンの他のメンバーのように、該ペプチドは、アポトーシスをもたらすΔψm,iを浪費することがわかっており、それは、動物モデルにおいて全身腫瘍組織量を効率的に減少させる
(Fantin、V.R.、Berardi、M.J.、Babbe、H.、Michelman、M.V.、Manning、C.M. and Leder、P. 2005. A bifunctional targeted peptide that blocks HER-2 tyrosine kinase and disables mitochondrial function in HER-2-positive carcinoma cells. Cancer Res. 65:6891-6900)。
(発明の概要)
本発明らは、現在、ガン性細胞のミトコンドリア内に蓄積し、それらの細胞死を誘発する傾向がある抗ガン化合物を開発している。1つの実施態様において、このような化合物は、ミトコンドリアデリバリー部分に結合しているプロオキシダント部分を含む。このプロオキシダント部分は、ガン性細胞のミトコンドリア内に活性酸素種を生成し、それらの細胞のアポトーシスを誘発する。もう1つの実施態様において、このような化合物は、ミトコンドリアデリバリー部分に結合しているアポトーシス促進性部分を含む。このアポトーシス促進性部分は、それらの細胞のアポトーシスを誘発する。
(発明の詳細な記載)
本発明の第1の態様は、ガン性細胞の死を誘発するための化合物であって、
(i)ガン性細胞のミトコンドリア内に活性酸素種を生成し、(ii)ガン性細胞のアポトーシスを誘発するためのプロオキシダント部分;ならびに
ガン性細胞のミトコンドリアへプロオキシダント部分をデリバリーするためのデリバリー部分;
を含む化合物を提供する。
本発明の第2の態様は、ガンを予防または治療するための化合物であって、
(i)ガン性細胞のミトコンドリア内に活性酸素種を生成し、(ii)ガン性細胞のアポトーシスを誘発するためのプロオキシダント部分;ならびに
ガン性細胞のミトコンドリアへプロオキシダント部分をデリバリーするためのデリバリー部分;
を含む化合物を提供する。
本発明の第3の態様は、ガン性細胞の死を誘発するための方法であって、
(i)ガン性細胞のミトコンドリア内に活性酸素種を生成し、(ii)ガン性細胞のアポトーシスを誘発するためのプロオキシダント部分;ならびに
ガン性細胞のミトコンドリアへプロオキシダント部分をデリバリーするためのデリバリー部分;
を含む化合物の治療有効量を患者に投与するステップを含む方法を提供する。
本発明の第4の態様は、ガンを予防または治療するための方法であって、
(i)ガン性細胞のミトコンドリア内に活性酸素種を生成し、(ii)ガン性細胞のアポトーシスを誘発するためのプロオキシダント部分;ならびに
ガン性細胞のミトコンドリアへプロオキシダント部分をデリバリーするためのデリバリー部分;
を含む化合物の治療有効量を患者に投与するステップを含む方法を提供する。
本発明の第5の態様は、ガン性細胞の死を誘発するための医薬の製造における、
(i)ガン性細胞のミトコンドリア内に活性酸素種を生成し、(ii)ガン性細胞のアポトーシスを誘発するためのプロオキシダント部分;ならびに
ガン性細胞のミトコンドリアへプロオキシダント部分をデリバリーするためのデリバリー部分;
を含む化合物の使用を提供する。
本発明の第6の態様は、ガンを予防または治療するための医薬の製造における、
(i)ガン性細胞のミトコンドリア内に活性酸素種を生成し、(ii)ガン性細胞のアポトーシスを誘発するためのプロオキシダント部分;ならびに
ガン性細胞のミトコンドリアへプロオキシダント部分をデリバリーするためのデリバリー部分;
を含む化合物の使用を提供する。
本発明の第7の態様は、本発明の第1または第2の態様の化合物またはその生理学的に許容しうる塩および生理学的に許容しうる担体を含む医薬組成物または獣医用組成物を提供する。
該化合物は、単離された、精製された、実質的に精製された、合成または組換の形体であってよい。
適当なタイプのデリバリー部分であれば、いずれを用いてもよい。デリバリー部分は、ミトコンドリアの膜間腔、内膜またはミトコンドリアマトリックスへプロオキシダント部分を標的化することができるが、デリバリー部分が、ガン性細胞のミトコンドリアマトリックスへプロオキシダント部分をデリバリーするのが好ましい。
ガン性細胞の膜電位が高いので、デリバリー部分がガン性細胞のミトコンドリアマトリックス内に選択的に蓄積する脂溶性カチオンであるのが好ましい。特に好ましい脂溶性カチオンは、国際出願番号PCT/NZ98/00173およびPCT/NZ02/00154の明細書ならびにJames AM、Cocheme HM、Smith RA、Murphy MP. (Interactions of mitochondria-targeted and untargeted ubiquinones with the mitochondrial respiratory chain and reactive oxygen species. Implications for the use of exogenous ubiquinones as therapies and experimental tools. J Biol Chem. 2005 Jun 3;280(22):21295-312. Epub 2005 Mar 23.)に記載されているトリフェニルホスホニウムカチオンである。これらは、相互参照することにより本発明に援用される。
テトラフェニルホスホニウムカチオンが、適当なデリバリー部分のもう1つの例である。
適当なデリバリー部分の可能性のある他の例として、Barnardらによる刊行物(Barnard PJ、Baker MV、Berners-Price SJ、Day DA. Mitochondrial permeability transition induced by dinuclear gold (I)-carbene complexes: potential new antimitochondrial antitumour agents. J. Inorg. Biochem. 2004 Oct;98(10):1642-7)に記載されている金−ホスフィンまたは金−カルベン錯体が挙げられる。これらは、相互参照することにより本発明に援用される。
適当なデリバリー部分のさらなる例は、Hoye、Adam T.、Davoren、Jennifer E.、Wipf、Peter、Fink、Mitchell P.、and Kagan、Valerian E.、(Targeting Mitochondria、Acc. Chem. Res.、41、1、87-97、2008)に記載されている。
適当なタイプのプロオキシダント部分であれば、いずれを用いてもよく、該部分は、どのような適当な方法で活性酸素種を生成してもよい。好ましいプロオキシダント部分(マイトカン)の例は、前記第I表に挙げる通りである。
化合物は、1つ以上のプロオキシダント部分を有することができ、該部分は、呼吸鎖の異なる領域/成分を、中断/標的化することができる。
プロオキシダント部分が、ミトコンドリア複合体IIと相互作用するのが好ましい。プロオキシダント部分が、複合体IIのユビキノン結合部位に結合し、天然基質であるユビキノン、ユビセミキノンもしくはユビキノール(補酵素Q群)または他のキノン類あるいは複合体IIと選択的に相互作用する関連化合物を容易に置換することができるのが、より好ましい。このような基質として、たとえば、Briere JJ、Schlemmer D、Chretien D、Rustin P. (2004) Quinone analogues regulate mitochondrial substrate competitive oxidation. Biochem Biophys Res Commun. Apr 16;316(4):1138-42、Tan AK、Ramsay RR、Singer TP、Miyoshi H. (1993) Comparison of the structures of the quinone-binding sites in beef heart mitochondria. J Biol Chem. Sep 15;268(26):19328-33、and Esposti MD、Ngo A、Ghelli A、Benelli B、Carelli V、McLennan H、Linnane AW (1996) The interaction of Q analogs、particularly hydroxydecyl benzoquinone (idebenone)、with the respiratory complexes of heart mitochondria. Arch Biochem Biophys. Jun 15;330(2):395-400に特定されている。
アポトーシスは、ガン性細胞のミトコンドリアにおける活性酸素種のレベルの増加の結果として単独に起こってもよく、またはプロオキシダント部分、デリバリー部分または化合物全体は、細胞内のミトコンドリア依存性細胞死シグナル伝達経路の活性化を手段として、さらにアポトーシス促進性であってもよい。好ましくは、プロオキシダント部分は、複合体IIへの結合を手段として活性酸素種を生成し、ミトコンドリア依存性細胞死シグナル伝達経路の活性化を手段としてさらにアポトーシス促進性である。
好ましくは、該化合物は、プロオキシダント活性を欠いている無害な形体へと、非ガン性細胞内で切断、処置または代謝される。
好ましくは、プロオキシダント部分は、プロオキシダントビタミンE類縁体である。本発明者らは、プロオキシダントビタミンE類縁体が、複合体IIを結合し、ユビキノンへの電子伝達を中断させることができることをすでに見出している。これは、国際出願番号PCT/AU2007/001371の明細書に記載されている。これらは、相互参照することにより本発明に援用される。本発明者らは、プロオキシダントビタミンE類縁体が、アポトーシス促進性であることもすでに見出している。本発明者らは、プロオキシダントビタミンE類縁体が、非ガン性細胞において、無害な抗酸化剤に処置されうることをすでにさらに見出している。
「プロオキシダントビタミンE類縁体」は、ガン性細胞のミトコンドリアに位置する場合、酸化還元サイレントであり、複合体IIのユビキノン結合部位に結合して、細胞にダメージを引き起こす代謝の酸素副産物の生成の引き金をひく能力があるビタミンE類縁体として定義づけられる。プロオキシダントビタミンE類縁体の例は、α-コハク酸トコフェリル(α-TOS)である。
一方、「抗酸化性ビタミンE類縁体」は、ガン性細胞のミトコンドリアに位置
する場合、たとえば、α-トコフェロール(α-TOH)などの抗酸化(酸化還元)活性があるビタミンE類縁体である。したがって、プロオキシダントビタミンE類縁体および抗酸化性ビタミンE類縁体の生物活性は、正反対である。
トリフェニルホスホニウムカチオンに基づく好ましい化合物(式Iで表す)を以下に示す:
Figure 2011513437
式I
トリフェニルホスホニウムカチオンおよびα-TOSに基づく好ましい化合物(式IIで表す)を以下に示す:

Figure 2011513437
他の好ましい化合物は、本明細書の図1に見出すことができる。
化合物は、たとえば、肺、肝臓、腎臓、脳、前立腺、乳房、卵巣、リンパ、皮膚、眼、結腸、胃、口腔扁平および造血系などの患者におけるいずれかの型のガン性細胞の死を誘発するために用いることができる。
化合物α-TOSは、erbB2-低または高ガン細胞を効率的に殺すことが本発明者らによってすでに見出されている。化合物α-TOSは、中皮腫を治療することも本発明者らによってすでに見出されている。これは、国際出願番号PCT/AU2007/001371の明細書に記載されている。
化合物α-TOSは、正常酸素圧および低酸素性の両方のガン性細胞の死を誘発することが本発明者らによってすでに見出されている。したがって、化合物は、患者における早期および後期段階の両方の腫瘍の死を誘発することができるという利点を有する。
治療の対象は、ヒト、哺乳類または動物であってよい。好ましくは、患者は、ヒトまたは他の哺乳類である。
化合物は、組成物中に、その医薬的にまたは獣医学的に許容しうる誘導体として含まれてもよい。本明細書で用いる本発明化合物の「誘導体」は、塩、Mn2+およびZn2+などの金属イオンとの配位錯体、インビボ加水分解可能エステルなどのエステル、遊離酸もしくは塩基、水和物またはプロドラッグが包含される。リン酸または硫酸などの酸性基を有する化合物は、Na、K、MgおよびCaなどのアルカリまたはアルカリ土類金属およびトリエチルアミンおよびトリス(2-ヒドロキシエチル)アミンなどの有機アミンとの塩を形成することができる。塩は、アミンなどの塩基性基と、塩酸、リン酸または硫酸などの無機酸と、または酢酸、クエン酸、安息香酸、フマル酸または酒石酸などの有機酸を有する化合物との間に形成されることができる。酸性および塩基性基を有する化合物は、内部塩を形成することができる。
エステルは、当業者に公知の技術を用いて、化合物内に存在する水酸基またはカルボン酸基と適当なカルボン酸またはアルコール反応パートナーとの間に形成されることができる。
組成物は、考慮中である特定の状況に必要な予防有効量または治療有効量のいずれかで患者に投与することができる。組成物中の化合物の実際の量および組成物の投与の速度および経時経過は、治療または予防を必要とするガンの性質および重篤度に応じて変わる。用量の決定などの治療の処方は、患者の介護に責任を負うべき医師または獣医によってなされる。しかし、典型的には、ヒトの患者に投与するための組成物は、約0.01〜100 mgの化合物/体重kg、より好ましくは、約0.1〜10 mg/体重kgである。α-コハク酸トコフェリルまたは他の類縁体が、ヒト患者に経皮適用される場合、化合物の血清レベルは、IC50値の近辺、約40-50 μMであるのが好ましい。
組成物は、非経口、局所、経口、吸入スプレー、直腸内、経鼻、バッカル、膣内または埋め込み貯蔵器などの適当な経路で患者に投与することができる。本明細書で用いる用語「非経口」は、皮下、静脈内、筋肉内、動脈内、滑液内、胸骨内、髄腔内、肝内、病巣内および頭蓋内注射または輸液技術を包含する。
担体は、いずれかの適当な希釈剤、アジュバント、賦形剤、緩衝剤、安定化剤、等張剤、保存剤または抗酸化剤を含むことができる。担体が、非毒性であり、本発明化合物の有効性を妨げないべきであるのは当然のことである。担体または組成物へのいずれかの他の添加剤の正確な性質は、投与経路および必要とされる治療の型に応じて変わる。たとえば、Alfonso R.Gennaro.Remington:The Science and Practice of Pharmacy、20th Edition.Baltimore、MD:Lippincott Williams & Wilkins、2000、and Goodman and Gilman's The Pharmaceutical Basis of Therapeutics、Pergamon Press、New York、NYを参照のこと(これらは、全体として参照することにより本発明に援用される)。医薬組成物は、たとえば、従来の混合、溶解、造粒、糖衣形成、磨り潰し、乳化、カプセル化、封入または凍結乾燥処置によって製造することができる。
組成物の滅菌注射剤形は、水性または油性懸濁液であってよい。このような剤形は、当業者には公知である。処置するのが望ましい部位での静脈内、皮膚または皮下注射用には、組成物は、適当なpH、等張性および安定性を有する非経口的に許容しうる水性溶液の剤形であってよい。
組成物の経口的に許容しうる投与剤形として、カプセル剤、錠剤、丸剤、散剤、リポソーム、顆粒剤、スフィア、糖衣錠、液剤、ゲル剤、シロップ剤、スラリー剤、懸濁剤などが挙げられる。適当な経口剤形は、当業者には公知である。錠剤は、ゼラチンなどの固体担体、アジュバントまたは不活性希釈剤を含むことができる。液体医薬組成物は、一般に、水、石油、動物または植物油、鉱物油または合成油などの液体担体を含む。生理食塩水、またはエチレングリコール、プロピレングリコールまたはポリエチレングリコールなどのグリコールを含んでもよい。このような組成物および製剤は、与えられた担体におけるその溶解度に応じて、一般に、少なくとも、0.1 重量%の化合物、好ましくは、約25 重量%の化合物を含む。
組成物は、特に治療の標的が、眼、皮膚または下部消化管のガンなどの局所適用によって容易に到達可能である領域または器官である場合に、局所投与されてよい。組成物は、液体、懸濁液、エマルジョン、軟膏、クリーム、ローション、ペースト、ゲル、泡またはエアロゾルの剤形で適用されてよい。適当な局所剤形は、当業者には公知である。
組成物は、生物学的効力を損失することなく、化合物を特定の器官、組織またはガンの型にデリバリーするため、および/または、化合物が、たとえば皮膚を通して吸収されるか、または消化管を介して摂取されることができるのを確実にするために、デリバリービヒクルを含んでもよい。デリバリービヒクルは、たとえば、脂質、ポリマー、リポソーム、エマルジョン、抗体および/またはタンパク質であってよい。たとえば、中皮腫を治療するために皮膚を介して化合物をデリバリーするには、リポソームが特に好ましい。
化合物を含む固体疎水性ポリマー半透性物質などの持続放出システムを用いて、組成物をデリバリーすることができる。様々な持続放出物質が、入手可能であり、当業者には周知である。持続放出カプセル剤は、約1〜20週間化合物を放出する。
化合物は、プロドラッグの形態であってもよい。プロドラッグは、組成物がたとえば経口などで摂取される場合に化合物の活性が損なわれないように保護基を有することができる。プロドラッグは、特定の器官または細胞型に活性化合物をデリバリーすることができる。適当なプロドラッグ剤形および保護基は、当業者には公知であろう。受容体であるチロシンキナーゼerbB2を過剰発現しているガン細胞を標的化するために、α-TOSのアダクトが、ヘプタペプチドLTVSPWYに結合するのが好ましい。
患者は、化合物とともに最適予防または治療効果を達成するために1種以上の他の活性成分を含む組成物を投与されてもよい。活性成分は、たとえば、アルキル化剤、血管新生抑制薬、抗アンドロゲン薬、抗エストロゲン薬、代謝拮抗剤、アポトーシス剤、アロマターゼインヒビター、細胞周期制御薬、細胞ストレッサー、細胞障害剤、細胞保護剤、ホルモン剤、免疫療法薬、キナーゼインヒビター、モノクローナル抗体、白金薬、呼吸抑制剤、レチノイド、シグナル伝達阻害剤、タキサンおよびトポイソメラーゼインヒビターであってよい。特に好ましい作用剤として、2-デオキシグルコースおよび3-BPなどの解糖インヒビターが挙げられる。他の特に好ましい作用剤として、TRAILおよびAkt1インヒビターならびにRalph SJ、Dong LF、Low P、Lawen A、and Neuzil J (2006) Mitocans: mitochondria targeted anti-cancer drugs as improved therapies and related patents. Recent Pat Anticancer Drug Discov 1:305-326;Neuzil J、Dong LF、Ramanathapuram L、Hahn T、Chladova M、Wang XF、Zobalova R、Prochazka L、Gold M、Freeman R、Turanek J、Akporiaye ET、Dyason JC、Ralph SJ. (2007) Vitamin E analogues as a novel group of mitocans: Anti-cancer agents that act by targeting mitochondria. Mol Aspects Med. Feb 23; and Neuzil J、Tomasetti M、Zhao Y、Dong LF、Birringer M、Wang XF、Low P、Wu K、Salvatore BA、Ralph SJ. (2007) Vitamin E analogs、a novel group of “mitocans”, as anticancer agents: the importance of being redox-silent. Mol Pharmacol. May;71(5):1185-99に概説される(これらは、全体として相互参照することにより本発明に援用されるに概説される)他のマイトカンが挙げられる。
本発明者らは、たとえば、ガン細胞が、α-TOSと3-BPとの併用(ならびに他の複合薬)によって、いずれかの薬物を単独で用いる場合と比べて、殺傷に対してより感受性が高くなることをすでに見出している。
組成物は、非経口または局所投与されるのが好ましい。特に好ましいプロオキシダントビタミンE類縁体部分は、α-コハク酸トコフェリル、α-マレイン酸トコフェリル、α-トコフェリルマレイルアミドおよび2,5,7,8-テトラメチル-2R-(4R,8R,12-トリメチルトリデシル)-クロマン-6-イルオキシ酢酸(α-トコフェリルオキシ酢酸)である。エステルであるコハク酸α-トコフェリル、α-マレイン酸トコフェリルおよびα-トコフェリルマレイルアミドのための好ましい担体は、リポソームベースクリーム「Lipoderm」などの経皮適用可能なクリームである。非加水分解性エーテル類縁体であるα-トコフェリルオキシ酢酸が、経口デリバリーに好ましい。
本発明の第8の態様は、ガン性細胞の死を誘発するための化合物であって、
ガン性細胞のアポトーシスを誘発するためのアポトーシス促進性部分;および
ガン性細胞のミトコンドリアへアポトーシス促進性部分をデリバリーするためのデリバリー部分;
を含む化合物を提供する。
本発明の第9の態様は、ガンを予防または治療するための化合物であって、
ガン性細胞のアポトーシスを誘発するためのアポトーシス促進性部分;および
ガン性細胞のミトコンドリアへアポトーシス促進性部分をデリバリーするためのデリバリー部分;
を含む化合物を提供する。
本発明の第10の態様は、ガン性細胞の死を誘発するための方法であって、
ガン性細胞のアポトーシスを誘発するためのアポトーシス促進性部分;および
ガン性細胞のミトコンドリアへアポトーシス促進性部分をデリバリーするためのデリバリー部分;
を含む化合物の治療有効量を患者に投与するステップを含む方法を提供する。
本発明の第11の態様は、ガンを予防または治療するための方法であって、
ガン性細胞のアポトーシスを誘発するためのアポトーシス促進性部分;および
ガン性細胞のミトコンドリアへアポトーシス促進性部分をデリバリーするためのデリバリー部分;
を含む化合物の治療有効量を患者に投与するステップを含む方法を提供する。
本発明の第12の態様は、本発明の第8または第9の態様の化合物またはその生理学的に許容しうる塩および生理学的に許容しうる担体を含む医薬組成物または獣医用組成物を提供する。
該化合物は、単離された、精製された、実質的に精製された、合成または組換の形体であってよい。
適当なタイプのデリバリー部分であれば、いずれを用いてもよい。デリバリー部分は、前記の通りであってよい。
適当なタイプのアポトーシス促進性部分であれば、いずれを用いてもよい。アポトーシス促進性部分が、前記のプロオキシダント部分であるのが好ましい。好ましいプロオキシダント部分(マイトカン)の例を、前記第I表および第II-IV表ならびに図1に挙げる。
実験に用いた化合物。用いた化合物は、α-TOH、α-TOS、VE11S(以降、「VES」と称する)、MitoVE3S、MitoVE5S、MitoVE7S、MitoVE9SおよびMitoVE11S(以降、「MitoVES」と称する)、MitoVE11AE(以降、「MitoVEAE」と称する)、MitoVE11F[図示せず](以降、「MitoVEF」と称する)、MitoVE11M[図示せず](以降、「MitoVEM」と称する)ならびにVES4TPPであった。α-TOHおよびα-TOSは、Sigmaから入手し、VES、MitoVES、MitoVEAE、MitoVEF、MitoVEMおよびVES4TPPは、一般的材料および方法と題する項に記載の通り合成した。
MitoVESは、選択的に悪性細胞においてアポトーシスを引き起こす。ジャーカット(A、G)、HCT-116(B)、MCF-7(C)、MDA-MB-453(D)およびMeso-2細胞(E)を1-50 μM(A−F)の濃度のMitoVESに、または50 μM(B)の濃度のVES4TPPもしくはα-TOSに曝露した。図に示す時点において、細胞を採取し、アポトーシスを評価した。パネルHは、図に示され、アポトーシスを評価される時点についてのA014578または40%集密を示す。パネルJは、コントロールジャーカット細胞または50 μM α-TOSもしくは5 μM MitoVESに曝露された細胞のTEMを示す(上部のパネルは、低倍率であり、下部のパネルは高倍率である)。図に示されるアポトーシスデータは、3つの独立した実験から誘導され、平均値±S.D.として存在し、顕微鏡写真は、少なくとも3つの独立した実験の代表的画像である。
MitoVESによってもたらされるアポトーシスは、ROSおよび内因性経路に従属する。 3A−電子常磁性共鳴分光法(EPR)(左手パネル)ならびに蛍光染料指示薬の使用(右手パネル)によって測定されたMitoVESによって誘発された酸素ラジカルの生成。 3B−親のBax-/-およびBax-/-/Bak-/- ジャーカット細胞を、50 μMの濃度のα-TOS(T)および5 μMの濃度のMitoVES(M)に曝露させ、アポトーシスを評価した。
MitoVESは、ミトコンドリア内膜に蓄積し、複合体IIの補酵素Q結合部位を妨げる。 4A−hSDHCおよびchSDHC mRNAの発現についてのRas形質転換 B1、B9およびB10チャイニーズハムスター胚線維芽細胞株のRT-PCR。 4B−図示のように、発現のタンパク質レベルを検出するための関連する抗体をもつB1、B9およびB10チャイニーズハムスター胚線維芽細胞株のウエスタンブロッティング分析。結果は、RasおよびGFP融合タンパク質発現に対して陽性のクローン的に選択されたRas形質転換B1RaおよびB9Ras-SDHC亜株からのものであり、親の非形質転換B1、B9およびB10細胞からのサンプルと比較する。 4C−複合体II標的薬TTFAまたはMitoVESによる処置の24時間後、アネクシンV結合法を用いてRas形質転換B1およびB9細胞をアポトーシスについて評価した。
複合体IIにおけるMitoVE結合の分子モデリング。AutoDock(Morris G M、 Goodsell DS、Halliday RS、Huey R、Hart W E、Belew RK、Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Comp Chem 19: 1639-1662)およびAstex Viewer (Hartshorn MJ(2002) AstexViewer(登録商標): An aid for structure-based drug design. J Computer Aided Mol Des 16: 871-881)を用いて作成されたMitoVES(棒線画構造として確認される)と複合体IIの空間充填モデル。複合体IIの鎖B(鉄−イオウタンパク質)の表面および鎖CおよびD(膜貫通部分)の表面を図示するが、鎖A(フラビンタンパク質−コハク酸レダクターゼ)は、図示せず。
MitoVESは、増殖している細胞においてアポトーシスを引き起こすが、ROSの蓄積により、停止内皮細胞では引き起こさない。親のEAhy926細胞を、それらのρ0対応物を50%集密にて播種しつつ、それらが一夜回復後に、〜50%または100%集密を獲得するように24ウエルプレートに播種した。次いで、増殖している細胞および集密細胞を、図示する濃度および時間にてMitoVESに曝露し、アネクシンV結合法(A)によってアポトーシスレベルについて評価し、蛍光プローブDHE(B)を用いてROS蓄積について評価した。パネルAの差し込み図は、増殖しているEAhy926細胞および集密EAhy926細胞における細胞周期分布を示す。パネルBは、EPR分光法を用いた増殖しているEAhy926細胞および集密EAhy926細胞におけるROS蓄積を示す
MitoVESは、インビトロで血管新生を阻害する。EC EAhy926細胞を用いて、創傷治癒(A−F)および管形成活性(G、H)を評価した。創傷治癒活性のために、細胞を35-mmペトリ皿に播種し、100%集密を達成させた。次いで、傷害を行って、0.4-0.5 mmの露出した裂け目を作成した。グリッドおよびデジタルカメラを備えた光学顕微鏡を用いて、細胞の増殖および露出領域への移動に基づいて、コントロール細胞および1、5または10 μMのMitoVESのを補充された細胞における創傷治癒活性を評価した(A)。パネルBは、コントロール培養物および10 μMのMitoVESに曝露された細胞について、傷害から20時間後の停止したEC細胞領域における細胞の形態を示す。パネルCにおいて、傷害を受けたコントロール細胞および10 μMのMitoVESで処置された細胞の異なる時点での代表的な画像を提供する。パネルDは、パネルAにおける個別の曲線の傾斜から誘導された異なる条件における治癒速度を示す。パネルEにおいて、コントロール培養物およびMitoVESに曝露された細胞について、傷害から20時間後のアポトーシスのレベルを示す。EAhy926細胞を、マトリゲルコーティング24ウエルプレートに、〜105個/ウエルにて播種し、MitoVESの不在または存在下で24時間放置して、管を形成させた。0.16 mm2のフィールド当たりの個別の多角形の完全な毛細血管結合点(一般的材料および方法参照)を計数し、管形成活性の測定値として得た(F)。パネルGは、コントロール細胞および5 μMのMitoVESで20時間処置された細胞のマトリゲル培養の代表的画像を示す。20時間の処置の時点で、マトリゲルから細胞を回収し、アネクシンV結合法を用いてアポトーシスを評価した(H)。親のEAhy926細胞およびそれらのρ0対応物をペトリ皿に集密にて播種し、上述の通り傷害し、10 μMのMitoVES(MVES)の不在または存在下で創傷治癒活性を評価した(I;上記パネルLのシンボル参照)。パネルIにおける傾斜から治癒速度を評価し、mmol/h(J)にてプロットした。20時間後、アポトーシスのレベルについて細胞を評価した(K)。パネルLは、5 μMのMitoVESの不在または存在下でのρ0 EAhy 926細胞のマトリゲルにおける管形成活性を実証する。図示するデータは、3つの独立した実験から誘導され、平均値±S.D.として表され、顕微鏡写真は、少なくとも3つの独立した実験の代表的画像である。
MitoVESは、ガン幹細胞に富んだヒト乳ガン細胞株MCF7の集団を殺すための極めて有効な薬物である。付着MCF7細胞および対応するマンモスフィア細胞(MS)を培養し、顕微鏡検査によって形態学的変化について(A)、RT-PCR(B)およびフローサイトメトリー(C)によって「幹細胞性」のインジケーターとしてのマーカーの発現レベルについて、ならびにCD44およびCD24の発現(D)について評価した。付着MCF7細胞(E)およびMS細胞(F)を、5 μMのMitoVES、50 μMのα-TOSまたは10 μMのパルテノライドで処理し、薬物誘発性細胞死に対する感受性について評価した。パネルGは、MitoVESに曝露されたMS細胞におけるアポトーシスによる細胞死の初期レベルを示し、パネルHは、5 μMのMitoVESに3時間曝露され、次いで、アネクシンV-FITC結合について解析されたMS細胞のヒストグラム解析を示す。付着MCF7細胞(I)およびMS細胞(J)をα-TOS(50 μM)または異なる長さの脂肪族側鎖を含むMitoVES同族体(それぞれ5 μM、11、7または5炭素原子の鎖長)で3時間処理し、処理した細胞を、フローサイトメトリーによって活性酸素種(ROS)について評価した。
MitoVES処理は、自然発生乳管ガンをもつトランスジェニックFVB/N c-neuマウスにおいて乳ガン腫瘍の進行を完全に阻害する。自然発生の小さい乳ガンをもつトランスジェニックFVB/N c-neu雌性マウスを、3 μmol/マウス/1回用量のMitoVESで処理し、数週間にわたって腫瘍増殖を観察しながら繰り返し超音波画像診断によって腫瘍体積を評価した。
本発をより良く理解することができるように、以下の実施例によって説明する。これらの実施例は、説明のみを目的とするものであり、いかなる方法においても本発明の範囲を限定するものと解釈されるべきではない。
一般的材料および方法
細胞培養:
本実験に用いた以下の細胞は、他に特記しない限り、ATCCから入手した:ヒトTリンパ腫細胞 ジャーカット、ヒト中皮腫細胞 Meso-I、MM-BI、Ist-Mes、Ist-Mes-2(Pass、H.I. ら、Characteristics of nine newly derived mesothelioma cell lines. Ann. Thorac. Surg. 59、835-844(1995))、ヒト乳ガン細胞 MCF-7(erbB2-low)およびMDA-MB-453(erbB2-high)、ヒト結腸直腸細胞 HCT-116、ヒト肝細胞ガン細胞 Huh-7、マウス中皮腫細胞 AE17(Jackaman、C. ら、L-2 intratumoral immunotherapy enhances CD8+ T cell that mediate destruction of tumor cell and tumor-associated vasculature: a novel mechanism for IL-2. J. Immunol. 171、505150-505163(2003)、ヒト良性中皮細胞 Met-5A、ラット心室筋細胞様細胞 HL-1(Claycomb、W.C. ら、HL-1 cell: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc. Natl. Acad. Sci. USA 95、2979-2984(2001))およびH9c2、ならびにヒト内皮様細胞 EAhy926(Edgell、C.J.、McDonald、C.C. & Graham、J.B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc. Natl. Acad. Sci. USA 80、3734-3737(1983))。10% FCSおよび抗生物質を補足して、RPMI培地中でジャーカット細胞を増殖させ、他の悪性細胞株およびMet-5A細胞には、DMEMを用いた。ノルアドレナリンを補足したクレイコーム(Claycomb)培地中でフィブロネクチン/ゼラチンコーティング皿中で維持したHL-1細胞を増殖させ(Claycomb、W.C. ら、HL-1 cell: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc. Natl. Acad. Sci. USA 95、2979-2984(2001))、HATを補足した完全DMEM中でEAhy926細胞を増殖させた(Edgell、C.J.、McDonald、C.C. & Graham、J.B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc. Natl. Acad. Sci. USA 80、3734-3737(1983))。 Weber、T.ら(Mitochondria play a central role in apoptosis induced by α-tocopheryl succinate、an agent with anticancer activity. Comparison with receptor-mediated pro-apoptotic signaling. Biochemistry 42、4277-4291(2003))が詳述しているように、mtDNA(ρ0 表現型)を欠いている細胞を調製した。mtDNAにコードされたチトクロームCオキシダーゼサブユニットII(COXII、図示せず)の細胞による発現の欠如によって、ρ0表現型の獲得を確認した。10% FCS、抗生物質、10 mg/mlのグルコースおよび非必須アミノ酸を補足したDMEM中で、複合体Iを欠いているチャイニーズハムスター肺線維芽細胞(B10細胞)(Seo、B.B. ら、Molecular remedy of complex I defects: rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cell. Proc. Natl. Acad. Sci. USA 95、9167-9171(1998))および複合体II(CybL-/-;B9細胞)(Oostveen、F.G.、Au、H.C.、Meijer、P.J. & Scheffler、I.E. A Chinese hamster mutant cell line with a defect in the integral membrane protein CII-3 of complex II of the mitochondrial electron transport chain. J. Biol. Chem. 270: 26104-26108(1995))ならびに親細胞(B1細胞)(Oostveen、F.G.、Au、H.C.、Meijer、P.J. & Scheffler、I.E. A Chinese hamster mutant cell line with a defect in the integral membrane protein CII-3 of complex II of the mitochondrial electron transport chain. J. Biol. Chem. 270: 26104-26108(1995))を増殖させた。
VE類縁体の合成:
国際出願番号PCT/NZ98/00173およびPCT/NZ02/00154の明細書に記載の方法にしたがって、以下の化合物(大部分を図1に記載する)を一般的に合成した:- MitoVE11S、S-MitoVE11S、R-MitoVE11S、MitoVE9S、MitoVE7S、MitoVE5S、MitoVE3S、MitoVE11AE、MitoVE11F and VES4TPP。
IC50、アポトーシスおよびミトコンドリア電位の評価:
Turanek、J.、ら、((2008). Liposomal formulation of vitamin E analogs as an efficient and selective anti-cancer treatment. Clin. Cancer Res. (submitted))に詳述されている通り、IC50に基づいて、ガン細胞に対するα-TOS、VE11S(VES)、MitoVE3S、MitoVE5S、MitoVE7S、MitoVE9S、MitoVE11S(MitoVES)、MitoVE11AE(MitoVEAE)、MitoVE11F(MitoVEF)、MitoVE11M(MitoVEM)およびVES4TPPの毒性を評価した。アネクシンV法を用いてアポトーシスを評価し(Weber、T. ら、Mitochondria play a central role in apoptosis induced by α-tocopheryl succinate、an agent with anticancer activity. Comparison with receptor-mediated pro-apoptotic signaling. Biochemistry 42、4277-4291(2003))、多色プローブJC-1(Molecular Probes)を用いてミトコンドリア内膜電位の消失を評価した(Weber、T. ら、Mitochondria play a central role in apoptosis induced by α-tocopheryl succinate、an agent with anticancer activity. Comparison with receptor-mediated pro-apoptotic signaling. Biochemistry 42、4277-4291(2003))。
細胞増殖の評価および細胞周期分布:
ELISA比色分析キット(Roche)を用いて細胞増殖を測定し、使用説明書を用いる5-ブロモ-2-デオキシウリジン(BrdUrd)のDNA取り込みに基づいて、細胞周期のS期にある細胞の数を決定した。細胞周期分析のために、24時間の回復後に、細胞が〜50%、70%および100%集密に達するように、24ウエルプレートに細胞を置いた。次いで、細胞を採取し、クエン酸ナトリウム(1%)、トリトンX-100(0.1%)、RNアーゼA(0.05 μg/mL)および5 μg/mLのヨウ化プロピジウムを含む緩衝液に再懸濁し、4℃にて30分間インキュベートし、フローサイトメトリーによって分析した。
SDH活性の評価:
複合体II基質2,6-ジクロロフェノールインドフェノール(DCIP)の減少の時間的経過を、反応体積1 mlを含む1 cmキュベット中600 nmにおける吸光度を測定することによって追跡した(ε600=21x103 M-1cm-1)。反応成分は、NADH、0.5 mM;コハク酸エステル、5 mM;KCN、10 mM;DCIP、50 μM;フェナジンメトスルフェート(PMS)、50 μMを含んだ。各アッセイの時点のために、0.5 mgのサンプルタンパク質を用い、示すとおり、100または300 μMのいずれかにてα-TOSを加えた。分光光度計(UVIKON XL、Secomam)を用いて、DCPIPの吸光度の変化を測定し、複製サンプルを検定した(n=3)。複合体Iを測定する場合(NADHデヒドロゲナーゼ活性)、PMSは含めなかった。α-TOSの無いコントロール反応のために、最終濃度が<0.1%(v/v)になるように希釈DMSOを加えた。
ROS蓄積の評価:
図の説明に示すとおり、α-TOSで細胞を処理し、フローサイトメトリーによって間接的に、および電子常磁性共鳴(EPR)分光分析によって間接的に、細胞ROSを検出した。幾つかの実験において、2 μMのミトコンドリアに標的化された補酵素Q(MitoQ)で1時間細胞を前処理するか(Kelso、G.F.、ら、Selective targeting of a redox-active ubiquinone to mitochondria within cell: antioxidant and antiapoptotic properties. J. Biol. Chem. 276、4588-45896(2001))、または750ユニット/mlのスーパーオキシドジスムターゼ(SOD;Sigma S4636;EC 1.15.1.1)とともに共インキュベートした。間接的評価のために、細胞をα-TOSで処理し、ジヒドロジクロロフルオレセイン二酢酸(DCF;Molecular Probes)と30分間反応させ、蛍光が強い細胞に対するフローサイトメトリーによって評点を付け、平均蛍光強度における増加に基づいて評価した。ラジカルトラップである5,5-ジメチルl-1-ピロリン N-オキシド(DMPO;Sigma)の使用に基づいて、ROS生成のEPR分光分析を行った。簡単に言うと、T25フラスコで細胞を培養し、60-70%集密(〜5x106細胞/フラスコ)に到達させた。細胞を洗浄し、PSS培地で覆い(Thomas、S.R.、Chen、K.、& Keaney、J.F. Hydrogen peroxide activates endothelial nitric-oxide synthase through coordinated phosphorylation and dephosphorylation via a phosphoinositide 3-kinase-dependent signaling pathway. J. Biol. Chem. 277、6017-6024(2002))、10 mMのDMPOを加えた後、50 μMのα-TOSとともに5分間インキュベートした。石英フラットセル(Wilmad)へ移された細胞懸濁液ならびに細胞馴化培地から採取したサンプルで、DMPO付加物の分析を行った。次いで、次の分光計パラメーター(場掃引 10 mT、マイクロ波電力 20 mW、マイクロ波周波数 100 kHz、振幅変調 0.1 mT、掃引時間 83.9秒)をもつ293 KにセットしたBruker EMX 卓上分光計の空洞内に石英セルを置いた。安定な窒素酸化物(TEMPO)の検出限界は、〜50 nMであった。
細胞トランスフェクション:
CybL遺伝子を保持するTopo pCR3.1 Uniプラスミドを用いて、B9細胞をトランスフェクトさせ(Slane BG、Aykin-Burns N、Smith BJ、Kalen AL、Goswami PC、Domann FE、Spitz DR. (2006). Mutation of succinate dehydrogenase subunit C results in increased oxidative stress、and genomic instability. Cancer Res 66: 7615-7620)、次の文献に記載の通り選択した(Weber T、Dalen H、Andera L、Negre-Salvayre A、Auge N、Sticha M ら(2003). Mitochondria play a central role in apoptosis induced by α-tocopheryl succinate、an agent with anticancer activity. Biochemistry 42: 4277-4291)。安定にトランスフェクトされ、SDH活性およびSDHC発現について、siRNA処理された細胞を評価した。抗SDHC免疫グロブリンG(IgG)(クローン3E2;Novus Biologicals)を用い、ローディングコントロールとして抗β-アクチンIgG (Santa Cruz Biotechnology、Santa Cruz、CA、USA)を用いて、次の文献に記載の通りウエスタンブロッティングを行った(Wang XF、Birringer M、Dong LF、Veprek P、Low P、Swettenham E ら(2007). A peptide adduct of vitamin E succinate targets breast cancer細胞 with high erbB2 expression. Cancer Res 67: 3337-3344)。標準的プロトコルを用いてRT-PCRを行った。公表されたヒトCybL(Slane BG、Aykin-Burns N、Smith BJ、Kalen AL、Goswami PC、Domann FE、Spitz DR. (2006). Mutation of succinate dehydrogenase subunit C results in increased oxidative stress、and genomic instability. Cancer Res 66: 7615-7620)およびチャイニーズハムスターグリセルアルデヒド三リン酸デヒドロゲナーゼプライマー(Sever ら、2004)を用いた。
インビトロにおける血管新生の評価:
EAhy926細胞の創傷治癒活性におけるα-TOSの効果を評価するために、3.5 mmペトリ皿に細胞を播種し、完全集密に到達させた。滅菌した黄色のピペットチップを用いて細胞を除去して細胞の単層に傷を付け、直径0.4-0.5 mmの露出領域を作成した。接眼レンズにグリッドを備えた顕微鏡において、露出裂け目を狭くすることの動力学を追跡することによって、「裂け目を満たす速度」として表される治癒を治癒速度(μm/時間)として、α-TOSまたはα-TEAの存在下での細胞の再増殖(創傷治癒)を評価した。
本質的に次の文献に記載の通り(Albini、A.、ら、Inhibition of angiogenesis and vascular tumor growth by interferon-producing cell: A gene therapy approach. Am. J. Pathol.156、1381-1393(2000))、EAhy926細胞の管形成活性のために、三次元設定における毛細血管様構造の形成を評価した。簡単に言えば、冷チップを用いて、24ウエルプレートの各ウエルに300 μlの冷マトリゲル(BD Biosciences)を移した。インキュベーター内で固化させた後、5x105個の細胞を含むHATサプリメントを含んだ200 μlの完全細胞培地が各ウエルに加えられるように、増殖している培養物からのトリプシン処理したEAhy926細胞の懸濁液でマトリゲルの表面を静かに覆う。インキュベーター内で1-2時間後、EAhy926毛細血管の網状構造でできた多角形構造が構築された。ウエルに移す直前または管が構築された後に、細胞懸濁液に加えられたMitoVESの添加によって細胞を処理した。光学顕微鏡内で選択された領域において多角形構造の個々の点を相互に連結している完全な毛細血管の数を計数することによって管形成活性を評価した。各ウエルにおいて、ウエルの中央部分の3つの領域をランダムに選択した。コントロール培養物において、このような毛細血管の数を、100%とみなされた。処理培養物について、EAhy926細胞の管形成活性の阻害の動力学を得るための実験開始後の様々な時点で、完全な毛細血管の数を計数した。
透過電子顕微鏡法:
先の記載(Weber、T. ら、Mitochondria play a central role in apoptosis induced by α-tocopheryl succinate、an agent with anticancer activity. Comparison with receptor-mediated pro-apoptotic signaling. Biochemistry 42、4277-4291(2003))の通り、透過電子顕微鏡法に付す培養物を調製した。簡単に言えば、 0.1 Mスクロース−カコジル酸ナトリウム−HCl緩衝液(pH 7.2;Sigma、St Louis、MO、USA)中の2%グルタルアルデヒド(Agar Scientic、Essex、UK)の添加によってジャーカット細胞の培養物を固定し、オスミウム(Johnson Matthey Chemicals、Roystone、UK)中で後固定した。その後、2 %寒天中で細胞をペレット化した後、脱水し、酢酸ウラニル(Sigma)で染色し、Epon-812(Fluka AG、Buchs、Switzerland)に包埋した。治癒したブロックの薄い切片をダイヤモンドナイフ(DIATOME、Bienne、Switzerland)で切断し、クエン酸鉛(Sigma)で染色し、審査し、JEOL 1230-EX電子顕微鏡(Tokyo、Japan)で100 kVにて写真を撮った。
分子モデリング−複合体IIおよびMitoVES:
Brookhaven Protein Databank(code 1ZOY)(Sun F、Huo X、Zhai Y、Wang A、Xu J、Su D、Bartlam M、Rao Z. 2005. Crystal structure of mitochondrial respiratory membrane protein 複合体II. Cell 121:1043-1057)から、ブタ心臓由来のミトコンドリア呼吸膜タンパク質複合体IIの結晶構造を入手した。複合体は、4個のタンパク質を含む。この複合体における3個のサブユニットである鉄イオウタンパク質(鎖B)、大(鎖C)および小(鎖D)膜貫通タンパク質は、UbQへの結合に関与する。NCBIウェブサイトからのBLAST調査は、ブタおよびヒト複合体IIの間の配列同一性が、鉄イオウタンパク質について97%、大膜貫通タンパク質について90%および小膜貫通タンパク質について94%と非常に高いことを示した。
最初に除去されるヘテロ原子で、AutoDock Tools(Sanner MF(1999) Python: a programming language for software integration and development、J Mol Graphic Mod 17: 57-61)を用いて、ドッキングのために、タンパク質構造を作成した。該構造に極性水素を付加し、タンパク質原子のためにKollman United Atomチャージを用いた。InsightII (Accelrys、2001)を用いて、結合したUbQ(1ZOY)の結晶構造配位からUbQ5を構築した。再びInsightIIを用い、α-TOSの環系についてのサブ構造調査によって、Cambridge Structural Database(Allen FH(2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58(Pt 3 Pt 1):380-388)から検索された結晶構造MOPHLB01からMitoVE11Sを構築した。次いで、非極性水素を融合し、Gasteigerチャージを割り当て、回転可能な結合を決定することを含む、AutoDock Toolsによって、ドッキングのために、両方のリガンドを作成した。
Autodock 3.0.5.(Morris G M、 Goodsell DS、 Halliday RS、Huey R、Hart W E、 Belew RK、Olson AJ(1998) Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Comp Chem 19: 1639-1662)において実施されたように、Lamarckian Genetic Algorithmを用いて、ドッキングを行った;2つのドッキンググリッドを作成した。両方は、0.375オングストロームのグリッドペーシングである126x126x126ポイントであり、第1のものは、QP部位におけるTyr173(鎖B)を中心とし、第2のものは、QD部位におけるTrp134(鎖D)を中心とした。以下のもの以外は、対象のリガンドに存在する回転可能な結合の相対的に高い数(UbQ5=16、α-TOS =17)によって増加する、デフォルトパラメーターを用いた:- ga_run=250、ga_pop_size=250、ga_num_evals=10,000,000。また、計算の分析相中に、より管理可能なクラスターを生み出すために、パラメーターrmstolを、2.5に増加した。各ドッキング計算は、2 GHz G5 PowerPC Macintoshを用いて、49時間を僅かに越えた。AutoDockで提供されたスクリプトを用いて、結果の分析を行い、Astex Viewer(Hartshorn MJ(2002) AstexViewer(登録商標): An aid for structure-based drug design。J Computer Aided Mol Des 16: 871-881))を用いて、ドッキングした構造を視覚化した。
MitoVESは、ガン性細胞を選択的に殺す:
図2は、ビタミンEのミトコンドリアに標的化された酸化還元サイレント類縁体が、そのガン細胞に対する選択性を維持しながら、その非標的化α-TOS対応物と比べて、ガン細胞に対する極めて高いアポトーシス効果および抗ガン活性を有することを示す。特に、MitoVE11S(Mito-α-TOS)は、ガン細胞中の原型のα-TOSよりも、50倍まで高いアポトーシス性を見出された。
異なる悪性および良性細胞に対するα-TOS、VES4TPPおよびMitoVE11S(「MitoVES」と表示)のIC50値を以下の第V表に示す。
第V表
Figure 2011513437

aジャーカット細胞は、0.5x106個/mlにて処理し、他の細胞株(EAhy926細胞以外)は、〜60%集密にて処理した。
bIC50値は、MTT生存能力アッセイを用いて生存能力曲線から誘導され、μmol/lで表わされる。
cEAhy926細胞は、100%集密(上段)または〜50%集密(下段)にて処理した。
様々な他のMitoVES類縁体および化合物についてのIC50値を下記第VI表に示す。
第VI表
Figure 2011513437

aジャーカット細胞は、0.5x106個/mlで処理し、EtOH溶液として加えた、表に示した類縁体に曝露した。
bIC50値は、MTT生存能力アッセイを用いて生存能力曲線から誘導され、μmol/lで表わされる。
図2のアポトーシスアッセイは、MitoVE11Sが、悪性細胞においてアポトーシスを選択的に引き起こすが、分裂内皮細胞以外の正常な等価細胞型には引き起こさないことを示す。
パネルJにおけるα-TOS-およびMitoVE11S-処理ジャーカット細胞の顕微鏡写真は、アポトーシスの典型的な特徴的兆候を表す。
興味深いことには、図3Bのアポトーシスアッセイは、Bax/Bakダブルノックアウト細胞株がMitoVE11Sに対して耐性が強いことが分かっており、これらのBH3オンリータンパク質の両方が、内因性経路を介するアポトーシス中のミトコンドリア外膜透過化にとって必要であることが知られているので、ヒトジャーカットTリンパ腫細胞のMitoVE11S処理は、主にミトコンドリア経路を介してアポトーシスを誘発したことを示す。
図3Bのアポトーシスアッセイから、MitoVE11Sが、ミトコンドリア経路を介して死を標的化する、より強力で特異的な抗ガン薬であることも探り出すことができる。比較すると、α-TOSは、依然として、Bax.Bak二重欠損細胞における何らかのレベルの致死を媒介し、アポトーシスのためのミトコンドリア経路以外の他の経路を介してなお死を誘発しうることが示唆される。
第V表および第VI表の結果から、リンパ腫、中皮腫、乳ガンおよび結腸ガンなどのさまざまなガン細胞型を殺すが、正常細胞は殺さないことにおけるMitoVESのはるかに大きい潜在的能力が強調される。さらに、該結果から、おそらく、MitoVESの鎖の長さが、UbQ結合複合体II部位にアクセスするために重要であることが示唆される。TPP部分をTOS部分から分離している炭素鎖の長さは、活性にとて重要であり、複合体II上のUbQ部位に入るのに十分に深くミトコンドリア膜内に挿入されるようになるTOS群の能力を反映する可能性が高い。
MitoVESは、増殖している内皮細胞においてアポトーシスを引き起こすが、停止内皮細胞においては引き起こさない:
図6の結果から、MitoVES(MitoVE11S)は、ROSの蓄積により、増殖している内皮細胞においてアポトーシスを引き起こすが、停止内皮細胞においては引き起こさないことが示され、したがって、強力な抗血管新生薬としてのその潜在力が明らかとなる。よって、MitoVE11Sは、血管新生の有効なインヒビターであり、アポトーシスを介してガン細胞を殺すことによって直接的抗ガン効果を有する。
MitoVESは、インビトロにおいて血管新生を阻害する:
図7の創傷治癒、管形成およびアポトーシスアッセイから、MitoVES(MitoVE11S)は、インビトロにおいて血管新生を阻害することが示され、したがって、抗血管新生薬としての、その潜在的能力が再確認される。
α-TOSと同様に、MitoVE11Sは、増殖している内皮細胞を標的化し、殺すことにおいて非常に強力な抗血管新生活性を有する。しかしながら、MitoVE11Sは、抗血管新生薬として、驚くべき5倍大きい効力を示す。同じ内皮細胞型における同程度の効果のために、α-TOSが約25-50マイクロモル必要であるのに対し、MitoVE11Sは約5-10マイクロモル必要である(α-TOSレベルは、次の文献からのものである;Lan-Feng Dong、Emma Swettenham、Johanna Eliasson、Xiu-Fang Wang、Mikhal Gold、Yasmine Medunic、Marina Stantic、Pauline Low、Lubomir Prochazka、Paul K. Witting、Jaroslav Turanek、Emmanuel T. Akporiaye、Stephen J. Ralph、and Jiri Neuzil、Vitamin E Analogues Inhibit Angiogenesis by Selective Induction of Apoptosis in Proliferating Endothelial cell: The Role of Oxidative Stress、Cancer Res 2007;67:(24). December 15、2007.)
複合体IIを遺伝的に欠損している突然変異ガン細胞株は、MitoVESに反応しない:
本発明者らによる先の研究から、α-TOSは、複合体IIの呼吸鎖におけるUbQ部位を妨げることによってROSを誘発することが明らかにされている。本実施例から、複合体IIを遺伝的に欠損している突然変異ガン細胞株は、MitoVESに反応しないことが示され、したがって、MitoVES(MitoVE11S)が、複合体IIの呼吸鎖におけるUbQ部位を妨げることによってROSを誘発することが確認される。
親(B1)、複合体II欠損(B9)および複合体I欠損突然変異(B10)のチャイニーズハムスター肺線維芽細胞株を比較した。さらに、v-Harvey Ras発現プラスミドベクターを用いて、悪性腫瘍の状態に上記の細胞株を形質転換した。したがって、B1、B9およびB10細胞株は、pEGFP-C3-H-Rasプラスミドを用いるGFP-H-Rasの安定なトランスフェクションによって形質転換された(Baysal BE、Ferrell RE、Willett-Brozick JE、Lawrence EC、Myssiorek D、Bosch A、van der Mey A、Taschner PE、Rubinstein WS、Myers EN、Richard CW 3rd、Cornelisse CJ、Devilee P、Devlin B. Mutations in SDHD、a mitochondrial 複合体II gene、in hereditary paraganglioma. Science. 2000 Feb 4;287(5454):848-51)。Ras形質転換B9細胞株における複合体IIは、pEFIRES-Puroプラスミド内にクローニングされたヒト(h) CybLでトランスフェクトすることによって再構築された(Albayrak T、Scherhammer V、Schoenfeld N、Braziulis E、Mund T、Bauer MK、Scheffler IE、Grimm S. The tumor suppressor cybL、a component of the respiratory chain、mediates apoptosis induction. Mol Biol Cell. 2003 Aug;14(8):3082-96)。RT-PCRは、B9由来細胞株におけるチャイニーズハムスターSDHCmRNA発現の不在およびB9SDHC発現形質転換細胞におけるhSDHCタンパク質の存在を実証した(図4A参照)。次いで、トランスフェクされた細胞を、最高レベルのH-Ras-EGFPを発現している細胞についてクローン選択に付した(図4B参照)。次いで、異なるras形質転換細胞株を、MitoVES同族体であるMitoVE11Sに曝露し、アポトーシス効力、ROSを蓄積する傾向およびSDH活性について評価した。
図4Cにおいて、ミトコンドリアにおいて複合体IIを欠損しているRas形質転換B9細胞は、野生型の複合体II発現および活性を有するRas形質転換B1細胞株と比べて、複合体II標的化薬であるTTFAまたはMitoVE11Sに対して感受性がかなり低いことが明確に見られる。さらに、ヒトSDHCタンパク質を発現するようにトランスフェクトされたRas形質転換B9細胞における複合体II機能の再構築は、複合体IIインヒビターであるTTFAまたはMitoVE11Sに対する細胞株の感受性を回復させた。よって、証拠は、明確に、複合体IIを、これらのガン細胞においてアポトーシスを誘発することにおけるMitoVE11SおよびTTFA活性の両方にとっての標的部位とみなす。
MitoVESは、複合体II上のUbQ結合ポケットを標的とする:
MitoVESがUbQ結合部位を介して複合体IIと相互作用するという結果を理論的に説明するために、本発明者らは、を用いる分子モデリング研究に着手した
(Morris G M、 Goodsell DS、 Halliday RS、Huey R、Hart W E、 Belew RK、Olson AJ(1998) Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Comp Chem 19: 1639-1662)。ブタ心臓ミトコンドリアCIIの結晶構造が報告されている(Sun F、Huo X、Zhai Y、Wang A、Xu J、Su D、Bartlam M、Rao Z. 2005. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121:1043-1057)。それは、ヒトCII(個々のサブユニットに対して、95-97%)との高い配列同一性を示し、したがって、本発明者らは、モデリング研究のための基準として、この構造(1ZOY)および関連する構造(1ZP0)とインヒビターTTFAを用いた。図5に示す通り、ドッキング実験は、複合体IIの空間充填モデルに示されるように棒線画構造として同定されるMitoVE11Sとの結合構造を生み出した。複合体IIの鎖B(鉄−イオウタンパク質)の表面および鎖CおよびD(膜貫通部分)の表面を図示するが、鎖A(フラビンタンパク質−コハク酸レダクターゼ)は、図示せず。
MitoVE11Sの予測された位置を棒で示し、半透明のグレーの長方形で、膜二重層が存在するおおよその位置を示す。モデルは、MitoVE11S結合および複合体IIのQpユビキノン部位へのドッキングのために提案された位置および外側のSDH酵素頭部基の構造の基部の近くのミトコンドリアマトリックスに位置する膜表面上に突き出ているトリフェニルホスホニウムイオンを特定する。
MitoVESは、乳ガン幹細胞を殺すのに効率的な薬物である:
ガン療法における近年の重要な発見は、腫瘍を再定着させるための源となりうるガン幹細胞が存在するということである。腫瘍の大部分を殺すが、身体に幹細胞を生存させたままにする治療は、腫瘍が再増殖するために失敗するので、この発見は、ガンを治療することの困難さも強調する(LouおよびDean、Oncogene 2007)。ガン幹細胞は、通例、療法に対して耐性があり(O'Brien ら、2008、Li ら.、2008)、そして、薬物耐性があり、ガン幹細胞における蓄積から化学療法薬を妨げるのに関与する、細胞膜上の多剤耐性(MDR)/ABC輸送糖タンパク質を発現するので、非常に重要な標的でもある。ガン幹細胞は、高いDNA損傷修復能力があるので、放射線耐性があることも発見されている(Neuzil ら.、2007 BBRC;EylerおよびRicj、2008)。
ガン幹細胞は、蛍光活性化細胞分類によってゲートでコントロールされる場合に細胞の「サイドポピュレーション」を提供するヘキスト33342などの色素を排除するそれらの傾向に基づく精製などの選択的方法によって濃縮されている(Patrawala Lら、2005、WuおよびAlman 2008)。ガン幹細胞集団を濃縮するためのもう1つの方法は、腫瘍細胞からのスフェロイドの培養における増殖である。この方法は、このような培養物内で、放射線耐性などのガン幹細胞の多くの特徴をもつ腫瘍開始細胞(Phillips TM ら.、2007)を高いパーセンテージで濃縮する(Grimshaw ら.、2008)ことが明らかにされている。ガン幹細胞濃縮集団における遺伝子発現およびタンパク質マーカー発現の分析に基づいて、これらの細胞型は、より特徴のある物になっている。ガン幹細胞によって発現されたマーカー遺伝子およびタンパク質のうち、Notch/wnt/ベータ-カテニンシグナル伝達経路、ABC 輸送体、高CD133、高および低CD44レベルのCD24表面マーカーのレベルが増加する。これらの細胞はまた、それらのマーカー発現に基づいて、侵攻的に致死性の悪性腫瘍から単離され、遺伝子発現プロファイリングによって解析された、より「基礎的な」腫瘍細胞表現型と厳密に相関している(たとえば、Sorlie T ら.、PNAS、2001;review in Sotiriou and Pusztai、2008を参照)。
ガン幹細胞または腫瘍開始細胞の特性についての我々の理解を前提として、これらの細胞型を標的とし、殺すことによって腫瘍の再増殖を妨げる薬物を発見することが急務になる。この薬物が選択的であり、正常な幹細胞または他の正常な細胞型に著しく影響を及ぼさないのが好ましい。記載したこのような薬物の1つは、白血病幹細胞を選択的に殺すことが見出されている、植物ナツシロギクから誘導されたセキステルペンラクトンであるパルテノライドである(Guzman ML ら.、2005)。もう1つの同様な薬物は、化合物、4-ベンジル、2-メチル、1,2,4-チアジアゾリジン、3,5 ジオンである(TDZD-8、Guzman、ML ら.、2007)。しかしながら、これらの化合物は、固形腫瘍などの他のタイプのガンに対しては非常に効果的ではないことがわかった。
本発明者らは、MitoVESが、培養においてマンモスフィア(MS)としての増殖によってガン幹細胞が濃縮されたヒト乳ガン細胞株MCF7の集団を殺すのに非常に効果的な薬物であるという驚くべき発見をした。図8の結果から、付着MCF7細胞および対応するMS細胞の形態学ならびにガン幹細胞に対する多くのマーカーの発現についての分析が明らかにされる。本発明者らは、付着MCF7細胞は、α-TOSによって殺すことに対して感受性があるが、薬物MitoVESに対してはより感受性が強いことを見出した。しかしながら、これらの細胞は、これまでにガン幹細胞、特に白血病幹細胞を殺すことが報告されている薬物であるパルテノライドに対しては感受性がなかった。さらに、MCF7細胞に由来するMS細胞は、パルテノライドに対して低レベルの感受性を示し、α-TOSには耐性があった。しかしながら、高レベルの幹性(ガン幹細胞マーカーによって示される)をもつMS細胞は、驚くべきことに、薬物MitoVESに対して非常に感受性があり、薬物をMS細胞に加えた後、5-6時間以内に>90%のアポトーシスを示した。本発明者らは、また、α-TOSが、付着MSF7細胞においてROSの有意な生成を引き起こすが、MS細胞ではより低いレベルであることも見出した。しかしながら、MitoVESは、付着MSF7細胞において、α-TOSよりも、より大きいROSの蓄積を引き起こし、MS細胞においては、より高レベルであった。さらに、MitoVESのより短い鎖の同族体は、付着MCF7細胞および対応するMS培養物の両方において、ROS蓄積を促進することにおいて、MitoVE11Sよりも効力が低かった。これらの発見は、ヒト乳ガン細胞株MCF7由来のMS培養物について示されるように、MitoVE11Sを、非常に高いガン幹細胞を殺す傾向をもつ化合物と同定する。
本発明者らはまた、MitoVESが、インビボにおいて非常に有効な抗ガン薬であることも見出した。この目的のために、ガン遺伝子HER2の高レベルの発現による自然発生乳管ガンを形成するトランスジェニックFVB/N c-neuマウスをガンモデルとして用いた。本発明者らは、MitoVES処置が、α-TOSの対応する活性のために必要な濃度の10分の1の濃度で、これらの動物において乳ガン腫瘍の進行を完全に阻止することを見出した(図9)。重要なことには、毒性の明らかな兆候は、いずれの処置動物においても観察されなかった。
本発明者らは、非標的マイトカンが、おそらくそれらをミトコンドリア内膜の内腔リーフレット(luminal leaflet)に固定してそれらの活性を最大化するカチオン基の付加によって修飾されうることを明らかにしている。このことは、そのガン細胞に対する選択性を維持しながら、腫瘍開始細胞などのガン細胞に対するかなり高いアポトーシス効果および非標的化対応物と比べてかなり高い抗ガン活性を示す、ビタミンEのミトコンドリアに標的化された類縁体によって代表される。
特に、本実験例から、以下のことが示される:
1) MitoVES(MitoVE11S)は、α-TOSと比べて、選択的ガン細胞殺活性において〜50倍という驚くほど強い効力を有する;
2) MitoVESは、1)の結果として、正常細胞における毒性はかなり低く、特異性は改善される;
3) MitoVESは、α-TOSと比べて、細胞死に対してミトコンドリア経路をより特異的に誘発する;
4) α-TOSと同様に、MitoVESは、増殖中の内皮細胞を標的化し、殺すことにおいて非常に強力な抗血管新生活性を有するが、MitoVES(MitoVE11S)は、驚くべきことに、α-TOSと比べて、抗血管新生薬として5倍強い効力を示す;そして
5) MitoVESは、それが、中皮腫、乳ガン、結腸ガン、リンパ腫細胞株およびガン幹細胞を殺すことを考慮すると、ガン療法において非常に広く適用できる可能性が高い。
先に述べた実施態様は、本発明の本質の説明に役立つものにすぎず、さまざまな修飾および変更を当業者であれば容易に思いつくであろう。本発明は、さまざまな方法および他の実施態様において実施および実行されうるものである。本明細書で用いた専門用語が、記載を目的とするものであり、限定とみなすべきではないことも理解すべきである。
用語「含む(comprise)」および「含む(comprises)」または「含んでいる」などの用語は、本明細書において、記述した整数を含めることを意味するために用いるものであり、文脈および用法において、用語の排他的解釈が要求されない限り、その他の整数を排除するものではない。
本明細書に引用した刊行物への言及は、開示がオーストラリアまたはその他の地域における通例の一般的知識を構成するということの承認ではない。
第II-IV表および実施例6のための引用文献の一覧表
Arya P, Alibhai N, Qin H, Burton GW, Batist G, You SX and Alaoui-Jamali MA (1998) Design and synthesis of analogues of vitamin E: antiproliferative activity against human breast adenocarcinoma cells. Bioorg Med Chem Lett 8:2433-2438.
Birringer M, EyTina JH, Salvatore BA and Neuzil J (2003) Vitamin E analogues as inducers of apoptosis: Structure-function relationship. Br J Cancer 88:1948-1955.
Eyler, CE and Ricj, JN (2008) Survival of the Fittest: Cancer Stem Cells in Therapeutic Resistance and Angiogenesis. J Clin Oncol. Jun 1;26(17):2839-2845
Farnie G, Clarke RB, Spence K, Pinnock N, Brennan K, Anderson NG, Bundred NJ. (2007) Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst. Apr 18;99(8):616-27.
Galli F, Stabile AM, Betti M, Conte C, Pistilli A, Rende M, Floridi A and Azzi A (2004) The effect of α- and α-tocopherol and their carboxyethyl hydroxychroman metabolites on prostate cancer cell proliferation. Arch Biochem Biophys 423:97-102.
Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L, Taylor-Papadimitriou J, Burchell JM. (2008) Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res.;10(3):R52. Epub 2008 Jun 9.
Guthrie N, Gapor A, Chambers AF and Carroll KK (1997) Inhibition of proliferation of estrogen receptor-negative MDA-MB-435 and -positive MCF-7 human breast cancer cells by palm oil tocotrienols and tamoxifen, alone and in combination. J Nutr 127: 544S-548S.
Guzman ML, Li X, Corbett CA, Rossi RM, Bushnell T, Liesveld JL, Hebert J, Young F, Jordan CT. (2007) Rapid and selective death of leukemia stem and progenitor cells induced by the compound 4-benzyl, 2-methyl, 1,2,4-thiadiazolidine, 3,5 dione (TDZD-8). Blood. Dec 15;110(13):4436-44.
Guzman ML, Rossi RM, Karnischky L, Li X, Peterson DR, Howard DS, Jordan CT. (2005) The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood. Jun 1;105(11):4163-9.
He L, Mo H, Hadisusilo S, Qureshi AA and Elson CE (1997) Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. J Nutr 127:668-674.
He DY, Yu L, Yu CA. (1994) Protein ubiquinone interaction. Synthesis and biological properties of 5-alkyl ubiquinone derivatives. J Biol Chem. Nov 11;269(45):27885-8.
Kogure K, Hama S, Kisaki M, Takemasa H, Tokumura A, Suzuki I and Fukuzawa K (2004) Structural characteristic of terminal dicarboxylic moiety required for apoptogenic activity of α-tocopheryl esters. Biochim Biophys Acta 1672: 93-99.
Kogure K, Manabe S, Suzuki I, Tokumura A and Fukuzawa K (2005) Cytotoxicity of α-tocopheryl succinate, malonate and oxalate in normal and cancer cells in vitro and their anti-cancer effects on mouse melanoma in vivo. J Nutr Sci Vitaminol 51:392-397.
Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC. (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. May 7;100(9):672-9.
Lou H, Dean M. (2007) Targeted therapy for cancer stem cells: the patched pathway and ABC transporters. Oncogene. Feb 26;26(9):1357-60.
Makishima M, Umesono K, Shudo K, Naoe T, Kishi K and Honma Y (1998) Induction of differentiation in acute promyelocytic leukemia cells by 9-cis retinoic acid α-tocopherol ester (9-cis tretinoin tocoferil). Blood 91:4715-4726.
Munteanu A, Zingg JM, Ogru E, Libinaki R, Gianello R, West S, Negis Y and Azzi (2004) Modulation of cell proliferation and gene expression by α-tocopheryl phosphates: relevance to atherosclerosis and inflammation. Biochem Biophys Res Commun 318:311-316.
Nesaretnam K, Stephen R, Dils R and Darbre P (1998) Tocotrienols inhibit the growth of human breast cancer cells irrespective of estrogen receptor status. Lipids 33:461-469.
Neuzil J, Weber T, Gellert N, Weber C (2001) Selective cancer cell killing by α-tocopheryl succinate. Br J Cancer 84:87-89.
Neuzil J, Weber T, Schroder A, Lu M, Ostermann G, Gellert N, Mayne GC, Olejnicka B, Negre-Salvayre A, Sticha M, Coffey RJ, Weber C (2001) Induction of apoptosis in cancer cells by α-tocopheryl succinate: Molecular pathways and structural requirements. FASEB J 15:403-415.
Neuzil J, Stantic M, Zobalova R, Chladova J, Wang X, Prochazka L, Dong L, Andera L, Ralph SJ. (2007) Tumour-initiating cells vs. cancer 'stem' cells and CD133: what's in the name? Biochem Biophys Res Commun. Apr 20;355(4):855-9.
O'Brien CS, Farnie G, Howell SJ, Clarke RB. (2008) Are stem-like cells responsible for resistance to therapy in breast cancer? Breast Dis.; 29:83-9.
Phillips TM, McBride WH, Pajonk F. (2006) The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst. Dec 20;98(24):1777-85.
Shah SJ and Sylvester PW (2005) α-Tocotrienol inhibits neoplastic mammary epithelial cell proliferation by decreasing Akt and nuclear factor κB activity. Exp Biol Med 230: 235-241.
Shiau CW, Huang JW, Wang DS, Weng JR, Yang CC, Lin CH, Li C, Chen CS (2006) alpha-Tocopheryl succinate induces apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 function. J Biol Chem 281:11819-11825.
Shun MC, Yu W, Gapor A, Parsons R, Atkinson J, Sanders BG and Kline K (2004) Pro-apoptotic mechanisms of action of a novel vitamin E analog (α-TEA) and a naturally occurring form of vitamin E (δ-tocotrienol) in MDA-MB-435 human breast cancer cells. Nutr Cancer 48:95-105.
Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL. (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. Sep 11;98(19):10869-74.
Sotiriou C, Pusztai L. (2009) Gene-expression signatures in breast cancer. N Engl J Med. Feb 19;360(8):790-800.
Tomic-Vatic A, EyTina JH, Chapmann JM, Mahdavian E, Neuzil J and Salvatore BA (2005) Vitamin E amides, a new class of vitamin E analogues with enhanced pro-apoptotic activity. Int J Cancer 117:118-193.
Vraka PS, Drouza C, Rikkou MP, Odysseos AD and Keramidas AD (2006) Synthesis and study of the cancer cell growth inhibitory properties of α-, α-tocopheryl and α-tocotrienyl 2-phenylselenyl succinates. Bioorg Med Chem 14: 2684-2696.
Yano Y, Satoh H, Fukumoto K, Kumadaki I, Ichikawa T, Yamada K, Hagiwara K and Yano T (2005) Induction of cytotoxicity in human lung adenocarcinoma cells by 6-O-carboxy-propyl-α-tocotrienol, a redox-silent derivative of α-tocotrienol. Int J Cancer 115:839-846.

Claims (25)

  1. ガン性細胞の死を誘発するための化合物であって、
    (i)ガン性細胞のミトコンドリア内に活性酸素種を生成し、(ii)ガン性細胞のアポトーシスを誘発するためのプロオキシダント部分;ならびに
    ガン性細胞のミトコンドリアへプロオキシダント部分をデリバリーするためのデリバリー部分;
    を含む化合物。
  2. ガンを予防または治療するための化合物であって、
    (i)ガン性細胞のミトコンドリア内に活性酸素種を生成し、(ii)ガン性細胞のアポトーシスを誘発するためのプロオキシダント部分;ならびに
    ガン性細胞のミトコンドリアへプロオキシダント部分をデリバリーするためのデリバリー部分;
    を含む化合物。
  3. デリバリー部分が、ガン性細胞のミトコンドリアマトリックスへプロオキシダント部分をデリバリーする請求項1または2に記載の化合物。
  4. デリバリー部分が、脂溶性カチオンである請求項3に記載の化合物。
  5. 脂溶性カチオンが、トリフェニルホスホニウムカチオンである請求項4に記載の化合物。
  6. プロオキシダント部分が、ミトコンドリア複合体IIと相互作用する前記請求項のいずれか1つに記載の化合物。
  7. プロオキシダント部分が、複合体IIのユビキノン結合部位に結合する請求項6に記載の化合物。
  8. プロオキシダント部分が、複合体IIへの結合を手段として活性酸素種を生成し、ミトコンドリア依存性細胞死シグナル伝達経路の活性化を手段としてさらにアポトーシス促進性である前記請求項のいずれか1つに記載の化合物。
  9. プロオキシダント部分が、プロオキシダントビタミンE類縁体である前記請求項のいずれか1つに記載の化合物。
  10. プロオキシダントビタミンE類縁体部分が、α-コハク酸トコフェリル、α-マレイン酸トコフェリル、α-トコフェリルマレイルアミドおよび2,5,7,8-テトラメチル-2R-(4R,8R,12-トリメチルトリデシル)-クロマン-6-イルオキシ酢酸(α-トコフェリルオキシ酢酸)から選ばれる請求項9に記載の化合物。
  11. プロオキシダントビタミンE類縁体が、α-コハク酸トコフェリル(α-TOS)である請求項10に記載の化合物。
  12. 前記請求項のいずれか1つに記載の化合物またはその生理学的に許容しうる塩および生理学的に許容しうる担体を含む医薬組成物または獣医用組成物。
  13. プロオキシダントビタミンE類縁体部分が、α-コハク酸トコフェリル、α-マレイン酸トコフェリルおよびα-トコフェリルマレイルアミドから選ばれ、担体が、経皮適用可能なクリームである請求項12に記載の医薬組成物または獣医用組成物。
  14. プロオキシダントビタミンE類縁体部分が、α-トコフェリルオキシ酢酸であり、担体が、経口投与に適している請求項12に記載の医薬組成物または獣医用組成物。
  15. ガン性細胞の死を誘発するための方法であって、治療有効量の請求項1〜11のいずれか1つに記載の化合物または請求項12〜14のいずれか1つに記載の医薬組成物または獣医用組成物を患者に投与するステップを含む方法。
  16. ガンを予防または治療するための方法であって、治療有効量の請求項1〜11のいずれか1つに記載の化合物または請求項12〜14のいずれか1つに記載の医薬組成物または獣医用組成物を患者に投与するステップを含む方法。
  17. ガン性細胞の死を誘発するための医薬の製造における請求項1〜11のいずれか1つに記載の化合物の使用。
  18. ガンの予防または治療用医薬の製造における請求項1〜11のいずれか1つに記載の化合物の使用。
  19. ガン性細胞の死を誘発するための化合物であって、
    ガン性細胞のアポトーシスを誘発するためのアポトーシス促進性部分;および
    ガン性細胞のミトコンドリアへアポトーシス促進性部分をデリバリーするためのデリバリー部分;
    を含む化合物。
  20. ガンを予防または治療するための化合物であって、
    ガン性細胞のアポトーシスを誘発するためのアポトーシス促進性部分;および
    ガン性細胞のミトコンドリアへアポトーシス促進性部分をデリバリーするためのデリバリー部分;
    を含む化合物。
  21. デリバリー部分が、トリフェニルホスホニウムカチオンである請求項19または20に記載の化合物。
  22. アポトーシス促進性部分が、α-コハク酸トコフェリル(α-TOS)である請求項19〜21のいずれか1つに記載の化合物。
  23. 請求項21または22に記載の化合物またはその生理学的に許容しうる塩、および生理学的に許容しうる担体を含む医薬組成物または獣医用組成物。
  24. ガン性細胞の死を誘発するための方法であって、治療有効量の請求項19〜22のいずれか1つに記載の化合物または請求項23に記載の医薬組成物または獣医用組成物を患者に投与するステップを含む方法。
  25. ガンを予防または治療するための方法であって、治療有効量の請求項19〜22のいずれか1つに記載の化合物または請求項23に記載の医薬組成物または獣医用組成物を患者に投与するステップを含む方法。
JP2010550000A 2008-03-14 2009-03-16 ミトコンドリア由来の抗ガン化合物 Active JP5616798B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2008901261A AU2008901261A0 (en) 2008-03-14 Mitochondrially Delivered Anti-Cancer Compounds
AU2008901261 2008-03-14
PCT/AU2009/000312 WO2009111846A1 (en) 2008-03-14 2009-03-16 Mitochondrially delivered anti-cancer compounds

Publications (3)

Publication Number Publication Date
JP2011513437A true JP2011513437A (ja) 2011-04-28
JP2011513437A5 JP2011513437A5 (ja) 2013-05-02
JP5616798B2 JP5616798B2 (ja) 2014-10-29

Family

ID=41064682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010550000A Active JP5616798B2 (ja) 2008-03-14 2009-03-16 ミトコンドリア由来の抗ガン化合物

Country Status (7)

Country Link
US (2) USRE47300E1 (ja)
EP (1) EP2265623B1 (ja)
JP (1) JP5616798B2 (ja)
KR (1) KR101642157B1 (ja)
CA (1) CA2734208C (ja)
NZ (1) NZ602579A (ja)
WO (1) WO2009111846A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522179A (ja) * 2013-04-24 2016-07-28 ノイジル、ジリ 腫瘍性疾患であって特に高her2タンパク質レベルの腫瘍性疾患を治療するためのタモキシフェン誘導体

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6163479B2 (ja) * 2011-04-14 2017-07-12 エクサレンズ バイオサイエンス リミテッド 肝細胞癌の診断、予後診断、監視および治療方法
WO2012174287A1 (en) * 2011-06-15 2012-12-20 The Board Of Regents Of The University Of Texas System Luminescent nanoparticle compositions
WO2013043580A2 (en) 2011-09-19 2013-03-28 Gencia Corporation Modified creatine compounds
WO2013181488A2 (en) * 2012-06-01 2013-12-05 The Ohio State University Research Foundation Inhibition of leukemic stem cells by pp2a activating agents
US10953110B2 (en) 2014-04-25 2021-03-23 Board Of Regents, The University Of Texas System Dual emissive metal nanoparticles as ratiometric pH indicators
WO2016144637A1 (en) * 2015-03-06 2016-09-15 The Children's Hospital Of Philadelphia Tocopheryloxyacetate ester-based co-drug conjugates
CZ307146B6 (cs) * 2015-03-31 2018-02-07 Kkcg Se Trifenylfosfoniové analogy biguanidu, způsob jejich přípravy a jejich použití jako léčiva
US20180318324A1 (en) 2015-11-04 2018-11-08 Prescient Pharma Llc Anti-aging compositions and methods for using same
KR102361131B1 (ko) * 2020-02-25 2022-02-10 경희대학교 산학협력단 항생제 내성 균주에 대해 항균활성을 갖는 항균용 조성물
KR20220053505A (ko) * 2020-10-22 2022-04-29 주식회사 파이안바이오테크놀로지 항암제를 포함한 미토콘드리아 및 이의 용도

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015120A2 (en) * 2004-07-28 2006-02-09 Sd Pharmaceuticals, Inc. Stable injectable composition of alpha tocopheryl succinate, analogues and salts thereof
WO2007046729A1 (en) * 2005-10-18 2007-04-26 Limited Liability Company 'mitotechnology' Method of acting upon organism by targeted delivery of biologicaly active substances into m itochondria, pharmaceutical composition for carrying out said method, and compound used for the purpose

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030069208A1 (en) 1997-11-25 2003-04-10 University Of Otago Mitochondrially targeted antioxidants
US6331532B1 (en) * 1998-11-25 2001-12-18 University Of Otago Mitochondrially targeted antioxidants
DE60132171D1 (de) 2000-02-11 2008-02-14 Res Dev Foundation Tocopherole, tocotrienole, andere chrome und seitenketten-derivate und ihre verwendung
AUPQ605800A0 (en) * 2000-03-06 2000-03-30 Silverbrook Research Pty Ltd Printehead assembly
EP1387978A1 (en) * 2001-05-17 2004-02-11 Imperial College Innovations Limited Production and processing plant with a rigid pipe portion curving in three dimensions
BRPI0413742B8 (pt) 2003-08-22 2021-05-25 Antipodean Pharmaceuticals Inc composto antioxidante quimicamente estável, composição farmacêutica, método de redução do estresse oxidativo em uma célula in vitro e métodos de preparo e de síntese do referido composto antioxidante
KR100556527B1 (ko) * 2004-11-04 2006-03-06 삼성전자주식회사 트렌치 소자 분리막 형성 방법 및 불휘발성 메모리 장치의제조 방법
WO2006094203A1 (en) 2005-03-02 2006-09-08 Northeastern University Mitochondriotropic phospholipid vesicles
AU2007295877B2 (en) 2006-09-15 2013-04-18 Cancure Limited Pro-oxidant anti-cancer compounds
JP4930026B2 (ja) * 2006-12-13 2012-05-09 富士ゼロックス株式会社 積層体、無端状ベルト、定着装置及び画像形成装置
DE102007025423A1 (de) 2007-05-30 2008-12-04 Friedrich-Schiller-Universität Jena Triphenylphosphonium-Derivate zum gezielten Transport und Freisetzen von Substanzen in Mitochondrien sowie Verfahren zu deren Verwendung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006015120A2 (en) * 2004-07-28 2006-02-09 Sd Pharmaceuticals, Inc. Stable injectable composition of alpha tocopheryl succinate, analogues and salts thereof
WO2007046729A1 (en) * 2005-10-18 2007-04-26 Limited Liability Company 'mitotechnology' Method of acting upon organism by targeted delivery of biologicaly active substances into m itochondria, pharmaceutical composition for carrying out said method, and compound used for the purpose

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013038585; WANG,X. et al: Biochemical and Biophysical Research Communications Vol.326, No.2, 2005, p.282-289 *
JPN6013038586; NEUZIL,J. et al: FEBS Letters Vol.580, No.22, 2006, p.5125-5129 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522179A (ja) * 2013-04-24 2016-07-28 ノイジル、ジリ 腫瘍性疾患であって特に高her2タンパク質レベルの腫瘍性疾患を治療するためのタモキシフェン誘導体

Also Published As

Publication number Publication date
KR20100135803A (ko) 2010-12-27
CA2734208A1 (en) 2009-09-17
USRE47300E1 (en) 2019-03-19
CA2734208C (en) 2018-01-09
WO2009111846A1 (en) 2009-09-17
AU2009225261A1 (en) 2009-09-17
EP2265623A1 (en) 2010-12-29
US8598145B2 (en) 2013-12-03
WO2009111846A4 (en) 2009-11-05
US20110105437A1 (en) 2011-05-05
EP2265623A4 (en) 2014-01-01
JP5616798B2 (ja) 2014-10-29
EP2265623B1 (en) 2016-07-13
NZ602579A (en) 2013-12-20
KR101642157B1 (ko) 2016-07-22

Similar Documents

Publication Publication Date Title
JP5616798B2 (ja) ミトコンドリア由来の抗ガン化合物
Dabbagh-Bazarbachi et al. Zinc ionophore activity of quercetin and epigallocatechin-gallate: from Hepa 1-6 cells to a liposome model
Ojima Guided molecular missiles for tumor-targeting chemotherapy—case studies using the second-generation taxoids as warheads
Angulo-Molina et al. The role of alpha tocopheryl succinate (α-TOS) as a potential anticancer agent
Huang et al. PEG-derivatized embelin as a dual functional carrier for the delivery of paclitaxel
JP5396274B2 (ja) プロオキシダント抗ガン化合物
Zhang et al. Redox-sensitive micelles composed of disulfide-linked Pluronic-linoleic acid for enhanced anticancer efficiency of brusatol
Han et al. A facile route to form self-carried redox-responsive vorinostat nanodrug for effective solid tumor therapy
Xu et al. Development of ROS‐responsive amino acid‐based poly (ester amide) nanoparticle for anticancer drug delivery
Sukamporn et al. Damnacanthal and its nanoformulation exhibit anti-cancer activity via cyclin D1 down-regulation
Zulfiqar et al. Nanomedicine and cancer immunotherapy: focus on indoleamine 2, 3-dioxygenase inhibitors
Zhang et al. Excipient-free prodrug-based three-in-one nanoparticles co-deliver diversified agents to amplify tumor therapy
AU2007217810B2 (en) Anticancer agents
Koufaki Vitamin E derivatives: a patent review (2010–2015)
WO2015110040A1 (zh) 苯丁酸氮芥衍生物、制备方法及应用
WO2018203127A1 (en) Compositions for treatment of malignant tumors and precancerous conditions, methods of use thereof and methods for manufacturing medicaments
AU2009225261B2 (en) Mitochondrially delivered anti-cancer compounds
Miesel et al. Anticarcinogenic reactivity of copper-dischiffbases with superoxide dismutase-like activity
Dong et al. Vitamin E analogues as prototypic mitochondria-targeting anti-cancer agents
Li et al. A Trisulfide Bond Containing Biodegradable Polymer Delivering Pt (IV) Prodrugs to Deplete Glutathione and Donate H2S to Boost Chemotherapy and Antitumor Immunity
León-Carmona et al. New free radicals to measure antiradical capacity: A theoretical study
Dey et al. Poly-β-thioester-Based Cross-Linked Nanocarrier for Cancer Cell Selectivity over Normal Cells and Cellular Apoptosis by Triggered Release of Parthenolide, an Anticancer Drug
Rege Mr. Ajit Kumar Varma
Amuti et al. N-octadecyl lactose-amide modified microemulsions as targeting delivery carrier for α-linolenic acid: In vitro evaluation and interaction mechanism
Xie et al. Endowing Pt (IV) with Perfluorocarbon Chains and Human Serum Albumin Encapsulation for Highly Effective Antitumor Chemoimmunotherapy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140912

R150 Certificate of patent or registration of utility model

Ref document number: 5616798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250