JP5676927B2 - Diffractive optical element, optical system, and optical instrument - Google Patents

Diffractive optical element, optical system, and optical instrument Download PDF

Info

Publication number
JP5676927B2
JP5676927B2 JP2010133572A JP2010133572A JP5676927B2 JP 5676927 B2 JP5676927 B2 JP 5676927B2 JP 2010133572 A JP2010133572 A JP 2010133572A JP 2010133572 A JP2010133572 A JP 2010133572A JP 5676927 B2 JP5676927 B2 JP 5676927B2
Authority
JP
Japan
Prior art keywords
light
grating
diffraction
optical element
diffractive optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010133572A
Other languages
Japanese (ja)
Other versions
JP2011257662A5 (en
JP2011257662A (en
Inventor
礼生奈 牛込
礼生奈 牛込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2010133572A priority Critical patent/JP5676927B2/en
Publication of JP2011257662A publication Critical patent/JP2011257662A/en
Publication of JP2011257662A5 publication Critical patent/JP2011257662A5/ja
Application granted granted Critical
Publication of JP5676927B2 publication Critical patent/JP5676927B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lens Barrels (AREA)
  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、不要光の発生を抑制するように構成された回折光学素子に関する。   The present invention relates to a diffractive optical element configured to suppress generation of unnecessary light.

光学系のレンズに用いられる回折光学素子において、2つの回折格子を密着配置し、各回折格子を構成する材料と格子高さを適切に設定することで広い波長帯域で高い回折効率を得ることが知られている。この格子面と格子壁面を備えた回折光学素子の格子壁面に入射する光束は、格子壁面で反射や屈折することにより、不要光(フレア)が発生する。そこで、特許文献1、2には、格子壁面で発生する不要光を抑制するように構成された回折光学素子が開示されている。特許文献1に開示された回折光学素子では、回折格子よりも入射側又は射出側に吸収膜又は反射膜等の遮光部が設けられている。この遮光部により、格子壁面に入射する光束又は格子壁面から射出する光束を遮光し、格子壁面で発生する不要光を抑制している。特許文献2に開示された回折光学素子では、格子面上に光吸収部が設けられ、格子壁面に入射する光束が格子壁面からフレネル反射して射出する光束を吸収することで、格子壁面で発生する不要光を抑制している。また、格子面上に光吸収部を設けることで、製造コストの低減を図っている。特許文献3は、厳密結合波解析(RCWA:Regorous Coupled Wave Analysis)を使用した回折効率の計算について開示している。   In a diffractive optical element used for a lens of an optical system, two diffraction gratings are arranged in close contact, and the material and the grating height that constitute each diffraction grating are set appropriately to obtain high diffraction efficiency in a wide wavelength band. Are known. The light beam incident on the grating wall surface of the diffractive optical element having the grating surface and the grating wall surface is reflected or refracted by the grating wall surface, thereby generating unnecessary light (flare). Therefore, Patent Documents 1 and 2 disclose a diffractive optical element configured to suppress unnecessary light generated on a grating wall surface. In the diffractive optical element disclosed in Patent Document 1, a light shielding portion such as an absorption film or a reflection film is provided on the incident side or the emission side from the diffraction grating. By this light shielding portion, the light beam incident on the grating wall surface or the light beam emitted from the grating wall surface is shielded, and unnecessary light generated on the grating wall surface is suppressed. In the diffractive optical element disclosed in Patent Document 2, a light absorbing portion is provided on the grating surface, and the light beam incident on the grating wall surface is generated on the grating wall surface by absorbing the light beam emitted from the grating wall surface by Fresnel reflection. To suppress unnecessary light. Moreover, the manufacturing cost is reduced by providing the light absorbing portion on the lattice plane. Patent Document 3 discloses calculation of diffraction efficiency using a rigorous coupled wave analysis (RCWA: Regulated Coupled Wave Analysis).

特開2002−48906号公報JP 2002-48906 A 特開2006−162822号公報JP 2006-162822 A 特開2009−217139号公報JP 2009-217139 A

しかしながら、特許文献1、2に開示された回折光学素子を撮影レンズ等の光学系に適用した場合、撮影光の光束とは異なる斜入射角度(画面外光入射角度)で入射する光束により高屈折率媒質と低屈折率媒質の界面で発生する全反射に起因する不要光が発生する。この不要光の一部は結像面に到達し、像性能を劣化させるおそれがある。   However, when the diffractive optical element disclosed in Patent Documents 1 and 2 is applied to an optical system such as a photographing lens, it is highly refracted by a light beam incident at an oblique incident angle (off-screen light incident angle) different from that of the photographing light beam. Unwanted light is generated due to total reflection occurring at the interface between the refractive index medium and the low refractive index medium. A part of the unnecessary light reaches the imaging surface, and there is a possibility that the image performance is deteriorated.

そこで本発明は、像性能の劣化を抑制する回折光学素子を提供する。   Therefore, the present invention provides a diffractive optical element that suppresses degradation of image performance.

本発明の一側面としての回折光学素子は、互いに異なる屈折率を有し、互いの格子面及び格子壁面の各々が接するように配置された第1び第2の回折格子を備える回折光学素子であって、前記格子壁面毎に設けられた複数の遮光部材を有し、光軸を含む断面内において、前記格子壁面の延長線と前記遮光部材の前記光軸に近い方の端部の距離をwL、前記格子壁面の延長線と前記遮光部材の他方の端部の距離をwH、前記第1及び第2の回折格子の格子ピッチをP、使用波長帯域における最小の波長をλ0、とするとき
wH>wL≧0
0<(wH+wL)/P<0.05
0<λ0<wH
なる条件を満たすことを特徴とする
The diffractive optical element according to one aspect of the present invention has a different refractive index from each other, the diffractive optical element comprising a first beauty second diffraction grating which are arranged in contact each of the grating surface and the grating wall surface of each other A plurality of light shielding members provided for each of the grating wall surfaces, and in a cross section including an optical axis, an extension line of the grating wall surface and an end portion of the light shielding member closer to the optical axis. distance wL, the distance between the other end of the extension line and the shielding member of the grating wall surface wH, said first and second grating pitch of the diffraction grating P, and the minimum wavelength in the used wavelength band .lambda.0, And when
wH> wL ≧ 0
0 <(wH + wL) / P <0.05
0 <λ0 <wH
It satisfies the following condition .

本発明の他の目的及び特徴は、以下の実施例において説明される。   Other objects and features of the present invention are illustrated in the following examples.

本発明によれば、像性能の劣化を抑制する回折光学素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the diffractive optical element which suppresses degradation of image performance can be provided.

本実施例における回折光学素子の要部概略図である。It is a principal part schematic of the diffractive optical element in a present Example. 回折光学素子を有する光学系における不要光を示す概念図である。It is a conceptual diagram which shows the unnecessary light in the optical system which has a diffractive optical element. 実施例1における回折光学素子の拡大断面図である。2 is an enlarged cross-sectional view of a diffractive optical element in Example 1. FIG. 実施例1における回折格子部の拡大断面図である。3 is an enlarged cross-sectional view of a diffraction grating part in Example 1. FIG. 実施例1における回折光学素子の設計入射光束に対する回折効率のグラフである。3 is a graph of diffraction efficiency with respect to a design incident light beam of the diffractive optical element in Example 1. 実施例1における回折光学素子の画面外入射+10度の光束に対する回折効率のグラフである。6 is a graph of diffraction efficiency for a light beam with an off-screen incidence of +10 degrees of the diffractive optical element according to Example 1. 実施例1における回折光学素子の画面外入射−10度の光束に対する回折効率のグラフである。4 is a graph of diffraction efficiency with respect to a light beam of -10 degrees off-screen incidence of the diffractive optical element in Example 1; 実施例1における他の形態の回折光学素子の拡大断面図である。FIG. 6 is an enlarged cross-sectional view of another form of the diffractive optical element in Example 1. 実施例2における回折光学素子の設計入射光束に対する回折効率のグラフである。7 is a graph of diffraction efficiency with respect to a design incident light beam of a diffractive optical element in Example 2. 実施例2における回折光学素子の画面外入射+10度の光束に対する回折効率のグラフである。6 is a graph of diffraction efficiency with respect to a light beam having an off-screen incidence of +10 degrees and a diffractive optical element in Example 2. 実施例2における回折光学素子の画面外入射−10度の光束に対する回折効率のグラフである。6 is a graph of diffraction efficiency with respect to a light beam of -10 degrees off-screen incidence of the diffractive optical element in Example 2. 実施例3における回折格子部の拡大断面図である。6 is an enlarged cross-sectional view of a diffraction grating portion in Example 3. FIG. 実施例3における回折光学素子の入射光束に対する回折効率のグラフである。12 is a graph of diffraction efficiency with respect to an incident light beam of a diffractive optical element in Example 3. 実施例4における回折格子部の拡大断面図である。6 is an enlarged cross-sectional view of a diffraction grating part in Example 4. FIG. 実施例4における回折光学素子の入射光束に対する回折効率のグラフである。10 is a graph of diffraction efficiency with respect to an incident light beam of a diffractive optical element in Example 4. 実施例5における回折光学素子の入射光束に対する回折効率のグラフである。10 is a graph of diffraction efficiency with respect to an incident light beam of a diffractive optical element in Example 5. 実施例6における回折格子部の拡大断面図である。10 is an enlarged cross-sectional view of a diffraction grating portion in Example 6. FIG. 実施例6における回折光学素子の入射光束に対する回折効率のグラフである。10 is a graph of diffraction efficiency with respect to an incident light beam of a diffractive optical element in Example 6. 実施例6における回折格子部の拡大断面図である。10 is an enlarged cross-sectional view of a diffraction grating portion in Example 6. FIG. 実施例7における撮影光学系の概略断面図である。FIG. 10 is a schematic cross-sectional view of a photographic optical system in Example 7. 比較例1における回折光学素子の設計入射光束に対する回折効率のグラフである。5 is a graph of diffraction efficiency with respect to a design incident light beam of a diffractive optical element in Comparative Example 1. 比較例における回折光学素子の設計入射光束に対する不要光の伝播の様子を示す模式図である。It is a schematic diagram which shows the mode of propagation of the unnecessary light with respect to the design incident light beam of the diffractive optical element in a comparative example. 比較例1における回折光学素子の画面外入射+10度の光束に対する回折効率のグラフである。6 is a graph of diffraction efficiency for a light beam with an off-screen incidence of +10 degrees of the diffractive optical element in Comparative Example 1. 比較例における回折光学素子の画面外入射+10度の光束に対する不要光の伝播の様子を示す模式図である。It is a schematic diagram which shows the mode of propagation of the unnecessary light with respect to the light beam of off-screen incidence +10 degree | times of the diffraction optical element in a comparative example. 比較例1における回折光学素子の画面外入射−10度の光束に対する回折効率のグラフである。6 is a graph of diffraction efficiency with respect to a light beam of -10 degrees off-screen incidence of the diffractive optical element in Comparative Example 1. 比較例における回折光学素子の画面外入射−10度の光束に対する不要光の伝播の様子を示す模式図である。It is a schematic diagram which shows the mode of propagation of the unnecessary light with respect to the light beam of -10 degree | times incident off-screen of the diffraction optical element in a comparative example. 比較例における回折光学素子の構造と画面外入射光束との関係を示す模式図である。It is a schematic diagram which shows the relationship between the structure of the diffractive optical element in a comparative example, and an off-screen incident light beam. 比較例2における回折光学素子の入射光束に対する回折効率のグラフである。6 is a graph of diffraction efficiency with respect to an incident light beam of a diffractive optical element in Comparative Example 2.

以下、本発明の実施例について、図面を参照しながら詳細に説明する。各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each figure, the same members are denoted by the same reference numerals, and redundant description is omitted.

まず、本発明の実施例1における回折光学素子について説明する。本実施例の回折光学素子は、光学系のレンズに適して用いられる。図1は、回折光学素子1の概略図(正面図及び側面図)である。回折光学素子1は、平板又はレンズより構成される基板2、3に挟まれた回折格子部10を備えて構成される。本実施例では、回折格子部10が設けられる基板2、3の面は、曲面となっている。回折格子部10は、光軸Oを中心とした同心円状の回折格子形状であり、レンズ作用を有する。   First, the diffractive optical element in Example 1 of the present invention will be described. The diffractive optical element of this embodiment is suitably used for an optical system lens. FIG. 1 is a schematic view (front view and side view) of the diffractive optical element 1. The diffractive optical element 1 includes a diffraction grating portion 10 sandwiched between substrates 2 and 3 made of flat plates or lenses. In the present embodiment, the surfaces of the substrates 2 and 3 on which the diffraction grating portion 10 is provided are curved surfaces. The diffraction grating portion 10 has a concentric diffraction grating shape centered on the optical axis O and has a lens action.

図3は、図1のA−A’面を切断して拡大した回折光学素子1の拡大断面図である。格子形状を分かりやすくするために、図3は格子深さ方向にデフォルメされた図となっている。また、格子数も実際よりは少なく描かれている。以降に説明する断面図についても同様である。図3に示されるように、回折光学素子1の回折格子部10は、第1の回折格子11、第2の回折格子12、及び、遮光部材20を備えて構成される。第1の回折格子11は、レンズの光軸Oを中心として同心円状に所定の格子ピッチPで形成された格子面11a(第1の格子面)と格子壁面11b(第1の格子壁面)とを複数備える。第2の回折格子12は、光軸Oを中心として同心円状に格子ピッチPで形成された格子面12a(第2の格子面)と格子壁面12b(第2の格子壁面)とを備える。第1の回折格子11及び第2の回折格子12は、互いに異なる屈折率(n11、n22)を有して高屈折率領域及び低屈折率領域を構成する。第1の回折格子11の格子面11aは、第2の回折格子12の格子面12aと接している(密着している)。同様に、第1の回折格子11の格子壁面11bは、第2の回折格子12の格子壁面12bと接している。   FIG. 3 is an enlarged cross-sectional view of the diffractive optical element 1 obtained by cutting and enlarging the A-A ′ plane of FIG. 1. In order to make the lattice shape easy to understand, FIG. 3 is a diagram deformed in the lattice depth direction. The number of grids is also drawn less than actual. The same applies to the cross-sectional views described below. As shown in FIG. 3, the diffraction grating portion 10 of the diffractive optical element 1 includes a first diffraction grating 11, a second diffraction grating 12, and a light shielding member 20. The first diffraction grating 11 includes a grating surface 11a (first grating surface) and a grating wall surface 11b (first grating wall surface) formed concentrically with a predetermined grating pitch P around the optical axis O of the lens. A plurality. The second diffraction grating 12 includes a grating surface 12a (second grating surface) and a grating wall surface 12b (second grating wall surface) formed concentrically with a grating pitch P around the optical axis O. The first diffraction grating 11 and the second diffraction grating 12 have different refractive indexes (n11, n22) and constitute a high refractive index region and a low refractive index region. The grating surface 11 a of the first diffraction grating 11 is in contact with (in close contact with) the grating surface 12 a of the second diffraction grating 12. Similarly, the grating wall surface 11 b of the first diffraction grating 11 is in contact with the grating wall surface 12 b of the second diffraction grating 12.

遮光部材20は、光軸Oを中心として同心円状に格子ピッチPで複数形成されている。また遮光部材20は、第1の回折格子11の内部に配置され、膜形状構造を有する。ただし、本発明はこれに限定されるものではなく、後述のように、遮光部材20は他の形状を有してもよく、また、第2の回折格子12の内部や、これらの回折格子の境界等、他の位置に配置されていてもよい。遮光部材20は、第1の回折格子11と第2の回折格子12との境界で発生する全反射光を低減させる。   A plurality of light shielding members 20 are formed concentrically around the optical axis O at a lattice pitch P. The light shielding member 20 is disposed inside the first diffraction grating 11 and has a film shape structure. However, the present invention is not limited to this, and as will be described later, the light shielding member 20 may have other shapes, and the inside of the second diffraction grating 12 or of these diffraction gratings. You may arrange | position in other positions, such as a boundary. The light shielding member 20 reduces total reflected light generated at the boundary between the first diffraction grating 11 and the second diffraction grating 12.

図1及び図3に示されるように、第1の回折格子11及び第2の回折格子12は、それぞれ格子面11a、12aと格子壁面11b、12bから構成される同心円状のブレーズ構造の回折格子である。そして、光軸Oから円の外周に近づくに従って格子ピッチを徐々に変化させることにより、レンズ作用(光の収斂作用や発散作用)を有するように構成されている。また、格子面11a、12a及び格子壁面11b、12bは互いに隙間なく接しており、第1の回折格子11及び第2の回折格子12は、全体で1つの回折格子部10として作用する。また、回折格子部10をブレーズ構造にすることで、回折光学素子1に入射した光(入射光)は、回折格子部10で回折せずに透過する0次回折方向に対し、特定の回折次数(本実施例では+1次)方向に集中して回折する。   As shown in FIGS. 1 and 3, the first diffraction grating 11 and the second diffraction grating 12 are concentric blazed diffraction gratings composed of grating surfaces 11a and 12a and grating wall surfaces 11b and 12b, respectively. It is. Then, by gradually changing the grating pitch from the optical axis O toward the outer circumference of the circle, it is configured to have a lens action (light convergence action or diverging action). In addition, the grating surfaces 11a and 12a and the grating wall surfaces 11b and 12b are in contact with each other without a gap, and the first diffraction grating 11 and the second diffraction grating 12 function as one diffraction grating portion 10 as a whole. Further, by making the diffraction grating portion 10 a blazed structure, light (incident light) incident on the diffractive optical element 1 has a specific diffraction order with respect to the 0th-order diffraction direction that is transmitted without being diffracted by the diffraction grating portion 10. Diffraction is concentrated in the direction (+ 1st order in this embodiment).

