JP2011256353A - 高周波の超音波を使用したオイルサンド由来のビチューメンの抽出方法 - Google Patents
高周波の超音波を使用したオイルサンド由来のビチューメンの抽出方法 Download PDFInfo
- Publication number
- JP2011256353A JP2011256353A JP2010142041A JP2010142041A JP2011256353A JP 2011256353 A JP2011256353 A JP 2011256353A JP 2010142041 A JP2010142041 A JP 2010142041A JP 2010142041 A JP2010142041 A JP 2010142041A JP 2011256353 A JP2011256353 A JP 2011256353A
- Authority
- JP
- Japan
- Prior art keywords
- oil sand
- bitumen
- oil
- khz
- hot water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003027 oil sand Substances 0.000 title claims abstract description 102
- 239000010426 asphalt Substances 0.000 title claims abstract description 93
- 238000000034 method Methods 0.000 title claims abstract description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 73
- 238000000605 extraction Methods 0.000 claims description 57
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 45
- 238000000926 separation method Methods 0.000 claims description 20
- 238000002347 injection Methods 0.000 claims description 15
- 239000007924 injection Substances 0.000 claims description 15
- 150000003839 salts Chemical class 0.000 claims description 14
- 230000001678 irradiating effect Effects 0.000 claims description 12
- 238000005086 pumping Methods 0.000 claims description 2
- 238000011084 recovery Methods 0.000 description 32
- 239000003921 oil Substances 0.000 description 28
- 238000003756 stirring Methods 0.000 description 23
- 239000002245 particle Substances 0.000 description 22
- 230000009471 action Effects 0.000 description 15
- 239000004576 sand Substances 0.000 description 15
- 230000000694 effects Effects 0.000 description 13
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 12
- 239000002585 base Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 238000002411 thermogravimetry Methods 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000000295 fuel oil Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000010779 crude oil Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 238000005065 mining Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 238000010796 Steam-assisted gravity drainage Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000008236 heating water Substances 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000012925 reference material Substances 0.000 description 2
- CPRMKOQKXYSDML-UHFFFAOYSA-M rubidium hydroxide Chemical compound [OH-].[Rb+] CPRMKOQKXYSDML-UHFFFAOYSA-M 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- MFGOFGRYDNHJTA-UHFFFAOYSA-N 2-amino-1-(2-fluorophenyl)ethanol Chemical compound NCC(O)C1=CC=CC=C1F MFGOFGRYDNHJTA-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Inorganic materials [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- UUCCCPNEFXQJEL-UHFFFAOYSA-L strontium dihydroxide Chemical compound [OH-].[OH-].[Sr+2] UUCCCPNEFXQJEL-UHFFFAOYSA-L 0.000 description 1
- 229910001866 strontium hydroxide Inorganic materials 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000011275 tar sand Substances 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
【解決手段】 本発明は、オイルサンドに熱水又は水蒸気を加えて60〜300℃とし、周波数が150〜800kHzの超音波を照射して、オイルサンドから分離した水中のビチューメンを回収することを特徴とする、オイルサンド由来のビチューメンの抽出方法を提供する。
【選択図】図1
Description
その技術の1つとして、ビチューメン抽出の際に、アルカリ試薬などの薬剤添加を行う方法が報告されている(非特許文献2及び非特許文献4)。
しかし、これらの文献に記載されているいずれの方法においても、攪拌能力と剥離作用の高い18〜40kHzの低周波の超音波が用いられおり、攪拌能力の低い200kHz以上の高周波の超音波は使用されていない。
尚、超音波は、超音波を照射した時に発生する微細気泡による振動、衝撃力などを利用して物の表面から汚れを取る作用があるため、洗浄の目的で広く産業に用いられている。
しかし、半導体の洗浄等の特殊な用途を除き、通常の洗浄の目的に使用する超音波洗浄機では、20〜40kHzの超音波が主に用いられている。
(II)前記熱水又は水蒸気が、熱水であることを特徴とする、上記(I)に記載の抽出方法。
(III)超音波の照射時間が15分以上であることを特徴とする、上記(I)又は(II)に記載の抽出方法。
(IV)前記熱水に0.004〜0.04Mの塩を添加することを特徴とする、上記(II)又は(III)に記載の抽出方法。
(V)前記塩が、強塩基の塩であることを特徴とする、上記(IV)に記載の抽出方法。
(VI)前記強塩基の塩が水酸化ナトリウムであることを特徴とする、上記(V)に記載の抽出方法。
(VII)注入管により地下のオイルサンド層に水蒸気又は熱水を注入して、地下のオイルサンド層を60〜300℃に加熱するとともに、地下のオイルサンド層に埋設した超音波発生装置により、周波数が150〜800kHzの超音波を照射し、分離したビチューメンを地下に埋設した採油管から汲み上げることを特徴とする、オイルサンド由来のビチューメンの採油方法。
(VIII)オイルサンドに熱水又は水蒸気を加えることができる分離槽と、該分離槽中のオイルサンドの温度を測定する温度測定装置と、周波数が150〜800kHzのうちいずれかの波長の超音波を該分離槽に照射可能な超音波発生装置と、気体注入装置とを備えることを特徴とする、オイルサンド由来のビチューメンの抽出装置。
(IX)地下のオイルサンド層に水蒸気又は熱水を注入する注入管と、地下のオイルサンド層に埋設する温度測定装置と、周波数が200〜600kHzのうちいずれかの波長の超音波を照射可能な地下のオイルサンド層に埋設する超音波発生装置と、地下に埋設する採油管とを備えることを特徴とする、オイルサンド由来のビチューメンの採油装置。
本発明のオイルサンド由来のビチューメンの抽出方法は、オイルサンドに熱水又は水蒸気を加えて60〜300℃とし、150〜800kHzの超音波を照射して、オイルサンドから分離したビチューメンを回収することを特徴とするものである。
本発明で用いるオイルサンドとしては、特に限定されず、カナダ産、ベネズエラ産、コンゴ産、マダガスカル産、日本産等のオイルサンドを用いることができるが、カナダのアルバータ州のものが多量に存在するため、これを好適に用いることができる。
本発明のビチューメンの抽出方法は、オイルサンドに熱水を加える方法と、オイルサンドに水蒸気を加える方法とがあるが、オイルサンドに熱水を加える方法が好ましい。
オイルサンドに熱水を加える方法としては、オイルサンドに熱水を直接添加する形態であってもよいが、分離槽内の熱水中にオイルサンドを浸漬する形態が好ましい。あるいは、分離槽内の水中にオイルサンドを浸漬し、水を加熱して熱水とする形態であってもよい。
熱水又は水蒸気を加えたオイルサンドの温度は、60℃〜300℃とするが、65℃〜100℃とするのがより好ましく、さらに好ましくは、70℃〜90℃とするのがよい。温度を300℃以上にすると、投入するエネルギーが大きくなりすぎるという問題がある。
液体に超音波を照射すると、定在波が生成し、その振幅の腹の位置で液体が激しく揺さぶられて、局所的に圧力が高い部分と低い部分が出てくる。その圧力が低くなったときに、液体中に微細な気泡が発生する。そして、圧力変動に伴い、気泡は膨張と収縮を繰り返し、収縮の限界に達すると気泡は崩壊(圧壊)する。その崩壊した時に液体中に強力な衝撃力が発生する。超音波洗浄機はこの衝撃力を利用し、固体表面に付着した汚れを落としている。
また、超音波作用には物理作用のみならず化学作用もある。定在波の周波数が高くなると微細気泡のサイズが小さくなる。そのため、気泡が収縮し圧壊するときに、気泡内部の温度が数千度、数千気圧を超える。そのときに気泡内部の水蒸気や空気等の気体はラジカル化される。水からは酸化力の強いOHラジカルや還元力が強いHラジカルが生成する。その後、OHラジカルとHラジカルは再結合し、水素分子や過酸化水素になるとされる。
これらの物理作用と化学作用は超音波の周波数に依存し、周波数が低いと物理作用が大きく、高いと化学作用が大きくなるとされる。また、高周波の超音波の場合には、定在波の腹の位置間隔が短くなるため、そこから発生する微細気泡が及ぼす作用がより均一になる。本発明は、この高周波の超音波の作用を利用して、低周波の超音波よりもより効率よくオイルサンドからビチューメンを抽出するものである。
周波数が150〜800kHzの超音波を発生させる方法としては、これに限定されるわけではないが、例えば、圧電体などからなる超音波振動子に、高周波での電流を印加することにより超音波を発生させることができる。
超音波の照射時間としては、5分以上の照射時間があればビチューメンを抽出することができるが、後期の実施例2の実験からも明かなように、15分以上照射することにより、効率よくビチューメンを抽出することが可能である。
また、本発明では、150kHz〜800kHzの高周波を低周波の超音波を組み合わせて使用してもよい。例えば、まず、撹拌力の強い低周波の超音波を照射して十分に懸濁した後に、ビチューメンの抽出作用の強い150kHz〜800kHzの超音波を照射する形態であってもよい。
塩としては、弱酸以外の塩が好ましく、より好ましくは塩基性の塩であり、さらに好ましくは強塩基の塩を用いるのがよい。
強塩基とは、塩基解離定数の大きい塩基であり、これらに限定されるわけではないが、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化セシウム、水酸化ルビジウム、水酸化カルシウム、水酸化バリウム、水酸化ストロンチウムなどを用いることができる。
これらの強塩基のうち、入手が容易なこと等から、水酸化ナトリウムを用いることが最も好ましい。
本発明で用いる強塩基は、本発明の実施例3の実験からも明かなように、濃度を0.004〜0.04Mとした場合に、特に効率よくオイルサンドからビチューメンを抽出することが可能である。より好ましくは、濃度を0.010〜0.020Mとするのがよい。
本発明の抽出装置で使用する分離槽は、オイルサンドを収容できる容器であって、該容器内でオイルサンドに熱水又は水蒸気を添加できるものであればいかなるものであってもよいが、熱水を貯めることができ、該熱水中にオイルサンドを浸漬できる容器が好ましい。また、本発明で使用する分離槽は、水を100℃以上に加熱するための加圧・密閉機構を備えたものであってもよい。
まず、燃焼機構を有する水蒸気発生装置又は熱水発生装置により、地下帯水層や河川などの水を用いて、水蒸気又は熱水を製造する。そして、この水蒸気又は熱水を、あらかじめオイルサンド層に埋設した注入管を使って、オイルサンド層に吹き込む。水蒸気又は熱水の注入を開始してある程度時間が経過すると、オイルサンド層の温度が上昇しビチューメンが流動化し、また、オイルサンドが熱水と混合して60〜300℃となり、ビチューメンが砂岩から分離しやすい状態となる。ここでさらに、オイルサンド層に埋設した超音波発生装置を用いて150〜800kHzの高周波の超音波を照射することにより、ビチューメンの分離を促進させることができる。流動化して砂岩から分離したビチューメンは、注入管よりさらに下部に埋設された採油管に達し、ポンプを駆動してこの採油管によりビチューメンを地上のタンクに汲み上げることにより、オイルサンド由来のビチューメンを採油することができる。
オイルサンドからビチューメンを高効率で抽出することを目的とし、従来の熱水中の撹拌と超音波照射について、抽出効率の比較を行った。また、超音波の照射条件(周波数)と、抽出条件(処理溶液温度・化学作用)がビチューメン抽出におよぼす影響について検討した。
図1に示す実験装置を用いて、オイルサンドからビチューメンを抽出する実験を行った。
実験試料にはカナダアルバータ産のオイルサンドを使用した。粒子サイズは3〜5mmを使用した。また、このオイルサンドに含まれるビチューメンの含有量を後述の熱重量分析により測定した。
超音波照射は多周波超音波発生装置(TA−4021型;カイジョー製)と28kHzおよび200kHzの超音波振動子(カイジョー製)を用いて行った。超音波発生装置の出力は200Wとした。
また、撹拌法の確認として、スターラー(REXIM RSH−1A;アズワン製)を利用した。
処理溶液は、45℃および85℃のイオン交換水60mlにオイルサンド2.97gとNaOH0.03g(純正化学製)を入れることで作成した。
抽出処理中のフラスコ内の溶液温度は循環装置(CW−05G;ビスコテック株式会社製)を利用して維持できるようにした。
まず、スターラー撹拌および超音波照射を行なう前に、処理溶液を空気で20分間置換した。ガスの流量は100ml/minとした。その後に、スターラー撹拌(750RPM)および超音波照射(28kHz、200kHz)を、空気を流しながら15分間行なった。
処理後、水面に浮遊したビチューメン(微細な砂を含む)を回収し、乾燥させた後に重量を測定し、それを回収量とした。回収後のビチューメンの乾燥は、真空ポリカデジケーターに入れて、容器内をダイヤフラム式ドライ真空ポンプ(DAH−60;ULVAO社製)で真空にすることにより行った。そのあと熱重量分析(Thermo Gravimetry Analysis以降TGA)(TG8120;理学電機株式会社製)にて、純度を算出した。
ビチューメンの回収率および抽出率を以下に定義する。
水面で回収した砂粒子を含んだビチューメンの重量を回収量とし、砂粒子を含まないビチューメンの重量を抽出量とした。また、抽出量を回収量でわり、百分率で標記したものを純度(P)とした。純度は、回収したビチューメンに含有する砂の量が少ないほど高くなる。なお、回収量および抽出量を、加えたオイルサンド重量で割り、百分率標記したものを回収率(S)、抽出率(B)とした。
TGAとは、試料および基準物質を電気炉の中にいれ、一定の速度で加熱または冷却し、基準物質との重量変化を測定するものである。以下に性能仕様を示す。
測定温度範囲 : 室温〜1100℃
最大昇温速度 : 100℃/min
最大測定試料量: 1g
測定雰囲気 : 大気、不活性ガス、真空(ガスフロー可)
オイルサンドのTGA結果を図2に示す。100℃から600℃へ温度を上昇させるに従い、蒸発に伴う重量減少が確認できる。総減少量は12.3%であった。これより、オイルサンド中のビチューメン含有量は12.3wt.%であるとわかった。
処理温度45℃および85℃においてスターラー攪拌を15分行った場合の回収率、抽出率および純度を図3に示す。85℃の場合、回収率及び抽出率は1%で純度は90%であった。また、45℃の場合、回収率及び抽出率は0%であった。これより、スターラー撹拌を15分行った場合のビチューメン抽出は難しいと考えられる。
28kHz超音波の場合を図3に示す。85℃の場合、回収率は5.8%であった。また、純度は、90%であった。45℃の場合、回収率は3.2%で、純度は70%となった。両温度において、スターラー攪拌の場合と比較すると明らかに回収率や純度の向上が見られる。
200kHz超音波の場合を図3に示す。45℃の場合、回収率は0%であった。また、85℃の場合、回収率が8%で、純度は90%であった。
85℃において、28kHz超音波より高い回収率が得られた理由として、(I)ビチューメンの粘度が低下(図4)したこと、(II)波長が28kHzより短いため、気泡圧壊に伴う剥離作用を提供する領域が広いこと(III)OHラジカルや過酸化水素の生成による化学作用が考えられる。Sadeghiらは、超音波照射と過酸化水素の添加を組み合わせることは、ビチューメンの抽出に効果的であると報告している(非特許文献2)。彼らによると、過酸化水素を添加することで油が改質され、軽質分の浮遊量が増加するとされる。
次に、超音波の照射時間がビチューメン抽出におよぼす影響について検討した。
(2−1)実験方法
利用した実験装置は実施例1と同じものを利用した。
処理溶液は、85℃のイオン交換水60mlにオイルサンド2.97gとNaOH0.03gを入れることで作成した。
処理前に、溶液をアルゴンで20分間置換した。その後に、スターラー撹拌(750RPM)および超音波照射(28kHz、200kHz)を10分、15分および30分行なった。
処理後は実施例1と同様に回収率と純度を算出した。また、照射後の砂粒子の粒径をMicrotrac II(Microtrac MT3300EX II;日機装社製)で測定した。
この装置は、レーザ回析・散乱法によるもので、分散媒体中に懸濁した試料粒子にレーザ光が当てられた時に起こる光の散乱現象を利用している。
散乱光の強度および散乱角度は、粒子の大きさに大きく依存しており、散乱光の強度分布を複数の光学検出器で測定し、収集された散乱光情報をA/D変換した後、コンピュータによる解析・演算処理によって粒度分布に変換される。以下に性能仕様を示す。
測定範囲 : 0.02〜2.800μm
測定時間 : 10〜999秒
試料必要量: 0.05〜2g
溶媒 : 有機溶媒対応可能
電源 : 100VAC 50/60Hz
処理時間別にスターラー攪拌を行った場合の回収率、抽出率および純度を図5に示す。処理時間に関係なく回収率が1%で、純度は90%であった。スターラー攪拌の場合は処理時間による影響は少ないと考えられる。
28kHz超音波の場合を図6に示す。10分および15分照射した時の回収率はそれぞれ3.8%、7.3%となり、約4%回収率が上昇した。また、30分照射した場合は、6.1%となり15分と比較して大きな変化がみられなかった。
200kHz超音波の場合を図7に示す。こちらも28kHz超音波と同様に15分までは回収率が上昇しているが、30分では変化がみられなかった。
これらの結果より、超音波照射を行う時間は、15分が効率的であると考えられる。
また、Abramovらは、微粒子のサイズが小さくなると、残査油の回収率が減少すると報告している(非特許文献1)。よって、その影響を確認するため15分と30分照射後の微粒子を回収し、Microtrac IIで粒径を測定した。
スターラー攪拌および超音波照射を15分、30分行った場合の粒度分布を図8及び9に示す。15分の場合の平均粒径は210μmで両音波とも同じであった。また、スターラーと比較しても変化は見られなかった。30分の場合においても粒子の微細化は見られなかった。この結果から、本実験において超音波照射による粒子の微細化は抑制されており、粒子微細化に伴うビチューメン回収率の低下は起こっていないと考えられる。しかし、28kHzの低周波の超音波を照射した場合には、超音波の定在波の腹の位置での粒子の凝集現象により、粒子径の増大が見られた。これは、低周波の超音波の場合には、粒子が凝集しやすいということを意味し、このことからも200kHzの方が優れた効果を奏するといえる。
アルカリ濃度とpHが高くなることで次の効果が期待される。
(I)ビチューメン(油)と砂の表面張力が減少する
(II)ビチューメン(油)と砂の表面電荷を高めて分散しやすくする
これらの効果がビチューメンと砂の分離を促進するとされる。
よって、アルカリ試薬の添加量を変更することで、ビチューメン回収率への影響を検討した。
(3−1)実験方法
処理溶液は85℃のイオン交換水60mlにオイルサンドとNaOHを加える。NaOHの添加量は0、0.033、0.33、1、3.3wt%とした。なお、それぞれのNaOH濃度は0、0.0004、0.004、0.012、0.04mol/lである。
まず、処理前にアルゴンで20分間置換した。その後に、スターラー撹拌(750RPM)および超音波照射(28kHz、200kHz)を15分間行なった。処理後は実施例1と同様に回収率と純度を算出した。
NaOH濃度別にスターラー攪拌を15分行った場合の回収率、抽出率および純度を図10に示す。NaOHを添加すると、純度に関しては45%から90%まで上昇しているが、回収率は、添加が増加すると(0.004〜0.012mol/l)減少する傾向がみられた。
28kHz超音波の場合を図11に示す。濃度が高くなるほど、回収率と純度が上昇するのがわかった。また、0.012mol/lの時に回収率が一番高くなったが、その後の0.04mol/lで回収率の減少が見られた。
200kHz超音波の場合を図12に示す。200kHzの場合はNaOHの効果がよくあらわれている。無添加時の回収率は0%であったが、0.012mol/lの時に8%まで上昇した。これは、NaOHの濃度が高くなるに従い、ビチューメンと砂の静電反発力が大きくなり、溶液中に分散しやすくなったことで、超音波効果が促進されたからと考えられる。また、200kHzにおいても同様に0.04mol/lで回収率の減少が見られた。
Abramovらは、アルカリ濃度を0.02−0.03MおよびpHを10.5−11以上にすることで、エマルジョンが起こり、ビチューメンの液滴が小さくなり、回収率が減少すると報告している(非特許文献1)。そこで、超音波照射後のビチューメンの液滴を観察した。
Abramovらの報告と同様に、0.012Mから0.04MへNaOH濃度が増加した際に、液滴のサイズが小さくなることが、高周波の超音波を処理した際にも確認された。
実施例1と同じく、200kHzの超音波を照射してオイルサンドからビチューメンを抽出後、懸濁液に200kHz超音波をさらに2時間照射した。その結果を図13に示す。照射前のpHは6.7であるが、15分照射するとpHが4.5まで低下しているのがわかる。照射後、数時間経過すると砂が沈殿しているのが観測された。これにより、高周波の超音波を用いた場合には、超音波化学作用による酸性化作用で、オイルサンド懸濁粒子の沈殿回収処理が可能であることがわかった。
Claims (9)
- オイルサンドに熱水又は水蒸気を加えて60〜300℃とし、周波数が150〜800kHzの超音波を照射して、オイルサンドから分離したビチューメンを回収することを特徴とする、オイルサンド由来のビチューメンの抽出方法。
- 前記熱水又は水蒸気が、熱水であることを特徴とする、請求項1に記載の抽出方法。
- 超音波の照射時間が15分以上であることを特徴とする、請求項1又は2に記載の抽出方法。
- 前記熱水に0.004〜0.04Mの塩を添加することを特徴とする、請求項2又は3に記載の抽出方法。
- 前記塩が、強塩基の塩であることを特徴とする、請求項4に記載の抽出方法。
- 前記強塩基の塩が水酸化ナトリウムであることを特徴とする、請求項5に記載の抽出方法。
- 注入管により地下のオイルサンド層に水蒸気又は熱水を注入して、地下のオイルサンド層を60〜300℃に加熱するとともに、地下のオイルサンド層に埋設した超音波発生装置により、周波数が150〜800kHzの超音波を照射し、分離したビチューメンを地下に埋設した採油管から汲み上げることを特徴とする、オイルサンド由来のビチューメンの採油方法。
- オイルサンドに熱水又は水蒸気を加えることができる分離槽と、該分離槽中のオイルサンドの温度を測定する温度測定装置と、周波数が150〜800kHzのうちいずれかの波長の超音波を該分離槽に照射可能な超音波発生装置と、気体注入装置とを備えることを特徴とする、オイルサンド由来のビチューメンの抽出装置。
- 地下のオイルサンド層に水蒸気又は熱水を注入する注入管と、地下のオイルサンド層に埋設する温度測定装置と、周波数が200〜600kHzのうちいずれかの波長の超音波を照射可能な地下のオイルサンド層に埋設する超音波発生装置と、地下に埋設する採油管とを備えることを特徴とする、オイルサンド由来のビチューメンの採油装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010142041A JP5504536B2 (ja) | 2010-06-04 | 2010-06-04 | 高周波の超音波を使用したオイルサンド由来のビチューメンの抽出方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010142041A JP5504536B2 (ja) | 2010-06-04 | 2010-06-04 | 高周波の超音波を使用したオイルサンド由来のビチューメンの抽出方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011256353A true JP2011256353A (ja) | 2011-12-22 |
JP5504536B2 JP5504536B2 (ja) | 2014-05-28 |
Family
ID=45472888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010142041A Active JP5504536B2 (ja) | 2010-06-04 | 2010-06-04 | 高周波の超音波を使用したオイルサンド由来のビチューメンの抽出方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5504536B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015044957A (ja) * | 2013-08-29 | 2015-03-12 | 国立大学法人秋田大学 | 溶液中の重質油回収方法及び回収システム |
WO2020184040A1 (ja) * | 2019-03-12 | 2020-09-17 | 国立大学法人東京農工大学 | 石油の生産方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS504001B1 (ja) * | 1969-12-29 | 1975-02-13 | ||
JPS51124104A (en) * | 1975-04-23 | 1976-10-29 | Nippon Mining Co Ltd | Method for recovering oil |
JPS57128787A (en) * | 1981-02-04 | 1982-08-10 | Japan Steel Works Ltd:The | Extraction of oil of oil shales and oil sand with gaseous solvent |
JP2002338968A (ja) * | 2001-05-11 | 2002-11-27 | New Business Trading:Kk | オイルサンド油の回収方法 |
JP2007186659A (ja) * | 2006-01-16 | 2007-07-26 | Mitsubishi Heavy Ind Ltd | 油回収装置及び方法 |
WO2009038728A1 (en) * | 2007-09-20 | 2009-03-26 | Green Source Energy Llc | Extraction of hydrocarbons from hydrocarbon-containing materials |
-
2010
- 2010-06-04 JP JP2010142041A patent/JP5504536B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS504001B1 (ja) * | 1969-12-29 | 1975-02-13 | ||
JPS51124104A (en) * | 1975-04-23 | 1976-10-29 | Nippon Mining Co Ltd | Method for recovering oil |
JPS57128787A (en) * | 1981-02-04 | 1982-08-10 | Japan Steel Works Ltd:The | Extraction of oil of oil shales and oil sand with gaseous solvent |
JP2002338968A (ja) * | 2001-05-11 | 2002-11-27 | New Business Trading:Kk | オイルサンド油の回収方法 |
JP2007186659A (ja) * | 2006-01-16 | 2007-07-26 | Mitsubishi Heavy Ind Ltd | 油回収装置及び方法 |
WO2009038728A1 (en) * | 2007-09-20 | 2009-03-26 | Green Source Energy Llc | Extraction of hydrocarbons from hydrocarbon-containing materials |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015044957A (ja) * | 2013-08-29 | 2015-03-12 | 国立大学法人秋田大学 | 溶液中の重質油回収方法及び回収システム |
WO2020184040A1 (ja) * | 2019-03-12 | 2020-09-17 | 国立大学法人東京農工大学 | 石油の生産方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5504536B2 (ja) | 2014-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shafiai et al. | Conventional and electrical EOR review: the development trend of ultrasonic application in EOR | |
Hamidi et al. | Recent applications of ultrasonic waves in improved oil recovery: A review of techniques and results | |
Rehman et al. | Conventional versus electrical enhanced oil recovery: a review | |
Abramov et al. | Extraction of bitumen, crude oil and its products from tar sand and contaminated sandy soil under effect of ultrasound | |
Abramov et al. | Ultrasonic technology for enhanced oil recovery from failing oil wells and the equipment for its implemention | |
Razavifar et al. | Experimental investigation of the ultrasonic wave effects on the viscosity and thermal behaviour of an asphaltenic crude oil | |
Agi et al. | Laboratory evaluation to field application of ultrasound: A state-of-the-art review on the effect of ultrasonication on enhanced oil recovery mechanisms | |
Mo et al. | Removal of colloidal precipitation plugging with high-power ultrasound | |
KR101005172B1 (ko) | 정(井)의 생산능력을 증가시키는 물질전달공정의 촉진을 위한 방법 및 전자음향장치 | |
AU2015236476B2 (en) | Method to extract bitumen from oil sands | |
Taylor | Interfacial chemistry in steam-based thermal recovery of oil sands bitumen with emphasis on steam-assisted gravity drainage and the role of chemical additives | |
Dehshibi et al. | Experimental investigation on the effect of ultrasonic waves on reducing asphaltene deposition and improving oil recovery under temperature control | |
AU2020230313B2 (en) | Electrolytic system and method for processing a hydrocarbon source | |
Wang et al. | State-of-the-art on ultrasonic oil production technique for EOR in China | |
Yang et al. | Experimental investigation of the transformation of oil shale with fracturing fluids under microwave heating in the presence of nanoparticles | |
BRPI0713110A2 (pt) | método para liberar material orgánico a partir de xisto e materiais semelhantes para produzir um combutìvel lìquido de xisto | |
RU2746846C2 (ru) | Повышенная паровая экстракция битума из нефтеносных песков | |
JP5504536B2 (ja) | 高周波の超音波を使用したオイルサンド由来のビチューメンの抽出方法 | |
Mahardika et al. | Enhanced heavy oil recovery by calcium hydroxide flooding with the production of viscoelastic materials: Study with 3-D x-ray tomography and 2-D glass micromodels | |
Mierez et al. | Recent advances of ultrasound applications in the oil and gas industry | |
Sharma et al. | Hydrocarbon recovery from oil sands by cyclic surfactant solubilization in single-phase microemulsions | |
Sadeghi et al. | Sonochemical treatment of fossil fuels | |
Khan et al. | Comparison of acidizing and ultrasonic waves, and their synergetic effect for the mitigation of inorganic plugs | |
JP2018178374A (ja) | 炭化水素回収用組成物、フラクチャリング流体、炭化水素分離用組成物、炭化水素含有地層の処理方法、炭化水素の回収方法、及び水圧破砕法におけるフラクチャリング流体としての使用 | |
WO2018017221A1 (en) | Method to extract bitumen from oil sands using aromatic amines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130531 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20130531 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5504536 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |