JP2011257689A - Diffraction optical element, optical system and optical equipment - Google Patents

Diffraction optical element, optical system and optical equipment Download PDF

Info

Publication number
JP2011257689A
JP2011257689A JP2010133972A JP2010133972A JP2011257689A JP 2011257689 A JP2011257689 A JP 2011257689A JP 2010133972 A JP2010133972 A JP 2010133972A JP 2010133972 A JP2010133972 A JP 2010133972A JP 2011257689 A JP2011257689 A JP 2011257689A
Authority
JP
Japan
Prior art keywords
diffraction
grating
thin film
order
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010133972A
Other languages
Japanese (ja)
Other versions
JP2011257689A5 (en
JP5676929B2 (en
Inventor
Reona Ushigome
礼生奈 牛込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010133972A priority Critical patent/JP5676929B2/en
Priority to US13/157,751 priority patent/US8941923B2/en
Publication of JP2011257689A publication Critical patent/JP2011257689A/en
Publication of JP2011257689A5 publication Critical patent/JP2011257689A5/ja
Application granted granted Critical
Publication of JP5676929B2 publication Critical patent/JP5676929B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/189Structurally combined with optical elements not having diffractive power
    • G02B5/1895Structurally combined with optical elements not having diffractive power such optical elements having dioptric power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/44Grating systems; Zone plate systems

Abstract

PROBLEM TO BE SOLVED: To provide a diffraction optical element, an optical system and optical equipment suppressing unnecessary light.SOLUTION: The diffraction optical element includes a thin film 20 disposed at least a part of a boundary face between a pair of diffraction gratings 11, 12, and is characterized in that a value obtained by subtracting the larger refractive index of the refractive indices of the pair of diffraction gratings from the refractive index of the thin film is greater than 0.5 and smaller than 0.8.

Description

本発明は、光学系のレンズに用いられる回折光学素子、光学系および光学機器に関する。   The present invention relates to a diffractive optical element, an optical system, and an optical apparatus that are used for a lens of an optical system.

光学系のレンズに用いられる回折光学素子において、2つの回折格子を密着配置し、各回折格子を構成する材料と格子高さを適切に設定することで広い波長帯域で高い回折効率を得ることが知られている。この格子面と格子壁面を備えた回折光学素子に光束が入射すると、その入射光束が格子壁面で反射又は屈折することにより、不要光(フレア)が発生する。特許文献1及び2は、格子壁面での不要光(フレア)を抑制するために格子壁面に吸収膜を設けた回折光学素子を提案している。特許文献3及び4は、2つの回折格子を密着配置し、その境界面に密着性を向上する目的で薄膜を設けることを提案している。特許文献5は、厳密結合波解析(RCWA:Regorous Coupled Wave Analysis)を使用した回折効率の計算について開示している。   In a diffractive optical element used for a lens of an optical system, two diffraction gratings are arranged in close contact, and the material and the grating height that constitute each diffraction grating are set appropriately to obtain high diffraction efficiency in a wide wavelength band. Are known. When a light beam enters the diffractive optical element having the grating surface and the grating wall surface, the incident light beam is reflected or refracted by the grating wall surface, thereby generating unnecessary light (flare). Patent Documents 1 and 2 propose a diffractive optical element in which an absorption film is provided on a grating wall surface in order to suppress unnecessary light (flares) on the grating wall surface. Patent Documents 3 and 4 propose that two diffraction gratings are arranged in close contact, and a thin film is provided on the boundary surface for the purpose of improving adhesion. Patent Document 5 discloses calculation of diffraction efficiency using a rigorous coupled wave analysis (RCWA: Regulated Coupled Wave Analysis).

特開2003−240931号公報JP 2003-240931 A 特開2004−126394号公報JP 2004-126394 A 特開2004−13081号公報JP 2004-13081 A 特開2005−62717号公報JP 2005-62717 A 特開2009−217139号公報JP 2009-217139 A

光学系のレンズに用いられる回折光学素子において、特に問題となる不要光は設計入射光束とは異なる斜入射角度(画面外光入射角度)で入射する光束により高屈折率媒質と低屈折率媒質の界面で発生する全反射に起因する不要光である。しかし、特許文献1〜4はこれについて検討していないために不要光を抑制する効果も十分ではないおそれがある。   In a diffractive optical element used for a lens of an optical system, unnecessary light that is particularly problematic is a high refractive index medium and a low refractive index medium due to a light beam incident at an oblique incident angle (off-screen light incident angle) different from the designed incident light beam. Unwanted light caused by total reflection occurring at the interface. However, since Patent Documents 1 to 4 do not examine this, there is a possibility that the effect of suppressing unnecessary light is not sufficient.

そこで、本発明は、不要光を抑制する回折光学素子、光学系および光学機器を提供することを例示的な目的とする。   Accordingly, an object of the present invention is to provide a diffractive optical element, an optical system, and an optical apparatus that suppress unnecessary light.

本発明の回折光学素子は、光学系のレンズに用いられる回折光学素子であって、互いに異なる材料により形成され、光軸方向に積層された第1の回折格子と第2の回折格子と、前記第1の回折格子と前記第2の回折格子の境界面の少なくとも一部に配置され、前記第1の回折格子と前記第2の回折格子とは異なる材料からなる単層または多層で構成され、使用波長帯域の光に対して透明な薄膜とを有し、前記第1の回折格子の材料のd線に対する屈折率nd1と前記第2の回折格子の材料のd線に対する屈折率nd2および、薄膜の一層を構成する材料のd線に対する最大の屈折率nd3が以下の式を満たすことを特徴とする。   The diffractive optical element of the present invention is a diffractive optical element used for a lens of an optical system, and is formed of different materials and stacked in the optical axis direction, the first diffraction grating and the second diffraction grating, The first diffraction grating and the second diffraction grating are arranged in at least part of a boundary surface between the first diffraction grating and the second diffraction grating, and the first diffraction grating and the second diffraction grating are composed of a single layer or a multilayer made of different materials, A thin film that is transparent to light in the wavelength band used, the refractive index nd1 of the first diffraction grating material for the d-line, the refractive index nd2 of the second diffraction grating material for the d-line, and the thin film The maximum refractive index nd3 with respect to the d-line of the material constituting one layer satisfies the following formula.

nd1<nd2
0.5<nd3−nd2<0.8
nd1 <nd2
0.5 <nd3-nd2 <0.8

本発明によれば、不要光を抑制する回折光学素子、光学系および光学機器を提供することができる。   According to the present invention, it is possible to provide a diffractive optical element, an optical system, and an optical apparatus that suppress unnecessary light.

回折光学素子の平面図及び側面図である。(実施例1)It is the top view and side view of a diffractive optical element. Example 1 図1の部分拡大断面図である。(実施例1)It is a partial expanded sectional view of FIG. Example 1 図1に示す回折格子部の部分拡大斜視図である。(実施例1)FIG. 2 is a partially enlarged perspective view of a diffraction grating portion shown in FIG. Example 1 図2の部分拡大断面図である。(実施例1)FIG. 3 is a partially enlarged sectional view of FIG. 2. Example 1 図1に示す回折光学素子を有する光学系の光路図である。(実施例1)FIG. 2 is an optical path diagram of an optical system having the diffractive optical element shown in FIG. 1. Example 1 図5に示す光学系において不要光の影響を説明するための模式図である。(実施例1)It is a schematic diagram for demonstrating the influence of unnecessary light in the optical system shown in FIG. Example 1 図5に示す回折光学素子の画面外入射+10度光束に対する回折効率のグラフである。(実施例1)6 is a graph of diffraction efficiency of the diffractive optical element shown in FIG. Example 1 図7に対する比較例としてのグラフである。It is a graph as a comparative example with respect to FIG. 図8に示す比較例における問題点を説明するための模式図である。It is a schematic diagram for demonstrating the problem in the comparative example shown in FIG. 図1に示す回折光学素子の効果を説明するための模式図である。(実施例1)It is a schematic diagram for demonstrating the effect of the diffractive optical element shown in FIG. Example 1 回折光学素子の設計入射光束に対する回折効率のグラフである。(実施例1)It is a graph of the diffraction efficiency with respect to the design incident light beam of a diffractive optical element. Example 1 回折光学素子の設計入射光束に対する回折効率のグラフである。(比較例)It is a graph of the diffraction efficiency with respect to the design incident light beam of a diffractive optical element. (Comparative example) 回折光学素子の画面外入射−10度光束に対する回折効率のグラフである。(実施例1)It is a graph of the diffraction efficiency with respect to the off-screen incident -10 degree light beam of a diffractive optical element. Example 1 回折光学素子の画面外入射−10度光束に対する回折効率のグラフである。(比較例)It is a graph of the diffraction efficiency with respect to the off-screen incident -10 degree light beam of a diffractive optical element. (Comparative example) 回折光学素子の画面外入射+10度光束に対する回折効率のグラフである。(実施例2)It is a graph of the diffraction efficiency with respect to the off-screen incident +10 degree light beam of a diffractive optical element. (Example 2) 回折光学素子の設計入射光束に対する回折効率のグラフである。(実施例2)It is a graph of the diffraction efficiency with respect to the design incident light beam of a diffractive optical element. (Example 2) 回折光学素子の画面外入射−10度光束に対する回折効率のグラフである。(実施例2)It is a graph of the diffraction efficiency with respect to the off-screen incident -10 degree light beam of a diffractive optical element. (Example 2) 回折光学素子の画面外入射+10度光束に対する回折効率のグラフである。(実施例3)It is a graph of the diffraction efficiency with respect to the off-screen incident +10 degree light beam of a diffractive optical element. (Example 3) 回折光学素子の設計入射光束に対する回折効率のグラフである。(実施例3)It is a graph of the diffraction efficiency with respect to the design incident light beam of a diffractive optical element. (Example 3) 回折光学素子の画面外入射−10度光束に対する回折効率のグラフである。(実施例3)It is a graph of the diffraction efficiency with respect to the off-screen incident -10 degree light beam of a diffractive optical element. (Example 3) 回折光学素子の部分拡大断面図である。(実施例4)It is a partial expanded sectional view of a diffractive optical element. Example 4 図21に示す回折光学素子の画面外入射+10度光束に対する回折効率のグラフである。(実施例4)It is a graph of the diffraction efficiency with respect to off-screen incident +10 degree light beam of the diffractive optical element shown in FIG. Example 4 回折光学素子の設計入射光束に対する回折効率のグラフである。(実施例4)It is a graph of the diffraction efficiency with respect to the design incident light beam of a diffractive optical element. Example 4 回折光学素子の画面外入射−10度光束に対する回折効率のグラフである。(実施例4)It is a graph of the diffraction efficiency with respect to the off-screen incident -10 degree light beam of a diffractive optical element. Example 4 回折光学素子の部分拡大断面図である。(実施例5)It is a partial expanded sectional view of a diffractive optical element. (Example 5) 図25に示す回折光学素子の画面外入射+10度光束に対する回折効率のグラフである。(実施例5)FIG. 26 is a graph of diffraction efficiency of the diffractive optical element shown in FIG. (Example 5) 回折光学素子の設計入射光束に対する回折効率のグラフである。(実施例5)It is a graph of the diffraction efficiency with respect to the design incident light beam of a diffractive optical element. (Example 5) 回折光学素子の画面外入射−10度光束に対する回折効率のグラフである。(実施例5)It is a graph of the diffraction efficiency with respect to the off-screen incident -10 degree light beam of a diffractive optical element. (Example 5)

以下、添付図面を参照して、本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は、実施例1の回折光学素子(DOE)1の平面図と側面図である。DOE1は、可視波長体全域の使用波長領域で特定の一つの次数(以下、「特定次数」または「設計次数」ともいう)の回折光の回折効率を高めるように構成されている。   FIG. 1 is a plan view and a side view of a diffractive optical element (DOE) 1 according to the first embodiment. The DOE 1 is configured to increase the diffraction efficiency of diffracted light of one specific order (hereinafter also referred to as “specific order” or “design order”) in the use wavelength region of the entire visible wavelength body.

DOE1は透明な一対の基板2および3と、その間に配置された回折格子部10と、を有する。各基板2および3は、平板又はレンズ作用を奏する形状を有するが、本実施例では、基板2の上下面と基板3の上下面はそれぞれ曲面を有する。   The DOE 1 includes a pair of transparent substrates 2 and 3 and a diffraction grating portion 10 disposed therebetween. Each of the substrates 2 and 3 has a shape exhibiting a flat plate or lens action, but in this embodiment, the upper and lower surfaces of the substrate 2 and the upper and lower surfaces of the substrate 3 have curved surfaces, respectively.

回折格子部10は光軸Oを中心とした同心円状の回折格子形状を有し、レンズ作用を奏する。図2は図1の中央部付近の部分拡大断面図であり、図3は、回折格子部10の部分拡大斜視図である。図4は図2の拡大断面図である。   The diffraction grating portion 10 has a concentric diffraction grating shape centered on the optical axis O, and exhibits a lens action. 2 is a partially enlarged cross-sectional view of the vicinity of the central portion of FIG. 1, and FIG. 3 is a partially enlarged perspective view of the diffraction grating portion 10. FIG. 4 is an enlarged cross-sectional view of FIG.

格子形状を分かりやすくするために、図2〜図4は格子深さ方向にかなりデフォルメされ、格子数も実際よりは少なく描かれている。図3および図4において、入射光束aは、DOE1の設計入射角度である入射角度0度で入射する光束である。入射光束bは、斜入射角度(画面外光入射角度)で下向きに入射する光束である。入射光束cは、斜入射角度(画面外光入射角度)で上向きに入射する光束である。   In order to make the lattice shape easy to understand, FIGS. 2 to 4 are considerably deformed in the lattice depth direction, and the number of lattices is also drawn smaller than the actual number. 3 and 4, an incident light beam a is a light beam incident at an incident angle of 0 degrees, which is the designed incident angle of the DOE 1. The incident light beam b is a light beam incident downward at an oblique incident angle (off-screen light incident angle). The incident light beam c is a light beam incident upward at an oblique incident angle (off-screen light incident angle).

図1、図3において、回折格子部10は、回折格子(第1の回折格子)11と回折格子(第2の回折格子)12とが光軸方向に密着することによって形成され、回折格子11および12の格子壁面には使用波長帯域で透明な薄膜20が設けられている。回折格子11は基板2と一体であってもよいし別体であってもよい。回折格子12は基板3と一体であってもよいし別体であってもよい。   1 and 3, the diffraction grating portion 10 is formed by bringing a diffraction grating (first diffraction grating) 11 and a diffraction grating (second diffraction grating) 12 into close contact with each other in the optical axis direction. And 12 are provided with a transparent thin film 20 in the used wavelength band. The diffraction grating 11 may be integrated with the substrate 2 or may be a separate body. The diffraction grating 12 may be integrated with the substrate 3 or may be a separate body.

なお、本実施例では回折格子11と12が光軸方向において密着しているが、介在する薄膜20は後述するように両者の境界面の全域に亘って設けられている場合もあるので、回折格子11と12が光軸方向に積層されていれば足りる。本実施例では、回折格子11と12の間には空間が設けられていない。   In this embodiment, the diffraction gratings 11 and 12 are in close contact with each other in the optical axis direction. However, the intervening thin film 20 may be provided over the entire boundary surface between the two as described later. It is sufficient if the gratings 11 and 12 are laminated in the optical axis direction. In this embodiment, no space is provided between the diffraction gratings 11 and 12.

回折格子11は格子面11aと格子壁面11bから構成される同心円状のブレーズ構造を有し、回折格子12は格子面12aと格子壁面12bから構成される同心円状のブレーズ構造を有する。各回折格子11および12は、光軸Oから外周部にいくに従って格子ピッチを徐々に変化させてレンズ作用(光の収斂作用や発散作用)を実現している。   The diffraction grating 11 has a concentric blazed structure composed of a grating surface 11a and a grating wall surface 11b, and the diffraction grating 12 has a concentric blazed structure composed of a grating surface 12a and a grating wall surface 12b. Each diffraction grating 11 and 12 realizes a lens action (light convergence action or diverging action) by gradually changing the grating pitch from the optical axis O toward the outer peripheral portion.

格子面11a、12aおよび格子壁面11b、12bは互いに隙間なく接しており、回折格子11、12は、全体で1つのDOE10として作用する。また、ブレーズ構造にすることで、DOE1に入射した入射光は、回折格子部10で回折せずに透過する0次回折方向に対し、特定の回折次数(図では+1次)方向に集中して回折する。   The grating surfaces 11a and 12a and the grating wall surfaces 11b and 12b are in contact with each other without a gap, and the diffraction gratings 11 and 12 function as a single DOE 10 as a whole. Further, by using the blazed structure, incident light incident on the DOE 1 is concentrated in a specific diffraction order (+ 1st order in the figure) direction with respect to the 0th-order diffraction direction that is transmitted without being diffracted by the diffraction grating unit 10. Diffraction.

本実施例のDOE1の使用波長領域は可視域であるため、可視領域全体で設計次数の回折光の回折効率が高くなるように、回折格子11及び12を構成する材料及び格子高さを選択している。すなわち、複数の回折格子(回折格子11,12)を通過する光の最大光路長差(回折部の山と谷の光学光路長差の最大値)が使用波長域内で、その波長の整数倍付近となるように、各回折格子の材料及び格子高さが定められている。このように回折格子の材料、形状を適切に設定することによって、使用波長全域で高い回折効率が得られる。   Since the working wavelength region of the DOE 1 of the present embodiment is the visible region, the material and the grating height constituting the diffraction gratings 11 and 12 are selected so that the diffraction efficiency of the diffracted light of the designed order is high in the entire visible region. ing. That is, the maximum optical path length difference of light passing through a plurality of diffraction gratings (diffraction gratings 11 and 12) (the maximum value of the optical optical path length difference between the peaks and valleys of the diffractive portion) is in the vicinity of an integral multiple of the wavelength within the operating wavelength range. Thus, the material and grating height of each diffraction grating are determined. Thus, by appropriately setting the material and shape of the diffraction grating, high diffraction efficiency can be obtained over the entire wavelength range.

一般に、回折格子の格子高さは、格子周期方向に垂直な方向(面法線方向)の格子先端と格子溝の高さで定義される。また、格子壁面が面法線方向からシフトしているときや格子先端が変形しているとき等の場合は、格子面の延長線と面法線との交点との距離で定義される。なお、回折格子材料や格子高さは限定されない。   In general, the grating height of the diffraction grating is defined by the height of the grating tip and the grating groove in a direction (plane normal direction) perpendicular to the grating period direction. Further, when the lattice wall surface is shifted from the surface normal direction or when the lattice tip is deformed, it is defined by the distance between the extended line of the lattice surface and the intersection of the surface normal. The diffraction grating material and the grating height are not limited.

回折格子11は、ITO微粒子を混合させたフッ素アクリル系紫外線硬化樹脂(nd=1.504、νd=16.3、θgF=0.390、n550=1.511)から構成されている。回折格子12は、ZrO微粒子を混合させたアクリル系紫外線硬化樹脂(nd=1.567、νd=47.0、θgF=0.569、n550=1.570)から構成されている。なお、各回折格子11,12のそれぞれのndはd線に対する屈折率、νdはd線に対するアッベ数、θgFはg線とF線に対する部分分散比、n550は波長550nmに対する屈折率である。 The diffraction grating 11 is made of a fluorine-acrylic ultraviolet curable resin (nd = 1.504, νd = 16.3, θgF = 0.390, n550 = 1.511) mixed with ITO fine particles. The diffraction grating 12 is made of an acrylic ultraviolet curable resin (nd = 1.567, νd = 47.0, θgF = 0.570, n550 = 1.570) mixed with ZrO 2 fine particles. Note that nd of each of the diffraction gratings 11 and 12 is a refractive index with respect to d-line, νd is an Abbe number with respect to d-line, θgF is a partial dispersion ratio with respect to g-line and F-line, and n550 is a refractive index with respect to a wavelength of 550 nm.

本実施例では、回折格子11と12は互いに異なる材料により形成され、回折格子11は低屈折率分散材料から構成され、回折格子12はそれよりも高い屈折率を有する高屈折率分散材料から構成されている。但し、回折格子11の材料のd線に対する屈折率と回折格子12の材料のd線に対する屈折率のうちどちらかが大きければ足りる。   In this embodiment, the diffraction gratings 11 and 12 are made of different materials, the diffraction grating 11 is made of a low refractive index dispersion material, and the diffraction grating 12 is made of a high refractive index dispersion material having a higher refractive index. Has been. However, it is sufficient that either the refractive index of the material of the diffraction grating 11 with respect to the d-line or the refractive index of the material of the diffraction grating 12 with respect to the d-line is larger.

また、微粒子を分散させた樹脂材料は、紫外線硬化樹脂であって、アクリル系、フッ素系、ビニル系、エポキシ系のいずれかの有機樹脂を含むが、特に限定されない。また、本実施例では設計次数を+1次にしているが、設計次数を+1次以外であっても同様の効果が得られるため、設計次数に限定されない。   The resin material in which the fine particles are dispersed is an ultraviolet curable resin, and includes any organic resin of acrylic, fluorine, vinyl, and epoxy, but is not particularly limited. In this embodiment, the design order is + 1st order, but the same effect can be obtained even if the design order is other than + 1st order, and the design order is not limited to the design order.

微粒子は、酸化物、金属、セラミックス、複合物、混合物を含むが、特に限定されない。微粒子材料の平均粒子径は、回折光学素子への入射光の波長(使用波長又は設計波長)の1/4以下であることが好ましい。これよりも粒子径が大きくなると、微粒子材料を樹脂材料に混合した際に、レイリー散乱が大きくなる可能性が生じる。   The fine particles include, but are not particularly limited to, oxides, metals, ceramics, composites, and mixtures. The average particle diameter of the fine particle material is preferably ¼ or less of the wavelength (use wavelength or design wavelength) of light incident on the diffractive optical element. When the particle diameter is larger than this, there is a possibility that Rayleigh scattering becomes large when the fine particle material is mixed with the resin material.

微粒子を分散させた樹脂材料の代わりに、樹脂材料等の有機材料、ガラス材料、光学結晶材料、セラミックス材料等を使用してもよい。   Instead of the resin material in which the fine particles are dispersed, an organic material such as a resin material, a glass material, an optical crystal material, a ceramic material, or the like may be used.

また、回折光学素子の輪帯毎に薄膜の幅または形状を変えることによって輪帯毎に制御してもよい。この結果、結像面に到達する不要光を効果的に抑制することができる。   Moreover, you may control for every ring zone by changing the width | variety or shape of a thin film for every ring zone of a diffractive optical element. As a result, unnecessary light reaching the imaging plane can be effectively suppressed.

薄膜20は格子壁面に沿って略均一な厚さを有し、斜入射(画面外入射)光束によって発生して結像面に到達する不要光を減少させ、回折光学素子の使用波長帯域の光に対して透明な膜である。薄膜20は単層または多層で構成されるが、本実施例では、薄膜20は単層から構成されている。   The thin film 20 has a substantially uniform thickness along the grating wall surface, reduces unnecessary light that is generated by obliquely incident (off-screen incident) light flux and reaches the imaging surface, and light in a wavelength band used by the diffractive optical element. It is a transparent film. The thin film 20 is composed of a single layer or multiple layers. In this embodiment, the thin film 20 is composed of a single layer.

薄膜20は、回折格子11と12の境界面の少なくとも一部に配置され、本実施例では、格子壁面1b、1b’に設けられている。格子壁面1b、1b’の図4に示す格子高さdは9.29μm、設計次数は+1次である。   The thin film 20 is disposed on at least a part of the boundary surface between the diffraction gratings 11 and 12, and is provided on the grating wall surfaces 1b and 1b 'in this embodiment. The grating height d shown in FIG. 4 of the grating wall surfaces 1b and 1b ′ is 9.29 μm, and the design order is + 1st order.

薄膜20は、回折格子11と12とは異なる高い屈折率を有する材料から構成され、本実施例ではTiO(d線に対する屈折率n=2.323)から構成されている。 The thin film 20 is made of a material having a high refractive index different from that of the diffraction gratings 11 and 12, and is made of TiO 2 (refractive index n = 2.323 for the d-line) in this embodiment.

薄膜20が多層構造を有する場合、その一層を構成する材料のd線に対する最大の屈折率は1.3以上2.5以下である必要があることが好ましい。但し、後述する数式に示すように、薄膜の屈折率は回折格子11、12の屈折率の大きい方よりも0.5以上大きくなければならないから、約2.0以上必要となる。また、2.5以下としたのは現存する材料の屈折率を考慮した場合に材料の選択が困難になるためである。   When the thin film 20 has a multilayer structure, it is preferable that the maximum refractive index with respect to the d-line of the material constituting the single layer 20 be 1.3 or more and 2.5 or less. However, since the refractive index of the thin film must be 0.5 or more larger than the refractive index of the diffraction gratings 11 and 12 as shown in the mathematical formulas described later, about 2.0 or more is required. The reason why the value is 2.5 or less is that it is difficult to select a material in consideration of the refractive index of the existing material.

薄膜20の、積層面である格子壁面に垂直な方向の厚さまたは幅wは0.1μmである。   The thickness or width w of the thin film 20 in the direction perpendicular to the lattice wall surface, which is the lamination surface, is 0.1 μm.

薄膜20の製造方法は特に限定されない。例えば、回折格子12を製造し、その後、薄膜20を選択的に形成する。具体的には、薄膜を構成する材料を真空蒸着手法等で薄膜形状に成膜した後、リソグラフィー手法やナノインプリント法等によるによるパターニングしてエッチング手法等で選択的に形成する手法を用いることができる。また、マスクパターンを用いて選択的に蒸着手法等で形成する方法等を用いることができる。その後、回折格子11を形成することで回折光学素子を製造することができる。薄膜20は蒸着などのプロセスで製造できるため、特許文献1及び2に記載された吸収膜を製造するよりも安価かつ容易に製造することができる。   The manufacturing method of the thin film 20 is not specifically limited. For example, the diffraction grating 12 is manufactured, and then the thin film 20 is selectively formed. Specifically, it is possible to use a method in which a material constituting the thin film is formed into a thin film shape by a vacuum deposition method or the like, and then patterned by a lithography method or a nanoimprint method, and selectively formed by an etching method or the like. . Alternatively, a method of selectively forming by a vapor deposition method or the like using a mask pattern can be used. Thereafter, the diffractive optical element can be manufactured by forming the diffraction grating 11. Since the thin film 20 can be manufactured by a process such as vapor deposition, the thin film 20 can be manufactured at a lower cost and more easily than manufacturing the absorption film described in Patent Documents 1 and 2.

図5は、撮像装置(カメラなど)に適用可能な、DOE1を用いた望遠タイプの撮影光学系でf=392.00mm、fno=4.12、半画角3.16度であり、第2面に回折面が設けられている。図6は、図7の光学系における不要光の模式図である。   FIG. 5 shows a telephoto imaging optical system using DOE 1 that can be applied to an imaging apparatus (camera, etc.), f = 392.00 mm, fno = 4.12, half angle of view 3.16 degrees, A diffractive surface is provided on the surface. FIG. 6 is a schematic diagram of unnecessary light in the optical system of FIG.

図5において、30は撮影レンズで、内部に絞り40とDOE1を有する。絞り40はDOE1よりも後側に配置されている。41は結像面であるフィルムまたはCCDやCMOS等の光電変換素子が配置されている。回折格子部10に入射する光束の入射角の分布の重心(図形の重心と同じ)は包絡面の回折格子の中心での面法線に対し、回折格子部10の中心よりに分布するように設定されている。図5では前玉のレンズの貼り合せ面にDOE1を設けたが、これに限定するものではなく、レンズ表面に設けてもよいし、撮影レンズ内に複数、回折光学素子を使用してもよい。   In FIG. 5, reference numeral 30 denotes a photographing lens, which has an aperture 40 and a DOE 1 therein. The diaphragm 40 is disposed behind the DOE 1. Reference numeral 41 denotes a film which is an imaging surface or a photoelectric conversion element such as a CCD or CMOS. The center of gravity of the incident angle distribution of the light beam incident on the diffraction grating portion 10 (same as the center of gravity of the figure) is distributed from the center of the diffraction grating portion 10 with respect to the surface normal at the center of the diffraction grating of the envelope surface. Is set. In FIG. 5, the DOE 1 is provided on the front lens lens bonding surface. However, the present invention is not limited to this, and it may be provided on the lens surface, or a plurality of diffractive optical elements may be used in the photographing lens. .

DOE1が適用可能な光学系は、図5に示す撮影光学系に限定されず、ビデオカメラの撮影レンズ、イメージスキャナーや、複写機のリーダーレンズなど広波長域で使用される結像光学系、双眼鏡や望遠鏡などの観察光学系、光学式ファインダーであってもよい。また、DOE1を含む光学系が適用可能な装置も撮像装置に限定されず、広く光学機器であればよい。   The optical system to which the DOE 1 can be applied is not limited to the photographing optical system shown in FIG. 5, but an imaging optical system and binoculars used in a wide wavelength region such as a photographing lens of a video camera, an image scanner, and a reader lens of a copying machine. Or an observation optical system such as a telescope or an optical viewfinder. An apparatus to which the optical system including the DOE 1 can be applied is not limited to the imaging apparatus, and may be a wide range of optical apparatuses.

図2及び図6において、光軸Oに対して入射角ωで入射した画面外光束BとB’は、基板2を通過後、それぞれ光軸Oから上方向に数えてm番目、下方向に数えてm番目の回折格子であるm格子とm’格子に入射する。画面外光束B,B’のm格子、m’格子に対しての入射角度は主光線方向に対して角度ωi、ωi’である。また、格子壁面1b、1b’方向は主光線方向と等しい。   In FIGS. 2 and 6, off-screen light beams B and B ′ incident on the optical axis O at an incident angle ω pass through the substrate 2 and are respectively counted upward from the optical axis O in the mth and downward directions. The light enters the m-th and m′-th gratings that are the m-th diffraction grating. Incident angles of the off-screen light beams B and B ′ with respect to the m-grating and m′-grating are angles ωi and ωi ′ with respect to the principal ray direction. The lattice wall surfaces 1b and 1b 'are equal to the principal ray direction.

図7は、図4に示す入射光束bと図6に示す入射光束Bを想定して入射角度+10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果を示すグラフである。入射角は図4の下向きを正の方向としている。   FIG. 7 is a graph showing RCWA calculation results at an incident angle of +10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm, assuming the incident light beam b shown in FIG. 4 and the incident light beam B shown in FIG. The incident angle has a downward direction in FIG. 4 as a positive direction.

図7(a)は設計次数である+1次回折光付近での回折効率であり、横軸は回折次数、縦軸は回折効率である。図7(b)は図7(a)の縦軸の回折効率の低い部分を拡大し、横軸を回折次数から回折角にして高回折角度範囲について表示した結果である。回折角は図4の下向きを正の方向としている。   FIG. 7A shows the diffraction efficiency in the vicinity of the + 1st order diffracted light, which is the designed order, where the horizontal axis represents the diffraction order and the vertical axis represents the diffraction efficiency. FIG. 7B is a result of enlarging the low diffraction efficiency portion of the vertical axis in FIG. 7A and displaying the high diffraction angle range with the horizontal axis as the diffraction order to the diffraction angle. The diffraction angle has a downward direction in FIG. 4 as a positive direction.

図7(a)に示すように、設計次数である+1次回折光の回折効率が集中しているが、この+1次回折光は像面に到達しないため影響は小さい。残りの不要光は図7(b)に示すように、特定角度方向にピークを有する不要光となって伝播する。   As shown in FIG. 7A, the diffraction efficiency of the + 1st order diffracted light, which is the designed order, is concentrated, but the influence is small because the + 1st order diffracted light does not reach the image plane. The remaining unnecessary light propagates as unnecessary light having a peak in a specific angle direction as shown in FIG.

この不要光は略−10度方向にピークを有し、この伝播方向は格子壁面に入射する画面外入射角度+10度光束の成分が全反射にして伝播する射出方向−10度方向と略等しい。   This unnecessary light has a peak in a direction of approximately −10 degrees, and this propagation direction is substantially equal to the exit direction in which the component of the off-screen incident angle +10 degrees light beam incident on the grating wall surface is propagated with total reflection and −10 degrees.

図8は、薄膜20を有しない以外は図1と同様の構成を有するDOEを使用した場合の、図7に相当する比較例としてのグラフである。   FIG. 8 is a graph as a comparative example corresponding to FIG. 7 when a DOE having the same configuration as that of FIG. 1 is used except that the thin film 20 is not provided.

この比較例では、図9の光束b1に示すように、格子壁面に対して高屈折率材料側から低屈折率材料側に臨界角74.2度以上の+80度で入射する光束bは格子壁面で全反射し、不要光は略−10度方向から高角度範囲(回折角0度付近)まで広がる。回折角0度は設計入射角0度による+1次回折光の回折角0.20度(図3の+1次光)にほぼ等しいため、画面外光+10度入射の不要光のうち、回折角+0.20度付近に射出する不要光が像面に到達することになる。   In this comparative example, as indicated by a light beam b1 in FIG. 9, a light beam b incident on the grating wall surface from the high refractive index material side to the low refractive index material side at a critical angle of 74.2 degrees or more at +80 degrees is The unnecessary light spreads from a direction of approximately −10 degrees to a high angle range (near the diffraction angle of 0 degrees). Since the diffraction angle 0 degree is substantially equal to the diffraction angle 0.20 degree of the + 1st order diffracted light at the designed incident angle 0 degree (+ 1st order light in FIG. 3), out of the unnecessary light with off-screen light +10 degrees incident, the diffraction angle +0. Unnecessary light emitted near 20 degrees reaches the image plane.

なお、回折光学素子の後段の光学系によって画面外入射光の不要光が像面に到達する回折次数、回折角度が異なる。しかし、いかなる光学系であっても少なくとも設計入射角における設計回折次数が伝播する回折角度に略一致する画面外光による不要光の回折光は像面に到達するため、像性能の低下を招くことになる。   Note that the diffraction order and the diffraction angle at which the unnecessary light of the off-screen incident light reaches the image plane differ depending on the optical system subsequent to the diffractive optical element. However, in any optical system, the diffracted light of unnecessary light due to off-screen light that substantially matches the diffraction angle at which the design diffraction order propagates at least at the design incident angle reaches the image plane, leading to a decrease in image performance. become.

図7(b)に示す−10度方向の不要光ピーク角度は図8(b)とほぼ同じだが、不要光の広がりは図7(b)と図8(b)では異なり、図7(b)のほうが低回折角度の回折効率が低い。   The unnecessary light peak angle in the −10 degree direction shown in FIG. 7B is almost the same as that in FIG. 8B, but the spread of the unnecessary light is different between FIG. 7B and FIG. ) Has lower diffraction efficiency at low diffraction angles.

つまり、本実施例は低回折角度の不要光(図9の光束b1)が少なくなる。図5及び図6に示す光学系においては、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が少なくとも像面に到達する。図7の回折角+0.20度付近の回折効率はRCWA計算結果から、回折次数−46次(回折角+0.34度)の回折効率が0.0084%、回折次数−47次(回折角+0.14度)の回折効率が0.0083%である。   That is, in this embodiment, unnecessary light having a low diffraction angle (light beam b1 in FIG. 9) is reduced. In the optical system shown in FIGS. 5 and 6, diffracted light of unnecessary light due to off-screen light that substantially matches the diffraction angle +0.20 degree at which the design diffraction order at the design incident angle propagates at least reaches the image plane. From the RCWA calculation results, the diffraction efficiency in the vicinity of the diffraction angle +0.20 degrees in FIG. 7 is 0.0084% for the diffraction order −46th order (diffraction angle +0.34 degree), and the diffraction order −47th order (diffraction angle +0). .14 degrees) is 0.0083%.

一方、薄膜を有しない比較例においては、回折次数−46次(回折角+0.34度)の回折効率が0.014%、回折次数−47次(回折角+0.14度)の回折効率が0.014%であるため、本実施例では不要光の影響が大幅に減少していることになる。   On the other hand, in the comparative example having no thin film, the diffraction efficiency of the diffraction order −46th order (diffraction angle + 0.34 degree) is 0.014%, and the diffraction efficiency of the diffraction order −47th order (diffraction angle + 0.14 degree) is. Since it is 0.014%, in this embodiment, the influence of unnecessary light is greatly reduced.

図10は、本実施例における図9に対応する模式図である。本実施例においては、不要光は、格子壁面付近に入射する光束bの一部は薄膜20の内部に閉じ込められ、光導波路のように光束b3として伝播し、これらの光束が射出後に干渉する結果、像面に到達する光束が比較例よりも減少していると考えられる。   FIG. 10 is a schematic diagram corresponding to FIG. 9 in the present embodiment. In this embodiment, unnecessary light is a result that a part of the light beam b incident near the grating wall surface is confined inside the thin film 20 and propagates as a light beam b3 like an optical waveguide, and these light beams interfere after exit. It is considered that the light flux reaching the image plane is reduced as compared with the comparative example.

次に、図4に示す入射光束aとcが及ぼす影響について説明する。   Next, the effect of incident light beams a and c shown in FIG. 4 will be described.

図11は、図4に示す入射光束aを想定して入射角度0度、格子ピッチ100μm、波長550nmにおけるRCWA計算を行った結果を示すグラフである。   FIG. 11 is a graph showing a result of RCWA calculation performed at an incident angle of 0 degree, a grating pitch of 100 μm, and a wavelength of 550 nm assuming the incident light beam a shown in FIG.

図11(a)は設計次数である+1次回折光付近での回折効率であり、横軸は回折次数、縦軸は回折効率である。図11(b)は図11(a)の縦軸の回折効率の低い部分を拡大し、横軸を回折次数から回折角にして高回折角度範囲について表示した結果である。回折角は図4の下向きを正の方向としている。   FIG. 11A shows the diffraction efficiency in the vicinity of the + 1st order diffracted light, which is the designed order. The horizontal axis represents the diffraction order, and the vertical axis represents the diffraction efficiency. FIG. 11B is a result of enlarging the low diffraction efficiency portion of the vertical axis in FIG. 11A and displaying the high diffraction angle range with the horizontal axis as the diffraction order to the diffraction angle. The diffraction angle has a downward direction in FIG. 4 as a positive direction.

図12は、薄膜20を有しない以外は図1と同様の構成を有するDOEを使用した場合の、図11に相当する比較例としてのグラフである。   FIG. 12 is a graph as a comparative example corresponding to FIG. 11 when a DOE having the same configuration as that of FIG. 1 is used except that the thin film 20 is not provided.

図11(a)から設計次数である+1次回折光の回折効率は99.02%(回折角+0.20度)であり、図12(a)の薄膜を設けていない回折格子の場合の+1次回折光の回折効率98.76%(回折角+0.20度)と同等以上である。残りの光は不要光となり図11(b)のように伝播していることがわかる。ここで想定している格子ピッチはひとつの基準として100μmとしている。図1に示すように光軸に近い輪帯ほど、格子ピッチは大きくなり、格子壁面および反射手段による悪影響が小さくなるため、設計次数の回折効率は高く、不要光の回折効率は低くなる。   The diffraction efficiency of the + 1st order diffracted light that is the designed order from FIG. 11A is 99.02% (diffraction angle +0.20 degrees), and +1 next time in the case of the diffraction grating without the thin film of FIG. The diffraction efficiency of folding light is equal to or higher than 98.76% (diffraction angle +0.20 degree). It can be seen that the remaining light becomes unnecessary light and propagates as shown in FIG. The lattice pitch assumed here is 100 μm as one reference. As shown in FIG. 1, the closer to the optical axis, the larger the grating pitch, and the adverse effect of the grating wall surface and reflecting means is reduced. Therefore, the diffraction efficiency of the designed order is high and the diffraction efficiency of unnecessary light is low.

結果として、回折光学素子全域を考慮した場合、この格子ピッチ100μmの回折効率0.26%の違いは設計入射角度(撮影光入射角度)において日中の太陽等の高輝度光源を直接撮影することは稀であるため、ほとんど影響せず、問題とはならない。同時に、不要光の影響も小さい。   As a result, when the entire diffractive optical element is considered, the difference in diffraction efficiency of 0.26% with a grating pitch of 100 μm is that a high-intensity light source such as the sun is directly photographed at the design incident angle (photographing light incident angle). Is rare and has little effect and is not a problem. At the same time, the influence of unnecessary light is small.

次に、図13は、図4に示す入射光束cを想定して入射角度−10度、格子ピッチ100μm、波長550nmにおけるRCWA計算を行った結果を示すグラフである。入射角は図4の下向きを正の方向としている(図2のm’格子では上向きが正の方向となる)。   Next, FIG. 13 is a graph showing a result of RCWA calculation performed at an incident angle of −10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm assuming the incident light beam c shown in FIG. The incident angle has a downward direction in FIG. 4 as a positive direction (upward is a positive direction in the m ′ grating in FIG. 2).

図13(a)は設計次数である+1次回折光付近での回折効率であり、横軸は回折次数、縦軸は回折効率である。図13(b)は図13(a)の縦軸の回折効率の低い部分を拡大し、横軸を回折次数から回折角にして高回折角度範囲について表示した結果である。   FIG. 13A shows the diffraction efficiency in the vicinity of the + 1st order diffracted light, which is the designed order, where the horizontal axis represents the diffraction order and the vertical axis represents the diffraction efficiency. FIG. 13B is a result of enlarging the low diffraction efficiency portion of the vertical axis in FIG. 13A and displaying the high diffraction angle range with the horizontal axis as the diffraction order to the diffraction angle.

図14は、薄膜20を有しない以外は図1と同様の構成を有するDOEを使用した場合の、図13に相当する比較例としてのグラフである。   FIG. 14 is a graph as a comparative example corresponding to FIG. 13 when a DOE having the same configuration as that of FIG. 1 is used except that the thin film 20 is not provided.

図13(a)から設計次数である+1次回折光の回折効率が集中しているが、この+1次回折光は像面に到達することはないため影響は小さい。残りの不要光は図13(b)のように特定角度方向にピークをもつ不要光となって伝播していることがわかる。図14(b)と比較すると、+方向の不要光のピークは増加し、−方向の不要光のピークは減少している。これは格子壁面に設けた高屈折率薄膜によって、低屈折率媒質側から格子壁面に入射した光束の一部が反射することで+方向の不要光が増加し、−方向の透過に起因する不要光が減少していることを意味している。   Although the diffraction efficiency of the + 1st order diffracted light, which is the designed order, is concentrated from FIG. 13A, this + 1st order diffracted light does not reach the image plane, so its influence is small. It can be seen that the remaining unnecessary light propagates as unnecessary light having a peak in a specific angle direction as shown in FIG. Compared to FIG. 14B, the peak of unnecessary light in the + direction increases and the peak of unnecessary light in the − direction decreases. This is because the high refractive index thin film provided on the grating wall surface reflects a part of the light beam incident on the grating wall surface from the low refractive index medium side, which increases unnecessary light in the + direction and is unnecessary due to transmission in the-direction. It means that light is decreasing.

図5及び図6に示す光学系においては、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が少なくとも像面に到達する。図13の回折角+0.20度付近の回折効率はRCWA計算結果から、回折次数+49次(回折角+0.26度)の回折効率が0.010%、回折次数+48次(回折角+0.06度)の回折効率が0.010%である。比較例の場合は図14より回折次数+49次(回折角+0.26度)の回折効率が0.0021%、回折次数+48次(回折角+0.06度)の回折効率が0.0022%である。このように、本発明の方が比較例に比べて増加しているが、回折効率の数値が極めて小さいため、像性能の低下に対しての影響は小さい。   In the optical system shown in FIGS. 5 and 6, diffracted light of unnecessary light due to off-screen light that substantially matches the diffraction angle +0.20 degree at which the design diffraction order at the design incident angle propagates at least reaches the image plane. From the RCWA calculation results, the diffraction efficiency in the vicinity of the diffraction angle +0.20 degree in FIG. 13 is 0.010% for the diffraction order + 49th order (diffraction angle +0.26 degree), and the diffraction order + 48th order (diffraction angle +0.06). Degree) is 0.010%. In the case of the comparative example, the diffraction efficiency of the diffraction order + 49th order (diffraction angle +0.26 degrees) is 0.0021%, and the diffraction efficiency of the diffraction order + 48th order (diffraction angle +0.06 degrees) is 0.0022%. is there. As described above, the number of the present invention is increased compared to the comparative example, but since the numerical value of the diffraction efficiency is extremely small, the influence on the deterioration of the image performance is small.

このように、本発明の回折光学素子を適用した光学系において、格子壁面に薄膜を設けることにより、不要光の影響が小さいm’格子の不要光の増加を影響ない程度に抑制し、不要光の影響が大きいm格子の不要光を大幅に減少させることができる。この結果、結像面に到達する不要光が小さくなるため、像性能の低下を抑制することができる。同時に、設計次数の回折効率の低減を像性能に影響ない程度に抑制することができる。   As described above, in the optical system to which the diffractive optical element of the present invention is applied, by providing a thin film on the grating wall surface, an increase in unnecessary light of the m ′ grating, which is less affected by unnecessary light, is suppressed to an extent that does not affect the unnecessary light. Therefore, it is possible to greatly reduce the unnecessary light of the m-grating which is greatly influenced by As a result, unnecessary light that reaches the imaging surface is reduced, so that deterioration in image performance can be suppressed. At the same time, the reduction in the diffraction efficiency of the designed order can be suppressed to the extent that the image performance is not affected.

なお、ここでは格子ピッチ100μmとしている。さらに格子ピッチの広い輪帯においては壁面の寄与が小さくなるため、設計次数の回折効率は高く、不要光の回折効率は低くなる。また、図示してはいないが、この不要光の伝播方向については格子ピッチに依存せず、伝播方向は同じであった。このため、ひとつの基準として格子ピッチ100μmの回折効率を示している。   Here, the lattice pitch is 100 μm. Further, since the contribution of the wall surface is small in an annular zone with a wide grating pitch, the diffraction efficiency of the designed order is high and the diffraction efficiency of unnecessary light is low. Although not shown, the propagation direction of the unnecessary light does not depend on the grating pitch, and the propagation direction is the same. Therefore, the diffraction efficiency with a grating pitch of 100 μm is shown as one reference.

また、ここでは画面外光束B,B’の入射角は画面外+10度(光軸方向に対しては入射角ωは+13.16度)を想定する。この入射角度より小さい角度ではレンズ表面や結像面反射によるゴーストやレンズ内部、表面微小凹凸による散乱が多いため回折光学素子の不要光は比較的目立たない。また、この入射角度より大きい角度では、前側レンズ面の反射やレンズ鏡筒による遮光により回折光学素子の不要光の影響度は比較的小さい。このため、画面外入射光束は+10度付近が回折光学素子の不要光に対して最も影響が大きく、ここでは画面外光束の入射角は略+10度を想定する。   Further, here, it is assumed that the incident angles of the off-screen light beams B and B ′ are +10 degrees outside the screen (the incident angle ω is +13.16 degrees with respect to the optical axis direction). At angles smaller than this incident angle, ghosts due to lens surface and image plane reflection, scattering inside the lens, and surface irregularities are large, and therefore unnecessary light of the diffractive optical element is relatively inconspicuous. At an angle larger than this incident angle, the influence of unnecessary light of the diffractive optical element is relatively small due to reflection of the front lens surface and light shielding by the lens barrel. For this reason, the off-screen incident light flux has the greatest influence on the unnecessary light of the diffractive optical element in the vicinity of +10 degrees. Here, the incident angle of the off-screen light flux is assumed to be approximately +10 degrees.

本実施例では、2つの回折格子を密着配置し、各回折格子を構成する材料や回折格子の高さを適切に設定して所定の次数の回折光に対して広い波長帯域で高い回折効率を実現している。   In this embodiment, two diffraction gratings are arranged in close contact, and the materials constituting the diffraction gratings and the heights of the diffraction gratings are set appropriately to achieve high diffraction efficiency in a wide wavelength band with respect to a predetermined order of diffracted light. Realized.

また、本実施例では、DOE1において、次式を満足することによって結像面に到達する不要光を低減することができる。ここで、nd2は回折格子12を構成する材料のd線に対する屈折率、nd3は薄膜20の一層を構成する材料のd線に対する(最大の)屈折率である。   In the present embodiment, unnecessary light reaching the imaging plane can be reduced by satisfying the following expression in the DOE 1. Here, nd2 is the refractive index with respect to the d-line of the material constituting the diffraction grating 12, and nd3 is the (maximum) refractive index with respect to the d-line of the material constituting one layer of the thin film 20.

本実施例では、回折格子11を構成する材料のd線に対する屈折率nd1よりもnd2の方が大きい例について説明している。しかし、nd1>nd2の場合には回折格子の格子形状の向きも逆になるため、格子壁面による不要光の影響は同様となるため以下のように一般化することができる。   In the present embodiment, an example is described in which nd2 is larger than the refractive index nd1 of the material constituting the diffraction grating 11 with respect to the d-line. However, when nd1> nd2, since the direction of the grating shape of the diffraction grating is reversed, the influence of unnecessary light by the grating wall surface is the same, and can be generalized as follows.

本実施例は、格子壁面の高屈折率薄膜によって格子壁面の低屈折率材料側から高屈折率材料側への電磁場の伝播が低減されたことと高屈折率薄膜内部に一部の光束が閉じ込められ、光導波路のように伝播されることを利用している。数式1を満足しないと屈折率差が小さくなって不要光の低減効果も減少する。この点、特許文献3は、薄膜と2つの光学層のいずれか一方の屈折率差を0.01以下に抑えているため、本実施例の効果が得られない。   In this example, the high refractive index thin film on the grating wall reduces the propagation of the electromagnetic field from the low refractive index material side to the high refractive index material side of the grating wall, and a part of the light beam is confined inside the high refractive index thin film. It is utilized that it is propagated like an optical waveguide. If Expression 1 is not satisfied, the difference in refractive index is reduced and the effect of reducing unnecessary light is also reduced. In this respect, since Patent Document 3 suppresses the difference in refractive index between one of the thin film and the two optical layers to 0.01 or less, the effect of this example cannot be obtained.

本実施例では、屈折率nd3=2.323、屈折率nd2=1.567、屈折率nd1=1.504であるから、nd3−nd2=0.756、nd3−nd1=0.819である。   In this embodiment, since the refractive index nd3 = 2.323, the refractive index nd2 = 1.567, and the refractive index nd1 = 1.504, nd3-nd2 = 0.756 and nd3-nd1 = 0.919.

なお、本実施例においては、図6に示すように、不要光のピークを絞り40で遮光しているが、これに限定されない。   In this embodiment, as shown in FIG. 6, the peak of unnecessary light is shielded by the diaphragm 40, but the present invention is not limited to this.

実施例2は実施例1と同様であるが、薄膜の幅wが0.1μmではなく1.0μmである点が相違する。   Example 2 is the same as Example 1, except that the width w of the thin film is not 0.1 μm but 1.0 μm.

図15は、図4に示す入射光束bと図6に示す入射光束Bに対して入射角度+10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果を示すグラフである。   FIG. 15 is a graph showing RCWA calculation results for the incident light beam b shown in FIG. 4 and the incident light beam B shown in FIG. 6 at an incident angle of +10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm.

設計次数である+1次回折光の回折効率が集中しているが、この+1次回折光は像面に到達しないため影響は小さい。残りの不要光は実施例1と同様に特定角度方向にピークを有する不要光となって伝播する。   The diffraction efficiency of the + 1st order diffracted light, which is the designed order, is concentrated, but the influence is small because the + 1st order diffracted light does not reach the image plane. The remaining unnecessary light propagates as unnecessary light having a peak in a specific angle direction as in the first embodiment.

この−10度方向の不要光ピーク角度は図8(b)とほぼ同じだが、不要光の広がりは図15と図8(b)では異なり、図15のほうが低回折角度の回折効率が低い。つまり、本実施例は低回折角度の不要光(図9の光束b1)が少なくなる。   Although the unnecessary light peak angle in the -10 degree direction is almost the same as that in FIG. 8B, the spread of unnecessary light is different in FIGS. 15 and 8B, and FIG. 15 has lower diffraction efficiency at a low diffraction angle. That is, in this embodiment, unnecessary light having a low diffraction angle (light beam b1 in FIG. 9) is reduced.

図5及び図6に示す光学系においては、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が少なくとも像面に到達する。図15の回折角+0.20度付近の回折効率はRCWA計算結果から、回折次数−46次の回折効率が0.0065%、回折次数−47次の回折効率が0.0074%であるため、図7(b)と同様に、回折効率が大幅に減少していることになる。   In the optical system shown in FIGS. 5 and 6, diffracted light of unnecessary light due to off-screen light that substantially matches the diffraction angle +0.20 degree at which the design diffraction order at the design incident angle propagates at least reaches the image plane. From the RCWA calculation result, the diffraction efficiency in the vicinity of the diffraction angle +0.20 degree in FIG. 15 is 0.0065% for the diffraction order −46th order and 0.0074% for the diffraction order −47th order. Similar to FIG. 7B, the diffraction efficiency is greatly reduced.

図16は、図4に示す入射光束aを想定して入射角度0度、格子ピッチ100μm、波長550nmにおけるRCWA計算を行った結果を示すグラフである。   FIG. 16 is a graph showing a result of RCWA calculation performed at an incident angle of 0 degree, a grating pitch of 100 μm, and a wavelength of 550 nm assuming the incident light beam a shown in FIG.

設計次数である+1次回折光の回折効率は96.06%であり、薄膜を設けていない回折格子の場合の+1次回折光の回折効率より低くなっている。残りの光は不要光となり実施例1と同様に伝播していることがわかる。この薄膜によって、位相の不整合が生じた結果、比較的低次(およそ±35次、回折角±10度)の次数の回折効率が増加し、設計次数である+1次回折光の回折効率が下がっている。また、実施例1より薄膜の幅が厚いため、実施例1と比較して+1次回折光の回折効率の低減量が大きくなっている。   The diffraction efficiency of the + 1st order diffracted light that is the designed order is 96.06%, which is lower than the diffraction efficiency of the + 1st order diffracted light in the case of a diffraction grating not provided with a thin film. It can be seen that the remaining light becomes unnecessary light and propagates in the same manner as in the first embodiment. As a result of the phase mismatch caused by this thin film, the diffraction efficiency of the relatively low order (approximately ± 35th order, diffraction angle ± 10 degrees) increases, and the diffraction efficiency of the + 1st order diffracted light, which is the designed order, decreases. ing. Further, since the width of the thin film is thicker than that of the first embodiment, the amount of reduction in the diffraction efficiency of the + 1st order diffracted light is larger than that of the first embodiment.

回折光学素子全域を考慮した場合、この格子ピッチ100μmの回折効率2.70%の低減量は設計入射角度(撮影光入射角度)において日中の太陽等の高輝度光源を直接撮影することは稀であるため、ほとんど影響せず、問題とはならない。同時に、不要光の影響も小さい。   Considering the entire area of the diffractive optical element, the reduction amount of the diffraction efficiency of 2.70% with a grating pitch of 100 μm is rarely taken directly by a high-intensity light source such as the sun during the day at the designed incident angle (photographing light incident angle). Therefore, it has almost no effect and is not a problem. At the same time, the influence of unnecessary light is small.

次に、図17は、図4に示す入射光束cを想定して入射角度−10度、格子ピッチ100μm、波長550nmにおけるRCWA計算を行った結果を示すグラフである。   Next, FIG. 17 is a graph showing a result of RCWA calculation performed at an incident angle of −10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm assuming the incident light beam c shown in FIG.

図17から設計次数である+1次回折光の回折効率が集中しているが、この+1次回折光は像面に到達することはないため影響は小さい。残りの不要光は実施例1と同様に特定角度方向にピークをもつ不要光となって伝播していることがわかる。図2、図5、図6に示すように、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が少なくとも像面に到達する。図17の回折角+0.20度付近の回折効率はRCWA計算結果から、回折次数+49次の回折効率が0.0060%、回折次数+48次の回折効率が0.0064%である。薄膜を設けていない回折格子の場合と比較して増加しているが、回折効率の数値が極めて小さいため、像性能の低下に対しての影響は小さい。   Although the diffraction efficiency of the + 1st order diffracted light, which is the designed order, is concentrated from FIG. 17, the influence is small because the + 1st order diffracted light does not reach the image plane. It can be seen that the remaining unnecessary light is propagated as unnecessary light having a peak in a specific angle direction as in the first embodiment. As shown in FIGS. 2, 5, and 6, diffracted light of unnecessary light due to off-screen light that substantially matches the diffraction angle +0.20 degree at which the design diffraction order at the design incident angle propagates at least reaches the image plane. The diffraction efficiency in the vicinity of the diffraction angle +0.20 degree in FIG. 17 is 0.0060% for the diffraction order + 49th order and 0.0064% for the diffraction order + 48th order from the RCWA calculation result. Although it is increased as compared with the case of the diffraction grating not provided with a thin film, since the numerical value of the diffraction efficiency is extremely small, the influence on the deterioration of the image performance is small.

このように、本発明の回折光学素子を適用した光学系において、薄膜を設けることにより、不要光の影響が小さいm’格子の不要光の増加を影響ない程度に抑制し、不要光の影響が大きいm格子の不要光を大幅に減少させることができる。この結果、結像面に到達する不要光が小さくなるため、像性能の低下を抑制することができる。同時に、設計次数の回折効率の低減を像性能に影響ない程度に抑制することができる。   As described above, in the optical system to which the diffractive optical element of the present invention is applied, by providing a thin film, an increase in unnecessary light of the m ′ grating, which is less affected by unnecessary light, is suppressed to an extent that does not affect the influence of unnecessary light. Unnecessary light of a large m grating can be greatly reduced. As a result, unnecessary light that reaches the imaging surface is reduced, so that deterioration in image performance can be suppressed. At the same time, the reduction in the diffraction efficiency of the designed order can be suppressed to the extent that the image performance is not affected.

本実施例でも、nd3=2.323、nd2=1.567、nd1=1.504であるから、nd3−nd2=0.756、nd3−nd1=0.819であり、数式1を満足している。   Also in this embodiment, nd3 = 2.323, nd2 = 1.567, and nd1 = 1.504, so nd3-nd2 = 0.756 and nd3-nd1 = 0.919, satisfying Equation 1. Yes.

以上、本実施例でも、DOE1を適用した光学系では、薄膜20が結像面に到達する不要光を減少させて像性能の低下を抑制し、設計次数の回折効率を像性能に影響ない程度に抑制することができる。   As described above, also in this embodiment, in the optical system to which DOE 1 is applied, the unnecessary light that the thin film 20 reaches the imaging surface is reduced to suppress the deterioration of the image performance, and the diffraction efficiency of the design order does not affect the image performance. Can be suppressed.

本実施例で示したように薄膜20の厚さに限定されないが、その幅が大きくなると、回折格子11と回折格子12の位相の不整合領域が拡大し、比較的低次数の不要回折光の回折効率が増加し、設計次数の回折効率(像性能)が低下する。   Although it is not limited to the thickness of the thin film 20 as shown in the present embodiment, when the width is increased, the phase mismatch region of the diffraction grating 11 and the diffraction grating 12 is expanded, and unnecessary diffraction light of a relatively low order is expanded. The diffraction efficiency increases and the diffraction efficiency (image performance) of the designed order decreases.

このため、薄膜の全体の厚さ(幅)Wを回折光学素子の格子ピッチで割った値は0よりも大きく0.05未満であるという次式を満足すればよい。ここで、Pは格子ピッチ、Wは薄膜20の積層面に垂直な方向の厚さの合計(薄膜が多層構造であれば各層の厚さの合計)である。   Therefore, it is only necessary to satisfy the following equation that the value obtained by dividing the total thickness (width) W of the thin film by the grating pitch of the diffractive optical element is greater than 0 and less than 0.05. Here, P is the lattice pitch, and W is the total thickness in the direction perpendicular to the lamination surface of the thin film 20 (the total thickness of each layer if the thin film is a multilayer structure).

設計次数の回折効率に関しては薄膜の幅wと格子ピッチPの関係は線形関係であり、薄膜20の幅wと格子ピッチPの回折格子の設計次数の回折効率と薄膜20の幅w×2と格子ピッチP×2の回折格子の設計次数の回折効率はほぼ同じである。   Regarding the diffraction efficiency of the design order, the relationship between the width w of the thin film and the grating pitch P is linear, and the diffraction efficiency of the design order of the diffraction grating having the width w of the thin film 20 and the grating pitch P and the width w × 2 of the thin film 20 The diffraction efficiency of the design order of the diffraction grating having the grating pitch P × 2 is substantially the same.

例えば、実施例1に示した格子ピッチ100μm、薄膜の幅の和1.0μmの回折格子と格子ピッチ200μm、薄膜の幅の和2.0μmの回折格子の設計次数の回折効率はほぼ同じである。このため、数式2が成立する。   For example, the diffraction efficiency of the designed orders of the diffraction grating having the grating pitch of 100 μm and the thin film width of 1.0 μm and the diffraction pitch of 200 μm and the thin film width of 2.0 μm shown in Example 1 are substantially the same. . For this reason, Formula 2 is materialized.

また、薄膜20の幅が大きくなると、光導波路内の伝播モード数の増加に起因する漏れ光が増加し、薄膜の最大の屈折率の層の最大の厚さwが2μm以上になると不要光のリップルが増加するため、フレア低減効果が減少する。したがって、2μm未満であることが好ましい。薄膜が多層構造であれば最大の厚さを有する層の厚さが2μm未満であることを意味する。   Further, when the width of the thin film 20 is increased, leakage light due to an increase in the number of propagation modes in the optical waveguide is increased. When the maximum thickness w of the thin film having the maximum refractive index is 2 μm or more, unnecessary light is generated. Since the ripple increases, the flare reduction effect decreases. Therefore, it is preferably less than 2 μm. If the thin film has a multilayer structure, it means that the thickness of the layer having the maximum thickness is less than 2 μm.

実施例3は薄膜20がTa(n=2.154)である点で実施例1と相違し、それ以外は実施例1と同様である。 The third embodiment is different from the first embodiment in that the thin film 20 is Ta 2 O 5 (n = 2.154), and is otherwise similar to the first embodiment.

図18は、図4に示す入射光束bと図6に示す入射光束Bに対して入射角度+10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果を示すグラフである。   FIG. 18 is a graph showing RCWA calculation results for the incident light beam b shown in FIG. 4 and the incident light beam B shown in FIG. 6 at an incident angle of +10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm.

設計次数である+1次回折光の回折効率が集中しているが、この+1次回折光は像面に到達しないため影響は小さい。残りの不要光は実施例1と同様に特定角度方向にピークを有する不要光となって伝播する。   The diffraction efficiency of the + 1st order diffracted light, which is the designed order, is concentrated, but the influence is small because the + 1st order diffracted light does not reach the image plane. The remaining unnecessary light propagates as unnecessary light having a peak in a specific angle direction as in the first embodiment.

この−10度方向の不要光ピーク角度は図8(b)とほぼ同じだが、不要光の広がりは図18と図8(b)では異なり、図18のほうが低回折角度の回折効率が低い。つまり、本実施例は低回折角度の不要光(図9の光束b1)が少なくなる。   Although the unnecessary light peak angle in the -10 degree direction is almost the same as that in FIG. 8B, the spread of unnecessary light is different in FIGS. 18 and 8B, and FIG. 18 has lower diffraction efficiency at a low diffraction angle. That is, in this embodiment, unnecessary light having a low diffraction angle (light beam b1 in FIG. 9) is reduced.

図5及び図6に示す光学系においては、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が少なくとも像面に到達する。図18の回折角+0.20度付近の回折効率はRCWA計算結果から、回折次数−46次の回折効率が0.0067%、回折次数−47次の回折効率が0.0067%であるため、図7(b)と同様に、回折効率が大幅に減少していることになる。   In the optical system shown in FIGS. 5 and 6, diffracted light of unnecessary light due to off-screen light that substantially matches the diffraction angle +0.20 degree at which the design diffraction order at the design incident angle propagates at least reaches the image plane. From the RCWA calculation results, the diffraction efficiency near the diffraction angle +0.20 degree in FIG. 18 is 0.0067% for the diffraction order −46th order and 0.0067% for the diffraction order −47th order. Similar to FIG. 7B, the diffraction efficiency is greatly reduced.

図19は、図4に示す入射光束aを想定して入射角度0度、格子ピッチ100μm、波長550nmにおけるRCWA計算を行った結果を示すグラフである。   FIG. 19 is a graph showing a result of RCWA calculation performed at an incident angle of 0 degree, a grating pitch of 100 μm, and a wavelength of 550 nm assuming the incident light beam a shown in FIG.

設計次数である+1次回折光の回折効率は98.39%であり、薄膜を設けていない回折格子の場合の+1次回折光の回折効率より低くなっている。残りの光は不要光となり実施例1と同様に伝播していることがわかる。この薄膜によって、位相の不整合が生じた結果、比較的低次(およそ±35次、回折角±10度)の次数の回折効率が増加し、設計次数である+1次回折光の回折効率が下がっている。   The diffraction efficiency of the + 1st order diffracted light that is the designed order is 98.39%, which is lower than the diffraction efficiency of the + 1st order diffracted light in the case of a diffraction grating not provided with a thin film. It can be seen that the remaining light becomes unnecessary light and propagates in the same manner as in the first embodiment. As a result of the phase mismatch caused by this thin film, the diffraction efficiency of the relatively low order (approximately ± 35th order, diffraction angle ± 10 degrees) increases, and the diffraction efficiency of the + 1st order diffracted light, which is the designed order, decreases. ing.

回折光学素子全域を考慮した場合、この格子ピッチ100μmの回折効率0.37%の低減量は設計入射角度(撮影光入射角度)において日中の太陽等の高輝度光源を直接撮影することは稀であるため、ほとんど影響せず、問題とはならない。同時に、不要光の影響も小さい。   Considering the entire area of the diffractive optical element, the reduction amount of 0.37% of diffraction efficiency with a grating pitch of 100 μm is rarely taken directly by a high-intensity light source such as the sun at the design incident angle (photographing light incident angle). Therefore, it has almost no effect and is not a problem. At the same time, the influence of unnecessary light is small.

次に、図20は、図4に示す入射光束cを想定して入射角度−10度、格子ピッチ100μm、波長550nmにおけるRCWA計算を行った結果を示すグラフである。   Next, FIG. 20 is a graph showing a result of RCWA calculation performed at an incident angle of −10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm assuming the incident light beam c shown in FIG.

図20から設計次数である+1次回折光の回折効率が集中しているが、この+1次回折光は像面に到達することはないため影響は小さい。残りの不要光は実施例1と同様に特定角度方向にピークをもつ不要光となって伝播していることがわかる。図2、図5、図6に示すように、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が少なくとも像面に到達する。図20の回折角+0.20度付近の回折効率はRCWA計算結果から、回折次数+49次の回折効率が0.0084%、回折次数+48次の回折効率が0.0084%である。薄膜を設けていない回折格子の場合と比較して増加しているが、回折効率の数値が極めて小さいため、像性能の低下に対しての影響は小さい。   Although the diffraction efficiency of the + 1st order diffracted light, which is the designed order, is concentrated from FIG. 20, this + 1st order diffracted light does not reach the image plane, so its influence is small. It can be seen that the remaining unnecessary light is propagated as unnecessary light having a peak in a specific angle direction as in the first embodiment. As shown in FIGS. 2, 5, and 6, diffracted light of unnecessary light due to off-screen light that substantially matches the diffraction angle +0.20 degree at which the design diffraction order at the design incident angle propagates at least reaches the image plane. From the RCWA calculation results, the diffraction efficiency in the vicinity of the diffraction angle +0.20 degree in FIG. 20 is 0.0084% for the diffraction order + 49th order and 0.0084% for the diffraction order + 48th order. Although it is increased as compared with the case of the diffraction grating not provided with a thin film, since the numerical value of the diffraction efficiency is extremely small, the influence on the deterioration of the image performance is small.

このように、本発明の回折光学素子を適用した光学系において、薄膜を設けることにより、不要光の影響が小さいm’格子の不要光の増加を影響ない程度に抑制し、不要光の影響が大きいm格子の不要光を大幅に減少させることができる。この結果、結像面に到達する不要光が小さくなるため、像性能の低下を抑制することができる。同時に、設計次数の回折効率の低減を像性能に影響ない程度に抑制することができる。   As described above, in the optical system to which the diffractive optical element of the present invention is applied, by providing a thin film, an increase in unnecessary light of the m ′ grating, which is less affected by unnecessary light, is suppressed to an extent that does not affect the influence of unnecessary light. Unnecessary light from a large m-grating can be greatly reduced. As a result, unnecessary light that reaches the imaging surface is reduced, so that deterioration in image performance can be suppressed. At the same time, the reduction in the diffraction efficiency of the designed order can be suppressed to the extent that the image performance is not affected.

本実施例でも、nd3=2.154、nd2=1.567、nd1=1.504であるから、nd3−nd2=0.587、nd3−nd1=0.650であり、数式1を満足している。   Also in this example, nd3 = 2.154, nd2 = 1.567, and nd1 = 1.504, so nd3-nd2 = 0.487, nd3-nd1 = 0.650, and satisfying Equation 1. Yes.

以上、本実施例の光学系では、薄膜20が結像面に到達する不要光を減少させて像性能の低下を抑制し、設計次数の回折効率を像性能に影響ない程度に抑制することができる。   As described above, in the optical system of the present embodiment, it is possible to reduce the unnecessary light that the thin film 20 reaches the image formation surface to suppress the deterioration of the image performance, and to suppress the diffraction efficiency of the design order to an extent that does not affect the image performance. it can.

実施例4は薄膜を格子壁面のみではなく境界面全域に設けた(薄膜22が格子壁面から格子面まで連続して設けられた)実施例であり、図21は実施例4の回折格子の拡大断面図である。図21はわかりやすいように格子周期方向にかなりデフォルメされた図となっている。回折格子11と回折格子12の構成は実施例1と同様である。   Example 4 is an example in which the thin film is provided not only on the grating wall surface but on the entire boundary surface (the thin film 22 is provided continuously from the grating wall surface to the grating surface), and FIG. 21 is an enlargement of the diffraction grating of Example 4. It is sectional drawing. FIG. 21 is a diagram that is considerably deformed in the lattice period direction so that it can be easily understood. The configurations of the diffraction grating 11 and the diffraction grating 12 are the same as those in the first embodiment.

回折格子11と回折格子12の境界面全域には透明な薄膜21が設けられ、薄膜21は格子面から格子壁面の全域に亘って略均一な厚さを有する。薄膜21は、格子面に入射する垂直入射光束(画面内入射)光束に対して反射防止機能と斜入射(画面外入射)光束によって発生する不要光を制御し、結像面に到達する不要光を減少させる機能を有している。   A transparent thin film 21 is provided over the entire boundary surface between the diffraction grating 11 and the diffraction grating 12, and the thin film 21 has a substantially uniform thickness from the grating surface to the entire area of the grating wall surface. The thin film 21 controls the unnecessary light generated by the antireflection function and the obliquely incident (off-screen incident) light beam with respect to the vertically incident light beam (incident on the screen) incident on the grating surface, and the unnecessary light reaching the imaging surface. It has a function to reduce

薄膜21は回折格子11から回折格子12に向かう方向に順に、15H、27L、120H、28L、15Hを有する多層膜で構成されている。ここで、Hは高屈折率層(TiO層)、Lは低屈折率層(SiO(n=1.482)層)、数値は物理膜厚(nm)を表す。5層の薄膜のうちで1つの高屈折率薄膜が他の薄膜よりも物理的に厚くなるように設計されている。この回折光学素子の格子面における設計入射角度である入射角度0度(入射光束a)に対して、可視域全域(430nm〜670nm)の透過率が99.7%以上になるように設計されている。 The thin film 21 is formed of a multilayer film having 15H, 27L, 120H, 28L, and 15H in order from the diffraction grating 11 to the diffraction grating 12. Here, H represents a high refractive index layer (TiO 2 layer), L represents a low refractive index layer (SiO 2 (n = 1.482) layer), and a numerical value represents a physical film thickness (nm). Of the five thin films, one high refractive index thin film is designed to be physically thicker than the other thin films. The transmittance of the entire visible region (430 nm to 670 nm) is designed to be 99.7% or more with respect to an incident angle of 0 degree (incident light beam a) which is a designed incident angle on the grating surface of the diffractive optical element. Yes.

図22は、図21に示す入射光束bと図6に示す入射光束Bに対して入射角度+10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果を示すグラフである。   FIG. 22 is a graph showing RCWA calculation results for the incident light beam b shown in FIG. 21 and the incident light beam B shown in FIG. 6 at an incident angle of +10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm.

設計次数である+1次回折光の回折効率が集中しているが、この+1次回折光は像面に到達しないため影響は小さい。残りの不要光は実施例1と同様に、特定角度方向にピークを有する不要光となって伝播する。   The diffraction efficiency of the + 1st order diffracted light, which is the designed order, is concentrated, but the influence is small because the + 1st order diffracted light does not reach the image plane. Similar to the first embodiment, the remaining unnecessary light propagates as unnecessary light having a peak in a specific angle direction.

この−10度方向の不要光ピーク角度は図8(b)とほぼ同じだが、不要光の広がりは図22と図8(b)では異なり、図22のほうが低回折角度の回折効率が低い。つまり、本実施例は低回折角度の不要光(図9の光束b1)が少なくなる。   Although the unnecessary light peak angle in the −10 degree direction is almost the same as that in FIG. 8B, the spread of unnecessary light is different in FIGS. 22 and 8B, and FIG. 22 has a lower diffraction efficiency at a low diffraction angle. That is, in this embodiment, unnecessary light having a low diffraction angle (light beam b1 in FIG. 9) is reduced.

図5及び図6に示す光学系においては、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が少なくとも像面に到達する。図22の回折角+0.20度付近の回折効率はRCWA計算結果から、回折次数−46次の回折効率が0.010%、回折次数−47次の回折効率が0.010%であるため、図7(b)と同様に、回折効率が大幅に減少していることになる。   In the optical system shown in FIGS. 5 and 6, diffracted light of unnecessary light due to off-screen light that substantially matches the diffraction angle +0.20 degree at which the design diffraction order at the design incident angle propagates at least reaches the image plane. The diffraction efficiency in the vicinity of the diffraction angle +0.20 degree in FIG. 22 is 0.010% for the diffraction order −46th order and 0.010% for the diffraction order −47th order from the RCWA calculation result. Similar to FIG. 7B, the diffraction efficiency is greatly reduced.

図23は、図4に示す入射光束aを想定して入射角度0度、格子ピッチ100μm、波長550nmにおけるRCWA計算を行った結果を示すグラフである。   FIG. 23 is a graph showing a result of RCWA calculation performed at an incident angle of 0 degree, a grating pitch of 100 μm, and a wavelength of 550 nm assuming the incident light beam a shown in FIG.

設計次数である+1次回折光の回折効率は98.61%であり、薄膜を設けていない回折格子の場合の+1次回折光の回折効率より低くなっている。残りの光は不要光となり実施例1と同様に伝播していることがわかる。この薄膜によって、位相の不整合が生じた結果、比較的低次(およそ±35次、回折角±10度)の次数の回折効率が増加し、設計次数である+1次回折光の回折効率が下がっている。 回折光学素子全域を考慮した場合、この格子ピッチ100μmの回折効率0.15%の低減量は設計入射角度(撮影光入射角度)において日中の太陽等の高輝度光源を直接撮影することは稀であるため、ほとんど影響せず、問題とはならない。同時に、不要光の影響も小さい。   The diffraction efficiency of the + 1st order diffracted light that is the designed order is 98.61%, which is lower than the diffraction efficiency of the + 1st order diffracted light in the case of a diffraction grating not provided with a thin film. It can be seen that the remaining light becomes unnecessary light and propagates in the same manner as in the first embodiment. As a result of the phase mismatch caused by this thin film, the diffraction efficiency of the relatively low order (approximately ± 35th order, diffraction angle ± 10 degrees) increases, and the diffraction efficiency of the + 1st order diffracted light, which is the designed order, decreases. ing. Considering the entire area of the diffractive optical element, the amount of reduction of the diffraction efficiency of 0.15% with a grating pitch of 100 μm is rarely taken directly by a high-intensity light source such as the sun during the day at the designed incident angle (photographing light incident angle). Therefore, it has almost no effect and is not a problem. At the same time, the influence of unnecessary light is small.

次に、図24は、図4に示す入射光束cを想定して入射角度−10度、格子ピッチ100μm、波長550nmにおけるRCWA計算を行った結果を示すグラフである。   Next, FIG. 24 is a graph showing a result of RCWA calculation performed at an incident angle of −10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm, assuming the incident light beam c shown in FIG.

図24から設計次数である+1次回折光の回折効率が集中しているが、この+1次回折光は像面に到達することはないため影響は小さい。残りの不要光は実施例1と同様に特定角度方向にピークをもつ不要光となって伝播していることがわかる。図2、図5、図6に示すように、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が少なくとも像面に到達する。図24の回折角+0.20度付近の回折効率はRCWA計算結果から、回折次数+49次の回折効率が0.011%、回折次数+48次の回折効率が0.011%である。薄膜を設けていない回折格子の場合と比較して増加しているが、回折効率の数値が極めて小さいため、像性能の低下に対しての影響は小さい。   Although the diffraction efficiency of the + 1st order diffracted light, which is the designed order, is concentrated from FIG. 24, the influence is small because the + 1st order diffracted light does not reach the image plane. It can be seen that the remaining unnecessary light is propagated as unnecessary light having a peak in a specific angle direction as in the first embodiment. As shown in FIGS. 2, 5, and 6, diffracted light of unnecessary light due to off-screen light that substantially matches the diffraction angle +0.20 degree at which the design diffraction order at the design incident angle propagates at least reaches the image plane. The diffraction efficiency in the vicinity of the diffraction angle +0.20 degree in FIG. 24 is 0.011% for the diffraction order + 49th order and 0.011% for the diffraction order + 48th order from the RCWA calculation result. Although it is increased as compared with the case of the diffraction grating not provided with a thin film, since the numerical value of the diffraction efficiency is extremely small, the influence on the deterioration of the image performance is small.

このように、本発明の回折光学素子を適用した光学系において、薄膜を設けることにより、不要光の影響が小さいm’格子の不要光の増加を影響ない程度に抑制し、不要光の影響が大きいm格子の不要光を大幅に減少させることができる。この結果、結像面に到達する不要光が小さくなるため、像性能の低下を抑制することができる。同時に、設計次数の回折効率の低減を像性能に影響ない程度に抑制することができる。   As described above, in the optical system to which the diffractive optical element of the present invention is applied, by providing a thin film, an increase in unnecessary light of the m ′ grating, which is less affected by unnecessary light, is suppressed to an extent that does not affect the influence of unnecessary light. Unnecessary light from a large m-grating can be greatly reduced. As a result, unnecessary light that reaches the imaging surface is reduced, so that deterioration in image performance can be suppressed. At the same time, the reduction in the diffraction efficiency of the designed order can be suppressed to the extent that the image performance is not affected.

また、本実施例の薄膜21の膜構成は5層となっているが、層数、膜厚、膜材料については限定されず、実施例1〜3に示したような単層薄膜でもよい。膜構成は回折格子11および12の材料選択によって格子面の反射防止特性や格子壁面の不要光抑制効果を任意に設計することができる。また、多層膜の薄膜においては、高屈折率材料の薄膜が最も光学的に厚くし、光導波路構造とすることが好ましい。   Moreover, although the film | membrane structure of the thin film 21 of a present Example is five layers, it is not limited about the number of layers, a film thickness, and film | membrane material, A single layer thin film as shown in Examples 1-3 may be sufficient. The film configuration can arbitrarily design the antireflection characteristics of the grating surface and the unnecessary light suppression effect of the grating wall surface by selecting the materials of the diffraction gratings 11 and 12. In the multilayer thin film, it is preferable that the thin film of the high refractive index material is optically thickest to form an optical waveguide structure.

また、逆に実施例1〜3では格子壁面に単層膜を設けているが、格子壁面に多層膜の薄膜を設けてもよい。この場合についても、多層膜の薄膜においては、高屈折率材料の薄膜が最も光学的に厚くし、光導波路構造とすることが好ましい。   Conversely, in Examples 1 to 3, a single layer film is provided on the lattice wall surface, but a multilayer thin film may be provided on the lattice wall surface. Also in this case, it is preferable that the thin film of the high refractive index material is optically thickest in the multilayer thin film so as to have an optical waveguide structure.

本実施例は境界面全域に薄膜を形成するため、実施例1〜3よりも容易かつ安価に回折光学素子を製造することができる。回折光学素子の製造においては、例えば、回折格子12を製造した後、格子面から格子壁面全域に薄膜を真空蒸着等により形成し、その後、回折格子11を形成すればよいが、この方法に限定されない。さらに、界面全域に薄膜を設けることにより回折格子11と回折格子12の密着性を上げることもできる。   Since this embodiment forms a thin film over the entire boundary surface, a diffractive optical element can be manufactured more easily and at a lower cost than in the first to third embodiments. In the manufacture of the diffractive optical element, for example, after the diffraction grating 12 is manufactured, a thin film is formed from the grating surface to the entire grating wall surface by vacuum deposition or the like, and then the diffraction grating 11 is formed. Not. Furthermore, the adhesion between the diffraction grating 11 and the diffraction grating 12 can be improved by providing a thin film over the entire interface.

実施例5は実施例4と同様であるが、薄膜の格子面の上にある全体の厚さと格子壁面の上にある全体の厚さが異なっている(境界面の位置によって薄膜の全体の厚さが異なる)点が実施例4と相違する。図25は実施例4の回折格子の拡大断面図である。図25はわかりやすいように格子周期方向にかなりデフォルメされた図となっている。   Example 5 is the same as Example 4, but the total thickness on the lattice plane of the thin film is different from the total thickness on the grid wall surface (the total thickness of the thin film depends on the position of the boundary surface). Is different from the fourth embodiment. FIG. 25 is an enlarged cross-sectional view of the diffraction grating of Example 4. FIG. 25 is a diagram that is considerably deformed in the lattice period direction so that it can be easily understood.

薄膜21は回折格子11から回折格子12に向かう方向に順に、20H、19L、229H、22L、19Hを有する多層膜で構成されている。ここで、Hは高屈折率層(TiO層)、Lは低屈折率層(SiO層)、数値は物理膜厚(nm)を表す。5層の薄膜のうちで1つの高屈折率薄膜が他の薄膜よりも厚くなるように設計されている。また、格子壁面上の薄膜21の膜厚は物理膜厚の半分に設定され、具体的には、回折格子11から回折格子12に向かう方向に順に、10H、10L、115H、11L、10Hを有する。5層の薄膜のうちで1つの高屈折率薄膜が他の薄膜よりも物理的に厚くなるように設計されている。この回折光学素子の格子面における設計入射角度である入射角度0度(入射光束a)に対して、可視域全域(430nm〜670nm)の透過率が99.0%以上になるように設計されている。 The thin film 21 is composed of a multilayer film having 20H, 19L, 229H, 22L, and 19H in this order from the diffraction grating 11 to the diffraction grating 12. Here, H represents a high refractive index layer (TiO 2 layer), L represents a low refractive index layer (SiO 2 layer), and a numerical value represents a physical film thickness (nm). Of the five thin films, one high refractive index thin film is designed to be thicker than the other thin films. The film thickness of the thin film 21 on the grating wall surface is set to half of the physical film thickness. Specifically, the thin film 21 has 10H, 10L, 115H, 11L, and 10H in order from the diffraction grating 11 to the diffraction grating 12. . Of the five thin films, one high refractive index thin film is designed to be physically thicker than the other thin films. The transmittance of the entire visible region (430 nm to 670 nm) is designed to be 99.0% or more with respect to an incident angle of 0 degree (incident light beam a) which is a designed incident angle on the grating surface of the diffractive optical element. Yes.

図26は、図25に示す入射光束bと図6に示す入射光束Bに対して入射角度+10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果を示すグラフである。   FIG. 26 is a graph showing RCWA calculation results for the incident light beam b shown in FIG. 25 and the incident light beam B shown in FIG. 6 at an incident angle of +10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm.

設計次数である+1次回折光の回折効率が集中しているが、この+1次回折光は像面に到達しないため影響は小さい。残りの不要光は実施例1と同様に特定角度方向にピークを有する不要光となって伝播する。   The diffraction efficiency of the + 1st order diffracted light, which is the designed order, is concentrated, but the influence is small because the + 1st order diffracted light does not reach the image plane. The remaining unnecessary light propagates as unnecessary light having a peak in a specific angle direction as in the first embodiment.

この−10度方向の不要光ピーク角度は図8(b)とほぼ同じだが、不要光の広がりは図26と図8(b)では異なり、図26のほうが低回折角度の回折効率が低い。つまり、本実施例は低回折角度の不要光(図9の光束b1)が少なくなる。   The unnecessary light peak angle in the −10 degree direction is almost the same as that in FIG. 8B, but the spread of unnecessary light is different in FIGS. 26 and 8B, and FIG. 26 has lower diffraction efficiency at a low diffraction angle. That is, in this embodiment, unnecessary light having a low diffraction angle (light beam b1 in FIG. 9) is reduced.

図5及び図6に示す光学系においては、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が少なくとも像面に到達する。図26の回折角+0.20度付近の回折効率はRCWA計算結果から、回折次数−46次の回折効率が0.010%、回折次数−47次の回折効率が0.010%であるため、図7(b)と同様に、回折効率が大幅に減少していることになる。   In the optical system shown in FIGS. 5 and 6, diffracted light of unnecessary light due to off-screen light that substantially matches the diffraction angle +0.20 degree at which the design diffraction order at the design incident angle propagates at least reaches the image plane. The diffraction efficiency in the vicinity of the diffraction angle +0.20 degree in FIG. 26 is 0.010% for the diffraction order −46th order and 0.010% for the diffraction order −47th order from the RCWA calculation result. Similar to FIG. 7B, the diffraction efficiency is greatly reduced.

図27は、図4に示す入射光束aを想定して入射角度0度、格子ピッチ100μm、波長550nmにおけるRCWA計算を行った結果を示すグラフである。   FIG. 27 is a graph showing a result of RCWA calculation performed at an incident angle of 0 degree, a grating pitch of 100 μm, and a wavelength of 550 nm assuming the incident light beam a shown in FIG.

設計次数である+1次回折光の回折効率は97.90%であり、薄膜を設けていない回折格子の場合の+1次回折光の回折効率より低くなっている。残りの光は不要光となり実施例1と同様に伝播していることがわかる。この薄膜によって、位相の不整合が生じた結果、比較的低次(およそ±35次、回折角±10度)の次数の回折効率が増加し、設計次数である+1次回折光の回折効率が下がっている。   The diffraction efficiency of the + 1st order diffracted light that is the designed order is 97.90%, which is lower than the diffraction efficiency of the + 1st order diffracted light in the case of a diffraction grating not provided with a thin film. It can be seen that the remaining light becomes unnecessary light and propagates in the same manner as in the first embodiment. As a result of the phase mismatch caused by this thin film, the diffraction efficiency of the relatively low order (approximately ± 35th order, diffraction angle ± 10 degrees) increases, and the diffraction efficiency of the + 1st order diffracted light, which is the designed order, decreases. ing.

回折光学素子全域を考慮した場合、この格子ピッチ100μmの回折効率0.86%の低減量は設計入射角度(撮影光入射角度)において日中の太陽等の高輝度光源を直接撮影することは稀であるため、ほとんど影響せず、問題とはならない。同時に、不要光の影響も小さい。   Considering the entire area of the diffractive optical element, the reduction amount of the diffraction efficiency of 0.86% when the grating pitch is 100 μm is rarely taken directly by a high-intensity light source such as the sun during the day at the designed incident angle (photographing light incident angle). Therefore, it has almost no effect and is not a problem. At the same time, the influence of unnecessary light is small.

次に、図28は、図4に示す入射光束cを想定して入射角度−10度、格子ピッチ100μm、波長550nmにおけるRCWA計算を行った結果を示すグラフである。   Next, FIG. 28 is a graph showing a result of RCWA calculation performed at an incident angle of −10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm assuming the incident light beam c shown in FIG.

図28から設計次数である+1次回折光の回折効率が集中しているが、この+1次回折光は像面に到達することはないため影響は小さい。残りの不要光は実施例1と同様に特定角度方向にピークをもつ不要光となって伝播していることがわかる。図2、図5、図6に示すように、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が少なくとも像面に到達する。図28の回折角+0.20度付近の回折効率はRCWA計算結果から、回折次数+49次の回折効率が0.013%、回折次数+48次の回折効率が0.013%である。薄膜を設けていない回折格子の場合と比較して増加しているが、回折効率の数値が極めて小さいため、像性能の低下に対しての影響は小さい。   Although the diffraction efficiency of the + 1st order diffracted light, which is the designed order, is concentrated from FIG. 28, the influence is small because the + 1st order diffracted light never reaches the image plane. It can be seen that the remaining unnecessary light is propagated as unnecessary light having a peak in a specific angle direction as in the first embodiment. As shown in FIGS. 2, 5, and 6, diffracted light of unnecessary light due to off-screen light that substantially matches the diffraction angle +0.20 degree at which the design diffraction order at the design incident angle propagates at least reaches the image plane. The diffraction efficiency in the vicinity of the diffraction angle +0.20 degree in FIG. 28 is 0.013% for the diffraction order + 49th order and 0.013% for the diffraction order + 48th order from the RCWA calculation result. Although it is increased as compared with the case of the diffraction grating not provided with a thin film, since the numerical value of the diffraction efficiency is extremely small, the influence on the deterioration of the image performance is small.

このように、本発明の回折光学素子を適用した光学系において、薄膜を設けることにより、不要光の影響が小さいm’格子の不要光の増加を影響ない程度に抑制し、不要光の影響が大きいm格子の不要光を大幅に減少させることができる。この結果、結像面に到達する不要光が小さくなるため、像性能の低下を抑制することができる。同時に、設計次数の回折効率の低減を像性能に影響ない程度に抑制することができる。   As described above, in the optical system to which the diffractive optical element of the present invention is applied, by providing a thin film, an increase in unnecessary light of the m ′ grating, which is less affected by unnecessary light, is suppressed to an extent that does not affect the influence of unnecessary light. Unnecessary light from a large m-grating can be greatly reduced. As a result, unnecessary light that reaches the imaging surface is reduced, so that deterioration in image performance can be suppressed. At the same time, the reduction in the diffraction efficiency of the designed order can be suppressed to the extent that the image performance is not affected.

本実施例のように格子面と格子壁面の膜厚が異なってもよいため、本実施例はより容易かつ安価に回折光学素子を製造することができる。一例として真空蒸着により薄膜を形成する場合に、鋸形状であるブレーズ格子の格子面と格子壁面の膜厚は一般的に異なり、さらに図3に示すように回折格子がレンズ面上に作製されている場合にも膜厚は異なる。このため、製造方法に応じて格子面の反射防止機能と格子壁面のフレア低減機能を任意に設計することで設計次数の回折効率の低減と画面外光束による不要光の低減を両立させることができる。製造方法の一例は実施例4と同様である。   Since the film thickness of the grating surface and the grating wall surface may be different as in this example, this example can manufacture a diffractive optical element more easily and inexpensively. For example, when forming a thin film by vacuum deposition, the thickness of the grating surface of the blazed grating, which is a saw shape, is generally different from the film thickness of the grating wall surface, and a diffraction grating is formed on the lens surface as shown in FIG. The film thickness also differs when For this reason, it is possible to achieve both the reduction of the diffraction efficiency of the design order and the reduction of unnecessary light due to the off-screen light beam by arbitrarily designing the antireflection function of the grating surface and the flare reduction function of the grating wall surface according to the manufacturing method. . An example of a manufacturing method is the same as that of Example 4.

表1は、実施例1〜5の結果をまとめている。nd1は回折格子11のd線の屈折率、nd2は回折格子12のd線の屈折率、vd1は回折格子11のアッベ数、vd2は回折格子12のアッベ数、θgF1は回折格子11の部分分散比、θgF2は回折格子12の部分分散比である。n1_550は回折格子11の波長550nmの屈折率、n2_550は回折格子12の波長550nmの屈折率、dは回折光学素子の格子高さ、Wは薄膜を構成する材料、膜厚、薄膜の全体の幅である。ひとつの材料で構成される薄膜のうちの最大膜厚の幅wである。表における回折効率(%)は入射光束Bに対応する入射角度+10度、格子ピッチ100μmにおける、回折次数−46次、−47次のRCWAの計算結果である。なお、実施例5については格子面上の膜厚を示している。   Table 1 summarizes the results of Examples 1-5. nd1 is the refractive index of the d-line of the diffraction grating 11, nd2 is the refractive index of the d-line of the diffraction grating 12, vd1 is the Abbe number of the diffraction grating 11, vd2 is the Abbe number of the diffraction grating 12, and θgF1 is the partial dispersion of the diffraction grating 11. The ratio θgF2 is the partial dispersion ratio of the diffraction grating 12. n1_550 is the refractive index of the diffraction grating 11 at a wavelength of 550 nm, n2_550 is the refractive index of the diffraction grating 12 at a wavelength of 550 nm, d is the grating height of the diffractive optical element, W is the material constituting the thin film, the film thickness, and the entire width of the thin film It is. This is the width w of the maximum film thickness among the thin films made of one material. The diffraction efficiency (%) in the table is a calculation result of RCWA of diffraction orders of −46th order and −47th order at an incident angle of +10 degrees corresponding to the incident light beam B and a grating pitch of 100 μm. In addition, about Example 5, the film thickness on a lattice plane is shown.

実施例1〜5に示したように、薄膜を介して密着される回折格子11、12の屈折率nd1、nd2および薄膜の少なくとも1つの材料のd線に対する屈折率nd3は数式1を満足することによって結像面に到達する不要光を低減することができる。また、像性能の低下を防止するために薄膜の厚さは数式2を満足すればよい。また、フレア低減効果が減少することを防止するために数式3を満足すればよい。   As shown in Examples 1 to 5, the refractive indexes nd1 and nd2 of the diffraction gratings 11 and 12 that are in close contact with each other through the thin film and the refractive index nd3 with respect to the d-line of at least one material of the thin film satisfy Equation 1. Therefore, unnecessary light reaching the imaging plane can be reduced. In addition, the thickness of the thin film only needs to satisfy Formula 2 in order to prevent a decrease in image performance. Further, in order to prevent the flare reduction effect from decreasing, it is sufficient to satisfy Equation 3.

また、実施例1〜5では、回折格子11と回折格子12の屈折率関係が次式を満足する。この屈折率差では透過率が99%以上であるため、通常、界面に反射防止膜を設ける必要はないが、実施例1〜5ではあえて反射防止膜を設けることによって不要光を低減している。   In Examples 1 to 5, the refractive index relationship between the diffraction grating 11 and the diffraction grating 12 satisfies the following expression. Since the transmittance is 99% or more with this refractive index difference, it is not usually necessary to provide an antireflection film at the interface. However, in Examples 1 to 5, unnecessary light is reduced by providing an antireflection film. .

本実施例では、nd2−nd1=0.063であり、回折格子11と12の間の反射率が1%以下となる場合に対応している。   In this embodiment, nd2−nd1 = 0.063, which corresponds to the case where the reflectance between the diffraction gratings 11 and 12 is 1% or less.

本実施例では、回折格子11を構成する材料のd線に対する屈折率nd1よりもnd2の方が大きい例について説明している。しかし、一般には、数式4は、前記第1の回折格子の材料のd線に対する屈折率と前記第2の回折格子の材料のd線に対する屈折率のうち大きい方から小さい方を引いた値が0よりも大きく0.223よりも小さいことを意味している。   In the present embodiment, an example is described in which nd2 is larger than the refractive index nd1 of the material constituting the diffraction grating 11 with respect to the d-line. However, in general, Equation 4 is obtained by subtracting the smaller one from the larger one of the refractive index for the d-line of the material of the first diffraction grating and the refractive index for the d-line of the material of the second diffraction grating. It means larger than 0 and smaller than 0.223.

また、必ずしも全ての輪帯に薄膜を設ける必要はなく、輪帯の一部に設けても良い。この際、最小格子ピッチを含む一部に薄膜を設けることが有効である。これは格子ピッチが小さい回折格子は不要光の回折効率が大きいため、回折光学素子全体で発生する不要光の寄与が大きいためである。   Further, it is not always necessary to provide a thin film on all the annular zones, and they may be provided on a part of the annular zones. At this time, it is effective to provide a thin film in a part including the minimum lattice pitch. This is because a diffraction grating having a small grating pitch has a large diffraction efficiency of unnecessary light, and therefore the contribution of unnecessary light generated in the entire diffractive optical element is large.

以上、本発明の好ましい実施例について説明したが、本発明はこれらの実施例に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although the preferable Example of this invention was described, this invention is not limited to these Examples, A various deformation | transformation and change are possible within the range of the summary.

回折光学素子は回折作用を必要とする用途に適用することができる。   The diffractive optical element can be applied to an application requiring a diffractive action.

1 回折光学素子
11、12 回折格子
20、21 薄膜
1 Diffraction optical element 11, 12 Diffraction grating 20, 21 Thin film

Claims (8)

光学系のレンズに用いられる回折光学素子であって、
互いに異なる材料により形成され、光軸方向に積層された第1の回折格子と第2の回折格子と、
前記第1の回折格子と前記第2の回折格子の境界面の少なくとも一部に配置され、前記第1の回折格子と前記第2の回折格子とは異なる材料からなる単層または多層で構成され、使用波長帯域の光に対して透明な薄膜と、
を有し、
前記第1の回折格子の材料のd線に対する屈折率nd1と前記第2の回折格子の材料のd線に対する屈折率nd2および、前記薄膜の一層を構成する材料のd線に対する最大の屈折率nd3が以下の式を満たすことを特徴とする回折光学素子。
nd1<nd2
0.5<nd3−nd2<0.8
A diffractive optical element used for a lens of an optical system,
A first diffraction grating and a second diffraction grating formed of different materials and stacked in the optical axis direction;
The first diffraction grating and the second diffraction grating are arranged in at least a part of a boundary surface between the first diffraction grating and the second diffraction grating, and the first diffraction grating and the second diffraction grating are composed of a single layer or multiple layers made of different materials. A thin film that is transparent to light in the wavelength band used,
Have
The refractive index nd1 of the first diffraction grating material with respect to the d-line, the refractive index nd2 of the material of the second diffraction grating with respect to the d-line, and the maximum refractive index nd3 with respect to the d-line of the material constituting one layer of the thin film. Satisfies the following formula: a diffractive optical element.
nd1 <nd2
0.5 <nd3-nd2 <0.8
前記薄膜の最大の屈折率の層の最大の厚さwおよび前記薄膜の全体の厚さWが以下の式を満たすことを特徴とする請求項1に記載の回折光学素子。
0 < w < 2μm
0 < W/P < 0.05
2. The diffractive optical element according to claim 1, wherein the maximum thickness w of the layer having the maximum refractive index of the thin film and the total thickness W of the thin film satisfy the following expression.
0 <w <2 μm
0 <W / P <0.05
前記回折格子の材料の屈折率が以下の式を満たすことを特徴とする請求項1に記載の回折光学素子。
0 < nd2−nd1 < 0.223
The diffractive optical element according to claim 1, wherein a refractive index of a material of the diffraction grating satisfies the following formula.
0 <nd2-nd1 <0.223
前記薄膜は格子壁面にのみ設けられていることを特徴とする請求項1または2に記載の回折光学素子。   The diffractive optical element according to claim 1, wherein the thin film is provided only on a grating wall surface. 前記薄膜は、異なる屈折率を有する多層を有し、屈折率の高い層の厚さは屈折率の低い層の厚さよりも物理的に厚いことを特徴とする請求項1〜4のうちいずれか一項に記載の回折光学素子。   The said thin film has a multilayer which has a different refractive index, The thickness of a layer with a high refractive index is physically thicker than the thickness of a layer with a low refractive index, The any one of Claims 1-4 characterized by the above-mentioned. The diffractive optical element according to one item. 前記薄膜は前記境界面の位置によって厚さが異なることを特徴とする請求項1〜5のうちいずれか一項に記載の回折光学素子。   The diffractive optical element according to claim 1, wherein the thin film has a thickness that varies depending on a position of the boundary surface. 請求項1〜6のうちいずれか一項に記載の回折光学素子と、
前記回折光学素子の後側に配置された絞りと、
を有することを特徴とする光学系。
The diffractive optical element according to any one of claims 1 to 6,
A stop disposed behind the diffractive optical element;
An optical system comprising:
請求項7に記載の光学系を有することを特徴とする光学機器。   An optical apparatus comprising the optical system according to claim 7.
JP2010133972A 2010-06-11 2010-06-11 Diffractive optical element, optical system and optical instrument Expired - Fee Related JP5676929B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010133972A JP5676929B2 (en) 2010-06-11 2010-06-11 Diffractive optical element, optical system and optical instrument
US13/157,751 US8941923B2 (en) 2010-06-11 2011-06-10 Diffractive optical element, optical system, and optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010133972A JP5676929B2 (en) 2010-06-11 2010-06-11 Diffractive optical element, optical system and optical instrument

Publications (3)

Publication Number Publication Date
JP2011257689A true JP2011257689A (en) 2011-12-22
JP2011257689A5 JP2011257689A5 (en) 2013-06-27
JP5676929B2 JP5676929B2 (en) 2015-02-25

Family

ID=45096046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010133972A Expired - Fee Related JP5676929B2 (en) 2010-06-11 2010-06-11 Diffractive optical element, optical system and optical instrument

Country Status (2)

Country Link
US (1) US8941923B2 (en)
JP (1) JP5676929B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170109A (en) * 2013-03-04 2014-09-18 Canon Inc Diffraction optical element, optical system and optical device
WO2018179164A1 (en) * 2017-03-29 2018-10-04 キヤノン株式会社 Diffractive optical element, optical system having same, image pickup device, and lens device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5676930B2 (en) * 2010-06-11 2015-02-25 キヤノン株式会社 Diffractive optical element, optical system and optical instrument
US9395622B2 (en) * 2014-02-20 2016-07-19 Globalfoundries Inc. Synthesizing low mask error enhancement factor lithography solutions
JP6783829B2 (en) * 2018-08-09 2020-11-11 キヤノン株式会社 Diffractive optical element and optical equipment using it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014213A (en) * 2000-06-30 2002-01-18 Minolta Co Ltd Blaze grating device, diffraction grating device and illumination optical system
JP2008241734A (en) * 2007-03-23 2008-10-09 Canon Inc Diffractive optical element, optical system using the same, and optical equipment
WO2011099550A1 (en) * 2010-02-15 2011-08-18 株式会社ニコン Optical element and optical system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3237508A (en) 1962-04-12 1966-03-01 Bausch & Lomb Reflecting diffraction grating for minimizing anomalies
JPS5092148A (en) 1973-12-14 1975-07-23
US4555162A (en) 1984-03-05 1985-11-26 Itek Corporation Method of fabricating long period optical grating
US6162495A (en) 1997-09-29 2000-12-19 Cymer, Inc. Protective overcoat for replicated diffraction gratings
JP4336412B2 (en) 1998-06-16 2009-09-30 キヤノン株式会社 Diffractive optical element and optical system using the same
JP3359309B2 (en) 1998-10-29 2002-12-24 キヤノン株式会社 Method for manufacturing binary diffractive optical element
US6650477B2 (en) * 2000-06-07 2003-11-18 Canon Kabushiki Kaisha Diffractive optical element and optical apparatus having the same
JP4587418B2 (en) * 2000-09-27 2010-11-24 キヤノン株式会社 Diffractive optical element and optical system having the diffractive optical element
JP2003240931A (en) 2001-12-13 2003-08-27 Canon Inc Diffraction optical element and method for manufacturing the same
JP2003315526A (en) 2002-04-26 2003-11-06 Konica Minolta Holdings Inc Diffraction optical element and manufacturing method thereof
JP2004013081A (en) 2002-06-11 2004-01-15 Nikon Corp Composite optical element, method for manufacturing the same, and optical apparatus
CA2436324A1 (en) * 2002-07-31 2004-01-31 Nippon Sheet Glass Co., Ltd. Optical device and method for fabricating the same
JP2004126394A (en) 2002-10-04 2004-04-22 Nikon Corp Diffraction optical element
JP2005062717A (en) 2003-08-20 2005-03-10 Nikon Corp Diffraction optical element and its manufacturing method
JP4475501B2 (en) 2003-10-09 2010-06-09 インターナショナル・ビジネス・マシーンズ・コーポレーション Spectroscopic element, diffraction grating, composite diffraction grating, color display device, and duplexer
US8372505B2 (en) 2006-08-09 2013-02-12 Kimoto Co., Ltd. Anti-glare member, display and screen using the same
US7965444B2 (en) * 2006-08-31 2011-06-21 Micron Technology, Inc. Method and apparatus to improve filter characteristics of optical filters
US7599133B2 (en) * 2007-02-23 2009-10-06 Sanyo Electric Co., Ltd. Optical part for camera and method of fabricating the same
DE102007032371A1 (en) * 2007-07-06 2009-01-15 Carl Zeiss Laser Optics Gmbh Method for coating an optical component for a laser arrangement
JP5264223B2 (en) 2008-03-12 2013-08-14 キヤノン株式会社 Diffractive optical element, optical system and optical instrument
JP5676930B2 (en) * 2010-06-11 2015-02-25 キヤノン株式会社 Diffractive optical element, optical system and optical instrument
US20140233126A1 (en) 2011-05-31 2014-08-21 Suzhou University Reflective color filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002014213A (en) * 2000-06-30 2002-01-18 Minolta Co Ltd Blaze grating device, diffraction grating device and illumination optical system
JP2008241734A (en) * 2007-03-23 2008-10-09 Canon Inc Diffractive optical element, optical system using the same, and optical equipment
WO2011099550A1 (en) * 2010-02-15 2011-08-18 株式会社ニコン Optical element and optical system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170109A (en) * 2013-03-04 2014-09-18 Canon Inc Diffraction optical element, optical system and optical device
WO2018179164A1 (en) * 2017-03-29 2018-10-04 キヤノン株式会社 Diffractive optical element, optical system having same, image pickup device, and lens device
JPWO2018179164A1 (en) * 2017-03-29 2020-01-30 キヤノン株式会社 Diffractive optical element, optical system having the same, imaging device, and lens device
US10670875B2 (en) 2017-03-29 2020-06-02 Canon Kabushiki Kaisha Diffractive optical element, optical system including diffractive optical element, imaging apparatus, and lens device

Also Published As

Publication number Publication date
US8941923B2 (en) 2015-01-27
JP5676929B2 (en) 2015-02-25
US20110304918A1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
JP5777353B2 (en) Diffractive optical element, optical system, and optical instrument
US10133084B2 (en) Diffractive optical element, optical system, and optical apparatus which reduce generation of unnecessary light
JP5137432B2 (en) Adherent two-layer type diffractive optical element and optical system and optical apparatus using the same
JP6873602B2 (en) Diffractive optical elements, optical systems, and optical equipment
US8681424B2 (en) Diffractive optical element containing grating surface and grating wall surface, and optical system having the same
JP5676929B2 (en) Diffractive optical element, optical system and optical instrument
JP2009217139A (en) Diffraction optical element, optical system and optical apparatus
JP2010078803A (en) Optical element and optical system having it
JP2014170109A (en) Diffraction optical element, optical system and optical device
JP5676928B2 (en) Diffractive optical element, optical system, and optical instrument
JP2012083382A (en) Diffraction optical element, optical system, and optical instrument
JP2008242391A (en) Diffraction optical element and optical system using the same
JP5676930B2 (en) Diffractive optical element, optical system and optical instrument
JP5765998B2 (en) Diffractive optical element, optical system and optical instrument
JP2011022319A (en) Diffraction optical element, optical system and optical apparatus
JP5615065B2 (en) Diffractive optical element, optical system and optical instrument
JP5676927B2 (en) Diffractive optical element, optical system, and optical instrument
JP2019066756A (en) Optical system comprising diffraction optical element, and optical equipment
JP2002062419A (en) Diffractive optical device and optical appliance having the diffractive optical device
JP2013105055A (en) Diffraction optical element, and optical system using the same
JP5459966B2 (en) Diffractive optical element, optical system having the same, and optical instrument
JP2015203790A (en) Optical system and optical device having the same
JP2014145871A (en) Imaging optical system using diffraction optical element
JP2017215478A (en) Diffraction optical element and optical system, imaging device and lens device having the same
JP6929350B2 (en) Diffractive optical element and its optical system, image pickup device, lens device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141226

R151 Written notification of patent or utility model registration

Ref document number: 5676929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees