JP2006162822A - Diffraction optical element - Google Patents

Diffraction optical element Download PDF

Info

Publication number
JP2006162822A
JP2006162822A JP2004352181A JP2004352181A JP2006162822A JP 2006162822 A JP2006162822 A JP 2006162822A JP 2004352181 A JP2004352181 A JP 2004352181A JP 2004352181 A JP2004352181 A JP 2004352181A JP 2006162822 A JP2006162822 A JP 2006162822A
Authority
JP
Japan
Prior art keywords
optical
light
wall surface
diffraction grating
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004352181A
Other languages
Japanese (ja)
Inventor
Hiroaki Maekawa
浩章 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004352181A priority Critical patent/JP2006162822A/en
Publication of JP2006162822A publication Critical patent/JP2006162822A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diffraction optical element reducing a deterioration in performance due to the occurrence of flare of the diffraction optical element. <P>SOLUTION: In a blazed grating made by alternately arranging an inclined optical surface 11 and a wall surface 12, a light absorption part 13 for absorbing incident light Lb made incident on the wall surface 12 by means of the optical surface 11 after reflection by means of the wall surface 12 is provided. The light absorption part 13 on the optical surface 11 can be simply formed by applying a resist ink on a coating film 10a having oil repellent property and producing an ink puddle on a cross point 12a between the optical surface 11 and the wall surface 12. As compared to the case of performing antireflection by providing a thin film on the wall surface 12 or roughening the wall surface 12, occurrence of flare is effectively prevented at a lower cost. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、撮像装置、観察装置、およびその他の光学装置の光学系に適用される回折光学素子に関するものである。   The present invention relates to a diffractive optical element applied to an optical system of an imaging device, an observation device, and other optical devices.

撮像装置等の光学系に用いられる回折光学素子は、レンズ素子として利用する場合が多い。中でも、ブレーズド型回折格子を有する回折光学素子においては、加工上の問題や、光学系の配置上の制約から、レリーフパターンの壁面に平行に入射しない光線があり、この光線が壁面を通過してフレア光となって撮像面に達し、回折光学素子の光学性能を低下させる。   A diffractive optical element used in an optical system such as an imaging apparatus is often used as a lens element. In particular, in a diffractive optical element having a blazed diffraction grating, there is a light beam that does not enter the relief pattern wall surface in parallel due to processing problems and restrictions on the arrangement of the optical system, and this light beam passes through the wall surface. It becomes flare light and reaches the image pickup surface, which degrades the optical performance of the diffractive optical element.

例えば図5の(a)に示すように、回折格子110の壁面112に対して入射光Lが平行である場合はそのほとんどが光学面111に入射するため光学性能に問題は生じないが、図5の(b)に示すように、レリーフパターンを形成する型成形性を向上させるため壁面112が入射光Lの光軸に対して平行でない場合や、図5の(c)に示すように、ブレーズド型回折格子に対して入射光Lが斜めに入射する場合は、壁面112に入射する光量が増大し、いずれの場合もフレア光となって回折格子の光学性能を低下させる。そこでこの問題点を解決するため種々の提案がなされている。   For example, as shown in FIG. 5A, when the incident light L is parallel to the wall surface 112 of the diffraction grating 110, most of the light is incident on the optical surface 111, but there is no problem in optical performance. As shown in FIG. 5B, when the wall surface 112 is not parallel to the optical axis of the incident light L in order to improve the moldability for forming the relief pattern, or as shown in FIG. When the incident light L is incident obliquely with respect to the blazed diffraction grating, the amount of light incident on the wall surface 112 is increased, and in any case, the optical performance of the diffraction grating is degraded due to flare light. Various proposals have been made to solve this problem.

例えば、特許文献1には、非レンズ面の総面積と光学系に含まれる回折面の光軸に対して垂直な平面(壁面)への射影面との平均値との比を所定の値以下とし、非レンズ面のフレアを抑制した回折格子を有する光学系が提案されている。   For example, in Patent Document 1, the ratio between the total area of non-lens surfaces and the average value of projection surfaces onto a plane (wall surface) perpendicular to the optical axis of the diffractive surface included in the optical system is a predetermined value or less. An optical system having a diffraction grating in which flare on a non-lens surface is suppressed has been proposed.

また、特許文献2には、図6に示すように、回折格子120のエッヂ部(壁面)122に階段形状部123を設けた構成や、回折格子の光学部表面に使用波長より小さい微小凹凸構造を設ける等の提案がなされている。   Further, in Patent Document 2, as shown in FIG. 6, a configuration in which a stepped portion 123 is provided on an edge portion (wall surface) 122 of a diffraction grating 120, or a micro uneven structure having a smaller wavelength than the used wavelength on the optical portion surface of the diffraction grating. Proposals have been made such as providing

さらに、特許文献3には、図7に示すように、回折格子140のエッヂ部(壁面)142に入射し、光学基材130に射出する光Lbを遮光する遮光手段143を有する回折光学素子が提案され、また、特許文献4には、回折格子の縦面(壁面)にのみアッシングによる艶消し処理を施す方法が開示され、特許文献5には、異種材料からなる2つの光学部材の境界にレリーフパターンを有する光学材料の境界面に二酸化珪素、硫化亜鉛、酸化アルミニウムの一種からなる薄膜層を形成した回折光学素子が提案されている。
特開2001−305323号公報 特開2002−071925号公報 特開2002−048906号公報 特開2003−240931号公報 特開2001−337214号公報
Further, Patent Document 3 discloses a diffractive optical element having a light shielding unit 143 that shields light Lb incident on an edge portion (wall surface) 142 of a diffraction grating 140 and emitted to an optical substrate 130 as shown in FIG. Proposed and Patent Document 4 discloses a method of performing a matting process by ashing only on a vertical surface (wall surface) of a diffraction grating, and Patent Document 5 discloses a boundary between two optical members made of different materials. There has been proposed a diffractive optical element in which a thin film layer made of silicon dioxide, zinc sulfide, or aluminum oxide is formed on the boundary surface of an optical material having a relief pattern.
JP 2001-305323 A JP 2002-071925 A JP 2002-048906 A JP 2003-240931 A JP 2001-337214 A

しかしながら、上記従来の技術によれば、いずれも、フレアの抑制が不充分であったり、製造コストが上昇する等の未解決の課題があった。   However, according to the above conventional techniques, there are unsolved problems such as insufficient suppression of flare and an increase in manufacturing cost.

特許文献1の提案では、撮影レンズを通して入射する散乱光を光軸に対して垂直な平面(壁面部)で遮断することがないためフレアの発生を完全に抑制できない。   In the proposal of Patent Document 1, since the scattered light entering through the photographing lens is not blocked by a plane (wall surface portion) perpendicular to the optical axis, the occurrence of flare cannot be completely suppressed.

また、特許文献2に開示された構成では、図6の回折格子120の光学面121と階段形状部123を有する壁面122の交差部122aで僅かな入射光Lbを遮断できないため、フレア発生の防止は完全ではない。なお、この提案では、レリーフパターンを成形する際の離型性の点で階段形状部の形状安定性に問題がある。   Further, in the configuration disclosed in Patent Document 2, a slight incident light Lb cannot be blocked at the intersection 122a of the wall surface 122 having the optical surface 121 of the diffraction grating 120 and the stepped portion 123 of FIG. Is not perfect. In this proposal, there is a problem in the shape stability of the staircase portion in terms of releasability when forming a relief pattern.

さらに、特許文献3の構成では、フレア因子を含んだ入出射光が、図7の破線で示す矢印の方向に光光路を辿った場合に、フレア光を抑制することができるのみである。また、傾斜壁面(エッヂ部)142の反射光には対応しているが、壁面が光軸と平行である場合には対応が難しく、また、遮光部の形成が容易ではなく、製造工程が複雑化すると予想される。   Furthermore, in the configuration of Patent Document 3, flare light can only be suppressed when incident / exit light including a flare factor follows the optical path in the direction of the arrow indicated by the broken line in FIG. Although it corresponds to the reflected light of the inclined wall surface (edge portion) 142, it is difficult to handle when the wall surface is parallel to the optical axis, and the formation of the light shielding portion is not easy, and the manufacturing process is complicated. It is expected to become.

特許文献4の構成では、回折格子の縦面(壁面)への艶消し処理により縦面への入射光、縦面からの出射光が完全に遮断され、フレア光を完全に抑制可能である。しかしながらこの素子の製造は、アッシングによる艶消し処理工程が複雑でタクト時間が延び、製造コストが増大する問題があり、特許文献5の構成では、回折効率の波長依存特性を低減し、不要次数光によるフレア発生を防止することを目的とし、回折格子壁面においては薄膜層を安定して定着させるのが難しく、また、薄膜層を形成する工程で設備、管理スペースなどについてコストが上昇する。   In the configuration of Patent Document 4, the matte processing on the vertical surface (wall surface) of the diffraction grating completely blocks the incident light on the vertical surface and the light emitted from the vertical surface, and can completely suppress flare light. However, the manufacture of this element has the problem that the matting process by ashing is complicated, the tact time is increased, and the manufacturing cost is increased. With the configuration of Patent Document 5, the wavelength dependency characteristic of diffraction efficiency is reduced, and unnecessary order light is emitted. Therefore, it is difficult to stably fix the thin film layer on the diffraction grating wall surface, and the cost of equipment and management space increases in the process of forming the thin film layer.

本発明は、上記従来の技術の有する未解決の課題に鑑みてなされたものであり、簡単な構成でフレア光を効率的に減少させ、低コストで製造可能な品質性と生産性に優れた回折光学素子を提供することを目的とするものである。   The present invention has been made in view of the above-mentioned unsolved problems of the prior art, and has excellent quality and productivity that can be manufactured at low cost by efficiently reducing flare light with a simple configuration. An object of the present invention is to provide a diffractive optical element.

上記の目的を達成するため、本発明の回折光学素子は、光回折を行う複数の光学面と、前記複数の光学面を互いに分離する複数の壁面とを備えた回折格子を有し、各光学面の所定の部位に、隣接する壁面によって散乱される入射光を吸収するための光吸収部が設けられていることを特徴とする。   In order to achieve the above object, a diffractive optical element of the present invention includes a diffraction grating including a plurality of optical surfaces that perform light diffraction and a plurality of wall surfaces that separate the plurality of optical surfaces from each other. A light absorbing portion for absorbing incident light scattered by an adjacent wall surface is provided at a predetermined portion of the surface.

回折格子の壁面で反射する光を光学面で吸収することでフレア発生を防ぐものであるため、フレア光による光学性能の低下を安価にしかも効果的に防ぐことができる。   Since the light reflected from the wall surface of the diffraction grating is absorbed by the optical surface, the occurrence of flare is prevented. Therefore, it is possible to effectively prevent the deterioration of the optical performance due to the flare light at a low cost.

図1に示すように、回折格子10の光学面11および壁面12にそれぞれ入射する入射光La、Lbのうちで、壁面12に入射する入射光Lbの反射光を、光学面11の一部に設けられた光吸収部13によって吸収させることで、フレア発生を低減する。   As shown in FIG. 1, among incident light La and Lb incident on the optical surface 11 and the wall surface 12 of the diffraction grating 10, the reflected light of the incident light Lb incident on the wall surface 12 is part of the optical surface 11. Absorption by the provided light absorber 13 reduces the occurrence of flare.

回折格子10の光学面11に設けられる光吸収部13は、光学面11と壁面12との交点12aの近傍(交差部)に配設され、光学面11の光回折作用に大きく影響しないように構成する。   The light absorbing portion 13 provided on the optical surface 11 of the diffraction grating 10 is disposed in the vicinity (intersection) of the intersection 12a between the optical surface 11 and the wall surface 12 so as not to greatly affect the light diffraction action of the optical surface 11. Constitute.

例えば、ブレーズド型回折格子においては、回折格子の壁面によって反射されて散乱する光を、光学面上で遮断することで、極めて効果的にフレア光による光学性能の低下を防ぐことができる。   For example, in a blazed diffraction grating, light that is reflected and scattered by the wall surface of the diffraction grating is blocked on the optical surface, so that a decrease in optical performance due to flare light can be prevented very effectively.

簡単な構成でフレア光を確実に吸収することができ、しかも、回折格子を形成する工程で光学面に光吸収部を付加することが容易であるため、高性能な回折光学素子を低コストで実現できる。   With a simple configuration, flare light can be reliably absorbed, and it is easy to add a light absorption part to the optical surface in the process of forming a diffraction grating, so a high-performance diffractive optical element can be manufactured at low cost. realizable.

図1は、実施例1による回折光学素子の一部分を示す部分模式断面図である。ベースとなる光学基材1上に樹脂製の回折格子(ブレーズド型回折格子)10が配設され、その光学面11および壁面12はコーティング膜10aによって被覆され、光学面11上には、光学面11と壁面12の交点12aに近接して光吸収部13を構成する光吸収剤が被着されている。   FIG. 1 is a partial schematic cross-sectional view showing a part of the diffractive optical element according to the first embodiment. A resin-made diffraction grating (blazed diffraction grating) 10 is disposed on an optical base material 1 serving as a base, and its optical surface 11 and wall surface 12 are covered with a coating film 10a. A light absorber constituting the light absorbing portion 13 is attached in the vicinity of the intersection 12a of the wall 11 and the wall 11.

入射光La、Lbのうちで光学面11の入射光Laは、レリーフパターン転写面である光学面11により所望の角度で光学基材1側に射出光Leとして回折する。しかし、壁面12の入射光Lbは、壁面12で反射屈折した後、光吸収部13に向かうため、光学面11上で吸収される。従って、光学基材1を透過することなく、撮像面等にフレア光となって到達しない。このようにして、フレア光による画質劣化等を防止できる。   Of the incident light La and Lb, the incident light La on the optical surface 11 is diffracted as emitted light Le to the optical substrate 1 side at a desired angle by the optical surface 11 which is a relief pattern transfer surface. However, the incident light Lb on the wall surface 12 is reflected and refracted on the wall surface 12 and then travels to the light absorption unit 13 and is thus absorbed on the optical surface 11. Therefore, it does not pass through the optical base material 1 and does not reach the imaging surface or the like as flare light. In this way, image quality deterioration due to flare light can be prevented.

図2は光学面11と壁面12の交点近傍に光吸収部13を形成する方法を示す工程図である。まず、図2の(a)に示すように、樹脂材料である光硬化反応型のモノマーを使用し、光学基材1上に図示しないスタンパ型と光照射装置を用いてレリーフパターン転写面の光学面11と壁面12を有する回折格子10をレプリカ成形する。回折格子10の樹脂材料は、熱硬化型樹脂、あるいは光硬化・熱硬化併用型樹脂を用いる。   FIG. 2 is a process diagram showing a method of forming the light absorbing portion 13 near the intersection of the optical surface 11 and the wall surface 12. First, as shown in FIG. 2 (a), a photocuring reaction type monomer that is a resin material is used, and an optical pattern on the relief pattern transfer surface is formed on the optical substrate 1 using a stamper type and a light irradiation device (not shown). The diffraction grating 10 having the surface 11 and the wall surface 12 is replica-molded. As the resin material of the diffraction grating 10, a thermosetting resin or a photocuring / thermosetting combined resin is used.

レリーフパターン転写面上の光学面11と壁面12には、フッ素基を含有したコーティング膜10aがスピンコートによって塗膜される。ここで用いるコーティング膜10aはフッ素系溶媒液中にフッ素を含有した有機コーティング材料を0.1〜0.5wt%に希釈して調製したものである。このコーティング膜10aを塗膜した光学面11と壁面12上に光吸収材料(不透明材料)を含浸した光吸収剤であるレジストインキをディッピングすると、コーティング膜10aの表面の極めて撥水性、撥油性の高いフッ素基反応によって、レジストインキはより多くが安定化面に定着しようとする。この安定化面は、レジストインキが最も集合し易い高低差の低い方の位置、すなわち光学面11と壁面12の交点12aの近傍を中心にレジストインキのインキ溜り13aとなって定着し、残りはレジストインキの表層13bとなる。   A coating film 10a containing a fluorine group is coated on the optical surface 11 and the wall surface 12 on the relief pattern transfer surface by spin coating. The coating film 10a used here is prepared by diluting an organic coating material containing fluorine in a fluorine-based solvent solution to 0.1 to 0.5 wt%. When a resist ink which is a light absorbent impregnated with a light absorbing material (opaque material) is dipped on the optical surface 11 and the wall surface 12 coated with the coating film 10a, the surface of the coating film 10a is extremely water and oil repellent. Due to the high fluorine group reaction, more resist ink tends to be fixed on the stabilization surface. This stabilization surface is fixed as a resist ink ink reservoir 13a centering on the lower position where the resist ink is most likely to gather, that is, in the vicinity of the intersection 12a of the optical surface 11 and the wall surface 12. It becomes the surface layer 13b of resist ink.

この後、コロナ放電などのアッシング処理を行ない、厚さ20〜30nmのレジストインキの表層13bを活性化し、図2の(b)に示すように、安定化面に定着したインキ溜り13a以外のレジストインキを除去する。   Thereafter, an ashing process such as corona discharge is performed to activate the surface layer 13b of the resist ink having a thickness of 20 to 30 nm. As shown in FIG. 2B, the resist other than the ink reservoir 13a fixed on the stabilization surface is obtained. Remove ink.

安定化面に、所定量のレジストインキが図2の(c)に示すようなインキ溜り13aとして滞留し、安定状態を確認した後、同図の(d)に示すように、一定の温度プロファイルでキュア処理をして光吸収部13を形成する。   A predetermined amount of resist ink stays on the stabilization surface as an ink reservoir 13a as shown in FIG. 2C, and after confirming the stable state, as shown in FIG. The light absorbing portion 13 is formed by performing a curing process.

なお、この光吸収部は、電子マスクやフォトリソグラフィー法などの手法を用いて酸化クロム、クロムメッキ膜などを形成してもよいが、高価な装置や複雑な工程の導入により高コスト化してしまう可能性がある。また、印刷や、蒸着などの方法を用いても、マスキングなど製造工程が複雑化する等の問題があるため、製造効率を向上させ、安定した品質の光学素子を提供するためには図2に示した方法が望ましい。   In addition, although this light absorption part may form chromium oxide, a chromium plating film, etc. using techniques, such as an electronic mask and a photolithographic method, it will increase in cost by introduction of an expensive apparatus and a complicated process. there is a possibility. Further, even if a method such as printing or vapor deposition is used, there is a problem that the manufacturing process is complicated such as masking. Therefore, in order to improve the manufacturing efficiency and provide a stable quality optical element, FIG. The method shown is desirable.

図3は、実施例2による回折光学素子の一部分を示す部分模式断面図である。これは、実施例1の光学基材1を凸型球面光学基材として適用し、回折格子10の上に、凹型球面光学基材である光学基材20上の回折格子30を積層したレリーフ型回折光学素子であり、回折格子10、30の光学面11、31にそれぞれ光吸収部13、33が設けられる。   FIG. 3 is a partial schematic cross-sectional view showing a part of the diffractive optical element according to the second embodiment. This is a relief type in which the optical substrate 1 of Example 1 is applied as a convex spherical optical substrate, and the diffraction grating 30 on the optical substrate 20 which is a concave spherical optical substrate is laminated on the diffraction grating 10. It is a diffractive optical element, and light absorbing portions 13 and 33 are provided on optical surfaces 11 and 31 of the diffraction gratings 10 and 30, respectively.

入射光Laは光学基材20の表面より、所望の角度でレリーフパターン転写面の光学面31に到達して回折する。光学面31の間の回折した光は2つの回折格子30、10のエアギャップを通過して回折格子10のレリーフパターン転写面の光学面11に入射して回折し、光学基材1側に出射光Leとして射出する。しかし、入射光Lbは光学基材20を通過した後、回折格子30の光学面31の光吸収部33に向かうためここで吸収され、光学面31の間の壁面32に達しない。従って、壁面反射によるフレア光の発生はなく、撮影画質の劣化等を招かない。   Incident light La reaches the optical surface 31 of the relief pattern transfer surface at a desired angle from the surface of the optical substrate 20 and is diffracted. The diffracted light between the optical surfaces 31 passes through the air gap between the two diffraction gratings 30 and 10 and is incident on the optical surface 11 of the relief pattern transfer surface of the diffraction grating 10 to be diffracted and output to the optical substrate 1 side. The light is emitted as light Le. However, since the incident light Lb passes through the optical substrate 20 and then travels toward the light absorbing portion 33 of the optical surface 31 of the diffraction grating 30, it is absorbed here and does not reach the wall surface 32 between the optical surfaces 31. Therefore, flare light is not generated due to wall surface reflection, and the image quality is not deteriorated.

なお、光学基材1、回折格子10、光学面11、壁面12、光吸収部13については図1と同様であるから説明は省略する。   The optical substrate 1, the diffraction grating 10, the optical surface 11, the wall surface 12, and the light absorption unit 13 are the same as those in FIG.

図4は、回折格子30を製造する工程を示すもので、回折格子30のレリーフパターンを転写成形するためのスタンパ型40に対して、開口部41aから光吸収材料を含浸したレジストインキをスタンパ型上に塗布するためのスクリーンマスク41を位置決めする。すなわち、このスクリーンマスク41をスタンパ型40の回折格子成形先端部40aにアライメントし、開口部41aからサイトップなどの有機離型膜40bを塗布し、続いて光吸収材料を含浸したレジストインキをスタンパ型40上に塗布して、直ちに所定の温度プロファイルでキュアする。このようにして、スタンパ型40の回折格子成形先端部40a上に光吸収剤33aが塗膜される。   FIG. 4 shows a process of manufacturing the diffraction grating 30. A resist ink impregnated with a light-absorbing material from an opening 41a is used as a stamper mold for a stamper mold 40 for transfer-molding a relief pattern of the diffraction grating 30. A screen mask 41 for application on top is positioned. That is, the screen mask 41 is aligned with the diffraction grating forming tip 40a of the stamper mold 40, an organic release film 40b such as CYTOP is applied from the opening 41a, and then resist ink impregnated with a light absorbing material is stamped. It is applied onto the mold 40 and immediately cured with a predetermined temperature profile. In this way, the light absorbing agent 33a is coated on the diffraction grating forming tip 40a of the stamper mold 40.

このスタンパ型40を用いてレリーフパターン転写面を有する回折格子30を成形すると、壁面32と交差して隣接する光学面31に光吸収剤33aが転写される。ここで有機離型膜40bをスタンパ型40上に塗布しているため、光吸収剤33aのスタンパ型40からの転写が容易であり、また、スクリーンマスク41のアライメントには厳しい位置合わせ精度が要求されない。従って、製造工程が複雑化するおそれはない。   When the diffraction grating 30 having the relief pattern transfer surface is formed using the stamper mold 40, the light absorber 33a is transferred to the optical surface 31 that intersects the wall surface 32 and is adjacent thereto. Here, since the organic release film 40b is applied on the stamper mold 40, the transfer of the light absorber 33a from the stamper mold 40 is easy, and strict alignment accuracy is required for the alignment of the screen mask 41. Not. Therefore, there is no possibility that the manufacturing process becomes complicated.

なお、実施例1と同様の製法を用いた方が適当な場合は適宜それを選択することが好ましい。   In addition, when it is more suitable to use the manufacturing method similar to Example 1, it is preferable to select it suitably.

本実施例は、実施例1のコーティング膜10aを設けることなく、光学面11の光吸収部13を形成する部位以外の面をカバーリングし、光吸収部13に相当する部位にサンドブラスト加工による二次加工を施すものである。ブラスト処理による面粗さはRmax0.8〜1.3μmとしたが、光学素子の性能に合わせて適宜設定することが好ましく、この範囲に限定されるものではない。その他の点は実施例1と同様である。   In the present embodiment, the surface other than the portion where the light absorbing portion 13 is formed of the optical surface 11 is covered without providing the coating film 10a of the first embodiment, and the portion corresponding to the light absorbing portion 13 is covered by sandblasting. The next processing is performed. Although the surface roughness by the blast treatment is Rmax 0.8 to 1.3 μm, it is preferably set appropriately according to the performance of the optical element, and is not limited to this range. Other points are the same as in the first embodiment.

本実施例は、実施例1のコーティング膜10aを必要とせず、光吸収部13を梨地転写面で形成する。転写型は、図4のスタンパ型40と同様のスタンパ型の回折格子成形先端部に梨地面を処理加工した型を用い、実施例1と同様の樹脂材料でレプリカ成形し、転写面を得る。ここで得た梨地面はRaで1〜3μm、外観は半艶面であるが、光学素子の性能に合わせて適宜設定することが好ましく、この範囲に限定されるものではない。その他の点は実施例1と同様である。   In the present embodiment, the coating film 10a of the first embodiment is not required, and the light absorbing portion 13 is formed on the satin transfer surface. As the transfer mold, a stamper-type diffraction grating molding tip similar to the stamper mold 40 of FIG. 4 is used, and a replica surface is processed with a resin material similar to that in Example 1 to obtain a transfer surface. The pear ground obtained here has an Ra of 1 to 3 μm and a semi-glossy appearance, but it is preferably set appropriately according to the performance of the optical element, and is not limited to this range. Other points are the same as in the first embodiment.

実施例1の構成を示す部分模式断面図である。2 is a partial schematic cross-sectional view showing a configuration of Example 1. FIG. 実施例1の製造方法を示す工程図である。FIG. 3 is a process diagram illustrating the manufacturing method of Example 1. 実施例2の構成を示す部分模式断面図である。3 is a partial schematic cross-sectional view showing a configuration of Example 2. FIG. 実施例2の製造工程を説明する図である。6 is a diagram illustrating a manufacturing process of Example 2. FIG. 回折格子の入射光と回折格子の関係を説明する図である。It is a figure explaining the relationship between the incident light of a diffraction grating, and a diffraction grating. 一従来例を示す部分模式断面図である。It is a partial schematic cross section which shows one prior art example. 別の従来例を示す部分模式断面図である。It is a partial schematic cross section which shows another prior art example.

符号の説明Explanation of symbols

1、20 光学基材
10、30 回折格子
10a コーティング膜
11、31 光学面
12、32 壁面
13、33 光吸収部
40 スタンパ型
DESCRIPTION OF SYMBOLS 1,20 Optical base material 10,30 Diffraction grating 10a Coating film 11,31 Optical surface 12,32 Wall surface 13,33 Light absorption part 40 Stamper type

Claims (4)

光回折を行う複数の光学面と、前記複数の光学面を互いに分離する複数の壁面とを備えた回折格子を有し、各光学面の所定の部位に、隣接する壁面によって散乱される入射光を吸収するための光吸収部が設けられていることを特徴とする回折光学素子。   Incident light that has a diffraction grating having a plurality of optical surfaces that perform light diffraction and a plurality of wall surfaces that separate the plurality of optical surfaces from each other, and is scattered by a predetermined wall surface of each optical surface by adjacent wall surfaces A diffractive optical element, wherein a light absorbing portion for absorbing the light is provided. 前記光吸収部が、各光学面の所定の部位に不透明な光吸収剤を被着させることによって形成されていることを特徴とする請求項1記載の回折光学素子。   The diffractive optical element according to claim 1, wherein the light absorbing portion is formed by depositing an opaque light absorber on a predetermined portion of each optical surface. 前記光吸収部が、各光学面の所定の部位を粗面化することによって形成されていることを特徴とする請求項1記載の回折光学素子。   The diffractive optical element according to claim 1, wherein the light absorbing portion is formed by roughening a predetermined portion of each optical surface. 前記光吸収部が、光学面と壁面の交差部に配設されていることを特徴とする請求項1ないし3いずれか1項記載の回折光学素子。   The diffractive optical element according to any one of claims 1 to 3, wherein the light absorbing portion is disposed at an intersection between the optical surface and the wall surface.
JP2004352181A 2004-12-06 2004-12-06 Diffraction optical element Pending JP2006162822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004352181A JP2006162822A (en) 2004-12-06 2004-12-06 Diffraction optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004352181A JP2006162822A (en) 2004-12-06 2004-12-06 Diffraction optical element

Publications (1)

Publication Number Publication Date
JP2006162822A true JP2006162822A (en) 2006-06-22

Family

ID=36664937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352181A Pending JP2006162822A (en) 2004-12-06 2004-12-06 Diffraction optical element

Country Status (1)

Country Link
JP (1) JP2006162822A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011086654A1 (en) * 2010-01-13 2011-07-21 パナソニック株式会社 Diffraction grating lens, method for manufacturing same, and imaging device using same
JP2011257662A (en) * 2010-06-11 2011-12-22 Canon Inc Diffractive optical element, optical system and optical equipment
JP2012189784A (en) * 2011-03-10 2012-10-04 Canon Inc Production method of diffraction grating
US8995058B2 (en) 2010-08-19 2015-03-31 Panasonic Intellectual Property Management Co., Ltd. Diffraction grating lens and imaging device in which the same is used
US9103981B2 (en) 2010-12-10 2015-08-11 Panasonic Intellectual Property Management Co., Ltd. Method for designing and method for manufacturing diffraction-grating lens
CN108267804A (en) * 2018-03-05 2018-07-10 深圳市光科全息技术有限公司 A kind of optical film
US20200049870A1 (en) * 2018-08-09 2020-02-13 Canon Kabushiki Kaisha Diffractive optical element, optical apparatus using the same, and method for manufacturing diffractive optical element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8649095B2 (en) 2010-01-13 2014-02-11 Panasonic Corporation Diffraction grating lens and method of producing the same, and imaging device in which the same is used
CN102227654A (en) * 2010-01-13 2011-10-26 松下电器产业株式会社 Diffraction grating lens, method for manufacturing same, and imaging device using same
JP4921618B2 (en) * 2010-01-13 2012-04-25 パナソニック株式会社 Diffraction grating lens, manufacturing method thereof, and imaging device using the same
US20120243096A1 (en) * 2010-01-13 2012-09-27 Panasonic Corporation Diffraction grating lens and method of producing the same, and imaging device in which the same is used
WO2011086654A1 (en) * 2010-01-13 2011-07-21 パナソニック株式会社 Diffraction grating lens, method for manufacturing same, and imaging device using same
JP2011257662A (en) * 2010-06-11 2011-12-22 Canon Inc Diffractive optical element, optical system and optical equipment
US8995058B2 (en) 2010-08-19 2015-03-31 Panasonic Intellectual Property Management Co., Ltd. Diffraction grating lens and imaging device in which the same is used
US9103981B2 (en) 2010-12-10 2015-08-11 Panasonic Intellectual Property Management Co., Ltd. Method for designing and method for manufacturing diffraction-grating lens
JP2012189784A (en) * 2011-03-10 2012-10-04 Canon Inc Production method of diffraction grating
US9233512B2 (en) 2011-03-10 2016-01-12 Canon Kabushiki Kaisha Manufacturing method of blazed diffraction grating and mold for making a blazed difraction grating
CN108267804A (en) * 2018-03-05 2018-07-10 深圳市光科全息技术有限公司 A kind of optical film
US20200049870A1 (en) * 2018-08-09 2020-02-13 Canon Kabushiki Kaisha Diffractive optical element, optical apparatus using the same, and method for manufacturing diffractive optical element
US11656389B2 (en) * 2018-08-09 2023-05-23 Canon Kabushiki Kaisha Diffractive optical element, optical apparatus using the same, and method for manufacturing diffractive optical element

Similar Documents

Publication Publication Date Title
US7864426B2 (en) High aspect-ratio X-ray diffractive structure stabilization methods and systems
US7935460B2 (en) Mask blank for EUV exposure and mask for EUV exposure
KR102303158B1 (en) Assist feature for a photolithographic process
US20080113273A1 (en) Wafer scale lens module and manufacturing method thereof
TWI414900B (en) Exposure method and memory medium storing computer program
JP2008032912A (en) Method of manufacturing microlens
EP3043375B1 (en) Reflective photomask and production method therefor
JP2007058200A (en) Mask blank manufacturing method and exposure mask manufacturing method
JP4629473B2 (en) Manufacturing method of solid-state imaging device
JP2006162822A (en) Diffraction optical element
JP2015038579A (en) Optical element, optical system, imaging device, optical apparatus, and master and method for manufacturing the same
JP2005352062A (en) Microlens and exposure device
JP4641169B2 (en) Method for forming solid-state imaging element lens
TW201738651A (en) Extreme ultraviolet lithography photomasks
JP6147058B2 (en) Nozzle tip manufacturing method
JP2018136529A5 (en)
JP2009020381A (en) Method for manufacturing reflection screen and reflection screen
US4379831A (en) Process for transferring a pattern onto a semiconductor disk
JP2901201B2 (en) Photo mask
JPH1130711A (en) Diffraction optical element and its manufacture, and optical equipment
JP6135105B2 (en) Method for manufacturing a reflective mask
US11662658B2 (en) Photo-mask and semiconductor process
US8154705B2 (en) Method of defining patterns in small pitch and corresponding exposure system
JP5863343B2 (en) Manufacturing method of semiconductor device
KR100619398B1 (en) Method of fabricating reticle with antireflective coating