WO2011099550A1 - Optical element and optical system - Google Patents

Optical element and optical system Download PDF

Info

Publication number
WO2011099550A1
WO2011099550A1 PCT/JP2011/052848 JP2011052848W WO2011099550A1 WO 2011099550 A1 WO2011099550 A1 WO 2011099550A1 JP 2011052848 W JP2011052848 W JP 2011052848W WO 2011099550 A1 WO2011099550 A1 WO 2011099550A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
waveguide
optical element
component
refractive index
Prior art date
Application number
PCT/JP2011/052848
Other languages
French (fr)
Japanese (ja)
Inventor
政俊 林
桂 大滝
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2011553882A priority Critical patent/JPWO2011099550A1/en
Publication of WO2011099550A1 publication Critical patent/WO2011099550A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • G02B5/1871Transmissive phase gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • G02B5/1823Plural gratings positioned on the same surface, e.g. array of gratings in an overlapping or superposed manner

Definitions

  • the present invention relates to an optical element and an optical system.
  • This application claims priority based on Japanese Patent Application No. 2010-030435 filed in Japan on February 15, 2010, the contents of which are incorporated herein by reference.
  • a diffraction element in which a relief pattern having a sawtooth cross-section is formed is widely used.
  • this type of diffractive element optical performance deteriorates due to the flare light generated at the edge of the relief pattern, and therefore various contrivances have been made to suppress the generation of flare light and the adverse effects of flare light (for example, patents).
  • the present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide an optical element with reduced flare light.
  • the optical element according to the first aspect of the present invention includes an optical member having a lattice interface on which a relief pattern is formed.
  • a waveguide made of an optical material having a refractive index higher than that of the optical member is formed on a cliff surface substantially parallel to the optical axis of the optical element among the surfaces constituting the relief pattern.
  • the optical element according to the second aspect of the present invention is laminated with a first optical member having a lattice interface on which a relief pattern is formed, in close contact with or close to the lattice interface of the first optical member. And a second optical member.
  • a cliff surface substantially parallel to the optical axis of the optical element is made of an optical material having a higher refractive index than the first optical member and the second optical member.
  • a waveguide is formed.
  • an optical element with reduced flare light can be provided.
  • FIG. 1 is a partial cross-sectional view showing an optical element 10 according to an embodiment of the first aspect of the present invention.
  • the optical element 10 is a single-layer diffractive optical element (single-layer DOE (Diffractive Optical Elements)).
  • the optical element 10 includes an optical member 10A made of a transparent optical material, and one main surface (the upper surface in the drawing) of the optical member 10A is a lattice interface 11 on which a relief pattern having a sawtooth cross section is formed. .
  • the grating interface 11 is formed with a plurality of inclined surfaces 11a formed to be inclined with respect to the optical axis direction of the incident light L, and a plurality of ridges having a triangular cross section along with the inclined surfaces 11a.
  • a plurality of cliff surfaces 11b formed as surfaces substantially parallel to the axial direction are formed.
  • the relief pattern is formed by alternately arranging the inclined surface 11a and the cliff surface 11b.
  • the waveguide 12 having a uniform width (thickness) is formed on the cliff surface 11b at any position in the direction along the optical axis of the incident light L.
  • the waveguide 12 is formed on the cliff surface 11b, the diffraction efficiency can be increased and diffracted light (flare light) other than the designed order can be reduced.
  • the optical element 10 of the present embodiment will be described in comparison with a conventional optical element.
  • FIG. 2 is a graph showing the result of calculating the diffraction efficiency of the optical element 10 shown in FIG. 1 by the RCWA (Rigorous Coupled Wave Analysis) method.
  • the incident light L was a TE (Transverse Electric) plane wave having a wavelength of 0.55 ⁇ m.
  • the calculation is made on the assumption that the incident light L is emitted from the inside of the optical member 10A through the lattice interface 11 to the outside.
  • the diffraction efficiency it is necessary to consider the light incident on the optical member 10A from the air.
  • the diffraction efficiency when the refractive index ng and the width W1 of the waveguide 12 are changed is completely compared. I left it out to simplify the calculation because it had no effect.
  • the horizontal axis of the graph shown in FIG. 2 corresponds to the width W1 of the waveguide 12, and the vertical axis corresponds to the first-order diffraction efficiency.
  • FIG. 2 also shows 10 curves showing changes in diffraction efficiency with respect to the width W1 of the waveguide 12 when ⁇ n is changed in increments of 0.02 in the range of 0.02 to 0.2. Yes.
  • the first-order diffraction efficiency when the width W1 of the waveguide 12 is 0 (zero) corresponds to the first-order diffraction efficiency of an optical element having a conventional configuration that does not include the waveguide 12.
  • FIG. 9 is a partial sectional view showing a conventional optical element.
  • a conventional optical element 1000 shown in FIG. 9 is a single-layer DOE composed of an optical member 1000A having a lattice interface 11 formed on one surface.
  • the optical element 1000 is usually used only at a single wavelength with optimized diffraction efficiency.
  • the grating height H is set so that the diffraction efficiency of the primary light L1 is highest at a wavelength of 0.55 ⁇ m.
  • the grating height H ( ⁇ m) for obtaining the optimum first-order diffraction efficiency at the wavelength ⁇ ( ⁇ m) is the refractive index of the optical member 1000A.
  • the first-order diffraction efficiency according to the scalar calculation of the above formula is 100%, but this is valid only when the grating period (grating pitch P shown in FIG. 9) is sufficiently large. Assuming the use in the visible light region, the deviation from the strict calculation with respect to the scalar calculation starts to be noticeable when the grating pitch P is in the range of 100 ⁇ m or less or 50 ⁇ m or less. In particular, when the grating pitch P is reduced to about 10 ⁇ m, the maximum diffraction efficiency is reduced to about 90%.
  • FIG. 10 is a graph showing a calculation result of diffraction efficiency by the RCWA method when the incident light L is 0.55 ⁇ m in wavelength, the grating pitch P is 10 ⁇ m, and the refractive index nb is 1.5.
  • the horizontal axis of the graph shown in FIG. 10 corresponds to the grating height H, and the vertical axis corresponds to the first-order diffraction efficiency.
  • the grating height H at which the optimum first-order diffraction efficiency is obtained under the above conditions is 1.1 ⁇ m, and the maximum diffraction efficiency at that time is about 91.3%.
  • the first-order diffraction efficiency is not 100%.
  • the grating height H deviates from the optimum value 1.1 ⁇ m the first-order diffraction efficiency is greatly reduced.
  • the optical element 10 according to the present embodiment is suitable for all conditions in which the refractive index of the waveguide 12 is changed by appropriately selecting the width W1 of the waveguide 12. 1st diffraction efficiency higher than the maximum diffraction efficiency (91.3%) of the optical element 1000 can be obtained.
  • the diffraction efficiency is about 93.5% when the width W1 of the waveguide 12 is about 0.2 ⁇ m.
  • the refractive index difference ⁇ n (that is, the refractive index ng, na) between the waveguide 12 and the optical member 10A and the width W1 of the waveguide 12 are appropriately selected. With this configuration, it is possible to obtain a diffraction efficiency that exceeds that of the conventional optical element 1000 that does not include the waveguide 12.
  • the optical element 10 of the present embodiment can obtain a higher diffraction efficiency than the conventional optical element 1000 for the following reason.
  • the above results shown in FIGS. 2 and 10 are knowledge obtained only when the electromagnetic field is calculated by vector calculation (RCWA method in the present embodiment), and therefore it is difficult to explain based on geometrical differences. . However, it is probably related to the disturbance of the electromagnetic field at the cliff portion of the relief pattern, which is the cause of the diffraction efficiency falling below the scalar value.
  • the grating height is not included in the parameters. This is because it is assumed that the phase is smoothly switched at the joint of each grating. However, there is actually a phase disturbance in this part. Therefore, only when the grating pitch is sufficiently large with respect to the wavelength, the scalar calculation of the diffraction efficiency is valid. As the lattice pitch decreases, the number of relief pattern cliffs per unit area increases, and the ratio of disturbance of the electromagnetic field by the cliffs increases. If the disturbance of the electromagnetic field becomes a magnitude that cannot be ignored, the diffraction efficiency will be less than 100%. The reason why the maximum value of the diffraction efficiency is about 90% when the grating pitch is as small as about 10 ⁇ m is considered to be largely due to the phase disturbance of the cliff portion of the relief pattern.
  • the waveguide 12 by providing the waveguide 12 at the cliff portion of the relief pattern where the electromagnetic field is disturbed, the light passing just outside the cliff surface 11b is confined in the waveguide 12. Then, the light confined in the waveguide 12 travels in substantially the same phase as the light traveling toward the inclined surface 11a in the convex portion of the relief pattern, and is output as a substantially spherical wave from the tip of the waveguide 12. .
  • the edge part of a relief pattern the phase on either side of this edge part can be connected smoothly. As a result, it is considered that the diffraction efficiency can be improved.
  • the next diffraction efficiency changes greatly.
  • the first-order diffraction efficiency can be prevented from changing (decreasing) rapidly even if an error occurs in the width W1 of the waveguide 12 by reducing the refractive index difference ⁇ n. For example, as shown in FIG.
  • the change in diffraction efficiency is within a range of ⁇ 0.5% from the peak value compared to the case where the refractive index difference ⁇ n is 0.2.
  • the allowable range of the width W1 is about double.
  • the width W1 of the waveguide 12 can be controlled with sufficient accuracy, a very high diffraction efficiency can be obtained by increasing the refractive index difference ⁇ n.
  • FIG. 3 is a cross-sectional view showing the optical element of the present embodiment.
  • the optical element 20 shown in FIG. 3 is a contact multilayer type DOE.
  • the optical element 20 has an optical member 20A, which is a lattice interface 11 having a relief pattern with a sawtooth cross section on one main surface (illustrated upper surface), and a second optical element formed in close contact with the lattice interface 11 of the optical member 20A. And a member 20B.
  • the grating interface 11 has a plurality of inclined surfaces 11a formed to be inclined with respect to the optical axis direction of the incident light L, and a plurality of ridges having a triangular cross section along with the inclined surfaces 11a.
  • a plurality of cliff surfaces 11b formed as surfaces substantially parallel to the direction are formed.
  • the relief pattern is formed by alternately arranging the inclined surface 11a and the cliff surface 11b.
  • a waveguide 12 having a uniform width (thickness) is formed on the cliff surface 11b at any position in the direction along the optical axis of the incident light L.
  • the contact multilayer DOE when vector calculation using the RCWA method is performed, disturbance of the electromagnetic field is observed at the cliff portion of the relief pattern. Therefore, even if the refractive index n1 of the first optical member 20A and the refractive index n2 of the second optical member 20B are optimized, the first-order diffraction efficiency is 90 when the grating pitch is 20 ⁇ m and the grating height is 25 ⁇ m, for example. % Is the maximum. In the scalar calculation, the diffraction efficiency when the wavelength is optimized is 100%. This is because the lattice height is not included in the parameters in the scalar calculation.
  • the optical material constituting the first optical member 20A and the optical material constituting the second optical member 20B are extremely reduced in refractive index dispersion. A good combination is required. Further, when the grating height is reduced, the influence of height variation is increased, and there is a concern that the diffraction efficiency largely fluctuates due to manufacturing errors. On the other hand, the optical element 20 of the present embodiment can obtain a higher diffraction efficiency than the conventional optical element without excessively reducing the grating height H2 due to the action of the waveguide 12.
  • the optical element 20 was verified with respect to the relationship between the configuration (width W2, refractive index ng) of the waveguide 12 and the diffraction efficiency when the optical element 20 was configured using a glass material.
  • the optical element 20 was composed of the materials shown in Table 1 below.
  • N-SF2 (trade name) shown in Table 1 is a low refractive index and high dispersion material
  • N-BAF10 trade name
  • the refractive index of each wavelength for calculating the diffraction efficiency was calculated using the following Cermeier dispersion formula using the constants of the dispersion formula disclosed by Schott.
  • the grating pitch P2 of the optical element 20 was 20 ⁇ m.
  • the grating height H2 was optimized at a wavelength of 0.62 ⁇ m. That is, from the refractive index difference ⁇ n 620 at a wavelength of 0.62 ⁇ m between the optical material (N-SF2) constituting the first optical member 20A and the optical material (N-BAF10) constituting the second optical member 20B, A height corresponding to the blaze condition at a wavelength of 0.62 ⁇ m was calculated and used. The calculation formula is shown below.
  • FIG. 11 is a diagram showing a contact multilayer DOE in which the second optical member 2000B is formed in close contact with the lattice interface 11 of the first optical member 2000A.
  • the same conditions were set for the conventional optical element 2000 shown in FIG. 11 except that the waveguide 12 was not provided.
  • the grating pitch is 20 ⁇ m
  • the grating height is 26.9095 ⁇ m
  • the optical material constituting the first optical member 20A is N-SF2 (refractive index 1.64481)
  • the optical material constituting the second optical member 20B is used.
  • N-BAF10 reffractive index: 1.667785 was used.
  • the calculation was performed by the RCWA method with the incident light as the TE plane wave (wavelength 0.62 ⁇ m) and the wavelength range of the incident light as the visible light range (0.42 to 0.75 ⁇ m).
  • the diffraction efficiency inside the optical member 20B (2000B) was calculated.
  • the light incident on the first optical member 20A (2000A) from the outside of the first optical member 20A (2000A) and the light emitted from the second optical member 20B (2000B) to the outside.
  • it is necessary to consider the light beam to be used it is omitted here because it does not affect the comparison of diffraction efficiency when the configuration of the waveguide 12 is changed.
  • FIG. 4 is a graph showing the relationship between the width W2 of the waveguide 12 and the first-order diffraction efficiency obtained by calculation.
  • FIG. 5 is a graph showing the relationship between the wavelength of the incident light L and the first-order diffraction efficiency.
  • the waveguide width W2 is in the range of 0.6 ⁇ m to 0.8 ⁇ m, it stably exceeds the diffraction efficiency of the conventional optical element 2000 in all wavelength regions.
  • FIG. 6 shows 1 when the waveguide width W2 is fixed to 0.8 ⁇ m and the refractive index difference ⁇ n between the waveguide 12 and the second optical member 20B is changed in the range of 0 to 0.1. It is a graph which shows the result of having calculated the change of the next diffraction efficiency by RCWA method about TE plane wave.
  • the waveguide width W2 is fixed at 0.8 ⁇ m and the refractive index of the waveguide 12 is gradually increased from the refractive index of the second optical member 20B, first, the refractive index difference ⁇ n is 0.
  • the first-order diffraction efficiency has a maximum value at a position M1 near .008.
  • the first-order diffraction efficiency rapidly decreases. This is because the phase of the light traveling inside the waveguide 12 is shifted from the phase of the light traveling outside the waveguide 12, so that disturbance of the electromagnetic field occurs at the tip of the waveguide 12 (the edge portion of the relief pattern). It is believed that there is.
  • the refractive index difference ⁇ n is further increased, the first-order diffraction efficiency starts to increase around the refractive index difference ⁇ n exceeding 0.025, and takes the local maximum again at the position M2 where ⁇ n is near 0.04. .
  • the first-order diffraction efficiency at the position M2 is also higher than the diffraction efficiency of the conventional optical element 2000. This is because the phase of the light traveling in the waveguide 12 and the phase of the light traveling outside the waveguide 12 are aligned because the phase is shifted by 2 ⁇ from the first maximum position M1.
  • FIG. 7 is a graph in which the calculation result shown in FIG. 6 is plotted with the horizontal axis converted into a phase shift amount.
  • the amount of phase shift means a phase difference generated between light traveling in the waveguide 12 and light traveling in the second optical member 20B.
  • the position where the phase shift amount is 0 is a case where the effective refractive index of the waveguide 12 matches the refractive index of the second optical member 20B, and the fundamental mode of the slab waveguide is established. It corresponds to a point. Since the peak of the first-order diffraction efficiency shown in FIG. 7 is shifted by 2 ⁇ , it can be understood that the condition of the waveguide 12 is allowed even if the phase is shifted by 2 ⁇ ⁇ N (N: natural number). . Further, the phase shift amount from the position where the diffraction efficiency takes the maximum value is allowed to be about ⁇ 0.25 ⁇ to ⁇ 0.4 ⁇ .
  • the high diffraction efficiency is obtained with respect to the conventional multi-layer DOE because of the same reason as in the first embodiment. That is, light in the vicinity of the cliff portion is confined by the waveguide 12 formed on the cliff portion of the relief pattern, and the phase is smoothly connected at the edge portion of the relief pattern by emitting the light as a substantially spherical wave from the tip of the waveguide 12. be able to. As a result, it is considered that the diffraction efficiency can be improved.
  • [Modification] 8A and 8B are diagrams showing a modification of the optical element 20 of the present embodiment.
  • 8A corresponds to the first modification
  • FIG. 8B corresponds to the second modification.
  • Each of the optical element 201 and the optical element 202 shown in FIGS. 8A and 8B has a high refractive index layer 121 formed so as to cover the lattice interface 11 of the first optical member 20A.
  • the high refractive index layer 121 is formed using an optical material having a higher refractive index than either of the first optical member 20A and the second optical member 20B, similarly to the waveguide 12 in the optical element 20 of the above embodiment. ing.
  • the difference between the optical element 201 and the optical element 202 is only the configuration of the lattice interface 11, and the optical element 201 is used for the light L incident perpendicularly to the optical element 201, whereas the optical element 201 is optical.
  • the element 202 is used for light L incident on the optical element 202 from an oblique direction. Therefore, in the optical element 202, the cliff surface 11b of the lattice interface 11 is formed as an inclined surface that intersects the normal direction (vertical direction in the figure) of the horizontal plane 202a in the optical element 202.
  • the relationship between the incident light L and the cliff 11b in the optical element 202 is the same as that of the optical element 201, and the cliff 11b is formed substantially parallel to the optical axis of the incident light L.
  • the high refractive index layer 121 is formed on the cliff surface 11b, so that the effect of increasing the diffraction efficiency and reducing the flare light as in the previous embodiment. Obtainable.
  • the high refractive index layer 121 is covered with the high refractive index layer 121.
  • the high refractive index layer 121 on the inclined surface 11a. The portion formed in does not affect the optical characteristics of the optical elements 201 and 202. This is because this portion only gives a uniform phase difference to the light transmitted through the high refractive index layer 121, so that it is the same as no change when viewed from the whole optical element.
  • an element in which the optical member 20B is an air layer can be configured.
  • the refractive index difference between the high refractive index layer 121 and the air layer is between the optical member 20A and the air layer. Therefore, the reflection loss may increase due to the formation of the high refractive index layer 121 on the inclined surface 11a.
  • an appropriate antireflection film may be provided in consideration of the refractive index and film thickness of the high refractive index layer 121 on the inclined surface 11a.
  • the base material is a glass material
  • the configuration of the above embodiment and the modified example includes two types as disclosed in International Publication No. WO2006 / 068137.
  • the present invention can also be applied to a contact multilayer DOE made of a resin.
  • the refractive index ng and the width of the high refractive index member (waveguide 12) added to the side surface of the grating are Wg.
  • wavefronts separated by the grating after passing through the grating are well joined, so that energy is concentrated and diffracted in a specific direction. As is well known, this condition is represented by the following formula (1).
  • the wavefront is disturbed during wavefront propagation because the refractive index differs between the left and right sides of the grating side surface. This can be interpreted as it is scattered on the grating side surface and the wavefront spreads. As a result, the wavefront does not succeed after the grating is transmitted, and the diffraction efficiency is lower than the value predicted from an ideal blazed grating.
  • a high refractive index member to the side surface of the blazed grating and confining light by this waveguide structure, it becomes possible to suppress wavefront disturbance due to scattering and to suppress a decrease in diffraction efficiency. Consider the light confinement conditions necessary for this.
  • conditional expressions (2) and (3) for the TE mode are the following conditional expressions (2) and (3) for the TE mode, and the following conditional expressions (4) and (5) for the TM mode: (See the following document). (Reference) A. Yariv Quantum Electronics, 2nd ed. P512
  • n eff corresponds to the effective refractive index of the high refractive index member (waveguide) on the side surface of the grating. If the waveguide width Wg is made wider than W in this equation, light can be confined. That is, the waveguide width Wg according to the aspect of the present invention is expressed by Expression (6) and Expression (7) for each of the TE wave and the TM wave.
  • the intensity ratio of the TE component of the polarization component is ⁇
  • the intensity ratio of the TM component is ⁇
  • the intensity ratio of the non-polarization component is 1 ⁇ (where ⁇ + ⁇ ⁇ 1)
  • the waveguide thickness Wg may be obtained by the following equations (8) and (9).
  • Equation (8) the contribution of the TE component to Wg is ⁇ W TE
  • the contribution of the TM component is ⁇ W TM
  • the contribution of the non-polarization component is ⁇ (W TE + W TM ) / 2 ⁇ ⁇ (1 ⁇ ).
  • Wg should be as small as possible within the range satisfying the confinement conditions. In the conditions where Wg is the smallest in the equations (6), (7), and (9), that is, in the conditions where the equal sign is established in each equation. Efficiency is highest.
  • phase matching conditions a condition in which the wavefronts of the waveguide and the wavefronts transmitted through the medium 1 and the medium 2 are substantially in phase.
  • the conditions for aligning the phases of the TE wave are to use the effective refractive index n eff, TE obtained by solving equations (2) and (3) simultaneously, where H is the grating height, and n is large in n 1 and n 2 .
  • H the effective refractive index
  • phase matching conditions of the aspect of the present invention relating to the TE wave and TM wave are expressed by the following formula (12), respectively. It is represented by (13).
  • phase matching condition of the aspect of the present invention relating to general light including partially polarized light is expressed by the equation (14) similarly to the equation (8) based on the above discussion.
  • each peak is not pinpoint but has a width.
  • the default efficiency value efficiency value when no highly refractive member is not provided
  • optical elements described in each embodiment are used for an optical system of a projection apparatus (stepper, liquid crystal projector, etc.), an optical system of a photographing apparatus (camera, etc.), and an optical system of an observation apparatus (microscope, binoculars, etc.). In any optical system, the effect of reducing flare light can be obtained.
  • an optical element with reduced flare light can be provided.
  • Optical element 10A Optical member 11 Lattice interface 11a Inclined surface 11b Cliff surface 12 Waveguide 20A First optical member 20B Second optical member

Abstract

Disclosed is an optical element provided with an optical member having a grid interface on which a relief pattern is formed. A waveguide comprising an optical material having a higher refractive index than said optical member is formed on those faces constituting the aforementioned relief pattern which are vertical faces approximately parallel to the optical axis of the aforementioned optical element.

Description

光学素子及び光学系Optical element and optical system
 本発明は、光学素子及び光学系に関する。
 本願は、2010年2月15日に、日本国に出願された特願2010-030435号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an optical element and an optical system.
This application claims priority based on Japanese Patent Application No. 2010-030435 filed in Japan on February 15, 2010, the contents of which are incorporated herein by reference.
 光学素子として、断面鋸歯状のレリーフパターンが形成された回折素子が幅広く用いられている。この種の回折素子では、レリーフパターンのエッジ部で発生したフレア光による光学性能の悪化が生じるため、フレア光の発生やフレア光による悪影響を抑制するための種々の工夫がなされてきた(例えば特許文献1参照)。 As an optical element, a diffraction element in which a relief pattern having a sawtooth cross-section is formed is widely used. In this type of diffractive element, optical performance deteriorates due to the flare light generated at the edge of the relief pattern, and therefore various contrivances have been made to suppress the generation of flare light and the adverse effects of flare light (for example, patents). Reference 1).
日本国特許第3717555号公報Japanese Patent No. 3717555
 特許文献1に記載の発明では、レリーフパターンを界面とする2つの層の光学材料を適切に選定することにより回折効率を高めている。しかしながら、2種類の光学材料(低屈折率高分散材料、高屈折率低分散材料)で最適なものは未だ得られていない。一方、レリーフパターンを高く形成したり、格子界面を増やしたりすることで回折効率を高めることも可能であるが、レリーフパターンを高くするとフレアが発生しやすくなり、格子界面を増やすと製造が困難になるという課題があった。 In the invention described in Patent Document 1, diffraction efficiency is increased by appropriately selecting an optical material of two layers having a relief pattern as an interface. However, an optimal one of two types of optical materials (low refractive index high dispersion material, high refractive index low dispersion material) has not yet been obtained. On the other hand, it is possible to increase the diffraction efficiency by forming a high relief pattern or increasing the grating interface. However, if the relief pattern is increased, flare is likely to occur, and manufacturing becomes difficult if the grating interface is increased. There was a problem of becoming.
 本発明は、上記従来技術の問題点に鑑み成されたものであって、フレア光が低減された光学素子の提供を目的の一つとする。 The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide an optical element with reduced flare light.
 本発明の第1の態様に係る光学素子は、レリーフパターンが形成された格子界面を有する光学部材を備える。前記レリーフパターンを構成する面のうち、この光学素子の光学軸に略平行である崖面に、前記光学部材よりも高屈折率の光学材料からなる導波路が形成されている。 The optical element according to the first aspect of the present invention includes an optical member having a lattice interface on which a relief pattern is formed. A waveguide made of an optical material having a refractive index higher than that of the optical member is formed on a cliff surface substantially parallel to the optical axis of the optical element among the surfaces constituting the relief pattern.
 また、本発明の第2の態様に係る光学素子は、レリーフパターンが形成された格子界面を有する第1の光学部材と、前記第1の光学部材の前記格子界面に密着又は近接して積層された第2の光学部材と、を備える。そして、前記レリーフパターンの構成する面のうち、この光学素子の光学軸に略平行である崖面に、前記第1の光学部材及び前記第2の光学部材よりも高屈折率の光学材料からなる導波路が形成されている。 The optical element according to the second aspect of the present invention is laminated with a first optical member having a lattice interface on which a relief pattern is formed, in close contact with or close to the lattice interface of the first optical member. And a second optical member. Of the surfaces constituting the relief pattern, a cliff surface substantially parallel to the optical axis of the optical element is made of an optical material having a higher refractive index than the first optical member and the second optical member. A waveguide is formed.
 本発明の第1及び第2の態様によれば、フレア光が低減された光学素子を提供することができる。 According to the first and second aspects of the present invention, an optical element with reduced flare light can be provided.
本発明の第1の実施形態に係る光学素子を示す部分断面図である。It is a fragmentary sectional view showing the optical element concerning a 1st embodiment of the present invention. RCWA法により光学素子の回折効率計算を行った結果を示すグラフである。It is a graph which shows the result of having performed the diffraction efficiency calculation of the optical element by RCWA method. 本発明の第2の実施形態に係る光学素子を示す部分断面図である。It is a fragmentary sectional view showing an optical element concerning a 2nd embodiment of the present invention. 導波路幅と回折効率の関係を示すグラフである。It is a graph which shows the relationship between waveguide width and diffraction efficiency. 入射光の波長と回折効率との関係を示すグラフである。It is a graph which shows the relationship between the wavelength of incident light, and diffraction efficiency. 屈折率差と回折効率との関係を示すグラフである。It is a graph which shows the relationship between a refractive index difference and diffraction efficiency. 位相ズレ量と回折効率との関係を示すグラフである。It is a graph which shows the relationship between the amount of phase shifts, and diffraction efficiency. 第2実施形態の変形例を示す部分断面図である。It is a fragmentary sectional view showing the modification of a 2nd embodiment. 第2実施形態の他の変形例を示す部分断面図である。It is a fragmentary sectional view showing other modifications of a 2nd embodiment. 従来の光学素子を示す部分断面図である。It is a fragmentary sectional view which shows the conventional optical element. RCWA法による回折効率の計算結果を示すグラフである。It is a graph which shows the calculation result of the diffraction efficiency by RCWA method. 従来の光学素子を示す部分断面図である。It is a fragmentary sectional view which shows the conventional optical element.
 以下、本発明の各実施形態について図面を参照しながら説明するが、本発明はこれらのみに限定されない。 Hereinafter, although each embodiment of the present invention will be described with reference to the drawings, the present invention is not limited to these.
 (第1の実施形態)
 図1は、本発明の第1の態様に係る実施の形態である光学素子10を示す部分断面図である。
 同光学素子10は、単層型回折光学素子(単層型DOE(Diffractive Optical Elements))である。光学素子10は、透明な光学材料からなる光学部材10Aを有しており、光学部材10Aの一方の主面(図示上面)が断面鋸歯状のレリーフパターンが形成された格子界面11とされている。
 格子界面11には、入射光Lの光軸方向に対して傾斜して形成された複数の傾斜面11aと、これら傾斜面11aとともに断面三角形状の凸条を複数形成し、入射光Lの光軸方向とほぼ平行な面として形成された複数の崖面11bとが形成されている。これらの傾斜面11aと崖面11bとが交互に配置されることで、上記レリーフパターンを形成している。
 そして、本実施形態の光学素子10では、崖面11bに、入射光Lの光軸に沿った方向のどの位置でも一様な幅(厚さ)を有する導波路12が形成されている。
(First embodiment)
FIG. 1 is a partial cross-sectional view showing an optical element 10 according to an embodiment of the first aspect of the present invention.
The optical element 10 is a single-layer diffractive optical element (single-layer DOE (Diffractive Optical Elements)). The optical element 10 includes an optical member 10A made of a transparent optical material, and one main surface (the upper surface in the drawing) of the optical member 10A is a lattice interface 11 on which a relief pattern having a sawtooth cross section is formed. .
The grating interface 11 is formed with a plurality of inclined surfaces 11a formed to be inclined with respect to the optical axis direction of the incident light L, and a plurality of ridges having a triangular cross section along with the inclined surfaces 11a. A plurality of cliff surfaces 11b formed as surfaces substantially parallel to the axial direction are formed. The relief pattern is formed by alternately arranging the inclined surface 11a and the cliff surface 11b.
In the optical element 10 of the present embodiment, the waveguide 12 having a uniform width (thickness) is formed on the cliff surface 11b at any position in the direction along the optical axis of the incident light L.
 本実施形態の光学素子10では、崖面11bに導波路12を形成したことで、回折効率を高め、設計次数以外の回折光(フレア光)を低減することができる。以下、本実施形態の光学素子10について、従来の光学素子と比較しつつ説明する。 In the optical element 10 of the present embodiment, since the waveguide 12 is formed on the cliff surface 11b, the diffraction efficiency can be increased and diffracted light (flare light) other than the designed order can be reduced. Hereinafter, the optical element 10 of the present embodiment will be described in comparison with a conventional optical element.
 図2は、RCWA(Rigorous Coupled Wave Analysis:厳密結合波解析)法により、図1に示した光学素子10の回折効率計算を行った結果を示すグラフである。
 計算モデルは、格子ピッチP1=10μm、格子高さH1=1.1μm、光学部材10Aの屈折率na=1.5、導波路12を構成する光学材料の屈折率ng=1.5+Δnとし、Δnを0.02~0.2、導波路12の幅W1を0~0.3μmの範囲で変化させた。また、入射光Lは、波長0.55μmのTE(Transverse Electric)平面波とした。
FIG. 2 is a graph showing the result of calculating the diffraction efficiency of the optical element 10 shown in FIG. 1 by the RCWA (Rigorous Coupled Wave Analysis) method.
The calculation model is as follows: grating pitch P1 = 10 μm, grating height H1 = 1.1 μm, refractive index na = 1.5 of the optical member 10A, refractive index ng = 1.5 + Δn of the optical material constituting the waveguide 12, and Δn Was changed in the range of 0.02 to 0.2, and the width W1 of the waveguide 12 was changed in the range of 0 to 0.3 μm. The incident light L was a TE (Transverse Electric) plane wave having a wavelength of 0.55 μm.
 なお、本実施形態では、入射光Lが光学部材10Aの内部から格子界面11を通過して外部へ射出されるものと仮定して計算した。実際の回折効率の計算には、空気中から光学部材10Aに入射する光線を考慮する必要があるが、導波路12の屈折率ng及び幅W1を変化させたときの回折効率の比較には全く影響しないため、計算を簡単化するために割愛した。 In the present embodiment, the calculation is made on the assumption that the incident light L is emitted from the inside of the optical member 10A through the lattice interface 11 to the outside. In the actual calculation of the diffraction efficiency, it is necessary to consider the light incident on the optical member 10A from the air. However, the diffraction efficiency when the refractive index ng and the width W1 of the waveguide 12 are changed is completely compared. I left it out to simplify the calculation because it had no effect.
 図2に示すグラフの横軸は導波路12の幅W1、縦軸は1次回折効率に対応する。図2には、Δnを、0.02~0.2の範囲において0.02刻みで変化させたときの、導波路12の幅W1に対する回折効率の変化を示す10本の曲線が併記されている。導波路12の幅W1が0(ゼロ)であるときの1次回折効率は、導波路12を備えない従来構成の光学素子の1次回折効率に相当する。 The horizontal axis of the graph shown in FIG. 2 corresponds to the width W1 of the waveguide 12, and the vertical axis corresponds to the first-order diffraction efficiency. FIG. 2 also shows 10 curves showing changes in diffraction efficiency with respect to the width W1 of the waveguide 12 when Δn is changed in increments of 0.02 in the range of 0.02 to 0.2. Yes. The first-order diffraction efficiency when the width W1 of the waveguide 12 is 0 (zero) corresponds to the first-order diffraction efficiency of an optical element having a conventional configuration that does not include the waveguide 12.
 ここで、図9は従来の光学素子を示す部分断面図である。図9に示す従来の光学素子1000は、一方の面に格子界面11が形成された光学部材1000Aからなる単層型DOEである。
 光学素子1000は、通常、単一波長でのみ、回折効率が最適化されて使用される。例えば、波長0.55μmにおいて1次光L1の回折効率が最も高くなるように、格子高さHが設定される。具体的には、導波路12を備えない光学素子1000の場合に、波長λ(μm)で最適な1次回折効率を得るための格子高さH(μm)は、光学部材1000Aの屈折率がnbであるとしたとき、H=λ/(nb-1)となるように設定される。
Here, FIG. 9 is a partial sectional view showing a conventional optical element. A conventional optical element 1000 shown in FIG. 9 is a single-layer DOE composed of an optical member 1000A having a lattice interface 11 formed on one surface.
The optical element 1000 is usually used only at a single wavelength with optimized diffraction efficiency. For example, the grating height H is set so that the diffraction efficiency of the primary light L1 is highest at a wavelength of 0.55 μm. Specifically, in the case of the optical element 1000 that does not include the waveguide 12, the grating height H (μm) for obtaining the optimum first-order diffraction efficiency at the wavelength λ (μm) is the refractive index of the optical member 1000A. When nb, it is set so that H = λ / (nb−1).
 上記式のスカラー計算による1次回折効率は100%であるが、これは格子周期(図9に示す格子ピッチP)が十分に大きい場合にのみ成立する。可視光領域での使用を想定した場合、格子ピッチPが100μm以下、あるいは50μm以下の範囲から、スカラー計算に対する厳密な計算とのずれが目立ち始める。特に、格子ピッチPが10μm程度にまで小さくなると、最大回折効率は90%程度にまで低下する。 The first-order diffraction efficiency according to the scalar calculation of the above formula is 100%, but this is valid only when the grating period (grating pitch P shown in FIG. 9) is sufficiently large. Assuming the use in the visible light region, the deviation from the strict calculation with respect to the scalar calculation starts to be noticeable when the grating pitch P is in the range of 100 μm or less or 50 μm or less. In particular, when the grating pitch P is reduced to about 10 μm, the maximum diffraction efficiency is reduced to about 90%.
 図10は、入射光Lが波長0.55μm、格子ピッチPが10μm、屈折率nbが1.5であるとしたときのRCWA法による回折効率の計算結果を示すグラフである。図10に示すグラフの横軸は格子高さH、縦軸は1次回折効率に対応する。
 図10に示すように、上記条件において最適な1次回折効率が得られる格子高さHは1.1μmであり、その時の最大回折効率は約91.3%である。すなわち、1次回折効率が最大となる格子高さHは、先に示した式から導出される格子高さ(0.55/(1.5-1)=1.1(μm))と一致するが、1次回折効率は100%とはならない。また、格子高さHが最適値1.1μmからずれると1次回折効率は大きく低下する。
FIG. 10 is a graph showing a calculation result of diffraction efficiency by the RCWA method when the incident light L is 0.55 μm in wavelength, the grating pitch P is 10 μm, and the refractive index nb is 1.5. The horizontal axis of the graph shown in FIG. 10 corresponds to the grating height H, and the vertical axis corresponds to the first-order diffraction efficiency.
As shown in FIG. 10, the grating height H at which the optimum first-order diffraction efficiency is obtained under the above conditions is 1.1 μm, and the maximum diffraction efficiency at that time is about 91.3%. That is, the grating height H at which the first-order diffraction efficiency is maximized coincides with the grating height (0.55 / (1.5-1) = 1.1 (μm)) derived from the above equation. However, the first-order diffraction efficiency is not 100%. Further, when the grating height H deviates from the optimum value 1.1 μm, the first-order diffraction efficiency is greatly reduced.
 これに対して、本実施形態の光学素子10では、図2に示すように、導波路12の幅W1を適切に選択することで、導波路12の屈折率を変化させたすべての条件において従来の光学素子1000の最大回折効率(91.3%)よりも高い1次回折効率を得ることができる。例えば、屈折率差Δn(=ng-na)が0.1である場合、導波路12の幅W1が約0.2μmのときに回折効率が約93.5%となる。 On the other hand, in the optical element 10 according to the present embodiment, as shown in FIG. 2, the optical element 10 according to the present embodiment is suitable for all conditions in which the refractive index of the waveguide 12 is changed by appropriately selecting the width W1 of the waveguide 12. 1st diffraction efficiency higher than the maximum diffraction efficiency (91.3%) of the optical element 1000 can be obtained. For example, when the refractive index difference Δn (= ng−na) is 0.1, the diffraction efficiency is about 93.5% when the width W1 of the waveguide 12 is about 0.2 μm.
 このように、本実施形態の光学素子10によれば、導波路12と光学部材10Aとの屈折率差Δn(すなわち屈折率ng、na)と、導波路12の幅W1とを適宜に選択して構成することで、導波路12を備えない従来の光学素子1000を超える回折効率を得ることができる。 As described above, according to the optical element 10 of the present embodiment, the refractive index difference Δn (that is, the refractive index ng, na) between the waveguide 12 and the optical member 10A and the width W1 of the waveguide 12 are appropriately selected. With this configuration, it is possible to obtain a diffraction efficiency that exceeds that of the conventional optical element 1000 that does not include the waveguide 12.
 本実施形態の光学素子10が、従来の光学素子1000と比べて高い回折効率を得られるのは、以下の理由によると考えられる。
 図2及び図10に示した上記の結果は、電磁場をベクトル計算(本実施形態ではRCWA法)で行った場合にのみ得られる知見であるため、幾何学的な差異に基づく説明は困難である。だが、おそらく回折効率がスカラー値よりも低下してしまう原因であるレリーフパターンの崖部分での電磁場の乱れに関係があるものと考えられる。
It is considered that the optical element 10 of the present embodiment can obtain a higher diffraction efficiency than the conventional optical element 1000 for the following reason.
The above results shown in FIGS. 2 and 10 are knowledge obtained only when the electromagnetic field is calculated by vector calculation (RCWA method in the present embodiment), and therefore it is difficult to explain based on geometrical differences. . However, it is probably related to the disturbance of the electromagnetic field at the cliff portion of the relief pattern, which is the cause of the diffraction efficiency falling below the scalar value.
 スカラー計算での回折効率計算では、格子高さがパラメータに含まれない。位相が各格子のつなぎ目でスムーズに切り替わることを前提としているからである。しかし、実際にはこの部分に位相乱れが存在する。そのため、波長に対して格子ピッチが十分に大きい場合にのみ、回折効率のスカラー計算が成り立つ。そして、格子ピッチが小さくなると、単位面積当たりのレリーフパターンの崖部分の数が増えるため、この崖部分による電磁場の乱れの比率が大きくなる。この電磁場の乱れが無視できない大きさになると、回折効率が100%を下回ることとなる。格子ピッチが10μm程度と小さい場合に回折効率の最大値が90%程度になってしまうのは、レリーフパターンの崖部分の位相乱れが大きく影響していると考えられる。 格子 In diffraction efficiency calculation with scalar calculation, the grating height is not included in the parameters. This is because it is assumed that the phase is smoothly switched at the joint of each grating. However, there is actually a phase disturbance in this part. Therefore, only when the grating pitch is sufficiently large with respect to the wavelength, the scalar calculation of the diffraction efficiency is valid. As the lattice pitch decreases, the number of relief pattern cliffs per unit area increases, and the ratio of disturbance of the electromagnetic field by the cliffs increases. If the disturbance of the electromagnetic field becomes a magnitude that cannot be ignored, the diffraction efficiency will be less than 100%. The reason why the maximum value of the diffraction efficiency is about 90% when the grating pitch is as small as about 10 μm is considered to be largely due to the phase disturbance of the cliff portion of the relief pattern.
 一方、本実施形態では、電磁場の乱れの発生箇所であるレリーフパターンの崖部分に、導波路12を設けることで、崖面11bのすぐ外側を通過する光を導波路12内に閉じこめる。そうすると、導波路12内に閉じこめられた光は、レリーフパターンの凸条部内を傾斜面11aに向かって進行する光とともにほぼ同じ位相で進行し、導波路12の先端からほぼ球面波として出力される。これにより、レリーフパターンのエッジ部において、このエッジ部の左右の位相を滑らかに接続することができる。その結果、回折効率を向上させることができるものと考えられる。 On the other hand, in the present embodiment, by providing the waveguide 12 at the cliff portion of the relief pattern where the electromagnetic field is disturbed, the light passing just outside the cliff surface 11b is confined in the waveguide 12. Then, the light confined in the waveguide 12 travels in substantially the same phase as the light traveling toward the inclined surface 11a in the convex portion of the relief pattern, and is output as a substantially spherical wave from the tip of the waveguide 12. . Thereby, in the edge part of a relief pattern, the phase on either side of this edge part can be connected smoothly. As a result, it is considered that the diffraction efficiency can be improved.
 また、図2のグラフから、屈折率差Δnが大きいほど高い回折効率が得られる一方で、1次回折効率のピーク幅が狭くなっており、導波路12の幅W1が少しずれただけで1次回折効率が大きく変化する。そして、実際の加工を考えた場合には、導波路12の幅W1を精密にコントロールするのが難しい場合もある。このような場合には、屈折率差Δnを小さめにとることで、導波路12の幅W1に誤差が生じても1次回折効率が急激に変化(低下)しないようにすることができる。例えば図2に示すように屈折率差Δnを0.1とすれば、屈折率差Δnが0.2である場合と比べ、回折効率の変化がピーク値から-0.5%以内の範囲での幅W1の許容範囲が2倍程度となる。一方、導波路12の幅W1を十分な精度で制御できる場合には、屈折率差Δnを大きくすることで非常に高い回折効率を得ることができる。 In addition, from the graph of FIG. 2, the higher the refractive index difference Δn, the higher the diffraction efficiency, while the peak width of the first-order diffraction efficiency is narrowed. The next diffraction efficiency changes greatly. In consideration of actual processing, it may be difficult to precisely control the width W1 of the waveguide 12. In such a case, the first-order diffraction efficiency can be prevented from changing (decreasing) rapidly even if an error occurs in the width W1 of the waveguide 12 by reducing the refractive index difference Δn. For example, as shown in FIG. 2, when the refractive index difference Δn is 0.1, the change in diffraction efficiency is within a range of −0.5% from the peak value compared to the case where the refractive index difference Δn is 0.2. The allowable range of the width W1 is about double. On the other hand, when the width W1 of the waveguide 12 can be controlled with sufficient accuracy, a very high diffraction efficiency can be obtained by increasing the refractive index difference Δn.
 (第2の実施形態)
 次に、本発明の第2の態様に係る光学素子の実施の形態について、図3から図7を参照しつつ説明する。
 図3は、本実施形態の光学素子を示す断面図である。
 図3に示す光学素子20は、密着複層型DOEである。光学素子20は、一方の主面(図示上面)が断面鋸歯状のレリーフパターンを有する格子界面11である光学部材20Aと、光学部材20Aの格子界面11に密着して形成された第2の光学部材20Bと、を有する。格子界面11には、入射光Lの光軸方向に対して傾斜して形成された複数の傾斜面11aと、これら傾斜面11aとともに断面三角形状の凸条を複数形成し入射光Lの光軸方向とほぼ平行な面として形成された複数の崖面11bとが形成されている。これらの傾斜面11aと崖面11bとが交互に配置されることで、上記レリーフパターンを形成している。そして、崖面11bに、入射光Lの光軸に沿った方向のどの位置でも一様な幅(厚さ)を有する導波路12が形成されている。
(Second Embodiment)
Next, an embodiment of an optical element according to the second aspect of the present invention will be described with reference to FIGS.
FIG. 3 is a cross-sectional view showing the optical element of the present embodiment.
The optical element 20 shown in FIG. 3 is a contact multilayer type DOE. The optical element 20 has an optical member 20A, which is a lattice interface 11 having a relief pattern with a sawtooth cross section on one main surface (illustrated upper surface), and a second optical element formed in close contact with the lattice interface 11 of the optical member 20A. And a member 20B. The grating interface 11 has a plurality of inclined surfaces 11a formed to be inclined with respect to the optical axis direction of the incident light L, and a plurality of ridges having a triangular cross section along with the inclined surfaces 11a. A plurality of cliff surfaces 11b formed as surfaces substantially parallel to the direction are formed. The relief pattern is formed by alternately arranging the inclined surface 11a and the cliff surface 11b. A waveguide 12 having a uniform width (thickness) is formed on the cliff surface 11b at any position in the direction along the optical axis of the incident light L.
 密着複層型DOEにおいても、RCWA法を用いたベクトル計算を行うと、レリーフパターンの崖部分において電磁場の乱れが観測される。そのため、第1の光学部材20Aの屈折率n1と、第2の光学部材20Bの屈折率n2とを最適化しても、例えば格子ピッチ20μm、格子高さ25μmのときに、1次回折効率は90%に達しない程度が最大となる。
 なお、スカラー計算では波長を最適化したときの回折効率は100%となる。これは、スカラー計算では格子高さがパラメータに含まれないためである。しかし、格子高さを小さくすることで電磁場の乱れを小さくしようとすると、第1の光学部材20Aを構成する光学材料と第2の光学部材20Bを構成する光学材料とを、屈折率分散の極めて良好な組み合わせとする必要がある。また、格子高さが小さくなると高さばらつきの影響が大きくなり、製造誤差により回折効率が大きく変動してしまうことも懸念される。これに対して、本実施形態の光学素子20は、導波路12の作用により、格子高さH2を過度に小さくすることなく従来の光学素子よりも高い回折効率を得られるようにしている。
Also in the contact multilayer DOE, when vector calculation using the RCWA method is performed, disturbance of the electromagnetic field is observed at the cliff portion of the relief pattern. Therefore, even if the refractive index n1 of the first optical member 20A and the refractive index n2 of the second optical member 20B are optimized, the first-order diffraction efficiency is 90 when the grating pitch is 20 μm and the grating height is 25 μm, for example. % Is the maximum.
In the scalar calculation, the diffraction efficiency when the wavelength is optimized is 100%. This is because the lattice height is not included in the parameters in the scalar calculation. However, if the disturbance of the electromagnetic field is reduced by reducing the grating height, the optical material constituting the first optical member 20A and the optical material constituting the second optical member 20B are extremely reduced in refractive index dispersion. A good combination is required. Further, when the grating height is reduced, the influence of height variation is increased, and there is a concern that the diffraction efficiency largely fluctuates due to manufacturing errors. On the other hand, the optical element 20 of the present embodiment can obtain a higher diffraction efficiency than the conventional optical element without excessively reducing the grating height H2 due to the action of the waveguide 12.
 以下では、光学素子20について、ガラス素材を用いて構成した場合における導波路12の構成(幅W2、屈折率ng)と回折効率の関係について検証した。 Hereinafter, the optical element 20 was verified with respect to the relationship between the configuration (width W2, refractive index ng) of the waveguide 12 and the diffraction efficiency when the optical element 20 was configured using a glass material.
 光学素子20について、下記の表1に示す材料により構成した。 The optical element 20 was composed of the materials shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表1に示すN-SF2(商品名)は低屈折率高分散材であり、N-BAF10(商品名)は高屈折率低分散材である。回折効率を計算するための各波長の屈折率は、Schott社から開示されている分散式の定数を用い、下記のセルマイヤーの分散式を用いて算出した。表1に記載した波長0.62μmにおける屈折率は下式により算出した。
 n2(λ)-1={B1λ2/(λ2-C1)}+{B2λ2/(λ2-C2)}+{B3λ2/(λ2-C3)}
N-SF2 (trade name) shown in Table 1 is a low refractive index and high dispersion material, and N-BAF10 (trade name) is a high refractive index and low dispersion material. The refractive index of each wavelength for calculating the diffraction efficiency was calculated using the following Cermeier dispersion formula using the constants of the dispersion formula disclosed by Schott. The refractive index at a wavelength of 0.62 μm described in Table 1 was calculated by the following equation.
n 2 (λ) -1 = {B 1 λ 2 / (λ 2 -C 1 )} + {B 2 λ 2 / (λ 2 -C 2 )} + {B 3 λ 2 / (λ 2 -C 3 )}
 また光学素子20の格子ピッチP2は20μmとした。
 格子高さH2は波長0.62μmで最適化した値とした。すなわち、第1の光学部材20Aを構成する光学材料(N-SF2)と、第2の光学部材20Bを構成する光学材料(N-BAF10)との波長0.62μmにおける屈折率差Δn620から、波長0.62μmでのブレーズ条件に一致する高さを算出して用いた。以下に計算式を示す。
 Δn620=1.66785-1.64481=0.02304
 H2=λ/Δn620=26.9095(μm)
 なお、導波路12を構成する光学材料(N-LAK12)と第2の光学部材20Bを構成する光学材料(N-BAF10)との屈折率差Δnは、1.67600-1.66785=0.00815である。
The grating pitch P2 of the optical element 20 was 20 μm.
The grating height H2 was optimized at a wavelength of 0.62 μm. That is, from the refractive index difference Δn 620 at a wavelength of 0.62 μm between the optical material (N-SF2) constituting the first optical member 20A and the optical material (N-BAF10) constituting the second optical member 20B, A height corresponding to the blaze condition at a wavelength of 0.62 μm was calculated and used. The calculation formula is shown below.
Δn 620 = 1.66785-1.44481 = 0.02304
H2 = λ / Δn 620 = 26.9095 (μm)
Note that the refractive index difference Δn between the optical material (N-LAK12) constituting the waveguide 12 and the optical material (N-BAF10) constituting the second optical member 20B is 1.667600-1.66785 = 0. [00815].
 ここで図11は、第1の光学部材2000Aの格子界面11に第2の光学部材2000Bが密着形成された密着複層型DOEを示す図である。
 比較のために、図11に示す従来の光学素子2000について、導波路12を設けない以外は同様とした条件を設定した。具体的に、格子ピッチ20μm、格子高さ26.9095μm、第1の光学部材20Aを構成する光学材料をN-SF2(屈折率1.64481)、第2の光学部材20Bを構成する光学材料をN-BAF10(屈折率1.66785)とした。
Here, FIG. 11 is a diagram showing a contact multilayer DOE in which the second optical member 2000B is formed in close contact with the lattice interface 11 of the first optical member 2000A.
For comparison, the same conditions were set for the conventional optical element 2000 shown in FIG. 11 except that the waveguide 12 was not provided. Specifically, the grating pitch is 20 μm, the grating height is 26.9095 μm, the optical material constituting the first optical member 20A is N-SF2 (refractive index 1.64481), and the optical material constituting the second optical member 20B is used. N-BAF10 (refractive index: 1.667785) was used.
 以上の条件のもと、入射光をTE平面波(波長0.62μm)、入射光の波長域を可視光域(0.42~0.75μm)としてRCWA法による計算を行った。
 なお、本実施形態においても、簡単のために、入射光Lが第1の光学部材20A(2000A)から格子界面11を通過して第1の光学部材20B(2000B)に入射するときの第2の光学部材20B(2000B)内部での回折効率を計算した。実際の回折効率の計算には、第1の光学部材20A(2000A)の外側から第1の光学部材20A(2000A)内へ入射する光線、及び第2の光学部材20B(2000B)から外部へ射出される光線を考慮する必要があるが、導波路12の構成を変化させたときの回折効率の比較には全く影響しないため、ここでは割愛した。
Under the above conditions, the calculation was performed by the RCWA method with the incident light as the TE plane wave (wavelength 0.62 μm) and the wavelength range of the incident light as the visible light range (0.42 to 0.75 μm).
Also in the present embodiment, for the sake of simplicity, the second incident light L when the incident light L passes through the lattice interface 11 from the first optical member 20A (2000A) and enters the first optical member 20B (2000B). The diffraction efficiency inside the optical member 20B (2000B) was calculated. In the actual calculation of diffraction efficiency, the light incident on the first optical member 20A (2000A) from the outside of the first optical member 20A (2000A) and the light emitted from the second optical member 20B (2000B) to the outside. Although it is necessary to consider the light beam to be used, it is omitted here because it does not affect the comparison of diffraction efficiency when the configuration of the waveguide 12 is changed.
 図4は、計算により得られた導波路12の幅W2と1次回折効率との関係を示すグラフである。
 図4に示すように、導波路幅W2が1.175μm(図示の交点Q)未満の範囲において、本実施形態の光学素子20は、従来の光学素子2000の1次回折効率(導波路幅W2=0μmの位置)よりも高い回折効率を得ることができる。また、導波路幅W2=0.07μmのときに最大の回折効率(約95.5%)が得られている。
FIG. 4 is a graph showing the relationship between the width W2 of the waveguide 12 and the first-order diffraction efficiency obtained by calculation.
As shown in FIG. 4, in the range where the waveguide width W2 is less than 1.175 μm (intersection Q in the figure), the optical element 20 of the present embodiment has the first-order diffraction efficiency (waveguide width W2) of the conventional optical element 2000. = 0 μm position) can be obtained. In addition, the maximum diffraction efficiency (about 95.5%) is obtained when the waveguide width W2 = 0.07 μm.
 次に、図5は、入射光Lの波長と1次回折効率との関係を示すグラフである。
 図5に示すように、導波路幅W2が0.2μm~0.8μmの範囲において、計算した全ての波長域で従来の光学素子2000の回折効率(図中点線で示すW2=0μmの条件)を上回る回折効率が得られている。特に、導波路幅W2が0.6μm~0.8μmの範囲では、全ての波長域で安定して従来の光学素子2000の回折効率を上回っている。
Next, FIG. 5 is a graph showing the relationship between the wavelength of the incident light L and the first-order diffraction efficiency.
As shown in FIG. 5, when the waveguide width W2 is in the range of 0.2 μm to 0.8 μm, the diffraction efficiency of the conventional optical element 2000 in all the calculated wavelength ranges (condition of W2 = 0 μm indicated by the dotted line in the figure) A diffraction efficiency exceeding 1 is obtained. In particular, when the waveguide width W2 is in the range of 0.6 μm to 0.8 μm, it stably exceeds the diffraction efficiency of the conventional optical element 2000 in all wavelength regions.
 次に、図6は、導波路幅W2を0.8μmに固定し、導波路12と第2の光学部材20Bとの屈折率差Δnを0~0.1の範囲で変化させたときの1次回折効率の変化を、TE平面波についてRCWA法により計算した結果を示すグラフである。
 図6に示すように、導波路幅W2を0.8μmで固定し、導波路12の屈折率を第2の光学部材20Bの屈折率よりも少しずつ大きくすると、まず、屈折率差Δnが0.008付近の位置M1で1次回折効率が極大値をとっている。さらに導波路12の屈折率を大きくすると、1次回折効率が急激に低下する。これは、導波路12内を進む光の位相が導波路12の外側を進む光の位相とずれてしまうために、導波路12の先端(レリーフパターンのエッジ部)において電磁場の乱れが生じるからであると考えられる。しかし、屈折率差Δnをさらに大きくすると、屈折率差Δnが0.025を超える辺りで1次回折効率は上昇に転じ、Δnが0.04付近である位置M2において再度極大値をとっている。位置M2における1次回折効率も従来の光学素子2000の回折効率を上回っている。これは、1つめの極大値の位置M1から位相がちょうど2πずれたために、導波路12内を進行する光の位相と導波路12の外側を進行する光の位相が揃ったためである。
Next, FIG. 6 shows 1 when the waveguide width W2 is fixed to 0.8 μm and the refractive index difference Δn between the waveguide 12 and the second optical member 20B is changed in the range of 0 to 0.1. It is a graph which shows the result of having calculated the change of the next diffraction efficiency by RCWA method about TE plane wave.
As shown in FIG. 6, when the waveguide width W2 is fixed at 0.8 μm and the refractive index of the waveguide 12 is gradually increased from the refractive index of the second optical member 20B, first, the refractive index difference Δn is 0. The first-order diffraction efficiency has a maximum value at a position M1 near .008. Further, when the refractive index of the waveguide 12 is increased, the first-order diffraction efficiency rapidly decreases. This is because the phase of the light traveling inside the waveguide 12 is shifted from the phase of the light traveling outside the waveguide 12, so that disturbance of the electromagnetic field occurs at the tip of the waveguide 12 (the edge portion of the relief pattern). It is believed that there is. However, when the refractive index difference Δn is further increased, the first-order diffraction efficiency starts to increase around the refractive index difference Δn exceeding 0.025, and takes the local maximum again at the position M2 where Δn is near 0.04. . The first-order diffraction efficiency at the position M2 is also higher than the diffraction efficiency of the conventional optical element 2000. This is because the phase of the light traveling in the waveguide 12 and the phase of the light traveling outside the waveguide 12 are aligned because the phase is shifted by 2π from the first maximum position M1.
 ここで、図7は、図6に示した計算結果を、横軸を位相ズレ量に変換してプロットしたグラフである。位相ズレ量とは、導波路12中を進行する光と第2の光学部材20Bを進行する光との間に生じる位相差を意味する。位相ズレ量が0の位置は、導波路12の有効屈折率が第2の光学部材20Bの屈折率に一致し、スラブ型導波路の基本モードが成立する場合であって、図6におけるM1の点に相当する。そして、図7に示す1次回折効率のピークは、2πずつずれていることから、位相が2π×N(N:自然数)ずつずれていても導波路12の条件としては許容されることが分かる。また、回折効率が極大値をとる位置からの位相ズレ量についても、±0.25π~±0.4π程度は許容される。 Here, FIG. 7 is a graph in which the calculation result shown in FIG. 6 is plotted with the horizontal axis converted into a phase shift amount. The amount of phase shift means a phase difference generated between light traveling in the waveguide 12 and light traveling in the second optical member 20B. The position where the phase shift amount is 0 is a case where the effective refractive index of the waveguide 12 matches the refractive index of the second optical member 20B, and the fundamental mode of the slab waveguide is established. It corresponds to a point. Since the peak of the first-order diffraction efficiency shown in FIG. 7 is shifted by 2π, it can be understood that the condition of the waveguide 12 is allowed even if the phase is shifted by 2π × N (N: natural number). . Further, the phase shift amount from the position where the diffraction efficiency takes the maximum value is allowed to be about ± 0.25π to ± 0.4π.
 以上の第2実施形態の光学素子においても、従来の密着複層型DOEに対して高い回折効率が得られるのは、先の第1実施形態と同様の理由によると考えられる。すなわち、レリーフパターンの崖部分に形成された導波路12によって崖部分近傍の光を閉じこめ、導波路12の先端からほぼ球面波として射出させることで、レリーフパターンのエッジ部において位相を滑らかに接続させることができる。その結果、回折効率を向上させることができると考えられる。 Also in the optical element of the second embodiment described above, it is considered that the high diffraction efficiency is obtained with respect to the conventional multi-layer DOE because of the same reason as in the first embodiment. That is, light in the vicinity of the cliff portion is confined by the waveguide 12 formed on the cliff portion of the relief pattern, and the phase is smoothly connected at the edge portion of the relief pattern by emitting the light as a substantially spherical wave from the tip of the waveguide 12. be able to. As a result, it is considered that the diffraction efficiency can be improved.
 [変形例]
 図8A及び8Bは、本実施形態の光学素子20の変形例を示す図である。図8Aは第1変形例、図8Bは第2変形例に対応する。
 図8A及び8Bに示す光学素子201及び光学素子202は、いずれも、第1の光学部材20Aの格子界面11を覆って形成された高屈折率層121を有している。高屈折率層121は、上記実施形態の光学素子20における導波路12と同様、第1の光学部材20A及び第2の光学部材20Bのいずれよりも高い屈折率を有する光学材料を用いて形成されている。
[Modification]
8A and 8B are diagrams showing a modification of the optical element 20 of the present embodiment. 8A corresponds to the first modification, and FIG. 8B corresponds to the second modification.
Each of the optical element 201 and the optical element 202 shown in FIGS. 8A and 8B has a high refractive index layer 121 formed so as to cover the lattice interface 11 of the first optical member 20A. The high refractive index layer 121 is formed using an optical material having a higher refractive index than either of the first optical member 20A and the second optical member 20B, similarly to the waveguide 12 in the optical element 20 of the above embodiment. ing.
 光学素子201と光学素子202との違いは、格子界面11の構成のみであり、光学素子201がこの光学素子201に垂直に入射する光Lに対して用いられるものであるのに対して、光学素子202は、この光学素子202に対して斜め方向から入射する光Lに対して用いられる。そのため、光学素子202では、格子界面11の崖面11bが、光学素子202における水平面202aの法線方向(図示上下方向)に対して交差する傾斜面として形成されている。ただし、光学素子202における入射光Lと崖面11bとの関係は、光学素子201と同様であり、崖面11bは入射光Lの光軸に対してほぼ平行に形成されている。 The difference between the optical element 201 and the optical element 202 is only the configuration of the lattice interface 11, and the optical element 201 is used for the light L incident perpendicularly to the optical element 201, whereas the optical element 201 is optical. The element 202 is used for light L incident on the optical element 202 from an oblique direction. Therefore, in the optical element 202, the cliff surface 11b of the lattice interface 11 is formed as an inclined surface that intersects the normal direction (vertical direction in the figure) of the horizontal plane 202a in the optical element 202. However, the relationship between the incident light L and the cliff 11b in the optical element 202 is the same as that of the optical element 201, and the cliff 11b is formed substantially parallel to the optical axis of the incident light L.
 変形例に係る光学素子201、202においても、高屈折率層121が崖面11b上に形成されていることで、先の実施形態と同様に、回折効率を高め、フレア光を低減する効果を得ることができる。なお、変形例に係る光学素子201、202では、崖面11bのみならず、格子界面11の全体が高屈折率層121に覆われているが、高屈折率層121のうち、傾斜面11a上に形成された部分は、光学素子201、202の光学特性に影響しない。これは、この部分が高屈折率層121を透過する光に対して一様な位相差を与えるだけであるから、光学素子全体で見たときには、変化がないのと同じになるためである。 Also in the optical elements 201 and 202 according to the modified example, the high refractive index layer 121 is formed on the cliff surface 11b, so that the effect of increasing the diffraction efficiency and reducing the flare light as in the previous embodiment. Obtainable. In the optical elements 201 and 202 according to the modified example, not only the cliff surface 11b but also the entire lattice interface 11 is covered with the high refractive index layer 121. Of the high refractive index layer 121, on the inclined surface 11a. The portion formed in does not affect the optical characteristics of the optical elements 201 and 202. This is because this portion only gives a uniform phase difference to the light transmitted through the high refractive index layer 121, so that it is the same as no change when viewed from the whole optical element.
 なお、光学素子201及び202において光学部材20Bを空気層とした素子も構成可能であるが、この場合、高屈折率層121と空気層の間の屈折率差は光学部材20Aと空気層の間の屈折率差よりも大きいため、傾斜面11a上に高屈折率層121が形成されることによる反射損失の増大を生じうる。かかる反射損失を低減するためには、傾斜面11a上の高屈折率層121の屈折率及び膜厚を考慮して、適切な反射防止膜を設ければ良い。また、反射防止膜を設ける代わりに、傾斜面11a上の高屈折率層121の膜厚tを、反射防止条件、すなわち、t=Mλ/2ng (M=1,2,...)を満たすように形成しても良い。 In the optical elements 201 and 202, an element in which the optical member 20B is an air layer can be configured. In this case, the refractive index difference between the high refractive index layer 121 and the air layer is between the optical member 20A and the air layer. Therefore, the reflection loss may increase due to the formation of the high refractive index layer 121 on the inclined surface 11a. In order to reduce such reflection loss, an appropriate antireflection film may be provided in consideration of the refractive index and film thickness of the high refractive index layer 121 on the inclined surface 11a. Further, instead of providing the antireflection film, the film thickness t of the high refractive index layer 121 on the inclined surface 11a satisfies the antireflection condition, that is, t = Mλ / 2ng (M = 1, 2,...). You may form as follows.
 また、上記実施の形態では、基材がガラス材料である場合について説明したが、上記実施形態及び変形例の構成は、国際公開第WO2006/068137号公報に開示されているような、2種類の樹脂からなる密着複層型DOEにも適用することができる。 Further, in the above embodiment, the case where the base material is a glass material has been described. However, the configuration of the above embodiment and the modified example includes two types as disclosed in International Publication No. WO2006 / 068137. The present invention can also be applied to a contact multilayer DOE made of a resin.
 また、上記導波路を形成することによる作用効果及び導波路の条件は、以下に詳細を示すように、理論的にも説明することができる。 Also, the operation effect and the conditions of the waveguide by forming the waveguide can be theoretically explained as will be described in detail below.
 図3に示した光学素子20において、波長λ、ブレーズ格子の入射側媒質(媒質1;第1の光学部材20A)の屈折率n、射出側媒質(媒質2;第2の光学部材20B)の屈折率n、格子深さH(崖面11bの高さ)とする。格子側面に付加した高屈折率部材(導波路12)の屈折率ng、幅をWgとする。理想的なブレーズ格子は格子透過後に格子で分断された波面がうまく接合され、そのため特定の方向にエネルギーが集中して回折される。この条件は良く知られるように、下記式(1)で示される。 In the optical element 20 shown in FIG. 3, the wavelength λ, the refractive index n 1 of the incident side medium (medium 1; first optical member 20A) of the blazed grating, and the exit side medium (medium 2; second optical member 20B) refractive index n 2 of the grating depth H (height Gakemen 11b). The refractive index ng and the width of the high refractive index member (waveguide 12) added to the side surface of the grating are Wg. In an ideal blazed grating, wavefronts separated by the grating after passing through the grating are well joined, so that energy is concentrated and diffracted in a specific direction. As is well known, this condition is represented by the following formula (1).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 ところで、実際のブレーズ格子では、波面伝播時に、格子側面の左右で屈折率が異なるために波面が乱れる。これは格子側面で散乱され、波面が拡がってしまうため、とも解釈できる。その結果、格子透過後に波面がうまくつながらず、理想的なブレーズ格子から予測される値よりも回折効率が低下してしまう。ブレーズ格子の側面に高屈折率部材を付加し、この導波路構造により光を閉じ込める事で散乱による波面乱れを抑え、回折効率の低下を抑制する事が可能となる。このために必要な光の閉じ込め条件を考える。一般的な非対称スラブ型導波路について、光を導波路内に閉じ込めるための条件は、TEモードについて下記条件式(2)及び(3)で、TMモードについて下記条件式(4)及び(5)で示されている(下記文献参照)。
 (文献) A.Yariv Quantum Electronics, 2nd ed. P512
By the way, in an actual blazed grating, the wavefront is disturbed during wavefront propagation because the refractive index differs between the left and right sides of the grating side surface. This can be interpreted as it is scattered on the grating side surface and the wavefront spreads. As a result, the wavefront does not succeed after the grating is transmitted, and the diffraction efficiency is lower than the value predicted from an ideal blazed grating. By adding a high refractive index member to the side surface of the blazed grating and confining light by this waveguide structure, it becomes possible to suppress wavefront disturbance due to scattering and to suppress a decrease in diffraction efficiency. Consider the light confinement conditions necessary for this. Regarding a general asymmetric slab waveguide, the conditions for confining light in the waveguide are the following conditional expressions (2) and (3) for the TE mode, and the following conditional expressions (4) and (5) for the TM mode: (See the following document).
(Reference) A. Yariv Quantum Electronics, 2nd ed. P512
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 ここに、neffは格子側面の高屈折率部材(導波路)の有効屈折率に相当する。この式のWよりも導波路幅Wgを広くしてやれば、光を閉じ込めることが可能である。すなわち、本発明の態様の導波路幅Wgは、TE波とTM波のそれぞれについて式(6)及び式(7)によって表される。 Here, n eff corresponds to the effective refractive index of the high refractive index member (waveguide) on the side surface of the grating. If the waveguide width Wg is made wider than W in this equation, light can be confined. That is, the waveguide width Wg according to the aspect of the present invention is expressed by Expression (6) and Expression (7) for each of the TE wave and the TM wave.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 また、部分偏光の光を含む一般の光に関しては、偏光成分のうちTE成分の強度割合をα、TM成分の強度割合をβ、非偏光成分の強度割合を1-α-β(ただしα+β≦1)とし、下記式(8)及び式(9)により導波路厚Wgを求めればよい。式(8)は、Wgに対するTE成分の寄与がαWTE、TM成分の寄与がβWTM、非偏光成分の寄与が{(WTE+WTM)/2}×(1-α-β)であることから導かれる。
Figure JPOXMLDOC01-appb-M000018
For general light including partially polarized light, the intensity ratio of the TE component of the polarization component is α, the intensity ratio of the TM component is β, and the intensity ratio of the non-polarization component is 1−α−β (where α + β ≦ 1), and the waveguide thickness Wg may be obtained by the following equations (8) and (9). In Equation (8), the contribution of the TE component to Wg is αW TE , the contribution of the TM component is βW TM , and the contribution of the non-polarization component is {(W TE + W TM ) / 2} × (1−α−β). Derived from being.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 なお、高屈折率部材はブレーズの効果を持たないので、導波路幅Wgは大きければ大きいほど効率の損失をもたらす。したがって効率の観点からは閉じ込め条件を満足する範囲でWgはなるべく小さいほうが良く、式(6)、(7)、(9)においてWgが最も小さい条件、すなわち各式で等号が成立する条件において効率が最も高くなる。 In addition, since the high refractive index member does not have a blaze effect, the larger the waveguide width Wg, the higher the efficiency loss. Therefore, from the viewpoint of efficiency, Wg should be as small as possible within the range satisfying the confinement conditions. In the conditions where Wg is the smallest in the equations (6), (7), and (9), that is, in the conditions where the equal sign is established in each equation. Efficiency is highest.
 次に、導波路の波面と媒質1、媒質2を透過する波面の位相がほぼ揃う条件、いわゆる位相整合条件を検討する。
 TE波に関して位相が揃う条件は、式(2)及び(3)を連立させて解いて得られる有効屈折率neff,TEを用い、Hを格子高さ、nをn,nの大きい方であるとして、下記式(10)で表すことができる。また、TM波に関する位相整合条件は同様に式(11)で表される。
Next, a condition in which the wavefronts of the waveguide and the wavefronts transmitted through the medium 1 and the medium 2 are substantially in phase, so-called phase matching conditions, will be examined.
The conditions for aligning the phases of the TE wave are to use the effective refractive index n eff, TE obtained by solving equations (2) and (3) simultaneously, where H is the grating height, and n is large in n 1 and n 2 . Can be expressed by the following formula (10). Similarly, the phase matching condition for the TM wave is expressed by Expression (11).
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 実際には位相差が2πN±0.2πの範囲内で位相整合すれば効率向上の効果が認められるので、TE波及びTM波に関する本発明の態様の位相整合条件は、それぞれ下記式(12)~(13)で表される。
Figure JPOXMLDOC01-appb-M000021
In practice, if phase matching is performed within the range of 2πN ± 0.2π, an effect of improving efficiency is recognized. Therefore, the phase matching conditions of the aspect of the present invention relating to the TE wave and TM wave are expressed by the following formula (12), respectively. It is represented by (13).
Figure JPOXMLDOC01-appb-M000021
 一方、部分偏光を含む一般の光に関する本発明の態様の位相整合条件は、上記の議論に基づいて、式(8)と同様に式(14)により表される。 On the other hand, the phase matching condition of the aspect of the present invention relating to general light including partially polarized light is expressed by the equation (14) similarly to the equation (8) based on the above discussion.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 上記各式は、図6、図7のグラフにより検証される。図6に示すピークM1,M2,M3らは、(9)式に示されるように位相がN周期ずれている。N=0、即ちneff-n=0は、導波路基本モードのみが成立する状態であるが、このとき導波路を進む光と屈折率nの部材内を進む光が最も位相乱れの少ない状態となる。そのため、ピークM1は最も高い1次回折効率を示している。 Each of the above equations is verified by the graphs of FIGS. The peaks M1, M2, M3, etc. shown in FIG. 6 are out of phase by N periods as shown in equation (9). N = 0, that is, n eff −n = 0, is a state in which only the waveguide fundamental mode is established. At this time, the light traveling through the waveguide and the light traveling through the member having the refractive index n have the least phase disturbance. It becomes. Therefore, the peak M1 shows the highest first-order diffraction efficiency.
 また、各ピークはピンポイントではなく幅をもっている。図6では、横軸0,2(N=0、1)の時を中心に、およそ±1/8周期分の幅でディフォルト効率値(高屈折部材を設けない場合の効率値)を越えている。したがって、N=0及び1の場合には、それぞれ2π(N±0.125)の範囲内で位相整合させることがより好ましい。 Also, each peak is not pinpoint but has a width. In FIG. 6, the default efficiency value (efficiency value when no highly refractive member is not provided) is exceeded by a width of about ± 1/8 period centering on the time of the horizontal axis 0, 2 (N = 0, 1). Yes. Therefore, when N = 0 and 1, it is more preferable to perform phase matching within a range of 2π (N ± 0.125).
 以上説明の各実施の形態によれば、エッジ部における透過光の位相乱れを抑制でき、フレア光が低減された光学素子を提供することができる。
 なお、各実施の形態で説明した光学素子は、投影装置(ステッパー、液晶プロジェクタ等)の光学系、撮影装置(カメラ等)の光学系、及び観察装置(顕微鏡、双眼鏡等)の光学系に用いることができ、いずれの光学系においてもフレア光を低減する効果を得ることができる。
According to each embodiment described above, it is possible to provide an optical element in which the phase disturbance of transmitted light at the edge portion can be suppressed and flare light is reduced.
The optical elements described in each embodiment are used for an optical system of a projection apparatus (stepper, liquid crystal projector, etc.), an optical system of a photographing apparatus (camera, etc.), and an optical system of an observation apparatus (microscope, binoculars, etc.). In any optical system, the effect of reducing flare light can be obtained.
 本発明によれば、フレア光が低減された光学素子を提供することができる。 According to the present invention, an optical element with reduced flare light can be provided.
 10,20 光学素子
 10A 光学部材
 11 格子界面
 11a 傾斜面
 11b 崖面
 12 導波路
 20A 第1の光学部材
 20B 第2の光学部材
 
10, 20 Optical element 10A Optical member 11 Lattice interface 11a Inclined surface 11b Cliff surface 12 Waveguide 20A First optical member 20B Second optical member

Claims (7)

  1.  レリーフパターンが形成された格子界面を有する光学部材を備えた光学素子であって、
     前記レリーフパターンを構成する面のうち、この光学素子の光学軸に略平行である崖面に、前記光学部材よりも高屈折率の光学材料からなる導波路が形成されていることを特徴とする光学素子。
    An optical element including an optical member having a lattice interface on which a relief pattern is formed,
    A waveguide made of an optical material having a refractive index higher than that of the optical member is formed on a cliff surface substantially parallel to the optical axis of the optical element among the surfaces constituting the relief pattern. Optical element.
  2.  レリーフパターンが形成された格子界面を有する第1の光学部材と、前記第1の光学部材の前記格子界面に密着又は近接して積層された第2の光学部材と、を備えた光学素子であって、
     前記レリーフパターンを構成する面のうち、この光学素子の光学軸に略平行である崖面に、前記第1の光学部材及び前記第2の光学部材よりも高屈折率の光学材料からなる導波路が形成されていることを特徴とする光学素子。
    An optical element comprising: a first optical member having a lattice interface on which a relief pattern is formed; and a second optical member laminated in close contact with or close to the lattice interface of the first optical member. And
    A waveguide made of an optical material having a higher refractive index than the first optical member and the second optical member, on a cliff surface substantially parallel to the optical axis of the optical element among the surfaces constituting the relief pattern. An optical element is formed.
  3.  前記導波路を構成する光学材料からなる高屈折率層が、前記格子界面を覆って形成されていることを特徴とする請求項1又は2に記載の光学素子。 3. The optical element according to claim 1, wherein a high refractive index layer made of an optical material constituting the waveguide is formed so as to cover the lattice interface.
  4.  前記導波路の幅WgがWg≧Wであることを特徴とする請求項1又は2に記載の光学素子。
     ただし、前記Wは下記式(E1)により定義される値である。
     ここで、WTE及びWTMは、前記格子界面を構成する媒質の屈折率をn及びn、導波路を構成する光学材料の屈折率をng、使用波長をλとしたときに、下記式(E2)~(E5)により定義される値であり、式(E3)及び(E5)におけるneff,TE及びneff,TMは、前記導波路のTE成分及びTM成分に関する有効屈折率であり、α及びβは、それぞれ、前記波長λの光のTE成分及びTM成分の強度割合(ただしα+β≦1)である。
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    The optical element according to claim 1, wherein a width Wg of the waveguide satisfies Wg ≧ W.
    However, W is a value defined by the following formula (E1).
    Here, W TE and W TM are as follows when the refractive index of the medium constituting the lattice interface is n 1 and n 2 , the refractive index of the optical material constituting the waveguide is ng, and the wavelength used is λ. These are values defined by the equations (E2) to (E5), and n eff, TE and n eff, TM in the equations (E3) and (E5) are effective refractive indexes relating to the TE component and TM component of the waveguide. Where α and β are the intensity ratios of the TE component and the TM component of the light having the wavelength λ (where α + β ≦ 1), respectively.
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
  5.  請求項1又は2に記載の光学素子を備えた光学系であって、
     前記光学素子に入射する光の波長がλ、前記光のTE成分とTM成分の強度割合がそれぞれα及びβ(ただしα+β≦1)であり、
     前記光学素子の導波路の幅WgがWg≧Wであることを特徴とする光学系。
     ただし、前記Wは下記式(E1)により定義される値である。
     ここで、WTE及びWTMは、前記格子界面を構成する媒質の屈折率をn及びn、導波路を構成する光学材料の屈折率をngとしたときに、下記式(E2)~(E5)により定義される値であり、式(E3)及び(E5)におけるneff,TE及びneff,TMは前記導波路のTE成分及びTM成分に関する有効屈折率である。
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
    An optical system comprising the optical element according to claim 1 or 2,
    The wavelength of light incident on the optical element is λ, the intensity ratio of the TE component and TM component of the light is α and β (where α + β ≦ 1),
    An optical system characterized in that a waveguide width Wg of the optical element satisfies Wg ≧ W.
    However, W is a value defined by the following formula (E1).
    Here, W TE and W TM are the following formulas (E2) to (E2), where n 1 and n 2 are the refractive indexes of the medium constituting the lattice interface, and ng is the refractive index of the optical material constituting the waveguide. (E5) is a value defined by (E5), and n eff, TE and n eff, TM in the equations (E3) and (E5) are effective refractive indexes related to the TE component and TM component of the waveguide.
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
    Figure JPOXMLDOC01-appb-M000006
  6.  請求項1又は2に記載の光学素子であって、
     前記導波路の幅をWg、前記格子界面を構成する媒質の屈折率をn及びn、導波路を構成する光学材料の屈折率をng、使用波長をλとしたときに、下記式(E6)を満足することを特徴とする光学素子。
    Figure JPOXMLDOC01-appb-M000007
     ここで、Hは前記崖面の高さ、nは前記屈折率nおよびnのうち大きい方の値、α及びβはそれぞれ前記波長λの光のTE成分及びTM成分の強度割合(ただしα+β≦1)であり、neff,TE及びneff,TMはそれぞれ下記式(E2)~(E5)によって定義されるTE成分及びTM成分に関する有効屈折率であり、式(E2)~(E5)においてWTE=WTM=Wgである。
    Figure JPOXMLDOC01-appb-M000008
    Figure JPOXMLDOC01-appb-M000009
    The optical element according to claim 1 or 2,
    When the width of the waveguide is Wg, the refractive index of the medium constituting the lattice interface is n 1 and n 2 , the refractive index of the optical material constituting the waveguide is ng, and the wavelength used is λ, the following formula ( An optical element satisfying E6).
    Figure JPOXMLDOC01-appb-M000007
    Here, H is the height of the cliff face, n is the larger value of the refractive indexes n 1 and n 2 , and α and β are the intensity ratios of the TE component and TM component of the light of the wavelength λ, respectively (however, α + β ≦ 1), and n eff, TE and n eff, TM are effective refractive indexes for the TE component and the TM component defined by the following equations (E2) to (E5), respectively, and the equations (E2) to (E5 ) W TE = W TM = Wg.
    Figure JPOXMLDOC01-appb-M000008
    Figure JPOXMLDOC01-appb-M000009
  7.  請求項1又は2に記載の光学素子を備えた光学系であって、
     前記光学素子に入射する光の波長がλ、前記光のTE成分とTM成分の強度割合がそれぞれα及びβ(ただしα+β≦1)、前記導波路の幅がWgであり、
     下記式(E6)を満足することを特徴とする光学系。
    Figure JPOXMLDOC01-appb-M000010
     ここで、Hは前記崖面の高さ、nは前記屈折率nおよびnのうち大きい方の値、α及びβはそれぞれ前記波長λの光のTE成分及びTM成分の強度割合(ただしα+β≦1)であり、neff,TE及びneff,TMはそれぞれ下記式(E2)~(E5)によって定義されるTE成分及びTM成分に関する有効屈折率であり、式(E2)~(E5)においてWTE=WTM=Wgである。
    Figure JPOXMLDOC01-appb-M000011
    Figure JPOXMLDOC01-appb-M000012
     
    An optical system comprising the optical element according to claim 1 or 2,
    The wavelength of light incident on the optical element is λ, the intensity ratios of the TE component and TM component of the light are α and β (where α + β ≦ 1), respectively, and the width of the waveguide is Wg,
    An optical system characterized by satisfying the following formula (E6).
    Figure JPOXMLDOC01-appb-M000010
    Here, H is the height of the cliff face, n is the larger value of the refractive indexes n 1 and n 2 , and α and β are the intensity ratios of the TE component and TM component of the light of the wavelength λ, respectively (however, α + β ≦ 1), and n eff, TE and n eff, TM are effective refractive indexes for the TE component and the TM component defined by the following equations (E2) to (E5), respectively, and the equations (E2) to (E5 ) W TE = W TM = Wg.
    Figure JPOXMLDOC01-appb-M000011
    Figure JPOXMLDOC01-appb-M000012
PCT/JP2011/052848 2010-02-15 2011-02-10 Optical element and optical system WO2011099550A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011553882A JPWO2011099550A1 (en) 2010-02-15 2011-02-10 Optical element and optical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010030435 2010-02-15
JP2010-030435 2010-12-20

Publications (1)

Publication Number Publication Date
WO2011099550A1 true WO2011099550A1 (en) 2011-08-18

Family

ID=44367820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052848 WO2011099550A1 (en) 2010-02-15 2011-02-10 Optical element and optical system

Country Status (2)

Country Link
JP (1) JPWO2011099550A1 (en)
WO (1) WO2011099550A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257689A (en) * 2010-06-11 2011-12-22 Canon Inc Diffraction optical element, optical system and optical equipment
JP2013125259A (en) * 2011-12-16 2013-06-24 Canon Inc Diffractive optical element, optical system, and optical apparatus
JP2014170109A (en) * 2013-03-04 2014-09-18 Canon Inc Diffraction optical element, optical system and optical device
JP2016218436A (en) * 2015-05-15 2016-12-22 キヤノン株式会社 Diffraction optical element, optical system, and optical instrument
WO2018179164A1 (en) * 2017-03-29 2018-10-04 キヤノン株式会社 Diffractive optical element, optical system having same, image pickup device, and lens device
US10133084B2 (en) 2015-05-15 2018-11-20 Canon Kabushiki Kaisha Diffractive optical element, optical system, and optical apparatus which reduce generation of unnecessary light
JPWO2018074595A1 (en) * 2016-10-21 2019-09-05 大日本印刷株式会社 Laminate, booklet
US10845516B2 (en) 2017-02-20 2020-11-24 Canon Kabushiki Kaisha Diffractive optical element
US10890698B2 (en) 2017-10-12 2021-01-12 Canon Kabushiki Kaisha Diffraction optical element, optical system, and imaging apparatus
US11656389B2 (en) 2018-08-09 2023-05-23 Canon Kabushiki Kaisha Diffractive optical element, optical apparatus using the same, and method for manufacturing diffractive optical element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615067U (en) * 1993-05-21 1994-02-25 大日本印刷株式会社 Relief hologram
JPH09127321A (en) * 1994-09-12 1997-05-16 Olympus Optical Co Ltd Diffraction optical element
JP2002507770A (en) * 1998-03-13 2002-03-12 オーファオデー キネグラム アーゲー Transparent and translucent diffractive elements, especially holograms, and methods of making the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615067U (en) * 1993-05-21 1994-02-25 大日本印刷株式会社 Relief hologram
JPH09127321A (en) * 1994-09-12 1997-05-16 Olympus Optical Co Ltd Diffraction optical element
JP2002507770A (en) * 1998-03-13 2002-03-12 オーファオデー キネグラム アーゲー Transparent and translucent diffractive elements, especially holograms, and methods of making the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257689A (en) * 2010-06-11 2011-12-22 Canon Inc Diffraction optical element, optical system and optical equipment
JP2013125259A (en) * 2011-12-16 2013-06-24 Canon Inc Diffractive optical element, optical system, and optical apparatus
US9285518B2 (en) 2011-12-16 2016-03-15 Canon Kabushiki Kaisha Diffractive optical element, optical system, and optical apparatus
JP2014170109A (en) * 2013-03-04 2014-09-18 Canon Inc Diffraction optical element, optical system and optical device
US10133084B2 (en) 2015-05-15 2018-11-20 Canon Kabushiki Kaisha Diffractive optical element, optical system, and optical apparatus which reduce generation of unnecessary light
JP2016218436A (en) * 2015-05-15 2016-12-22 キヤノン株式会社 Diffraction optical element, optical system, and optical instrument
JPWO2018074595A1 (en) * 2016-10-21 2019-09-05 大日本印刷株式会社 Laminate, booklet
JP7003928B2 (en) 2016-10-21 2022-01-21 大日本印刷株式会社 Laminated body, booklet body
US10845516B2 (en) 2017-02-20 2020-11-24 Canon Kabushiki Kaisha Diffractive optical element
WO2018179164A1 (en) * 2017-03-29 2018-10-04 キヤノン株式会社 Diffractive optical element, optical system having same, image pickup device, and lens device
JPWO2018179164A1 (en) * 2017-03-29 2020-01-30 キヤノン株式会社 Diffractive optical element, optical system having the same, imaging device, and lens device
US10890698B2 (en) 2017-10-12 2021-01-12 Canon Kabushiki Kaisha Diffraction optical element, optical system, and imaging apparatus
US11656389B2 (en) 2018-08-09 2023-05-23 Canon Kabushiki Kaisha Diffractive optical element, optical apparatus using the same, and method for manufacturing diffractive optical element

Also Published As

Publication number Publication date
JPWO2011099550A1 (en) 2013-06-13

Similar Documents

Publication Publication Date Title
WO2011099550A1 (en) Optical element and optical system
JP3522117B2 (en) Self-guided optical circuit
JP6322975B2 (en) Optical devices and electronic equipment
JP2004020957A (en) Diffraction optical element, optical system equipped with the same, and optical device
JP2009123553A (en) Light guide plate, planar light source, and liquid crystal display device
JP5777353B2 (en) Diffractive optical element, optical system, and optical instrument
US7068903B2 (en) Optical element using one-dimensional photonic crystal and spectroscopic device using the same
JP2005043886A (en) Diffraction device using photonic crystal
US20040047039A1 (en) Wide angle optical device and method for making same
JP6873602B2 (en) Diffractive optical elements, optical systems, and optical equipment
US20180210147A1 (en) Broadband multifunctional efficient meta-gratings based on dielectric waveguide phase shifters
JP2011022255A (en) Diffraction optical element and optical system having the same
JP4993309B2 (en) Optical waveguide device, wavelength conversion device, and harmonic laser light source device
Steiner et al. Angular bandpass filters based on dielectric resonant waveguide gratings
JP2007101926A (en) Transmission grating and spectral element and spectroscope using the same
JPWO2004081625A1 (en) Waveguide element using photonic crystal
JP6644357B2 (en) Polarization diffraction element and design method thereof
Zhou Simplified modal method for subwavelength gratings
JP4849024B2 (en) Waveguide element and wavelength conversion element
JP2013105055A (en) Diffraction optical element, and optical system using the same
US20240094537A1 (en) Uniform incoupler for conical incidence
JPWO2022004304A5 (en)
Sun et al. Single-layer waveguide with compound metasurfaces for highly efficient and chromatic-aberration-free augmented reality near-eye displays
Lee et al. Dirac Bilayer Metasurfaces as an Inverse Gires-Tournois Etalon
JP2002169048A (en) Self waveguide optical circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742293

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011553882

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11742293

Country of ref document: EP

Kind code of ref document: A1