また、本実施例の回折光学素子1の使用波長領域は可視域である。このため、可視領域全体で設計次数の回折光の回折効率が高くなるように、第1の回折格子11及び第2の回折格子12を構成する材料及び格子高さdが選択される。すなわち、複数の回折格子(第1の回折格子11、第2の回折格子12)を通過する光の最大光路長差(回折部の山と谷の光学光路長差の最大値)が使用波長域内で、その波長の整数倍付近となるように、各回折格子の材料及び格子高さdが決定される。このように回折格子の材料及び形状を適切に設定することにより、使用波長全域で高い回折効率が得られる。   Moreover, the use wavelength range of the diffractive optical element 1 of the present embodiment is the visible range. For this reason, the material and the grating height d constituting the first diffraction grating 11 and the second diffraction grating 12 are selected so that the diffraction efficiency of the diffracted light of the designed order is high in the entire visible region. That is, the maximum optical path length difference of light passing through the plurality of diffraction gratings (the first diffraction grating 11 and the second diffraction grating 12) (the maximum optical optical path length difference between the peaks and valleys of the diffraction part) is within the use wavelength range. Thus, the material of each diffraction grating and the grating height d are determined so as to be close to an integral multiple of the wavelength. Thus, by appropriately setting the material and shape of the diffraction grating, high diffraction efficiency can be obtained over the entire wavelength range.

第1の回折格子11の内部(第1の格子面11a、第2の格子面12a、第1の格子壁面11b、及び、第2の格子壁面12bよりも入射側)には、遮光部材20が設けられている。遮光部材20の材料や形状を適切に設定することにより、斜入射(画面外入射)光束によって発生する不要光を抑制することが可能となる。なお、遮光部材20は第1の回折格子11の内部(入射側)に設けられているが、本実施例はこれに限定されるものではない。遮光部材20は、入射側の他の領域、又は、射出側に設けてもよい。例えば、第2の回折格子12の内部、基板2又は基板3の上、基板2又は基板3の内部、第1の回折格子11又は第2の回折格子12の上に形成することもできる。   Inside the first diffraction grating 11 (on the incident side of the first grating surface 11a, the second grating surface 12a, the first grating wall surface 11b, and the second grating wall surface 12b), the light shielding member 20 is provided. Is provided. By appropriately setting the material and shape of the light shielding member 20, it is possible to suppress unnecessary light generated by the obliquely incident (off-screen incident) light beam. In addition, although the light shielding member 20 is provided in the inside (incident side) of the 1st diffraction grating 11, a present Example is not limited to this. The light shielding member 20 may be provided in another area on the incident side or on the emission side. For example, it may be formed inside the second diffraction grating 12, on the substrate 2 or the substrate 3, inside the substrate 2 or the substrate 3, or on the first diffraction grating 11 or the second diffraction grating 12.

続いて、本実施例における回折光学素子1の構成、及び、不要光について説明する。図4(a)は、本実施例における回折格子部10の断面拡大図である。図4(a)では、格子数は実際より少なく描かれ、理解容易のため、m格子及びm’格子に対する遮光部材のみ示される。図4(b)は、回折格子部10を更に拡大した断面図である。第1の回折格子11の材料として、フッ素アクリル系紫外線硬化樹脂にITO微粒子を混合させた樹脂(nd=1.481、νd=20.7、θgF=0.404、n550=1.483)が用いられる。第2の回折格子12の材料として、アクリル系紫外線硬化樹脂(nd=1.524、νd=51.6、θgF=0.539、n550=1.524)が用いられる。本実施例において、各回折格子の格子高さdは13.51μmであり、設計次数は+1次である。   Next, the configuration of the diffractive optical element 1 and unnecessary light in this embodiment will be described. FIG. 4A is an enlarged cross-sectional view of the diffraction grating portion 10 in the present embodiment. In FIG. 4A, the number of lattices is drawn less than the actual number, and only the light shielding members for the m lattice and the m ′ lattice are shown for easy understanding. FIG. 4B is a cross-sectional view in which the diffraction grating portion 10 is further enlarged. As a material for the first diffraction grating 11, a resin (nd = 1.482, νd = 20.7, θgF = 0.404, n550 = 1.383) in which ITO fine particles are mixed with a fluorine acrylic ultraviolet curable resin. Used. As the material of the second diffraction grating 12, an acrylic ultraviolet curable resin (nd = 1.524, νd = 51.6, θgF = 0.539, n550 = 1.524) is used. In this embodiment, the grating height d of each diffraction grating is 13.51 μm, and the design order is + 1st order.

遮光部材20は、各回折格子の格子面(第1の格子面11a、第2の格子面12a)、及び、格子壁面(第1の格子壁面11b、第2の格子壁面12b)よりも入射側(図中の左側)の格子壁面付近に設けられている。また遮光部材20は、第1の回折格子11及び第2の回折格子12の格子壁面毎に複数設けられている。各々の遮光部材20は、光軸Oを含むレンズの断面において、格子壁面(第1の格子壁面11b、第2の格子壁面12b)及び格子壁面の延長線Eによって二つの領域に分けられる。一つの領域は、格子壁面の位置を基準とした場合における高屈折率領域(第2の回折格子12)であり、他の一つの領域は、格子壁面の位置を基準とした場合における低屈折率領域(第1の回折格子11)である。本実施例では、高屈折率領域側に配置された遮光部材20の幅wHは、低屈折率領域側に配置された遮光部材20の幅wLよりも大きい。なお曲面状の回折格子部10における幅wH、wLの方向は、図4(b)において、格子壁面及び格子壁面の延長線Eと直交する方向(曲面の接線方向)と定義される。   The light shielding member 20 is incident on the grating surface (first grating surface 11a, second grating surface 12a) and grating wall surfaces (first grating wall surface 11b, second grating wall surface 12b) of each diffraction grating. It is provided in the vicinity of the lattice wall (left side in the figure). A plurality of light shielding members 20 are provided for each grating wall surface of the first diffraction grating 11 and the second diffraction grating 12. Each light shielding member 20 is divided into two regions in the cross section of the lens including the optical axis O by a grating wall surface (first grating wall surface 11b, second grating wall surface 12b) and an extension line E of the grating wall surface. One region is a high refractive index region (second diffraction grating 12) when the position of the grating wall surface is used as a reference, and the other region is a low refractive index when the position of the grating wall surface is used as a reference. This is a region (first diffraction grating 11). In this embodiment, the width wH of the light shielding member 20 arranged on the high refractive index region side is larger than the width wL of the light shielding member 20 arranged on the low refractive index region side. Note that the directions of the widths wH and wL in the curved diffraction grating portion 10 are defined as a direction perpendicular to the grating wall surface and the extension line E of the grating wall surface (tangential direction of the curved surface) in FIG.

このような構成によれば、図中の下向きの斜入射角度(画面外入射角度)で入射する光束(図4(b)のb、図4(a)のB)が格子壁面で全反射することにより生じるフレアを抑制することができる。また、幅wLが幅wHよりも小さいため、設計入射角度による回折効率の低減量も少ない。本実施例の遮光部材20において、幅wHは2.0μm、幅wLは0.5μm、遮光部材20の厚さd1は0.2μm、遮光部材20と各回折格子(第1の回折格子11、第2の回折格子12)との距離d2は1.0μmである。また、遮光部材20は金属材料からなり、具体的にはAl(n550=0.958、k550=6.69)から構成されている。   According to such a configuration, a light beam (b in FIG. 4B, B in FIG. 4A) incident at a downward oblique incident angle (off-screen incident angle) in the figure is totally reflected on the grating wall surface. The flare which arises by this can be suppressed. Further, since the width wL is smaller than the width wH, the amount of reduction in diffraction efficiency due to the design incident angle is also small. In the light shielding member 20 of the present embodiment, the width wH is 2.0 μm, the width wL is 0.5 μm, the thickness d1 of the light shielding member 20 is 0.2 μm, the light shielding member 20 and each diffraction grating (first diffraction grating 11, The distance d2 from the second diffraction grating 12) is 1.0 μm. The light shielding member 20 is made of a metal material, and specifically, is made of Al (n550 = 0.958, k550 = 6.69).

図5は、回折光学素子の設計入射角度である入射角度0度(図4(b)のa)、格子ピッチ100μm、波長550nmにおける厳密結合波解析(RCWA:Regorous Coupled Wave Analysis)計算結果である。図5(a)は設計次数である+1次回折光付近での回折効率である。横軸は回折次数、縦軸は回折効率である。図5(b)は、図5(a)の縦軸の回折効率の低い部分を拡大し、横軸を回折次数から回折角にして高回折角度範囲について示した結果である。回折角は、図4(b)の下向きを正の方向としている。図5(a)において、設計次数である+1次回折光の回折効率は96.88%(回折角+0.21度)である。残りの光は不要光となり、図5(b)に示されるように、複数の小さいピークとなって伝播する。これは入射側の遮光部材により、入射光束のうちの格子壁面付近に入射する成分が格子壁面に到達する前に遮光されたためである。一方、遮光部材20によって、本来、各回折格子によって+1次光に回折される光束の一部も遮光され、位相の不整合が生じる。この結果、比較的低次(およそ±25次、回折角±5度)の次数の回折効率が増加し、設計次数である+1次回折光の回折効率が下がる。本実施例で想定している格子ピッチは、一つの基準として100μmである。図1に示されるように、光軸に近い輪帯ほど格子ピッチは大きくなり、格子壁面及び遮光部材による悪影響が小さくなる。このため、設計次数の回折効率は高く、不要光の回折効率は低くなる。   FIG. 5 is a calculation result of a rigorous coupled wave analysis (RCWA) at an incident angle of 0 degrees (a in FIG. 4B), a grating pitch of 100 μm, and a wavelength of 550 nm, which is a designed incident angle of the diffractive optical element. . FIG. 5A shows the diffraction efficiency in the vicinity of the + 1st order diffracted light that is the designed order. The horizontal axis is the diffraction order, and the vertical axis is the diffraction efficiency. FIG. 5B is a result of enlarging the low diffraction efficiency portion of the vertical axis in FIG. 5A and showing the high diffraction angle range with the horizontal axis as the diffraction order to the diffraction angle. The diffraction angle has a downward direction in FIG. 4B as a positive direction. In FIG. 5 (a), the diffraction efficiency of the + 1st order diffracted light, which is the designed order, is 96.88% (diffraction angle +0.21 degree). The remaining light becomes unnecessary light and propagates as a plurality of small peaks as shown in FIG. This is because the incident-side light shielding member shields a component of the incident light beam that enters the vicinity of the grating wall surface before reaching the grating wall surface. On the other hand, the light shielding member 20 originally shields a part of the light beam diffracted into the + 1st order light by each diffraction grating, resulting in phase mismatch. As a result, the diffraction efficiency of the order of relatively low order (approximately ± 25th order, diffraction angle ± 5 degrees) increases, and the diffraction efficiency of the + 1st order diffracted light that is the designed order decreases. The grating pitch assumed in this embodiment is 100 μm as one reference. As shown in FIG. 1, the lattice pitch increases as the ring zone is closer to the optical axis, and the adverse effects of the grating wall surface and the light shielding member are reduced. For this reason, the diffraction efficiency of the designed order is high, and the diffraction efficiency of unnecessary light is low.

次に、設計入射角度より下向きの斜入射角度(画面外光入射角度)で回折光学素子に入射する光束(図4(b)のb、図4(a)のB)を想定する。図6は、入射角度+10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。入射角は、図4(b)の下向きを正の方向としている。図6(a)は、設計次数である+1次回折光付近での回折効率である。横軸は回折次数、縦軸は回折効率である。図6(b)は、図6(a)の縦軸の回折効率の低い部分を拡大し、横軸を回折次数から回折角にして高回折角度範囲について示した結果である。回折角は、図4(b)の下向きを正の方向としている。図6(a)において、設計次数である+1次回折光の回折効率が集中しているが、回折効率は96.57%(回折次数+1、回折角+9.94度)で設計入射角度である0度から傾いているため低下している。この画面外光入射角度の+1次回折光は像面に到達することはないため、その影響は小さい。残りの光は不要光となり、図6(b)に示されるように、特定の角度方向のピークはなく、複数の小さいピークとなって伝播する。これは、入射側の遮光部材の幅wHの部分により、入射光束のうちの格子壁面付近に入射する成分が格子壁面に到達する前に遮光されたためである。図2、15に示されるように、光学系に回折光学素子1を適用した場合、設計入射角における設計回折次数が伝播する回折角度+0.21度に略一致する画面外光による不要光の回折光が、少なくとも像面に到達する。図6の回折角+0.21度付近の回折効率は、RCWA計算結果から、回折次数−45(回折角+0.38度)の回折効率が0.00074%、回折次数−46(回折角+0.17度)の回折効率が0.0010%であり、回折効率は大幅に減少する。   Next, a light beam (b in FIG. 4B and B in FIG. 4A) that enters the diffractive optical element at an oblique incident angle (off-screen light incident angle) downward from the designed incident angle is assumed. FIG. 6 shows RCWA calculation results at an incident angle of +10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm. With respect to the incident angle, the downward direction in FIG. FIG. 6A shows the diffraction efficiency in the vicinity of the + 1st order diffracted light that is the designed order. The horizontal axis is the diffraction order, and the vertical axis is the diffraction efficiency. FIG. 6B is a result of enlarging the low diffraction efficiency portion of the vertical axis in FIG. 6A and showing the high diffraction angle range with the horizontal axis as the diffraction order to the diffraction angle. The diffraction angle has a downward direction in FIG. 4B as a positive direction. In FIG. 6A, the diffraction efficiency of the + 1st order diffracted light, which is the designed order, is concentrated, but the diffraction efficiency is 96.57% (diffraction order + 1, diffraction angle + 9.94 degrees), and the designed incident angle is 0. It is decreasing because it is tilted from the degree. Since the + 1st-order diffracted light with this off-screen light incident angle never reaches the image plane, its influence is small. The remaining light becomes unnecessary light and propagates as a plurality of small peaks without a peak in a specific angular direction, as shown in FIG. 6B. This is because the component incident on the vicinity of the grating wall surface of the incident light beam is shielded before reaching the grating wall surface by the width wH of the incident-side light shielding member. As shown in FIGS. 2 and 15, when the diffractive optical element 1 is applied to the optical system, diffraction of unnecessary light by off-screen light that substantially matches the diffraction angle +0.21 degree at which the design diffraction order at the design incident angle propagates. Light reaches at least the image plane. The diffraction efficiency in the vicinity of the diffraction angle +0.21 degrees in FIG. 6 indicates that the diffraction efficiency at the diffraction order −45 (diffraction angle +0.38 degrees) is 0.00074% and the diffraction order −46 (diffraction angle +0. 17 degrees) is 0.0010%, and the diffraction efficiency is greatly reduced.

次に、設計入射角度より上向きの斜入射角度(画面外光入射角度)で回折光学素子に入射する光束(図4(b)のc、図4(a)のB’)を想定する。図7は、入射角度−10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。入射角は、図4(b)の下向きを正の方向としている(図4(a)のm’格子では上向きが正の方向となる)。図7(a)は、設計次数である+1次回折光付近での回折効率である。横軸は回折次数、縦軸は回折効率である。図7(b)は、図7(a)の縦軸の回折効率の低い部分を拡大し、横軸を回折次数から回折角にして高回折角度範囲について示した結果である。回折角は、図4(b)の下向きを正の方向としている(図4(a)のm’格子では上向きが正の方向となる)。図7(a)において、設計次数である+1次回折光の回折効率が集中しているが、回折効率は93.15%(回折次数+1、回折角−9.52度)で設計入射角度である0度から傾いているため低下している。この画面外光入射角度の+1次回折光は像面に到達することはないため、その影響は小さい。残りの不要光は、図7(b)に示されるように、特定の角度方向にピークを有する不要光となって伝播する。この不要光は、略−16度方向にピークを有する。この略−16度方向のピークの伝播方向は、格子壁面に入射する画面外入射角度−10度の光束の透過光の射出方向−16.6度に略等しい。遮光部材を設けていない場合と比べると、回折効率が若干低減する。これは、入射側の遮光部材の幅wLの部分により、入射光束のうちの格子壁面付近に入射する成分の一部が格子壁面に到達する前に遮光されるためである。図2、15に示されるように、光学系に回折光学素子1を適用した場合、設計入射角における設計回折次数が伝播する回折角度+0.21度に略一致する画面外光による不要光の回折光が、少なくとも像面に到達する。図7の回折角+0.21度付近の回折効率は、RCWA計算結果から、回折次数+48(回折角+0.24度)の回折効率が0.0050%、回折次数+47(回折角+0.08度)の回折効率が0.0050%である。   Next, a light beam (c in FIG. 4B, B ′ in FIG. 4A) that enters the diffractive optical element at an oblique incident angle (off-screen light incident angle) upward from the designed incident angle is assumed. FIG. 7 shows RCWA calculation results at an incident angle of −10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm. With respect to the incident angle, the downward direction in FIG. 4B is a positive direction (in the m ′ lattice in FIG. 4A, the upward direction is a positive direction). FIG. 7A shows the diffraction efficiency in the vicinity of the + 1st order diffracted light that is the designed order. The horizontal axis is the diffraction order, and the vertical axis is the diffraction efficiency. FIG. 7B is a result of enlarging the low diffraction efficiency portion of the vertical axis in FIG. 7A and showing the high diffraction angle range with the horizontal axis as the diffraction order to the diffraction angle. The diffraction angle has a downward direction in FIG. 4B as a positive direction (upward is a positive direction in the m ′ grating in FIG. 4A). In FIG. 7A, the diffraction efficiency of the + 1st order diffracted light, which is the designed order, is concentrated, but the diffraction efficiency is 93.15% (diffraction order + 1, diffraction angle−9.52 degrees), which is the designed incident angle. Since it is tilted from 0 degree, it is lowered. Since the + 1st-order diffracted light with this off-screen light incident angle never reaches the image plane, its influence is small. The remaining unnecessary light propagates as unnecessary light having a peak in a specific angular direction, as shown in FIG. This unnecessary light has a peak in a direction of approximately −16 degrees. The propagation direction of the peak in the direction of about -16 degrees is substantially equal to the emission direction of transmitted light of the light beam having an off-screen incident angle of -10 degrees incident on the grating wall surface -16.6 degrees. Compared to the case where no light shielding member is provided, the diffraction efficiency is slightly reduced. This is because a part of the incident light flux that is incident on the vicinity of the grating wall surface is shielded by the portion of the incident-side light shielding member having the width wL before reaching the grating wall surface. As shown in FIGS. 2 and 15, when the diffractive optical element 1 is applied to the optical system, diffraction of unnecessary light by off-screen light that substantially matches the diffraction angle +0.21 degree at which the design diffraction order at the design incident angle propagates. Light reaches at least the image plane. The diffraction efficiency in the vicinity of the diffraction angle +0.21 degree in FIG. 7 is 0.0050% for the diffraction order +48 (diffraction angle +0.24 degree) and the diffraction order +47 (diffraction angle +0.08 degree) from the RCWA calculation result. ) Is 0.0050%.

以上のように、本実施例の回折光学素子1を適用した光学系に画面外光束が入射した場合、遮光部材20を設けることにより、不要光を減少させることができる。この結果、結像面に到達する不要光が小さくなるため、像性能の劣化を抑制することが可能となる。また、高屈折率領域側(第2の回折格子12側)の幅wHよりも低屈折率領域側(第1の回折格子11側)の幅wLを小さくすることにより、設計次数の回折効率の低減を像性能に影響ない程度に抑制することができる。
なお、ここでは格子ピッチ100μmとしている。さらに格子ピッチの広い輪帯においては壁面の寄与が小さくなるため、設計次数の回折効率は高く、不要光の回折効率は低くなる。また、図示してはいないが、この不要光の伝播方向については格子ピッチに依存せず、伝播方向は同じであった。このため、ひとつの基準として格子ピッチ100μmの回折効率を示している。
As described above, when the off-screen light beam is incident on the optical system to which the diffractive optical element 1 of the present embodiment is applied, the unnecessary light can be reduced by providing the light shielding member 20. As a result, unnecessary light that reaches the imaging surface is reduced, so that deterioration in image performance can be suppressed. Further, by reducing the width wL on the low refractive index region side (first diffraction grating 11 side) than the width wH on the high refractive index region side (second diffraction grating 12 side), the diffraction efficiency of the designed order can be reduced. Reduction can be suppressed to an extent that does not affect image performance.
Here, the lattice pitch is 100 μm. Further, since the contribution of the wall surface is small in an annular zone with a wide grating pitch, the diffraction efficiency of the designed order is high and the diffraction efficiency of unnecessary light is low. Although not shown, the propagation direction of the unnecessary light does not depend on the grating pitch, and the propagation direction is the same. Therefore, the diffraction efficiency with a grating pitch of 100 μm is shown as one reference.

また、ここでは画面外光束B,B’の入射角は画面外+10度(光軸方向に対しては入射角ωは+13.16度)を想定する。この入射角度より小さい角度ではレンズ表面や結像面反射によるゴーストやレンズ内部、表面微小凹凸による散乱が多いため回折光学素子の不要光は比較的目立たない。また、この入射角度より大きい角度では、前側レンズ面の反射やレンズ鏡筒による遮光により回折光学素子の不要光の影響度は比較的小さい。このため、画面外入射光束は+10度付近が回折光学素子の不要光に対して最も影響が大きく、ここでは画面外光束の入射角は略+10度を想定する。   Further, here, it is assumed that the incident angles of the off-screen light beams B and B ′ are +10 degrees outside the screen (the incident angle ω is +13.16 degrees with respect to the optical axis direction). At angles smaller than this incident angle, ghosts due to lens surface and image plane reflection, scattering inside the lens, and surface irregularities are large, and therefore unnecessary light of the diffractive optical element is relatively inconspicuous. At an angle larger than this incident angle, the influence of unnecessary light of the diffractive optical element is relatively small due to reflection of the front lens surface and light shielding by the lens barrel. For this reason, the off-screen incident light flux has the greatest influence on the unnecessary light of the diffractive optical element in the vicinity of +10 degrees. Here, the incident angle of the off-screen light flux is assumed to be approximately +10 degrees.

また本実施例では、図2、図4(a)に示されるように、不要光のピークが絞り40で遮光される(図2のBm−及びB’m−)が、これに限定されるものではない。不要光のピークをレンズ鏡筒に導いて遮光し、又は、後側のレンズにより像面に到達しない角度に反射させること等によっても不要光の抑制が可能である。また、遮光部材は格子壁面による全反射する光束を遮光することが目的のため、図4(b)に示されるように、矩形構造に限定されるものではない。矩形構造以外の遮光部材の場合には、幅wH及び幅wLは、一周期の格子断面の遮光部材を格子壁面の延長線によって分け、その周期の回折格子の面法線方向の延長線と遮光部材の最大距離とする。また、本実施例では設計次数を+1次にしているが、設計次数を+1次以外にしてもよい。また、回折光学素子1の輪帯毎に遮光部材20の幅や形状を変えることによって、輪帯毎に制御することも可能である。この結果、結像面に到達する不要光を効果的に抑制することができる。   In this embodiment, as shown in FIGS. 2 and 4A, the peak of unnecessary light is shielded by the diaphragm 40 (Bm− and B′m− in FIG. 2), but is not limited thereto. It is not a thing. The unnecessary light can also be suppressed by guiding the unnecessary light peak to the lens barrel and blocking it, or by reflecting it at an angle that does not reach the image plane by the rear lens. The light shielding member is not limited to a rectangular structure as shown in FIG. 4B for the purpose of shielding the light beam totally reflected by the grating wall surface. In the case of a light shielding member other than a rectangular structure, the width wH and the width wL are divided by dividing the light shielding member having a grating cross section with one period by an extension line of the grating wall surface, and extending the light in the surface normal direction of the diffraction grating with that period. The maximum distance of the member. In this embodiment, the design order is + 1st order, but the design order may be other than + 1st order. Moreover, it is also possible to control for each ring zone by changing the width and shape of the light shielding member 20 for each ring zone of the diffractive optical element 1. As a result, unnecessary light reaching the imaging plane can be effectively suppressed.

本実施例において、遮光部材20の製造方法は特に限定されるものではない。例えば、第2の回折格子12を製造し、第1の回折格子11の格子部とベース部(図4(b)のd2の部分)までを製造する。その後、遮光部材20を選択的に形成する。具体的には、遮光部材20を構成する材料を真空蒸着手法等で薄膜形状に成膜した後、リソグラフィー手法やナノインプリント法等を用いてパターニングし、エッチング手法等で選択的に形成する。また、マスクパターンを用いて選択的に蒸着手法等で形成する方法や、インクジェットプロセスを用いて格子壁面部のみに直接形成する方法等を用いることもできる。その後、第1の回折格子11と同じ材料を再び形成することで、回折光学素子1を製造することができる。この際、第1の回折格子11と同じ材料を用いる必要はなく、異なる材料を用いてもよい。また、第2の回折格子12を製造し、第1の回折格子11の格子部とベース部及び遮光部材20を、別の型を用いて同時に成形することができる。その後、遮光部材20を構成する材料を前述の手法等で選択的に形成した後、第1の回折格子11と同じ材料を再び形成することで回折光学素子を製造する。この際、第1の回折格子11と同じ材料を用いる必要はなく、異なる材料を用いてもよい。また、前述の手法等を用いて遮光部材20を形成した後に、第1の回折格子11及び第2の回折格子12を製造することもできる。また遮光部材20は、例えば、入射側の(図3に示される)基板2の上に直接形成されてもよい。   In the present embodiment, the manufacturing method of the light shielding member 20 is not particularly limited. For example, the second diffraction grating 12 is manufactured, and the first diffraction grating 11 and the base part (part d2 in FIG. 4B) are manufactured. Thereafter, the light shielding member 20 is selectively formed. Specifically, after the material constituting the light shielding member 20 is formed into a thin film shape by a vacuum deposition method or the like, patterning is performed using a lithography method or a nanoimprint method, and the material is selectively formed by an etching method or the like. Alternatively, a method of selectively forming by a vapor deposition method using a mask pattern, a method of directly forming only on a lattice wall surface using an inkjet process, or the like can be used. Thereafter, the same material as that of the first diffraction grating 11 is formed again, whereby the diffractive optical element 1 can be manufactured. At this time, it is not necessary to use the same material as that of the first diffraction grating 11, and a different material may be used. Moreover, the 2nd diffraction grating 12 can be manufactured, and the grating | lattice part of the 1st diffraction grating 11, a base part, and the light shielding member 20 can be shape | molded simultaneously using another type | mold. Thereafter, the material constituting the light shielding member 20 is selectively formed by the above-described method or the like, and then the same material as that of the first diffraction grating 11 is formed again to manufacture the diffractive optical element. At this time, it is not necessary to use the same material as that of the first diffraction grating 11, and a different material may be used. In addition, the first diffraction grating 11 and the second diffraction grating 12 can be manufactured after the light shielding member 20 is formed using the above-described method or the like. The light shielding member 20 may be directly formed on the substrate 2 (shown in FIG. 3) on the incident side, for example.

上述の説明では、第1の回折格子11の屈折率n11と第2の回折格子12の屈折率n22との関係がn11<n22であるとしているが、本実施例はこれに限定されるものではない。屈折率の関係がn11>n22である場合にも適用可能である。以下、この場合について説明する。図8は、第1の回折格子11の屈折率n11と第2の回折格子12の屈折率n22との関係がn11>n22の場合における回折光学素子1の拡大断面図である。図8において、m格子の格子壁面1bに入射する画面外入射角度10度の光束の成分は、高屈折率材料側(第1の回折格子11側)から低屈折率材料側(第2の回折格子12側)に臨界角76.7度以上の+80度で入射するため全反射が生じる。このため、格子壁面1bで全反射射出方向を中心として不要光が広がって伝播する。一方、m’格子の格子壁面1b’に入射する画面外入射角度10度の光束の成分は、格子面で+1次光に回折した後、低屈折率材料側から高屈折率材料界面側に入射する。このとき、格子壁面1b’で透過光射出方向と反射光射出方向を中心として不要光が広がって伝播するが、透過光射出方向の不要光が大きい。このように、格子壁面による不要光に関しては、各回折格子の屈折率の関係がn11<n22、又は、n11>n22のいずれでも適用可能である。   In the above description, the relationship between the refractive index n11 of the first diffraction grating 11 and the refractive index n22 of the second diffraction grating 12 is n11 <n22. However, the present embodiment is not limited to this. Absent. The present invention is also applicable when the refractive index relationship is n11> n22. Hereinafter, this case will be described. FIG. 8 is an enlarged cross-sectional view of the diffractive optical element 1 when the relationship between the refractive index n11 of the first diffraction grating 11 and the refractive index n22 of the second diffraction grating 12 is n11> n22. In FIG. 8, the component of the light beam having an off-screen incident angle of 10 degrees incident on the grating wall surface 1b of the m grating is from the high refractive index material side (first diffraction grating 11 side) to the low refractive index material side (second diffraction). Since it is incident on the grating 12 side) at a critical angle of 76.7 degrees or more and +80 degrees, total reflection occurs. For this reason, unnecessary light spreads and propagates around the total reflection emission direction on the grating wall surface 1b. On the other hand, the component of the light beam having an off-screen incident angle of 10 degrees incident on the grating wall surface 1b ′ of the m ′ grating is diffracted into + 1st order light on the grating surface and then incident on the high refractive index material interface side from the low refractive index material side. To do. At this time, unnecessary light spreads and propagates on the grating wall surface 1b 'centering on the transmitted light emission direction and the reflected light emission direction, but the unnecessary light in the transmitted light emission direction is large. As described above, regarding the unnecessary light due to the grating wall surface, the relationship of the refractive index of each diffraction grating can be applied regardless of whether n11 <n22 or n11> n22.

次に、本発明の実施例2における回折光学素子について説明する。本実施例の回折光学素子において、各回折格子の材料及び格子高さが実施例1とは異なる。遮光部材の構造等のその他の構成は実施例1と同様であるため、これらの説明を省略する。本実施例において、第1の回折格子11の材料としては、フッ素アクリル系紫外線樹脂にITO微粒子を混合させた樹脂(nd=1.504、νd=16.3、θgF=0.390、n550=1.511)が用いられる。また、第2の回折格子12の材料としては、アクリル系紫外線硬化樹脂にZrO2微粒子を混合させた樹脂(nd=1.567、νd=47.0、θgF=0.569、n550=1.570)が用いられる。格子高さdは9.29μmであり、設計次数は+1次である。   Next, a diffractive optical element according to Example 2 of the present invention will be described. In the diffractive optical element of this embodiment, the material and grating height of each diffraction grating are different from those of the first embodiment. Since other structures such as the structure of the light shielding member are the same as those in the first embodiment, the description thereof is omitted. In the present embodiment, the material of the first diffraction grating 11 is a resin (nd = 1.504, νd = 16.3, θgF = 0.390, n550 = a mixture of fluorine acrylic ultraviolet resin and ITO fine particles. 1.511) is used. The material of the second diffraction grating 12 is a resin in which ZrO2 fine particles are mixed with an acrylic ultraviolet curable resin (nd = 1.567, νd = 47.0, θgF = 0.568, n550 = 1.570. ) Is used. The grating height d is 9.29 μm, and the design order is + 1st order.

図9は、回折光学素子の設計入射角度である入射角度0度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。図9(a)において、設計次数である+1次回折光の回折効率は97.16%(回折角+0.20度)である。残りの光は不要光となり、図9(b)に示されるように、複数の小さいピークとなって伝播する。これは、入射側の遮光部材により、入射光束のうちの格子壁面付近に入射する成分が格子壁面に到達する前に遮光されたためである。一方、遮光部材によって、本来、各回折格子によって+1次光に回折される光束の一部も遮光され、位相の不整合が生じる。   FIG. 9 shows RCWA calculation results at an incident angle of 0 degree, which is a designed incident angle of the diffractive optical element, a grating pitch of 100 μm, and a wavelength of 550 nm. In FIG. 9A, the diffraction efficiency of the + 1st order diffracted light, which is the designed order, is 97.16% (diffraction angle + 0.20 degree). The remaining light becomes unnecessary light and propagates as a plurality of small peaks as shown in FIG. This is because a component incident on the vicinity of the grating wall surface of the incident light beam is shielded by the incident-side light shielding member before reaching the grating wall surface. On the other hand, a part of the light beam that is originally diffracted into + 1st order light by each diffraction grating is also shielded by the light shielding member, and phase mismatch occurs.

次に、設計入射角度より下向きの斜入射角度(画面外光入射角度)で回折光学素子に入射する光束を想定する。図10は、入射角度+10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。図10(a)において、設計次数である+1次回折光の回折効率が集中しているが、回折効率は97.66%(回折次数+1、回折角+9.82度)であり、設計入射角度である0度から傾いているため低下している。この画面外光入射角度の+1次回折光は像面に到達することはないため、その影響は小さい。残りの光は不要光となり、図10(b)に示されるように、複数の小さいピークとなって伝播する。これは、入射側に配置された遮光部材20の幅wHの部分により、入射光束のうちの格子壁面付近に入射する成分が格子壁面に到達する前に遮光されたためである。図2及び図4(a)に示されるように、光学系に回折光学素子を適用した場合、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が、少なくとも像面に到達する。図10の回折角+0.20度付近の回折効率は、RCWA計算結果から、回折次数−46では0.0035%、回折次数−47では0.0038%であり、遮光部材がない場合に比べて減少する。   Next, a light beam incident on the diffractive optical element at an oblique incident angle (off-screen light incident angle) downward from the designed incident angle is assumed. FIG. 10 shows RCWA calculation results at an incident angle of +10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm. In FIG. 10A, the diffraction efficiency of the + 1st order diffracted light, which is the designed order, is concentrated, but the diffraction efficiency is 97.66% (diffraction order + 1, diffraction angle + 9.82 degrees). Since it is inclined from a certain 0 degree, it is lowered. Since the + 1st-order diffracted light with this off-screen light incident angle never reaches the image plane, its influence is small. The remaining light becomes unnecessary light and propagates as a plurality of small peaks as shown in FIG. This is because the component incident on the vicinity of the grating wall surface of the incident light beam is shielded by the portion of the light shielding member 20 arranged on the incident side before reaching the grating wall surface. As shown in FIG. 2 and FIG. 4A, when a diffractive optical element is applied to the optical system, it is unnecessary due to off-screen light substantially matching the diffraction angle +0.20 degrees at which the designed diffraction order propagates at the designed incident angle. The diffracted light of light reaches at least the image plane. The diffraction efficiency in the vicinity of the diffraction angle +0.20 degree in FIG. 10 is 0.0035% at the diffraction order −46 and 0.0038% at the diffraction order −47 from the RCWA calculation result, compared to the case where there is no light shielding member. Decrease.

次に、設計入射角度より上向きの斜入射角度(画面外光入射角度)で回折光学素子に入射する光束を想定する。図11は、入射角度−10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。図11(a)において、設計次数である+1次回折光の回折効率が集中しているが、回折効率は94.86%で設計入射角度である0度から傾いているため低下している。この画面外光入射角度の+1次回折光は像面に到達することはないため、その影響は小さい。残りの光は不要光となり、図11(b)に示されるよう、複数のピークとなって伝播する。これは、入射側に配置された遮光部材20の幅wLの部分により、格子壁面付近に入射する成分のうちの一部が格子壁面に到達する前に遮光されたためである。図2及び図4(a)に示されるように、光学系に回折光学素子を適用した場合、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が、少なくとも像面に到達する。図11の回折角+0.20度付近の回折効率について、RCWA計算結果から、回折次数+49の回折効率は0.0065%、回折次数+48の回折効率は0.0063%である。   Next, a light beam incident on the diffractive optical element at an oblique incident angle (off-screen light incident angle) upward from the designed incident angle is assumed. FIG. 11 shows RCWA calculation results at an incident angle of −10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm. In FIG. 11A, the diffraction efficiency of the + 1st order diffracted light that is the designed order is concentrated, but the diffraction efficiency is 94.86%, which is lowered because it is tilted from 0 degree that is the designed incident angle. Since the + 1st-order diffracted light with this off-screen light incident angle never reaches the image plane, its influence is small. The remaining light becomes unnecessary light and propagates as a plurality of peaks as shown in FIG. This is because a part of the component incident near the grating wall surface is shielded by the portion of the light shielding member 20 arranged on the incident side with the width wL before reaching the grating wall surface. As shown in FIG. 2 and FIG. 4A, when a diffractive optical element is applied to the optical system, it is unnecessary due to off-screen light substantially matching the diffraction angle +0.20 degrees at which the designed diffraction order propagates at the designed incident angle. The diffracted light of light reaches at least the image plane. From the RCWA calculation results, the diffraction efficiency of diffraction order +49 is 0.0065%, and the diffraction efficiency of diffraction order +48 is 0.0063%, as shown in FIG.

以上のように、本実施例の回折光学素子によれば、光学系の結像面に到達する不要光を低減させ、像性能の劣化を抑制することができる。また、高屈折率領域側の幅wHよりも低屈折率領域側の幅wLを小さくすることにより、設計次数の回折効率の低減を像性能に影響ない程度に抑制することができる。   As described above, according to the diffractive optical element of the present embodiment, it is possible to reduce unnecessary light reaching the imaging surface of the optical system and suppress deterioration in image performance. Further, by reducing the width wL on the low refractive index region side than the width wH on the high refractive index region side, it is possible to suppress the reduction in the diffraction efficiency of the design order to the extent that the image performance is not affected.

本実施例では、回折光学素子の材料として樹脂材料に微粒子を分散させて構成された材料を用いているが、これに限定されるものではない。例えば、樹脂材料等の有機材料、ガラス材料、光学結晶材料、セラミックス材料等を用いてもよい。また、微粒子を分散させる微粒子材料としては、酸化物、金属、セラミックス、複合物、混合物のいずれかの無機微粒子材料が用いられ、微粒子材料に限定されるものではない。また、微粒子材料の平均粒子径は、回折光学素子への入射光の波長(使用波長又は設計波長)の1/4以下であることが好ましい。これよりも粒子径が大きくなると、微粒子材料を樹脂材料に混合した際に、レイリー散乱が大きくなる可能性が生じる。また、微粒子材料を混合する樹脂材料としては、例えば、紫外線硬化樹脂であって、アクリル系、フッ素系、ビニル系、エポキシ系のいずれかの有機樹脂が用いられる。   In the present embodiment, a material formed by dispersing fine particles in a resin material is used as the material of the diffractive optical element, but the present invention is not limited to this. For example, an organic material such as a resin material, a glass material, an optical crystal material, a ceramic material, or the like may be used. In addition, as the fine particle material for dispersing the fine particles, an inorganic fine particle material of oxide, metal, ceramics, composite, or mixture is used, and is not limited to the fine particle material. Moreover, it is preferable that the average particle diameter of particulate material is 1/4 or less of the wavelength (use wavelength or design wavelength) of the incident light to a diffractive optical element. When the particle diameter is larger than this, there is a possibility that Rayleigh scattering becomes large when the fine particle material is mixed with the resin material. In addition, as the resin material to be mixed with the fine particle material, for example, an ultraviolet curable resin, which is an organic resin of acrylic type, fluorine type, vinyl type, or epoxy type is used.

次に、本発明の実施例3における回折光学素子について説明する。本実施例は、遮光部材を射出側に配置している点で、入射側に配置した実施例1、2とは異なる。図12(a)は、本実施例の回折格子部の拡大断面図である。図12(b)は、回折格子部をさらに拡大した断面図である。各回折格子の材料、格子高さd、及び、設計次数は、実施例2と同様である。   Next, a diffractive optical element according to Example 3 of the present invention will be described. The present embodiment is different from Embodiments 1 and 2 arranged on the incident side in that the light shielding member is arranged on the emission side. FIG. 12A is an enlarged cross-sectional view of the diffraction grating portion of the present embodiment. FIG. 12B is a cross-sectional view in which the diffraction grating portion is further enlarged. The material of each diffraction grating, the grating height d, and the design order are the same as in the second embodiment.

また実施例1及び2と同様に、本実施例では、高屈折率領域側に配置された遮光部材20の幅wHは、低屈折率領域側に配置された遮光部材20の幅wLよりも大きい。このような遮光部材20によって、下向きの斜入射角度(画面外入射角度)で回折光学素子に入射する光束(図12(b)のb、図12(a)のB)が格子壁面で全反射することにより生じるフレアを抑制することができる。また、幅wLが幅wHよりも小さいため、設計入射角度による回折効率の低減量も少ない。遮光部材20に関する幅wH、wL、厚さd1、距離d2及び材料はそれぞれ、実施例1及び2と同様である。   Similarly to the first and second embodiments, in this embodiment, the width wH of the light shielding member 20 disposed on the high refractive index region side is larger than the width wL of the light shielding member 20 disposed on the low refractive index region side. . By such a light shielding member 20, a light beam (b in FIG. 12B and B in FIG. 12A) incident on the diffractive optical element at a downward oblique incident angle (off-screen incident angle) is totally reflected on the grating wall surface. The flare produced by doing so can be suppressed. Further, since the width wL is smaller than the width wH, the amount of reduction in diffraction efficiency due to the design incident angle is also small. The widths wH and wL, the thickness d1, the distance d2 and the materials related to the light shielding member 20 are the same as those in the first and second embodiments.

図13(a)は、回折光学素子の設計入射角度である入射角度0度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。設計次数である+1次回折光の回折効率は97.06%(回折角+0.20度)であり、遮光部材を設けない場合よりも低くなる。残りの光は不要光となり、図13(a)に示されるように、複数の小さいピークとなって伝播する。これは、射出側の遮光部材により、入射光束のうちの格子壁面付近に入射する成分が格子壁面から射出した後に遮光部材に遮光されたためである。一方、この遮光部材によって、本来、各回折格子によって+1次光に回折される光束の一部も遮光され、位相の不整合が生じる。この結果、比較的低次の次数の回折効率が増加し、設計次数である+1次回折光の回折効率が下がる。ここで想定している格子ピッチは、一つの基準として100μmである。図1に示されるように、光軸に近い輪帯ほど格子ピッチは大きくなり、格子壁面及び遮光部材による悪影響が小さくなるため、設計次数の回折効率は高く、不要光の回折効率は低くなる。   FIG. 13A shows an RCWA calculation result at an incident angle of 0 degree, which is a designed incident angle of the diffractive optical element, a grating pitch of 100 μm, and a wavelength of 550 nm. The diffraction efficiency of the + 1st order diffracted light, which is the designed order, is 97.06% (diffraction angle + 0.20 degrees), which is lower than when no light shielding member is provided. The remaining light becomes unnecessary light and propagates as a plurality of small peaks as shown in FIG. This is because a component incident on the vicinity of the grating wall surface of the incident light flux is emitted from the grating wall surface and then shielded by the light shielding member by the light shielding member on the emission side. On the other hand, a part of the light beam that is originally diffracted into the + 1st order light by each diffraction grating is shielded by the light shielding member, and phase mismatch occurs. As a result, the diffraction efficiency of the relatively low order increases, and the diffraction efficiency of the + 1st order diffracted light, which is the designed order, decreases. The lattice pitch assumed here is 100 μm as one reference. As shown in FIG. 1, the ring pitch closer to the optical axis increases as the grating pitch increases, and the adverse effects of the grating wall surface and the light shielding member are reduced. Therefore, the diffraction efficiency of the design order is high and the diffraction efficiency of unnecessary light is low.

次に、設計入射角度より下向きの斜入射角度(画面外光入射角度)で回折光学素子に入射する光束を想定する。図13(b)は、入射角度+10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。設計次数である+1次回折光の回折効率は96.32%で、設計入射角度である0度から傾いているため低下している。この画面外光入射角度の+1次回折光は像面に到達することはないため、影響は小さい。残りの光は不要光となり、図13(b)に示されるように、複数の小さいピークとなって伝播する。これは、射出側に配置された遮光部材20の幅wHの部分により、入射光束のうちの格子壁面付近に入射する成分が格子壁面によって全反射して射出した後、遮光部材20に遮光されたためである。図2及び図12(a)に示されるように、光学系に回折光学素子を適用した場合、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が、少なくとも像面に到達する。図13(b)の回折角+0.20度付近の回折効率は、RCWA計算結果から、回折次数−46では0.0037%、回折次数−47では0.0033%であり、遮光部材がない場合より減少する。   Next, a light beam incident on the diffractive optical element at an oblique incident angle (off-screen light incident angle) downward from the designed incident angle is assumed. FIG. 13B shows the RCWA calculation result at an incident angle of +10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm. The diffraction efficiency of the + 1st order diffracted light, which is the designed order, is 96.32%, which is lowered because it is tilted from 0 degrees, which is the designed incident angle. Since the + 1st order diffracted light having the off-screen light incident angle does not reach the image plane, the influence is small. The remaining light becomes unnecessary light and propagates as a plurality of small peaks as shown in FIG. This is because the component of the incident light beam that is incident on the vicinity of the grating wall surface is totally reflected by the grating wall surface and emitted by the light shielding member 20 by the width wH portion of the light shielding member 20 arranged on the exit side. It is. As shown in FIGS. 2 and 12A, when a diffractive optical element is applied to the optical system, it is unnecessary due to off-screen light that substantially matches the diffraction angle +0.20 degrees at which the designed diffraction order propagates at the designed incident angle. The diffracted light of light reaches at least the image plane. The diffraction efficiency in the vicinity of the diffraction angle +0.20 degree in FIG. 13B is 0.0037% at the diffraction order −46 and 0.0033% at the diffraction order −47 from the RCWA calculation result, and there is no light shielding member. Decrease more.

次に、設計入射角度より上向きの斜入射角度(画面外光入射角度)で回折光学素子に入射する光束を想定する。図13(c)は、入射角度−10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。設計次数である+1次回折光の回折効率は96.45%(回折次数+1、回折角−9.42度)で、設計入射角度である0度から傾いているため低下している。この画面外光入射角度の+1次回折光は像面に到達することはないため、その影響は小さい。残りの光は不要光となり、図13(c)に示されるように、特定の角度方向の複数のピークとなって伝播する。これは、遮光部材20の幅wLの部分により、入射光束のうちの格子壁面付近に入射する成分のうちの一部が格子壁面に到達する前に遮光されたためである。図2及び図12(a)に示されるように、光学系に回折光学素子を適用した場合、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が、少なくとも像面に到達する。図13(c)の回折角+0.20度付近の回折効率は、RCWA計算結果から、回折次数+49では0.0012%、回折次数+48では0.0010%であり、遮光部材がない場合よりも減少する。
本実施例の構成によれば、像性能の低下を抑制することが可能である。また、高屈折率領域側の幅wHよりも低屈折率領域側の幅wLを小さくすることにより、設計次数の回折効率の低減を像性能に影響ない程度に抑制することができる。
Next, a light beam incident on the diffractive optical element at an oblique incident angle (off-screen light incident angle) upward from the designed incident angle is assumed. FIG. 13C shows the RCWA calculation result at an incident angle of −10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm. The diffraction efficiency of the + 1st order diffracted light, which is the designed order, is 96.45% (diffraction order + 1, the diffraction angle is −9.42 degrees), which is lowered because it is tilted from the designed incident angle of 0 degrees. Since the + 1st-order diffracted light with this off-screen light incident angle never reaches the image plane, its influence is small. The remaining light becomes unnecessary light and propagates as a plurality of peaks in a specific angular direction, as shown in FIG. This is because a part of the incident light flux that is incident on the vicinity of the grating wall surface is shielded by the portion of the light shielding member 20 having the width wL before reaching the grating wall surface. As shown in FIGS. 2 and 12A, when a diffractive optical element is applied to the optical system, it is unnecessary due to off-screen light that substantially matches the diffraction angle +0.20 degrees at which the designed diffraction order propagates at the designed incident angle. The diffracted light of light reaches at least the image plane. The diffraction efficiency in the vicinity of the diffraction angle +0.20 degree in FIG. 13C is 0.0012% at the diffraction order +49 and 0.0010% at the diffraction order +48 from the RCWA calculation result, which is more than that without the light shielding member. Decrease.
According to the configuration of the present embodiment, it is possible to suppress a decrease in image performance. Further, by reducing the width wL on the low refractive index region side than the width wH on the high refractive index region side, it is possible to suppress the reduction in the diffraction efficiency of the design order to the extent that the image performance is not affected.

次に、本発明の実施例4における回折光学素子について説明する。本実施例では、遮光部材の幅wLが実質的に0である点で、実施例3とは異なる。図14(a)は、本実施例における回折格子部の拡大断面図である。図14(b)は、回折格子部をさらに拡大した断面図である。各回折格子の材料、格子高さd、設計次数、及び、遮光部材が射出側に配置されている点は、実施例3と同様である。   Next, a diffractive optical element according to Example 4 of the present invention will be described. The present embodiment is different from the third embodiment in that the width wL of the light shielding member is substantially zero. FIG. 14A is an enlarged cross-sectional view of the diffraction grating portion in the present embodiment. FIG. 14B is a cross-sectional view in which the diffraction grating portion is further enlarged. The material of each diffraction grating, the grating height d, the design order, and the point that the light shielding member is arranged on the exit side are the same as in the third embodiment.

本実施例では、遮光部材20の幅wLが実質的に0となっている。すなわち遮光部材20は、光軸Oを含むレンズの断面において、格子壁面(第1の格子壁面11b、第2の格子壁面12b)及び格子壁面の延長線によって分けられた領域のうち、格子壁面の位置を基準とした場合に高屈折率領域側にのみ配置されている。このような遮光部材20によって、斜入射角度(画面外入射角度)の下向きに入射する光束(図14(b)のb、図14(a)のB)が格子壁面で発生する全反射光によるフレアを抑制することができる。さらに、幅wLが実質的に0のため、設計入射角度による回折効率の低減量も少ない。遮光部材20の材料、幅wH、厚さd1、及び、遮光部材20と各回折格子との間の距離d2は、実施例3と同様である。   In the present embodiment, the width wL of the light shielding member 20 is substantially zero. That is, the light shielding member 20 has a grating wall surface in the region divided by the grating wall surface (first grating wall surface 11b, second grating wall surface 12b) and the extension line of the grating wall surface in the cross section of the lens including the optical axis O. When the position is used as a reference, it is arranged only on the high refractive index region side. By such a light shielding member 20, a light beam (b in FIG. 14B and B in FIG. 14A) incident downward with an oblique incident angle (off-screen incident angle) is generated by total reflected light generated on the grating wall surface. Flares can be suppressed. Furthermore, since the width wL is substantially 0, the amount of reduction in diffraction efficiency due to the design incident angle is small. The material of the light shielding member 20, the width wH, the thickness d1, and the distance d2 between the light shielding member 20 and each diffraction grating are the same as in the third embodiment.

図15(a)は、回折光学素子の設計入射角度である入射角度0度(図14(b)のa)、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。設計次数である+1次回折光の回折効率は97.44%(回折角+0.20度)であり、遮光部材がない場合より低いが、幅wLの部分が存在する実施例1乃至3の場合と比較すると高い。残りの光は不要光となり、図15(a)に示されるように、複数の小さいピークとなって伝播する。これは、射出側の遮光部材により、入射光束のうちの格子壁面付近に入射する成分が格子壁面から射出した後に遮光部材に遮光されたためである。一方、この遮光部材によって、本来、各回折格子によって+1次光に回折される光束の一部も遮光され、位相の不整合が生じる。この結果、比較的低次(およそ±25次、回折角±5度)の次数の回折効率が増加し、設計次数である+1次回折光の回折効率が下がる。ただし、幅wLの部分が存在する実施例1乃至3の場合と比較すると、比較的低次光の回折効率は低く、設計次数である+1次回折光の回折効率が上がっている。   FIG. 15A shows an RCWA calculation result at an incident angle of 0 degrees (a in FIG. 14B), which is a designed incident angle of the diffractive optical element, a grating pitch of 100 μm, and a wavelength of 550 nm. The diffraction efficiency of the + 1st order diffracted light, which is the designed order, is 97.44% (diffraction angle +0.20 degrees), which is lower than the case where there is no light shielding member, but in the case of Examples 1 to 3 where the width wL exists. High compared. The remaining light becomes unnecessary light and propagates as a plurality of small peaks as shown in FIG. This is because a component incident on the vicinity of the grating wall surface of the incident light flux is emitted from the grating wall surface and then shielded by the light shielding member by the light shielding member on the emission side. On the other hand, a part of the light beam that is originally diffracted into the + 1st order light by each diffraction grating is shielded by the light shielding member, and phase mismatch occurs. As a result, the diffraction efficiency of the order of relatively low order (approximately ± 25th order, diffraction angle ± 5 degrees) increases, and the diffraction efficiency of the + 1st order diffracted light that is the designed order decreases. However, the diffraction efficiency of relatively low-order light is low compared to the cases of Examples 1 to 3 where the width wL portion exists, and the diffraction efficiency of + 1st-order diffracted light, which is the designed order, is increased.

次に、回折光学素子の設計入射角度より斜入射角度(画面外光入射角度)の下向きに入射する光束を想定する。図15(b)は、入射角度+10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。設計次数である+1次回折光の回折効率は96.39%(回折次数+1、回折角+9.82度)で、設計入射角度である0度から傾いているため低下している。この画面外光入射角度の+1次回折光は像面に到達することはないため、その影響は小さい。残りの光は不要光となり、図15(b)に示されるように、複数の小さいピークとなって伝播する。これは、射出側の遮光部材の幅wHの部分により、入射光束のうちの格子壁面付近に入射する成分が格子壁面によって全反射して射出した後に遮光部材に遮光されたためである。図2及び図14(a)に示されるように、光学系に回折光学素子を適用した場合、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が、少なくとも像面に到達する。図13(b)の回折角+0.20度付近の回折効率は、RCWA計算結果から、回折次数−46では0.0025%、回折次数−47では0.0021%であり、遮光部材がない場合より減少する。   Next, it is assumed that the light beam is incident downward from the designed incident angle of the diffractive optical element at an oblique incident angle (off-screen light incident angle). FIG. 15B shows the RCWA calculation result at an incident angle of +10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm. The diffraction efficiency of the + 1st order diffracted light, which is the designed order, is 96.39% (diffraction order + 1, diffraction angle + 9.82 degrees), which is lowered because it is inclined from the designed incident angle of 0 degrees. Since the + 1st-order diffracted light with this off-screen light incident angle never reaches the image plane, its influence is small. The remaining light becomes unnecessary light and propagates as a plurality of small peaks as shown in FIG. This is because the component of the incident light beam that is incident on the vicinity of the grating wall surface is totally reflected by the grating wall surface and then emitted by the light shielding member due to the width wH of the light shielding member on the exit side. As shown in FIG. 2 and FIG. 14A, when a diffractive optical element is applied to the optical system, it is unnecessary due to off-screen light that substantially matches the diffraction angle +0.20 degrees at which the designed diffraction order propagates at the designed incident angle. The diffracted light of light reaches at least the image plane. The diffraction efficiency in the vicinity of the diffraction angle +0.20 degree in FIG. 13B is 0.0025% at the diffraction order −46 and 0.0021% at the diffraction order −47 from the RCWA calculation result, and there is no light shielding member. Decrease more.

次に、回折光学素子の設計入射角度より斜入射角度(画面外光入射角度)の上向きに入射する光束を想定する。図15(c)は、入射角度−10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。設計次数である+1次回折光の回折効率は95.94%で、設計入射角度である0度から傾いているため低下している。この画面外光入射角度の+1次回折光は像面に到達することはないため、その影響は小さい。残りの光は不要光となり、図15(c)に示されるように、特定の角度方向の複数のピークを有して伝播する。これは、遮光部材の幅wHの部分により、入射光束のうちの格子壁面付近に入射する成分のうちの一部が格子壁面から射出した後に遮光されたためである。図2及び図14(a)に示されるように、光学系に回折光学素子を適用した場合、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が、少なくとも像面に到達する。図13(c)の回折角+0.20度付近の回折効率について、RCWA計算結果から、回折次数+49の回折効率は0.0049%、回折次数+48の回折効率は0.0050%である。   Next, a light beam incident upward from an oblique incident angle (off-screen light incident angle) with respect to the designed incident angle of the diffractive optical element is assumed. FIG. 15C shows the RCWA calculation result at an incident angle of −10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm. The diffraction efficiency of the + 1st order diffracted light that is the designed order is 95.94%, which is lowered because it is tilted from 0 degrees that is the designed incident angle. Since the + 1st-order diffracted light with this off-screen light incident angle never reaches the image plane, its influence is small. The remaining light becomes unnecessary light and propagates with a plurality of peaks in a specific angular direction, as shown in FIG. This is because a portion of the incident light flux that is incident on the vicinity of the grating wall surface is shielded after being emitted from the grating wall surface by the width wH portion of the light shielding member. As shown in FIG. 2 and FIG. 14A, when a diffractive optical element is applied to the optical system, it is unnecessary due to off-screen light that substantially matches the diffraction angle +0.20 degrees at which the designed diffraction order propagates at the designed incident angle. The diffracted light of light reaches at least the image plane. From the RCWA calculation result, the diffraction efficiency of diffraction order +49 is 0.0049% and the diffraction efficiency of diffraction order +48 is 0.0050%, as shown in FIG.

本実施例の構成によれば、光学系の結像面に到達する不要光を小さくすることができるため、像性能の劣化を抑制することが可能である。本実施例のように、遮光部材の低屈折率領域側の幅wLを実質的に0とすることで、設計次数の回折効率の低減をさらに低減することができる。   According to the configuration of the present embodiment, unnecessary light reaching the imaging surface of the optical system can be reduced, so that deterioration in image performance can be suppressed. As in this embodiment, the reduction in the diffraction efficiency of the designed order can be further reduced by making the width wL of the light blocking member on the low refractive index region side substantially zero.

次に、本発明の実施例5における回折光学素子について説明する。本実施例は、射出側に配置された遮光部材20の幅wHが実施例4と異なる点以外は、実施例4と同様の構成である。本実施例において、遮光部材20の幅wHは1.0μmである。   Next, a diffractive optical element according to Example 5 of the present invention will be described. This embodiment has the same configuration as that of the fourth embodiment except that the width wH of the light shielding member 20 arranged on the emission side is different from that of the fourth embodiment. In this embodiment, the width wH of the light shielding member 20 is 1.0 μm.

図16(a)は、回折光学素子の設計入射角度である入射角度0度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。設計次数である+1次回折光の回折効率は97.88%(回折角+0.20度)であり、遮光部材を設けていない場合より低くなるが、幅wLのある実施例1乃至3の場合より高い。残りの光は不要光となり、図16(a)に示されるように、複数の小さいピークとなって伝播する。これは射出側の遮光部材により、入射光束のうちの格子壁面付近に入射する成分の一部が格子壁面から射出した後に遮光部材により遮光されたためである。一方、この遮光部材によって、本来、各回折格子によって+1次光に回折される光束の一部も遮光され、位相の不整合が生じる。この結果、比較的低次の次数の回折効率が増加し、設計次数である+1次回折光の回折効率が下がる。ただし、実施例1乃至4と比較すると、比較的低次光の回折効率は低く、設計次数である+1次回折光の回折効率が上がっている。   FIG. 16A shows an RCWA calculation result at an incident angle of 0 degree, which is a designed incident angle of the diffractive optical element, a grating pitch of 100 μm, and a wavelength of 550 nm. The diffraction efficiency of the + 1st order diffracted light, which is the designed order, is 97.88% (diffraction angle +0.20 degrees), which is lower than that when no light shielding member is provided, but from the case of Examples 1 to 3 having the width wL. high. The remaining light becomes unnecessary light and propagates as a plurality of small peaks as shown in FIG. This is because a part of the component incident on the vicinity of the grating wall surface of the incident light beam is shielded by the light shielding member after exiting from the grating wall surface by the light shielding member on the emission side. On the other hand, a part of the light beam that is originally diffracted into the + 1st order light by each diffraction grating is shielded by the light shielding member, and phase mismatch occurs. As a result, the diffraction efficiency of the relatively low order increases, and the diffraction efficiency of the + 1st order diffracted light, which is the designed order, decreases. However, compared with Examples 1 to 4, the diffraction efficiency of relatively low-order light is low, and the diffraction efficiency of + 1st-order diffracted light, which is the designed order, is increased.

次に、設計入射角度より下向きの斜入射角度(画面外光入射角度)で回折光学素子に入射する光束を想定する。図16(b)は、入射角度+10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。設計次数である+1次回折光の回折効率は96.90%(回折次数+1、回折角+9.82度)で、設計入射角度である0度から傾いているため低下している。この画面外光入射角度の+1次回折光は像面に到達することはないため、その影響は小さい。残りの光は不要光となり、図16(b)に示されるように、複数の小さいピークとなって伝播する。これは、射出側の遮光部材の幅wHの部分により、入射光束のうちの格子壁面付近に入射する成分の一部が格子壁面によって全反射して射出した後に遮光部材に遮光されたためである。図2及び図14(a)に示されるように、光学系に回折光学素子を適用した場合、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が、少なくとも像面に到達する。図16(b)の回折角+0.20度付近の回折効率について、RCWA計算結果から、回折次数−46の回折効率は0.00046%、回折次数−47の回折効率は0.00064%である。不要光のリップルの谷部が0度方向になっているため、遮光部材を設けていない場合よりも回折効率は減少する。   Next, a light beam incident on the diffractive optical element at an oblique incident angle (off-screen light incident angle) downward from the designed incident angle is assumed. FIG. 16B shows the RCWA calculation result at an incident angle of +10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm. The diffraction efficiency of the + 1st order diffracted light, which is the designed order, is 96.90% (diffraction order + 1, diffraction angle + 9.82 degrees), which is lowered because it is inclined from the designed incident angle of 0 degrees. Since the + 1st-order diffracted light with this off-screen light incident angle never reaches the image plane, its influence is small. The remaining light becomes unnecessary light and propagates as a plurality of small peaks as shown in FIG. This is because a part of the incident light beam that is incident on the vicinity of the grating wall surface is totally reflected by the grating wall surface and then emitted by the light shielding member due to the width wH of the light shielding member on the exit side. As shown in FIG. 2 and FIG. 14A, when a diffractive optical element is applied to the optical system, it is unnecessary due to off-screen light that substantially matches the diffraction angle +0.20 degrees at which the designed diffraction order propagates at the designed incident angle. The diffracted light of light reaches at least the image plane. From the RCWA calculation result, the diffraction efficiency of diffraction order −46 is 0.00046% and the diffraction efficiency of diffraction order −47 is 0.00064%. . Since the valley portion of the ripple of unnecessary light is in the 0 degree direction, the diffraction efficiency is reduced as compared with the case where no light shielding member is provided.

次に、設計入射角度より上向きの斜入射角度(画面外光入射角度)で回折光学素子に入射する光束を想定する。図16(c)は、入射角度−10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。設計次数である+1次回折光の回折効率は96.64%で、設計入射角度である0度から傾いているため低下している。この画面外光入射角度の+1次回折光は像面に到達することはないため、その影響は小さい。残りの光は不要光となり、図16(c)に示されるように、特定の角度方向のピークを有して伝播する。これは、射出側の遮光部材の幅wHの部分によって、入射光束のうちの格子壁面付近に入射する成分のうちの一部が格子壁面から射出した後に遮光されていないためである。図2及び図14(a)に示されるように、光学系に回折光学素子を適用した場合、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が、少なくとも像面に到達する。図13(c)の回折角+0.20度付近の回折効率について、RCWA計算結果から、回折次数+49の回折効率は0.0029%、回折次数+48の回折効率は0.0030%である。   Next, a light beam incident on the diffractive optical element at an oblique incident angle (off-screen light incident angle) upward from the designed incident angle is assumed. FIG. 16C shows an RCWA calculation result at an incident angle of −10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm. The diffraction efficiency of the + 1st order diffracted light that is the designed order is 96.64%, which is lowered because it is tilted from the designed incident angle of 0 degrees. Since the + 1st-order diffracted light with this off-screen light incident angle never reaches the image plane, its influence is small. The remaining light becomes unnecessary light and propagates with a peak in a specific angular direction as shown in FIG. This is because a part of the incident light flux near the grating wall surface is not shielded after being emitted from the grating wall surface by the width wH of the light shielding member on the emission side. As shown in FIG. 2 and FIG. 14A, when a diffractive optical element is applied to the optical system, it is unnecessary due to off-screen light that substantially matches the diffraction angle +0.20 degrees at which the designed diffraction order propagates at the designed incident angle. The diffracted light of light reaches at least the image plane. From the RCWA calculation result, the diffraction efficiency of diffraction order +49 is 0.0029% and the diffraction efficiency of diffraction order +48 is 0.0030%, as shown in FIG.

本実施例の回折光学素子を適用した光学系によれば、結像面に到達する不要光を小さくすることができるため、像性能の劣化を抑制することが可能となる。   According to the optical system to which the diffractive optical element of the present embodiment is applied, it is possible to reduce unnecessary light reaching the imaging plane, and thus it is possible to suppress deterioration in image performance.

次に、本発明の実施例6における回折光学素子について説明する。本実施例では、遮光部材20が回折格子の格子面上に設けられている点で、実施例1乃至5とは異なる。すなわち、本実施例の遮光部材20は、第1の格子面11a及び第1の格子壁面11bに接するように、第1の回折格子11と第2の回折格子12との境界に配置されている。   Next, a diffractive optical element according to Example 6 of the present invention will be described. This embodiment is different from the first to fifth embodiments in that the light shielding member 20 is provided on the grating surface of the diffraction grating. That is, the light shielding member 20 of this embodiment is disposed at the boundary between the first diffraction grating 11 and the second diffraction grating 12 so as to be in contact with the first grating surface 11a and the first grating wall surface 11b. .

図17(a)は、本実施例における回折光学素子の拡大断面図である。図17(b)は、回折格子をさらに拡大した断面図である。各回折格子の材料、格子高さd、及び、設計次数は、実施例2乃至5と同様である。遮光部材20は、高屈折率領域側(第2の回折格子12側)、すなわち第2の回折格子12の先端(格子面と格子壁面との接触領域)に設けられている。このような遮光部材20によって、斜入射角度(画面外入射角度)の下向きに入射する光束(図17(b)のb、図17(a)のB)が格子壁面で発生する全反射光によるフレアを抑制することができる。さらに、実施例4及び5と同様に、幅wLが実質的に0のため、設計入射角度による回折効率の低減量も少ない。本実施例において、遮光部材20の幅wHは2.0μmである。   FIG. 17A is an enlarged cross-sectional view of the diffractive optical element in the present embodiment. FIG. 17B is a cross-sectional view further enlarging the diffraction grating. The material of each diffraction grating, the grating height d, and the design order are the same as those in Examples 2 to 5. The light shielding member 20 is provided on the high refractive index region side (second diffraction grating 12 side), that is, on the tip of the second diffraction grating 12 (contact region between the grating surface and the grating wall surface). By such a light shielding member 20, a light beam (b in FIG. 17B and B in FIG. 17A) incident downward with an oblique incident angle (off-screen incident angle) is generated by the total reflected light generated on the grating wall surface. Flares can be suppressed. Furthermore, since the width wL is substantially 0 as in the fourth and fifth embodiments, the amount of reduction in diffraction efficiency due to the design incident angle is small. In the present embodiment, the width wH of the light shielding member 20 is 2.0 μm.

図18(a)は、回折光学素子の設計入射角度である入射角度0度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。設計次数である+1次回折光の回折効率は97.39%(回折角+0.20度)であり、遮光部材を設けていない場合より低いがが、幅wLのある実施例1乃至3の場合と比較すると高い。残りの光は不要光となり、図18(a)に示されるように、複数の小さいピークとなって伝播する。これは、射出側の遮光部材20により、入射光束のうちの格子壁面付近に入射する成分の一部が格子壁面から射出した後に遮光部材に遮光されたためである。一方、この遮光部材によって、本来、各回折格子によって+1次光に回折される光束の一部も遮光され、位相の不整合が生じる。この結果、比較的低次の次数の回折効率が増加し、設計次数である+1次回折光の回折効率が下がる。ただし、実施例1乃至3と比較すると低次光の回折効率は低く、設計次数である+1次回折光の回折効率が上がっている。   FIG. 18A shows the RCWA calculation result at an incident angle of 0 degree, which is the designed incident angle of the diffractive optical element, a grating pitch of 100 μm, and a wavelength of 550 nm. The diffraction efficiency of the + 1st order diffracted light, which is the designed order, is 97.39% (diffraction angle +0.20 degrees), which is lower than when no light shielding member is provided, but in the case of Examples 1 to 3 having a width wL. High compared. The remaining light becomes unnecessary light and propagates as a plurality of small peaks as shown in FIG. This is because a part of the component incident on the grating wall surface of the incident light beam is emitted from the grating wall surface and then shielded by the light shielding member by the light shielding member 20 on the emission side. On the other hand, a part of the light beam that is originally diffracted into the + 1st order light by each diffraction grating is shielded by the light shielding member, and phase mismatch occurs. As a result, the diffraction efficiency of the relatively low order increases, and the diffraction efficiency of the + 1st order diffracted light, which is the designed order, decreases. However, the diffraction efficiency of low-order light is lower than that of Examples 1 to 3, and the diffraction efficiency of + 1st-order diffracted light, which is the designed order, is increased.

次に、設計入射角度より下向きの斜入射角度(画面外光入射角度)で回折光学素子に入射する光束を想定する。図18(b)は、入射角度+10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。設計次数である+1次回折光の回折効率は98.46%(回折次数+1、回折角+9.82度)で設計入射角度である0度から傾いているため低下している。この画面外光入射角度の+1次回折光は像面に到達することはないため、その影響は小さい。残りの光は不要光となり、図18(b)に示されるように、複数の小さいピークとなって伝播する。これは、遮光部材20の幅wHの部分により、入射光束のうちの格子壁面付近に入射する成分が格子壁面に到達する前に遮光されたためである。図2及び図17(a)に示されるように、光学系に回折光学素子を適用した場合、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が、少なくとも像面に到達する。図18(b)の回折角+0.20度付近の回折効率について、RCWA計算結果から、回折次数−46の回折効率は0.00065%、回折次数−47の回折効率は0.00078%である。遮光部材を設けていない場合よりも大幅に減少する。   Next, a light beam incident on the diffractive optical element at an oblique incident angle (off-screen light incident angle) downward from the designed incident angle is assumed. FIG. 18B shows the RCWA calculation result at an incident angle of +10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm. The diffraction efficiency of the + 1st order diffracted light, which is the designed order, is 98.46% (diffraction order + 1, diffraction angle + 9.82 degrees), which is lowered because it is tilted from the designed incident angle of 0 degrees. Since the + 1st-order diffracted light with this off-screen light incident angle never reaches the image plane, its influence is small. The remaining light becomes unnecessary light and propagates as a plurality of small peaks as shown in FIG. This is because a component incident on the vicinity of the grating wall surface of the incident light beam is shielded by the portion of the light shielding member 20 having the width wH before reaching the grating wall surface. As shown in FIGS. 2 and 17A, when a diffractive optical element is applied to the optical system, it is unnecessary due to off-screen light that substantially matches the diffraction angle +0.20 degrees at which the designed diffraction order propagates at the designed incident angle. The diffracted light of light reaches at least the image plane. From the RCWA calculation result, the diffraction efficiency of diffraction order −46 is 0.00065%, and the diffraction efficiency of diffraction order −47 is 0.00078%. . This is significantly less than when no light shielding member is provided.

次に、設計入射角度より上向きの斜入射角度(画面外光入射角度)で回折光学素子に入射する光束を想定する。図18(c)は、入射角度−10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。設計次数である+1次回折光の回折効率は94.78%で、設計入射角度である0度から傾いているため低下している。この画面外光入射角度の+1次回折光は像面に到達することはないため、その影響は小さい。残りの光は不要光となり、図18(c)に示されるように、特定の角度方向のピークとなって伝播する。これは、遮光部材の幅wHの部分によって、入射光束のうちの格子壁面付近に入射する成分が遮光されていないためである。図2及び図17(a)に示されるように、光学系に回折光学素子を適用した場合、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が、少なくとも像面に到達する。図18(c)の回折角+0.20度付近の回折効率について、RCWA計算結果から、回折次数+49の回折効率は0.0021%、回折次数+48の回折効率は0.0019%である。   Next, a light beam incident on the diffractive optical element at an oblique incident angle (off-screen light incident angle) upward from the designed incident angle is assumed. FIG. 18C shows an RCWA calculation result at an incident angle of −10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm. The diffraction efficiency of the + 1st order diffracted light that is the designed order is 94.78%, which is lowered because it is tilted from 0 degrees that is the designed incident angle. Since the + 1st-order diffracted light with this off-screen light incident angle never reaches the image plane, its influence is small. The remaining light becomes unnecessary light and propagates as a peak in a specific angular direction as shown in FIG. This is because the component incident on the vicinity of the grating wall surface of the incident light flux is not shielded by the width wH portion of the light shielding member. As shown in FIGS. 2 and 17A, when a diffractive optical element is applied to the optical system, it is unnecessary due to off-screen light that substantially matches the diffraction angle +0.20 degrees at which the designed diffraction order propagates at the designed incident angle. The diffracted light of light reaches at least the image plane. With respect to the diffraction efficiency in the vicinity of the diffraction angle +0.20 degree in FIG. 18C, from the RCWA calculation result, the diffraction efficiency of diffraction order +49 is 0.0021%, and the diffraction efficiency of diffraction order +48 is 0.0019%.

本実施例のように、全反射に起因するフレアを遮光することができれば、遮光部材の位置は限定されるものではなく、遮光部材を格子面上に設けてもよい。本実施例の回折光学素子を適用した光学系によれば、結像面に到達する不要光を小さくすることができるため、像性能の劣化を抑制することが可能となる。   If the flare resulting from total reflection can be shielded as in this embodiment, the position of the light shielding member is not limited, and the light shielding member may be provided on the lattice plane. According to the optical system to which the diffractive optical element of the present embodiment is applied, it is possible to reduce unnecessary light reaching the imaging plane, and thus it is possible to suppress deterioration in image performance.

本実施例のように、遮光部材を格子面上に設けることによって、製造がより簡易なものとなる。遮光部材20の製造方法については特に限定されないが、一例として、第1の回折格子11を製造した後、遮光部材20を選択的に形成する。具体的には、遮光部材20の材料を真空蒸着手法等で薄膜形状に成膜した後、リソグラフィー手法やナノインプリント法等でパターニングしてエッチング手法等で選択的に形成することができる。また、マスクパターンを用いて選択的に蒸着手法等で形成する方法や、インクジェットプロセスを用いて格子壁面部のみに直接形成する方法等を用いてもよい。その後、第2の回折格子12を形成することで回折光学素子を製造することができる。このように、実施例1乃至5と比較して、より簡易に製造することができ、低コスト、低エネルギーで製造することが可能である。   By providing the light shielding member on the lattice surface as in this embodiment, the manufacturing becomes simpler. Although the manufacturing method of the light shielding member 20 is not particularly limited, as an example, the light shielding member 20 is selectively formed after the first diffraction grating 11 is manufactured. Specifically, after the material of the light shielding member 20 is formed into a thin film shape by a vacuum deposition method or the like, it can be selectively formed by an etching method or the like by patterning by a lithography method or a nanoimprint method or the like. Alternatively, a method of selectively forming by a vapor deposition method or the like using a mask pattern, a method of directly forming only on a lattice wall surface using an ink jet process, or the like may be used. After that, the diffractive optical element can be manufactured by forming the second diffraction grating 12. Thus, it can manufacture more simply compared with Example 1 thru | or 5, and it is possible to manufacture at low cost and low energy.

本実施例では、第1の回折格子11の屈折率n11と第2の回折格子12の屈折率n22との関係はn11<n22となっている。このため、遮光部材20は入射側に設けられている。一方、これらの屈折率の関係がn11>n22となる場合には、遮光部材20は射出側に設けられる。図19(a)及び図19(b)は、屈折率の関係がn11>n22であるときの回折格子部の拡大断面図である。不要光の影響の大きい図19(a)のm格子に対して、斜入射角度(画面外光入射角度)の下向きに入射する光束(図19(b)のb、図19(a)のB)となり、格子壁面によって全反射して射出した後に不要光が遮光部材で遮光される。このように、遮光部材20が格子面に設けられる構成においても、遮光部材20は入射側、射出側のいずれにも適用可能である。   In the present embodiment, the relationship between the refractive index n11 of the first diffraction grating 11 and the refractive index n22 of the second diffraction grating 12 is n11 <n22. Therefore, the light shielding member 20 is provided on the incident side. On the other hand, when the relationship between these refractive indexes is n11> n22, the light shielding member 20 is provided on the exit side. FIGS. 19A and 19B are enlarged cross-sectional views of the diffraction grating portion when the refractive index relationship is n11> n22. A light beam (b in FIG. 19 (b), B in FIG. 19 (a) incident on the m grating in FIG. 19 (a), which has a large influence of unnecessary light, downwardly incident at an oblique incident angle (off-screen light incident angle). The unnecessary light is shielded by the light shielding member after being totally reflected by the grating wall surface and emitted. Thus, even in the configuration in which the light shielding member 20 is provided on the lattice plane, the light shielding member 20 can be applied to both the incident side and the emission side.

次に、上述の実施例1乃至6について、表1を用いて説明する。表1は、実施例1乃至6の回折光学素子に用いられる第1の回折格子の材料、d線での屈折率nd1、アッベ数vd1、部分分散比θgF1、及び、波長550nmの屈折率n1_550を示す。また、第2の回折格子の材料、d線での屈折率nd2、アッベ数vd2、波長550nmの屈折率n2_550を示す。また、格子高さd、遮光部材の位置、遮光部材の材料、高屈折率領域側の幅wH、低屈折率領域側の幅wL、遮光部材の厚さd1、遮光部材と回折格子との距離d2を示す。   Next, Examples 1 to 6 will be described with reference to Table 1. Table 1 shows the material of the first diffraction grating used in the diffractive optical elements of Examples 1 to 6, the refractive index nd1 at the d-line, the Abbe number vd1, the partial dispersion ratio θgF1, and the refractive index n1_550 having a wavelength of 550 nm. Show. In addition, the material of the second diffraction grating, the refractive index nd2 at the d-line, the Abbe number vd2, and the refractive index n2_550 having a wavelength of 550 nm are shown. Also, the grating height d, the position of the light shielding member, the material of the light shielding member, the width wH on the high refractive index region side, the width wL on the low refractive index region side, the thickness d1 of the light shielding member, and the distance between the light shielding member and the diffraction grating d2 is shown.

実施例1乃至6に示されるように、像性能への影響の大きい不要光を抑制するために、格子壁面及び格子壁面の延長線によって分けられる領域のうち、高屈折率領域側の幅wHと低屈折率領域側の幅wLは、以下の式(1)を満たすことが好ましい。   As shown in Examples 1 to 6, in order to suppress unnecessary light having a large influence on image performance, the width wH on the high refractive index region side of the region divided by the grating wall surface and the extension line of the grating wall surface is The width wL on the low refractive index region side preferably satisfies the following formula (1).

wH>wL≧0 … (1)
式(1)を満たさない場合、設計次数の回折効率の減少を抑制して不要光を抑制させることが困難となる。
wH> wL ≧ 0 (1)
When the expression (1) is not satisfied, it is difficult to suppress unnecessary light by suppressing a decrease in the diffraction efficiency of the design order.

また、遮光部材の幅の和(wH+wL)が大きくなると、位相の不整合領域が拡大し、設計次数の回折効率が低下する。その結果、像性能が無視できないほど劣化するおそれがある。このため、設計入射角度における遮光部材の幅の和(wH+wL)は以下の式(2)を満たすことが好ましい。   Further, when the sum of the widths of the light shielding members (wH + wL) is increased, the phase mismatch region is enlarged, and the diffraction efficiency of the design order is lowered. As a result, there is a possibility that the image performance is deteriorated so that it cannot be ignored. For this reason, it is preferable that the sum (wH + wL) of the width | variety of the light shielding member in a design incident angle satisfy | fills the following formula | equation (2).

0<(wH+wL)/P<0.05 … (2)
式(2)において、Pは格子ピッチである。上記各実施例では、格子ピッチPを100μmとした回折格子について説明したが、設計次数の回折効率に関しては、遮光部材の幅の和(wH+wL)と格子ピッチPの関係は線形関係を有する。遮光部材の幅の和(wH+wL)と格子ピッチPの回折格子の設計次数の回折効率と遮光部材の幅の和(wH+wL)×2と格子ピッチP×2の回折格子の設計次数の回折効率はほぼ同じである。例えば、実施例1に示した格子ピッチ100μm、遮光部材の幅の和2.5μmの回折格子と格子ピッチ200μm、遮光部材の幅の和5.0μmの回折格子の設計次数の回折効率はほぼ同じである。このため、格子ピッチPと遮光部材の幅の和(wH+wL)の式(2)が得られる。さらに像性能に影響ない回折光学素子を得るには、以下の式(3)を満たすことがより好ましい。
0 <(wH + wL) / P <0.05 (2)
In Formula (2), P is a lattice pitch. In each of the above-described embodiments, the diffraction grating having the grating pitch P of 100 μm has been described. However, regarding the diffraction efficiency of the design order, the relationship between the sum of the widths of the light shielding members (wH + wL) and the grating pitch P has a linear relationship. The diffraction efficiency of the design order of the diffraction grating with the sum of the width of the light shielding member (wH + wL) and the grating pitch P and the design order of the diffraction grating with the width of the light shielding member (wH + wL) × 2 and the grating pitch P × 2. It is almost the same. For example, the diffraction efficiency of the designed orders of the diffraction grating having the grating pitch of 100 μm and the light shielding member width of 2.5 μm and the diffraction pitch of 200 μm and the light shielding member width of 5.0 μm shown in the first embodiment are almost the same. It is. For this reason, the formula (2) of the sum (wH + wL) of the grating pitch P and the width of the light shielding member is obtained. Furthermore, in order to obtain a diffractive optical element that does not affect image performance, it is more preferable to satisfy the following expression (3).

0<(wH+wL)/P<0.03 … (3)
実施例1乃至6で説明したように、遮光部材の幅wHが特に重要である。幅wHが小さくなると、不要光の抑制効果も小さくなる。不要光の十分な抑制効果を得るには、以下の式(4)を満たることが好ましい。
0 <(wH + wL) / P <0.03 (3)
As described in the first to sixth embodiments, the width wH of the light shielding member is particularly important. When the width wH is reduced, the effect of suppressing unnecessary light is also reduced. In order to obtain a sufficient suppression effect of unnecessary light, it is preferable to satisfy the following expression (4).

0<λ0<wH … (4)
式(4)において、λ0は使用波長帯域における最小の波長である。上記各実施例では、回折光学素子の使用波長帯域は可視域であるため、λ0は400nmになる。不要光を低減させるための遮光部材の効果をより高めるには、以下の式(5)を満たすことがより好ましい。
0 <λ0 <wH (4)
In equation (4), λ0 is the minimum wavelength in the used wavelength band. In each of the above embodiments, the wavelength band used by the diffractive optical element is the visible range, so λ0 is 400 nm. In order to further enhance the effect of the light shielding member for reducing unnecessary light, it is more preferable to satisfy the following expression (5).

0<2×λ0<wH … (5)
本実施例における遮光部材は、特に、設計次数の回折効率の減少を抑制するための式(2)、及び、不要光を抑制するために必要な式(4)の両方を満たすように構成されることが好ましい。幅wLは、特に全反射による不要光抑制に対して鈍感である。このため、幅wLは実質的に0であるほうが設計次数の回折効率の低減量を抑制するには好ましい。一方、製造時の製造バラツキが発生するため、幅wLに関しては重視せずに幅wHを重視して設計、製造すればよい。これにより、製造方法の選択肢が広がり、低コスト、低エネルギーで製造できるため、製造上の優位となる。
0 <2 × λ0 <wH (5)
The light shielding member in the present embodiment is particularly configured to satisfy both the expression (2) for suppressing the decrease in the diffraction efficiency of the design order and the expression (4) necessary for suppressing unnecessary light. It is preferable. The width wL is particularly insensitive to unnecessary light suppression due to total reflection. For this reason, it is preferable that the width wL is substantially 0 in order to suppress the reduction amount of the diffraction efficiency of the designed order. On the other hand, since manufacturing variations at the time of manufacturing occur, the width wL may be designed and manufactured with emphasis on the width wH without regard to the width wL. Thereby, the choice of a manufacturing method spreads, and since it can manufacture at low cost and low energy, it becomes a manufacturing advantage.

また、実施例1乃至6の遮光部材は、金属材料であるAlを用いて形成されている、これに限定されるものではなく、不要光を吸収するための吸収材料を用いることができる。吸収材料としては、例えば、樹脂にブラックカーボン等の炭素系微粒子や金属酸化物、金属硫化物、金属炭酸塩等の金属化合物微粒子や顔料、染料等を分散させた材料が用いられる。また、微細構造により同等の効果がある構造やカーボンナノチューブ等によっても実現可能である。また、各回折格子の屈折率、消衰係数に合わせて材料を構成したほうがより好ましい。このため、遮光部材の厚さd1は、遮光部材を構成する材料によって異なる。実施例1乃至6ように、金属材料で構成された遮光部材は、数100nm程度の厚さで十分機能するが、他の吸収材料を用いた場合には、金属材料と比較して遮光部材を厚くする必要がある。   In addition, the light shielding members of Examples 1 to 6 are formed using Al which is a metal material, but are not limited thereto, and an absorbing material for absorbing unnecessary light can be used. As the absorbent material, for example, a material in which carbon-based fine particles such as black carbon, metal compound fine particles such as metal oxides, metal sulfides, and metal carbonates, pigments, dyes, and the like are dispersed in a resin is used. It can also be realized by a structure having a similar effect by a fine structure, a carbon nanotube, or the like. In addition, it is more preferable to configure the material in accordance with the refractive index and extinction coefficient of each diffraction grating. For this reason, the thickness d1 of the light shielding member varies depending on the material constituting the light shielding member. As in Examples 1 to 6, the light shielding member made of a metal material functions sufficiently with a thickness of about several hundreds of nanometers. However, when other absorbing materials are used, the light shielding member is compared with the metal material. It needs to be thick.

遮光部材と回折格子との距離d2は、不要光を遮光することができればよいため、特に限定されるものではない。ただし、距離d2が大きくなるにつれて遮光部材の幅も大きくなるため、設計次数の回折効率の減少を抑制するための式(2)又は式(3)を満たす程度に設定されることが好ましい。実施例1乃至6では、回折光学素子として密着2層DOEとしているが、これに限定されるものではなく、さらに回折格子を積層した積層DOEにも適用可能である。また、遮光部材を中心領域から周辺領域で変化させて最適な回折光学素子を構成することができる。また、全ての輪帯に遮光部材を設ける必要はなく、輪帯の一部に設けてもよい。この際、最小格子ピッチを含む一部に反射部材を設けることが有効である。これは、格子ピッチが小さい回折格子は不要光の回折効率が大きく、回折光学素子全体で発生する不要光の寄与が大きいためである。   The distance d2 between the light shielding member and the diffraction grating is not particularly limited as long as unnecessary light can be shielded. However, since the width of the light shielding member increases as the distance d2 increases, it is preferable that the width is set to satisfy an expression (2) or an expression (3) for suppressing a decrease in the diffraction efficiency of the design order. In Examples 1 to 6, the two-layer DOE is used as the diffractive optical element. However, the present invention is not limited to this, and can be applied to a laminated DOE in which diffraction gratings are further laminated. Further, an optimum diffractive optical element can be configured by changing the light shielding member from the central region to the peripheral region. Moreover, it is not necessary to provide a light shielding member in all the annular zones, and they may be provided in a part of the annular zones. At this time, it is effective to provide a reflecting member in a part including the minimum lattice pitch. This is because a diffraction grating with a small grating pitch has a large diffraction efficiency of unnecessary light, and the contribution of unnecessary light generated in the entire diffractive optical element is large.

上記各実施例では格子壁面部に遮光部材を設けていることに着目しているが、設計次数を+1次以外の次数にする、格子壁面部に反射手段を設ける、格子壁面角度をシフトさせる、格子壁面形状を階段状にさせる等、不要光の制御手段とを組み合わせることもできる。
(比較例1)
以下、実施例1に対する比較例としての回折光学素子について説明する。比較例1としての回折光学素子は、回折格子の材料および格子高さは実施例1と同様で、格子壁面部に不要光抑制手段が設けられていない場合である。
In each of the above embodiments, attention is paid to providing a light shielding member on the grating wall surface, but the design order is an order other than the + 1st order, reflecting means is provided on the grating wall surface, the grating wall angle is shifted, It can also be combined with unnecessary light control means, for example, by making the lattice wall surface into a staircase shape.
(Comparative Example 1)
Hereinafter, a diffractive optical element as a comparative example with respect to Example 1 will be described. The diffractive optical element as Comparative Example 1 is the case where the material of the diffraction grating and the grating height are the same as in Example 1, and no unnecessary light suppression means is provided on the grating wall surface.

図21は、回折光学素子の設計入射角度である入射角度0度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。図21(a)は設計次数である+1次回折光付近での回折効率である。図21(b)は図21(a)の縦軸の回折効率の低い部分を拡大し、横軸を回折次数から回折角にして高回折角度範囲について表示した結果である。図21(a)から設計次数である+1次回折光に回折効率が集中していることがわかるが、回折効率は98.49%で100%になっていない。残りの光は不要光であり、図21(b)のように特定角度方向にピークを有する不要光となって伝播している。この現象については図22に示されるように、入射光束のうち格子壁面付近に入射する成分a’が格子壁面において高屈折率材料側に反射しているように回り込んでいると考えられる。この設計入射角度(撮影光入射角度)において日中の太陽等の高輝度光源を直接撮影することは稀であるため、この不要光はほとんど影響せず、結果としては問題とはならない。   FIG. 21 shows RCWA calculation results at an incident angle of 0 degree, which is a designed incident angle of the diffractive optical element, a grating pitch of 100 μm, and a wavelength of 550 nm. FIG. 21A shows the diffraction efficiency in the vicinity of the + 1st order diffracted light that is the designed order. FIG. 21B is a result of enlarging the low diffraction efficiency portion of the vertical axis in FIG. 21A and displaying the high diffraction angle range with the horizontal axis as the diffraction order to the diffraction angle. FIG. 21A shows that the diffraction efficiency is concentrated on the + 1st order diffracted light that is the designed order, but the diffraction efficiency is 98.49%, not 100%. The remaining light is unnecessary light and propagates as unnecessary light having a peak in a specific angle direction as shown in FIG. Regarding this phenomenon, as shown in FIG. 22, it is considered that the component a ′ incident on the grating wall surface of the incident light beam is circulated so as to be reflected to the high refractive index material side on the grating wall surface. Since it is rare to directly photograph a high-intensity light source such as the sun during the day at this designed incident angle (photographing light incident angle), this unnecessary light has little effect and does not pose a problem as a result.

次に、回折光学素子の設計入射角度より下向きの斜入射角度(画面外光入射角度)で入射する光束を想定して、入射角度+10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果を図23に示す。図23(a)は設計次数である+1次回折光付近での回折効率である。図23(b)は図23(a)の縦軸の回折効率の低い部分を拡大し、横軸を回折次数から回折角にして高回折角度範囲について表示した結果である。図23(a)に示されるように、設計次数である+1次回折光の回折効率が集中しているが、回折効率は95.62%で設計入射角度である0度から傾いているため100%より低下している。この画面外光入射角度の+1次回折光は像面に到達することはないため、その影響は小さい。残りの不要光は、図23(b)のように、特定角度方向にピークを有する不要光となって伝播する。この不要光は略−10度方向にピークを有し、この伝播方向は格子壁面に入射する画面外入射角度+10度光束の成分が全反射にして伝播する射出方向−10度方向と略等しい。格子壁面に対しては、高屈折率材料側から低屈折率材料側に臨界角76.7度以上の+80.6度で入射するため、全反射が発生している。また、この不要光は、略−10度方向のピークから高角度範囲に広がっている。これは図24に示されるように、入射光束のうち格子壁面付近に入射する成分b’が格子壁面において全反射して−10度方向に伝播し、さらに全反射射出方向中心に不要光が広がって伝播していると考えられる。   Next, assuming a light beam incident at an oblique incident angle (off-screen light incident angle) downward from the designed incident angle of the diffractive optical element, RCWA calculation results at an incident angle of +10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm are shown in FIG. Shown in FIG. 23A shows the diffraction efficiency in the vicinity of the + 1st order diffracted light that is the designed order. FIG. 23B is a result of enlarging the low diffraction efficiency portion of the vertical axis in FIG. 23A and displaying the high diffraction angle range with the horizontal axis as the diffraction order to the diffraction angle. As shown in FIG. 23A, the diffraction efficiency of the + 1st order diffracted light, which is the designed order, is concentrated, but the diffraction efficiency is 95.62%, which is 100% because it is tilted from 0 degrees, which is the designed incident angle. It is lower. Since the + 1st-order diffracted light with this off-screen light incident angle never reaches the image plane, its influence is small. The remaining unnecessary light propagates as unnecessary light having a peak in a specific angle direction as shown in FIG. This unnecessary light has a peak in a direction of approximately −10 degrees, and this propagation direction is substantially equal to the exit direction in which the component of the off-screen incident angle +10 degrees light beam incident on the grating wall surface is propagated with total reflection and −10 degrees. The grating wall surface is incident at +80.6 degrees with a critical angle of 76.7 degrees or more from the high refractive index material side to the low refractive index material side, so that total reflection occurs. Further, the unnecessary light spreads from a peak in a direction of about −10 degrees to a high angle range. As shown in FIG. 24, the component b ′ incident on the grating wall surface of the incident light beam is totally reflected on the grating wall surface and propagates in the −10 degree direction, and the unnecessary light spreads in the center of the total reflection emission direction. It is thought that it is propagating.

光学系に回折光学素子を適用した場合、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が、少なくとも像面に到達する。図24(b)の回折角+0.20度付近の回折効率について、RCWA計算結果から、回折次数−45(回折角+0.38度)の回折効率が0.021%、回折次数−46(回折角+0.17度)の回折効率が0.021%である。   When a diffractive optical element is applied to the optical system, diffracted light of unnecessary light caused by off-screen light that substantially matches the diffraction angle +0.20 degrees at which the designed diffraction order propagates at the designed incident angle reaches at least the image plane. With respect to the diffraction efficiency in the vicinity of the diffraction angle +0.20 degree in FIG. 24B, the diffraction efficiency at the diffraction order −45 (diffraction angle +0.38 degree) is 0.021% and the diffraction order −46 (times) from the RCWA calculation result. The diffraction efficiency at the folding angle +0.17 degrees is 0.021%.

次に、回折光学素子の設計入射角度より上向きの斜入射角度(画面外光入射角度)で入射する光束を想定して、入射角度−10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果を図25に示す。図25(a)は設計次数である+1次回折光付近での回折効率である。図25(b)は図25(a)の縦軸の回折効率の低い部分を拡大し、横軸を回折次数から回折角にして高回折角度範囲について表示した結果である。図25(a)に示されるように、設計次数である+1次回折光の回折効率が集中し、回折効率は95.48%で設計入射角度である0度から傾いているため100%より低下している。残りの不要光は、図25(b)に示されるように、特定角度方向にピークを有する不要光となって伝播している。この不要光は、略−15度方向、略+10度方向にも小さなピークを有し、この伝播方向は、格子壁面に入射する画面外入射角度−10度光束の透過光の射出方向−16.6度と反射光の射出方向+9.5度に略等しい。また、格子壁面に対しては、低屈折率材料側から高屈折率材料側に+80度で入射するため、透過光の透過率は94%、反射光の反射光は6%であり、略−15度方向のピークが大きく、略+10度方向のピークが小さいことと対応している。また、この不要光は、ピークから高角度範囲に広がっている。これは図26に示されるように、入射光束のうち格子壁面付近に入射する成分c’が格子壁面において透過光と反射光に別れて伝播し、さらに各ピークを中心に広がって伝播していると考えられる。
光学系に回折光学素子を適用した場合、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が、少なくとも像面に到達する。図25(b)の回折角+0.20度付近の回折効率について、RCWA計算結果から、回折次数+48(回折角+0.24度)の回折効率が0.0015%、回折次数+47(回折角+0.03度)の回折効率が0.0015%である。
Next, assuming a light beam incident at an oblique incident angle (off-screen light incident angle) upward from the designed incident angle of the diffractive optical element, RCWA calculation results at an incident angle of −10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm are shown in FIG. 25. FIG. 25A shows the diffraction efficiency in the vicinity of the + 1st order diffracted light that is the designed order. FIG. 25B is a result of enlarging the low diffraction efficiency portion of the vertical axis of FIG. 25A and displaying the high diffraction angle range with the horizontal axis as the diffraction order to the diffraction angle. As shown in FIG. 25 (a), the diffraction efficiency of the + 1st order diffracted light that is the designed order is concentrated, and the diffraction efficiency is 95.48%, which is inclined from 0 degree that is the designed incident angle. ing. The remaining unnecessary light is propagated as unnecessary light having a peak in a specific angle direction, as shown in FIG. This unnecessary light has small peaks in the direction of about −15 degrees and the direction of about +10 degrees, and the propagation direction is the off-screen incident angle incident on the grating wall surface −the emission direction of the transmitted light of the light flux of −10 degrees. It is approximately equal to 6 degrees and the emission direction of reflected light +9.5 degrees. Further, since the grating wall surface is incident at +80 degrees from the low refractive index material side to the high refractive index material side, the transmittance of the transmitted light is 94% and the reflected light of the reflected light is 6%. This corresponds to a large peak in the direction of 15 degrees and a small peak in the direction of approximately +10 degrees. Further, this unnecessary light spreads from the peak to a high angle range. As shown in FIG. 26, the component c ′ incident on the grating wall surface of the incident light beam propagates separately on the grating wall surface into transmitted light and reflected light, and further propagates spreading around each peak. it is conceivable that.
When a diffractive optical element is applied to the optical system, diffracted light of unnecessary light caused by off-screen light that substantially matches the diffraction angle +0.20 degrees at which the designed diffraction order propagates at the designed incident angle reaches at least the image plane. With respect to the diffraction efficiency in the vicinity of the diffraction angle +0.20 degree in FIG. 25B, the diffraction efficiency of the diffraction order +48 (diffraction angle +0.24 degree) is 0.0015% and the diffraction order +47 (diffraction angle +0). (.03 degree) diffraction efficiency is 0.0015%.

以上のように、比較例1としての回折光学素子を適用した光学系において、画面外入射角略10度の光束が入射した場合、図2、図27に示すm格子による回折角0度付近に射出する不要光が大きく、m’格子による回折角0度付近に射出する不要光が小さい。このため、像性能の低下に対してはm格子の寄与が大きいことになる。実際に回折光学素子及び光学系を作成して実写したところ、像面に不要光が到達し、像性能の低下が確認できた。   As described above, in the optical system to which the diffractive optical element as the comparative example 1 is applied, when a light beam having an off-screen incident angle of approximately 10 degrees is incident, the diffraction angle by the m grating shown in FIGS. The unnecessary light emitted is large, and the unnecessary light emitted near the diffraction angle of 0 ° by the m ′ grating is small. For this reason, the contribution of the m-lattice is large for the decrease in image performance. When a diffractive optical element and an optical system were actually created and photographed, unnecessary light reached the image plane, and it was confirmed that image performance was degraded.

従来の手法では、格子壁面に入射する光束を幾何光学現象として扱っているが、その場合は格子壁面に入射する光はスネルの法則に従って特定の方向にのみ射出し伝播することになる。図2、図27のように光学系に回折光学素子を適用し、画面外入射角略10度の光束が入射した場合、m格子では全反射のみ、m’格子では94%の透過光および6%の反射光が発生する。しかし、その場合はいずれも絞り40で遮光されるため結像面41へ到達しない。以上のように、従来の手法では不要光の抑制に対しては不十分であり、抑制すべき不要光が十分考慮されていなかった。
(比較例2)
以下、実施例2乃至6に対する比較例としての回折光学素子について説明する。比較例2としての回折光学素子は、回折格子の材料および格子高さは実施例2〜6と同様で、格子壁面部に不要光抑制手段が設けられていない場合である。
In the conventional method, a light beam incident on the grating wall surface is treated as a geometrical optical phenomenon. In this case, light incident on the grating wall surface is emitted and propagated only in a specific direction according to Snell's law. When a diffractive optical element is applied to the optical system as shown in FIGS. 2 and 27 and a light beam with an off-screen incident angle of approximately 10 degrees is incident, only total reflection is achieved with the m grating, and 94% transmitted light and 6 with the m ′ grating. % Of reflected light is generated. However, in either case, since the light is shielded by the diaphragm 40, it does not reach the image plane 41. As described above, the conventional method is insufficient for suppressing unnecessary light, and the unnecessary light to be suppressed has not been sufficiently considered.
(Comparative Example 2)
Hereinafter, a diffractive optical element as a comparative example for Examples 2 to 6 will be described. The diffractive optical element as Comparative Example 2 is the case where the material of the diffraction grating and the grating height are the same as those in Examples 2 to 6, and no unnecessary light suppression means is provided on the grating wall surface.

図28(a)は、回折光学素子の設計入射角度である入射角度0度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果である。比較例1と同様、設計次数である+1次回折光に回折効率が集中しており、回折効率は98.76%で100%になっていない。しかし、この設計入射角度(撮影光入射角度)において日中の太陽等の高輝度光源を直接撮影することは稀であるため、この不要光はほとんど影響せず、結果としては問題とはならない。   FIG. 28A shows an RCWA calculation result at an incident angle of 0 degree, which is a designed incident angle of the diffractive optical element, a grating pitch of 100 μm, and a wavelength of 550 nm. Similar to Comparative Example 1, the diffraction efficiency is concentrated on the + 1st order diffracted light that is the designed order, and the diffraction efficiency is 98.76%, not 100%. However, since it is rare to directly photograph a high-intensity light source such as the sun during the day at this designed incident angle (photographing light incident angle), this unnecessary light has little influence and does not cause a problem as a result.

次に、回折光学素子の設計入射角度より下向きの斜入射角度(画面外光入射角度)で入射する光束を想定して、入射角度+10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果を図28(b)に示す。設計次数である+1次回折光の回折効率が集中しているが、回折効率は97.15%で設計入射角度である0度から傾いているため100%より低下している。この画面外光入射角度の+1次回折光は像面に到達することはないため、その影響は小さい。残りの不要光は、比較例1と同様に、略−10度方向にピークを有する。この伝播方向は格子壁面に入射する画面外入射角度+10度光束の成分が全反射にして伝播する射出方向−10度方向と略等しい。格子壁面に対しては、高屈折率材料側から低屈折率材料側に臨界角74.2度以上の+80.6度で入射するため、全反射が発生している。また、この不要光は、略−10度方向のピークから高角度範囲に広がっている。光学系に回折光学素子を適用した場合、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が、少なくとも像面に到達する。図28(b)の回折角+0.20度付近の回折効率について、RCWA計算結果から、回折次数−46(回折角+0.34度)の回折効率が0.014%、回折次数−47(回折角+0.14度)の回折効率が0.014%である。   Next, assuming a light beam incident at an oblique incident angle (off-screen light incident angle) downward from the designed incident angle of the diffractive optical element, RCWA calculation results at an incident angle of +10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm are shown in FIG. Shown in (b). The diffraction efficiency of the + 1st order diffracted light that is the designed order is concentrated, but the diffraction efficiency is 97.15%, which is lower than 100% because it is tilted from 0 degree that is the designed incident angle. Since the + 1st-order diffracted light with this off-screen light incident angle never reaches the image plane, its influence is small. The remaining unnecessary light has a peak in the direction of about −10 degrees as in Comparative Example 1. This propagation direction is substantially the same as the emission direction minus 10 degrees direction in which the off-screen incident angle incident on the grating wall surface +10 degrees of the luminous flux component is totally reflected and propagated. The grating wall surface is incident at +80.6 degrees with a critical angle of 74.2 degrees or more from the high refractive index material side to the low refractive index material side, and thus total reflection occurs. Further, the unnecessary light spreads from a peak in a direction of about −10 degrees to a high angle range. When a diffractive optical element is applied to the optical system, diffracted light of unnecessary light caused by off-screen light that substantially matches the diffraction angle +0.20 degrees at which the designed diffraction order propagates at the designed incident angle reaches at least the image plane. As for the diffraction efficiency in the vicinity of the diffraction angle +0.20 degree in FIG. 28B, the diffraction efficiency at the diffraction order −46 (diffraction angle +0.34 degree) is 0.014% and the diffraction order −47 (times) from the RCWA calculation result. The diffraction efficiency (fold angle +0.14 degrees) is 0.014%.

次に、回折光学素子の設計入射角度より上向きの斜入射角度(画面外光入射角度)で入射する光束を想定して、入射角度−10度、格子ピッチ100μm、波長550nmにおけるRCWA計算結果を図28(c)に示す。設計次数である+1次回折光の回折効率が集中し、回折効率は97.00%で設計入射角度である0度から傾いているため100%より低下している。残りの不要光は、比較例1と同様、略−17度方向、略+10度方向にピークを有し、この伝播方向は、格子壁面に入射する画面外入射角度−10度光束の透過光の射出方向−18.6度と反射光の射出方向+9.5度に略等しい。これは図26に示されるように、入射光束のうち格子壁面付近に入射する成分c’が格子壁面において透過光と反射光に別れて伝播し、さらに各ピークを中心に広がって伝播していると考えられる。光学系に回折光学素子を適用した場合、設計入射角における設計回折次数が伝播する回折角度+0.20度に略一致する画面外光による不要光の回折光が、少なくとも像面に到達する。図28(c)の回折角+0.20度付近の回折効率について、RCWA計算結果から、回折次数+49(回折角+0.26度)の回折効率が0.0022%、回折次数+48(回折角+0.06度)の回折効率が0.0022%である。   Next, assuming a light beam incident at an oblique incident angle (off-screen light incident angle) upward from the designed incident angle of the diffractive optical element, RCWA calculation results at an incident angle of −10 degrees, a grating pitch of 100 μm, and a wavelength of 550 nm are shown in FIG. It is shown in 28 (c). The diffraction efficiency of the + 1st order diffracted light that is the designed order is concentrated, and the diffraction efficiency is 97.00%, which is tilted from 0 degree that is the designed incident angle, and is lower than 100%. The remaining unnecessary light has a peak in the direction of about −17 degrees and the direction of about +10 degrees as in Comparative Example 1, and this propagation direction is the off-screen incident angle incident on the grating wall surface of the light beam of −10 degrees. The emission direction is −18.6 degrees and is substantially equal to the reflected light emission direction +9.5 degrees. As shown in FIG. 26, the component c ′ incident on the grating wall surface of the incident light beam propagates separately on the grating wall surface into transmitted light and reflected light, and further propagates spreading around each peak. it is conceivable that. When a diffractive optical element is applied to the optical system, diffracted light of unnecessary light caused by off-screen light that substantially matches the diffraction angle +0.20 degrees at which the designed diffraction order propagates at the designed incident angle reaches at least the image plane. As for the diffraction efficiency in the vicinity of the diffraction angle +0.20 degree in FIG. 28C, the diffraction efficiency of the diffraction order +49 (diffraction angle +0.26 degree) is 0.0022% and the diffraction order +48 (diffraction angle +0) from the RCWA calculation result. .06 degrees) is 0.0022%.

以上のように、比較例2としての回折光学素子を適用した光学系において、画面外入射角略10度の光束が入射した場合、図2、図27に示すm格子による回折角0度付近に射出する不要光が大きく、m’格子による回折角0度付近に射出する不要光が小さい。このため、像性能の低下に対してはm格子の寄与が大きいことになる。実際に回折光学素子及び光学系を作成して実写したところ、像面に不要光が到達し、像性能の低下が確認できた。   As described above, in the optical system to which the diffractive optical element as Comparative Example 2 is applied, when a light beam having an off-screen incident angle of approximately 10 degrees is incident, the diffraction angle by the m grating shown in FIGS. The unnecessary light emitted is large, and the unnecessary light emitted near the diffraction angle of 0 ° by the m ′ grating is small. For this reason, the contribution of the m-lattice is large for the decrease in image performance. When a diffractive optical element and an optical system were actually created and photographed, unnecessary light reached the image plane, and it was confirmed that image performance was degraded.

次に、本発明の実施例7について説明する。図20は、撮影光学系(光学系)の概略断面図である。図20において、101は撮影レンズで、前述した各実施例の回折光学素子1、回折光学素子1の後側に配置された絞り40、及び、屈折光学部42を備える。41は結像面であるフィルムまたはCCD等の結像面である。特に、回折光学素子1の各回折格子部に入射する光束の入射角の分布の重心(図形の重心と同じ)が包絡面の回折格子の中心での面法線に対し、回折格子部の中心よりに分布するようにしている。このような光学系に本実施例の回折光学素子を適用すれば、格子壁面に光束が入射した場合でも、不要光の発生が大幅に改善されているため、フレアが少なく解像力も高い高性能な撮影レンズが得られる。また各実施例の回折光学素子は簡便に製造可能であるため、量産性に優れた安価な光学系を提供できる。   Next, a seventh embodiment of the present invention will be described. FIG. 20 is a schematic cross-sectional view of the photographing optical system (optical system). In FIG. 20, reference numeral 101 denotes a photographic lens, which includes the diffractive optical element 1 of each of the embodiments described above, a diaphragm 40 disposed on the rear side of the diffractive optical element 1, and a refractive optical unit 42. Reference numeral 41 denotes an image forming surface such as a film or a CCD as an image forming surface. In particular, the center of the diffraction grating portion is centered on the surface normal at the center of the envelope diffraction grating where the center of gravity of the incident angle distribution of the light beam incident on each diffraction grating portion of the diffractive optical element 1 is the same as the center of gravity of the envelope. More distributed. If the diffractive optical element of this embodiment is applied to such an optical system, the generation of unnecessary light is greatly improved even when a light beam is incident on the grating wall surface, so that high performance and high resolving power are achieved. A photographic lens is obtained. In addition, since the diffractive optical element of each example can be easily manufactured, an inexpensive optical system excellent in mass productivity can be provided.

図20では、前玉のレンズの貼り合せ面に回折光学素子1を設けたが、これに限定するものではなく、レンズ表面に設けても良く、また、撮影レンズ内に複数の回折光学素子を用いてもよい。また本実施例では、光学機器としてのカメラの撮影レンズの場合を示したが、これに限定するものではない。本実施例の光学系は、ビデオカメラの撮影レンズ、事務機のイメージスキャナーや、デジタル複写機のリーダーレンズなど広波長域で使用される結像光学系(光学機器)にも適用可能である。   In FIG. 20, the diffractive optical element 1 is provided on the surface of the lens of the front lens. However, the present invention is not limited to this. The diffractive optical element 1 may be provided on the lens surface, and a plurality of diffractive optical elements are provided in the photographing lens. It may be used. In the present embodiment, the case of a photographing lens of a camera as an optical device has been shown, but the present invention is not limited to this. The optical system of the present embodiment can also be applied to imaging optical systems (optical devices) used in a wide wavelength region such as a video camera photographing lens, an office image scanner, and a digital copying machine reader lens.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

1:回折光学素子
2、3:基板
10:回折格子部
11:第1の回折格子
12:第2の回折格子
11a、12a、1a:格子面
11b、12b、1b:格子壁面
20、50:遮光部材
1: diffractive optical element 2, 3: substrate 10: diffraction grating portion 11: first diffraction grating 12: second diffraction grating 11a, 12a, 1a: grating surfaces 11b, 12b, 1b: grating wall surface 20, 50: light shielding Element

Claims (9)

互いに異なる屈折率を有し、互いの格子面及び格子壁面の各々が接するように配置された第1び第2の回折格子を備える回折光学素子であって、
前記格子壁面毎に設けられた複数の遮光部材を有し、
光軸を含む断面内において、前記格子壁面の延長線と前記遮光部材の前記光軸に近い方の端部の距離をwL、前記格子壁面の延長線と前記遮光部材の他方の端部の距離をwH、前記第1及び第2の回折格子の格子ピッチをP、使用波長帯域における最小の波長をλ0、とするとき
wH>wL≧0
0<(wH+wL)/P<0.05
0<λ0<wH
なる条件を満たすことを特徴とする回折光学素子。
Have different refractive indices, a diffractive optical element comprising a first beauty second diffraction grating which are arranged in contact each of the grating surface and the grating wall surface of each other,
A plurality of light shielding members provided for each of the lattice wall surfaces;
In the cross section including an optical axis, wL a distance between an end of the closer to the optical axis extension line and the shielding member of the grid wall, and the other end portion of said light blocking member and an extension of the grating wall surface when the distance of wH, said first and second grating pitch of the diffraction grating P, and the minimum wavelength in the used wavelength band .lambda.0, that,
wH> wL ≧ 0
0 <(wH + wL) / P <0.05
0 <λ0 <wH
A diffractive optical element characterized by satisfying the following condition.
前記遮光部材は、前記第1の回折格子と前記第2の回折格子との境界で発生する全反射光を低減させることを特徴とする請求項1に記載の回折光学素子。   The diffractive optical element according to claim 1, wherein the light shielding member reduces total reflected light generated at a boundary between the first diffraction grating and the second diffraction grating. 前記格子面と前記格子壁面と前記遮光部材との各々は、前記光軸を中心として同心円状に配置されていることを特徴とする請求項1又は2に記載の回折光学素子。   3. The diffractive optical element according to claim 1, wherein each of the grating surface, the grating wall surface, and the light shielding member is disposed concentrically around the optical axis. 前記遮光部材は、前記第1又は第2の回折格子の内部に配置されていることを特徴とする請求項1乃至3のいずれか1項に記載の回折光学素子。 4. The diffractive optical element according to claim 1, wherein the light shielding member is disposed inside the first or second diffraction grating. 5. 前記遮光部材は、前記格子面及び前記格子壁面に接するように、前記第1の回折格子と前記第2の回折格子との境界に配置されていることを特徴とする請求項1乃至3のいずれか1項に記載の回折光学素子。   The said light-shielding member is arrange | positioned in the boundary of a said 1st diffraction grating and a said 2nd diffraction grating so that the said grating surface and the said grating | lattice wall surface may be touched. 2. A diffractive optical element according to item 1. wL=0wL = 0
を満たすことを特徴とする請求項1乃至5のいずれか1項に記載の回折光学素子。The diffractive optical element according to claim 1, wherein:
請求項1乃至のいずれか1項に記載の回折光学素子と、屈折光学部と、を有することを特徴とする光学系。 Optical system, wherein the diffractive optical element, a refractive optical unit, that has a according to any one of claims 1 to 6. 請求項1乃至のいずれか1項に記載の回折光学素子と、回折光学素子の後側に配置された絞りと、を有することを特徴とする光学系。 A diffractive optical element according to any one of claims 1 to 6, the optical system characterized by having a a diaphragm which is disposed on the rear side of the diffractive optical element. 請求項又はに記載の光学系を有することを特徴とする光学機器。 An optical apparatus comprising the optical system according to claim 7 or 8 .
JP2010133572A 2010-06-11 2010-06-11 Diffractive optical element, optical system, and optical instrument Expired - Fee Related JP5676927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010133572A JP5676927B2 (en) 2010-06-11 2010-06-11 Diffractive optical element, optical system, and optical instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010133572A JP5676927B2 (en) 2010-06-11 2010-06-11 Diffractive optical element, optical system, and optical instrument

Publications (3)

Publication Number Publication Date
JP2011257662A JP2011257662A (en) 2011-12-22
JP2011257662A5 JP2011257662A5 (en) 2013-07-04
JP5676927B2 true JP5676927B2 (en) 2015-02-25

Family

ID=45473878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010133572A Expired - Fee Related JP5676927B2 (en) 2010-06-11 2010-06-11 Diffractive optical element, optical system, and optical instrument

Country Status (1)

Country Link
JP (1) JP5676927B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218272766U (en) * 2019-11-08 2023-01-10 3M创新有限公司 Optical film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048906A (en) * 2000-08-01 2002-02-15 Canon Inc Diffraction optical device and optical system having the same, photographing device and observation device
JP2004126394A (en) * 2002-10-04 2004-04-22 Nikon Corp Diffraction optical element
JP2005308958A (en) * 2004-04-20 2005-11-04 Canon Inc Diffraction optical element and optical system having the same
JP2006162822A (en) * 2004-12-06 2006-06-22 Canon Inc Diffraction optical element
JP4921618B2 (en) * 2010-01-13 2012-04-25 パナソニック株式会社 Diffraction grating lens, manufacturing method thereof, and imaging device using the same

Also Published As

Publication number Publication date
JP2011257662A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5777353B2 (en) Diffractive optical element, optical system, and optical instrument
JP5264223B2 (en) Diffractive optical element, optical system and optical instrument
US10133084B2 (en) Diffractive optical element, optical system, and optical apparatus which reduce generation of unnecessary light
JP6884518B2 (en) Diffusing plate, diffuser plate design method, diffuser plate manufacturing method, display device, projection device and lighting device
JP6873602B2 (en) Diffractive optical elements, optical systems, and optical equipment
CN110161602B (en) Diffusion plate, method for designing diffusion plate, display device, projection device, and illumination device
US8681424B2 (en) Diffractive optical element containing grating surface and grating wall surface, and optical system having the same
JP2014170109A (en) Diffraction optical element, optical system and optical device
JP5676928B2 (en) Diffractive optical element, optical system, and optical instrument
JP5676929B2 (en) Diffractive optical element, optical system and optical instrument
JP2012083382A (en) Diffraction optical element, optical system, and optical instrument
JP5014339B2 (en) Optical member
JP2004126394A (en) Diffraction optical element
JP2013125259A (en) Diffractive optical element, optical system, and optical apparatus
JP5676930B2 (en) Diffractive optical element, optical system and optical instrument
JP5676927B2 (en) Diffractive optical element, optical system, and optical instrument
JP2010096999A (en) Diffraction optical element, diffraction optical member, and optical system
JP5765998B2 (en) Diffractive optical element, optical system and optical instrument
JP2012252168A (en) Diffraction optical element and imaging optical system using the same
JP2019066756A (en) Optical system comprising diffraction optical element, and optical equipment
JP2011022319A (en) Diffraction optical element, optical system and optical apparatus
JPWO2019093146A1 (en) Diffractive optical element
JP2018136529A (en) Diffraction optical element and optical device
JP2014145871A (en) Imaging optical system using diffraction optical element
JP2013105055A (en) Diffraction optical element, and optical system using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141226

R151 Written notification of patent or utility model registration

Ref document number: 5676927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees