JP2011256157A - Pressure control method for distillation column - Google Patents

Pressure control method for distillation column Download PDF

Info

Publication number
JP2011256157A
JP2011256157A JP2011009013A JP2011009013A JP2011256157A JP 2011256157 A JP2011256157 A JP 2011256157A JP 2011009013 A JP2011009013 A JP 2011009013A JP 2011009013 A JP2011009013 A JP 2011009013A JP 2011256157 A JP2011256157 A JP 2011256157A
Authority
JP
Japan
Prior art keywords
gas
distillation
pressure control
fraction
distillation column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011009013A
Other languages
Japanese (ja)
Other versions
JP5582044B2 (en
JP2011256157A5 (en
Inventor
Yoshinori Ota
好則 太田
Tomomi Oishi
智巳 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Research Association of Refinery Integration for Group Operation
Original Assignee
Mitsubishi Chemical Corp
Research Association of Refinery Integration for Group Operation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Research Association of Refinery Integration for Group Operation filed Critical Mitsubishi Chemical Corp
Priority to JP2011009013A priority Critical patent/JP5582044B2/en
Publication of JP2011256157A publication Critical patent/JP2011256157A/en
Publication of JP2011256157A5 publication Critical patent/JP2011256157A5/ja
Application granted granted Critical
Publication of JP5582044B2 publication Critical patent/JP5582044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pressure control method for a distillation column, which enables safe and inexpensive distillation of C5 fraction.SOLUTION: In a facility for treating a product generated by naphtha cracking, the method controls the pressure of a distillation column 12 of a distillation facility by introducing a pressure control gas to the distillation column 12, which separates and eliminates heavy substances from the C5 fraction obtained by separating the product generated by naphtha. For the pressure control gas, a gas containing no hydrocarbon having at least C5 (carbon number 5), which is present in the treating facility, is used. Since a gas, present in the treating facility, is used as the pressure control gas, the cost is lower than the case using an external gas, and since nitrogen is prevented from mixing into the treating facility with the external gas, the safety is guaranteed.

Description

本発明は、ナフサの分解により生成されるナフサ分解生成物を処理する処理設備における、該ナフサ分解生成物を分離して得られるC5留分から重質物を分離除去する蒸留設備の蒸留塔に対し、圧力制御ガスを導入して該蒸留塔の圧力を制御する方法に関する。   The present invention relates to a distillation column of a distillation facility for separating and removing heavy substances from a C5 fraction obtained by separating the naphtha decomposition product in a processing facility for processing a naphtha decomposition product generated by the decomposition of naphtha. The present invention relates to a method for controlling the pressure of the distillation column by introducing a pressure control gas.

石油化学産業の基礎製品であるエチレン、プロピレン、ブタジエン、ベンゼン、トルエン、キシレンなどは、ナフサの熱分解により生成されるナフサ分解生成物を、処理設備において分離精製することにより製造される。この処理設備における分離精製過程で生成されるC5留分には、有用成分として、イソプレン、ピペリレン、シクロペンタジエン、アミレンなどが含まれる。また、シクロペンタジエンが二量化して生ずるジシクロペンタジエンも含まれる。このC5留分を複数の蒸留塔で蒸留することにより、これら有用成分が分離される。蒸留塔による蒸留においては、塔底付近にリボイラーを配して塔内温度を調節するのが一般的である。また、この蒸留塔に対して、ナフサ分解生成物の処理設備の外部から水素、窒素ガスなどの外部ガスを導入し、塔内圧力を調節するのが一般的である。   Ethylene, propylene, butadiene, benzene, toluene, xylene and the like, which are basic products of the petrochemical industry, are produced by separating and purifying naphtha decomposition products generated by thermal decomposition of naphtha in a processing facility. Isoprene, piperylene, cyclopentadiene, amylene and the like are included as useful components in the C5 fraction produced in the separation and purification process in this processing facility. Further, dicyclopentadiene produced by dimerization of cyclopentadiene is also included. These useful components are separated by distilling the C5 fraction in a plurality of distillation columns. In distillation using a distillation tower, a reboiler is generally provided near the bottom of the tower to adjust the temperature in the tower. In general, an external gas such as hydrogen or nitrogen gas is introduced into the distillation column from the outside of the naphtha decomposition product processing equipment to adjust the pressure in the column.

かかるナフサ分解生成物の処理設備では、過去に爆発事故が発生している。すなわち、1990年にフランスのBERREにあるシェル社のエチレンプラント深冷ガス分離装置の爆発事故が発生している。AIChEは、この爆発事故を調査及び検討し、酸化窒素が深冷ガス分離装置の熱交換器中で凝縮し、これがジエン類と反応し爆発したことが事故原因であるとまとめている。また、ナフサの分解処理設備に窒素が混入すると、窒素がナフサの熱分解炉で水蒸気と接触して酸化物(酸化窒素)となり、同様の爆発事故が起こる可能性があることも指摘されている(非特許文献1〜3)。また、アメリカテキサス・ユニオンカーバイド社のオレフィンプラント深冷ガス分離装置においても、酸化窒素の蓄積が発見されている。   In the processing facilities for such naphtha decomposition products, explosion accidents have occurred in the past. That is, in 1990, an explosion accident occurred at Shell's ethylene plant cryogenic gas separator in BERRE, France. AIChE investigated and examined the explosion, and summarized that the cause of the accident was that nitrogen oxide condensed in the heat exchanger of the cryogenic gas separator, which reacted with the dienes and exploded. It has also been pointed out that if naphtha cracking equipment is mixed with nitrogen, it will come into contact with water vapor in the naphtha pyrolysis furnace and become oxide (nitrogen oxide), which may cause a similar explosion. (Non-patent documents 1 to 3). Accumulation of nitric oxide has also been found in the cryogenic gas separator of Texas Union Carbide, USA.

このため、上記のようにC5留分を蒸留する蒸留塔の圧力制御ガスとして、窒素ガスを含んだ外部ガスを用いると、外部ガスが蒸留塔と結合している様々な処理装置中に入り込み、爆発の原因となる危険がある。そのため、該蒸留塔のオフガス(窒素を含有する)の回収先が限定され、場合によっては燃料やフレアーで燃焼処理され、貴重な炭化水素留分のロスになるという問題があった。また、この圧力制御ガスとして、外部からユーティリティとして提供される、窒素を含有しないガスを用いる場合、コストがかかり、ナフサの分解生成物の処理設備のように大がかりな設備では、大きな問題となっていた。   For this reason, when an external gas containing nitrogen gas is used as the pressure control gas of the distillation column for distilling the C5 fraction as described above, the external gas enters into various processing apparatuses connected to the distillation tower, Risk of explosion. Therefore, the recovery destination of the off-gas (containing nitrogen) of the distillation column is limited, and in some cases, it is burned with fuel or flare, resulting in a loss of valuable hydrocarbon fraction. In addition, when using a nitrogen-free gas provided as an utility from the outside as the pressure control gas, the cost is high, and it is a big problem in a large-scale facility such as a naphtha decomposition product processing facility. It was.

JACQUES KOHLER, "COLD BOX EXPLOSION AT SHELL STEAM CRACKER IN BERRE, FRANCE", AIChE Spring National Meeting, Houston(1991)JACQUES KOHLER, "COLD BOX EXPLOSION AT SHELL STEAM CRACKER IN BERRE, FRANCE", AIChE Spring National Meeting, Houston (1991) ARTHUR J. BAUMGARTNER, TIMM E. PAXSON他, "Feedstock Contaminants in Ethylene Plants-an Update", AIChE Spring National Meeting, Houston(1991)ARTHUR J. BAUMGARTNER, TIMM E. PAXSON et al., "Feedstock Contaminants in Ethylene Plants-an Update", AIChE Spring National Meeting, Houston (1991) 高圧ガス協会誌 第24巻第11号、41-50(1960)Journal of High Pressure Gas Association Vol. 24, No. 11, 41-50 (1960)

本発明は、低コストかつ安全にC5留分の蒸留を行うことが可能な蒸留塔の圧力制御方法を提供することを目的とする。   An object of this invention is to provide the pressure control method of the distillation column which can perform distillation of C5 fraction safely at low cost.

本発明者らは鋭意検討した結果、ナフサ分解物の処理設備のC5留分から重質物を分離除去する蒸留塔において、該蒸留塔の圧力制御ガスとして、該ナフサ分解物の処理設備中に存在するC5以上の炭化水素を含まないガスを使用することにより、この蒸留工程でナフサ分解物の処理設備内に危険濃度以上の窒素ガスが混入することが防止され、低コストにて安全にC5留分の蒸留を行うことができることを見出し、本発明を完成させるに至った。   As a result of intensive studies, the present inventors have found that in the distillation tower for separating and removing heavy substances from the C5 fraction of the naphtha decomposition product treatment equipment, the pressure control gas for the distillation tower is present in the treatment equipment for the naphtha decomposition product. By using a gas that does not contain hydrocarbons of C5 or higher, it is possible to prevent nitrogen gas having a dangerous concentration or more from being mixed into the naphtha decomposition product processing equipment in this distillation process, and to safely remove C5 fraction at low cost. As a result, it was found that the distillation can be performed, and the present invention has been completed.

すなわち、本発明(請求項1)の蒸留塔の圧力制御方法は、ナフサの分解により生成されるナフサ分解生成物を処理する処理設備における、該ナフサ分解生成物を分離して得られるC5留分から重質物を分離除去する蒸留設備の蒸留塔に対し、圧力制御ガスを導入して該蒸留塔の圧力を制御する方法において、該圧力制御ガスとして、前記処理設備中に存在するC5以上の炭化水素を含まないガスを使用することを特徴とするものである。   That is, the pressure control method for a distillation column according to the present invention (Claim 1) uses a C5 fraction obtained by separating the naphtha decomposition product in a processing facility for processing the naphtha decomposition product generated by the decomposition of naphtha. In a method for controlling the pressure of a distillation column by introducing a pressure control gas into a distillation column of a distillation facility for separating and removing heavy substances, a hydrocarbon of C5 or higher existing in the processing facility is used as the pressure control gas. It is characterized by using a gas that does not contain.

請求項2の蒸留塔の圧力制御方法は、請求項1において、前記処理設備中に存在するC5以上の炭化水素を含まないガスが、C4以下の炭化水素ガスを含有することを特徴とするものである。   The pressure control method for a distillation column according to claim 2 is characterized in that, in claim 1, the gas that does not contain C5 or more hydrocarbons present in the processing equipment contains C4 or less hydrocarbon gas. It is.

請求項3の蒸留塔の圧力制御方法は、請求項1又は2において、前記処理設備中に存在するC5以上の炭化水素を含まないガスが、前記処理設備内のC5留分から軽沸物を除去するための蒸留装置から分離されるオフガスであることを特徴とするものである。   The pressure control method for a distillation column according to claim 3 is the method according to claim 1 or 2, wherein the gas not containing hydrocarbons of C5 or higher present in the processing facility removes light boiling substances from the C5 fraction in the processing facility. It is an off-gas separated from the distillation apparatus for carrying out.

本発明では、C5留分から重質物を分離除去する蒸留塔の圧力制御ガスとして、処理設備中に存在する、C5以上の炭化水素を含まないガスを用いるため、外部ガスを用いる場合と比べて安価であると共に、処理設備内のC5以上の炭化水素を含まないガスであれば、窒素濃度を処理設備全体で危険濃度以下の濃度に保つことができ、危険濃度以上の酸化窒素の生成は起こらず、安全である。   In the present invention, a gas not containing hydrocarbons of C5 or higher, which is present in the processing equipment, is used as the pressure control gas of the distillation column for separating and removing heavy substances from the C5 fraction, so that it is less expensive than the case of using an external gas. In addition, if the gas does not contain C5 or higher hydrocarbons in the processing facility, the nitrogen concentration can be kept below the hazardous concentration in the entire processing facility, and the generation of nitrogen oxides above the hazardous concentration does not occur. , Safe.

この処理設備中に存在するC5以上の炭化水素を含まない圧力制御ガスは、ナフサ分解生成物の処理設備中のC4以下の炭化水素ガスを含むガスであることが好ましく、C5留分から軽沸物を除去するための蒸留装置から分離されるオフガスであることが特に好ましい。   The pressure control gas which does not contain C5 or higher hydrocarbons present in this treatment facility is preferably a gas containing hydrocarbon gas of C4 or less in the treatment facility for naphtha cracked products, Particularly preferred is an off-gas separated from the distillation apparatus for removing water.

本発明の蒸留塔の圧力制御方法の実施の形態を説明する系統図である。It is a systematic diagram explaining embodiment of the pressure control method of the distillation column of this invention.

本発明は、ナフサの分解により生成されるナフサ分解生成物を処理する処理設備(本明細書中では、「処理設備」と称することがある)における、該ナフサ分解生成物を分離して得られるC5留分から重質物を分離除去する蒸留設備の蒸留塔に対し、圧力制御ガスを導入して該蒸留塔の圧力を制御する方法において、該圧力制御ガスとして、前記処理設備中に存在する、C5(炭素数5)以上の炭化水素を含まないガスを使用することを特徴とする蒸留塔の圧力制御方法である。   The present invention is obtained by separating the naphtha decomposition product in a processing facility for treating the naphtha decomposition product generated by the decomposition of naphtha (sometimes referred to as “processing facility” in this specification). In a method for controlling the pressure of a distillation column by introducing a pressure control gas into a distillation column of a distillation facility that separates and removes heavy matter from a C5 fraction, C5 is present in the processing facility as the pressure control gas. This is a pressure control method for a distillation column, wherein a gas not containing hydrocarbons having 5 or more carbon atoms is used.

ここで、ナフサの分解により生成されるナフサ分解生成物の処理設備とは、ナフサを高温で熱分解して、メタン、エタン、エチレン、プロピレン、ブタン、ブタジエン、及び炭素数5の炭化水素、ベンゼン、キシレン、その他のオフガス、重質油などを生成させ、これらを分離取得していく設備の全般をいう。このナフサ分解生成物の処理設備としては、例えば、ナフサ分解炉、分解ガス急冷部等の熱回収装置、脱硫設備、蒸留分離設備などを含むものが用いられるが、本発明に係る処理設備は、C5留分の分離設備を含み、全体としてナフサ分解生成物の処理を行うものであれば何れのものでもよい。   Here, the naphtha decomposition product processing equipment produced by the decomposition of naphtha is methane, ethane, ethylene, propylene, butane, butadiene, hydrocarbons having 5 carbon atoms, benzene, by thermally decomposing naphtha at a high temperature. , Xylene, other off-gas, heavy oil, etc., and the equipment that separates and acquires these. As the processing equipment for this naphtha decomposition product, for example, a naphtha cracking furnace, a heat recovery device such as a cracked gas quenching section, a desulfurization equipment, a distillation separation equipment, etc. are used. Any apparatus may be used as long as it includes equipment for separating the C5 fraction and processes the naphtha decomposition product as a whole.

また、ナフサ分解生成物を分離して得られるC5留分とは、ナフサを熱分解したナフサ分解生成物に含まれる、沸点が炭素数5の炭化水素の範囲にある成分の混合物であり、具体的には、沸点が9〜60℃の範囲にある物質の混合物である。このC5留分としては、ペンタン、イソプレン、2−メチルブタン、シクロペンタジエン等が挙げられる。このC5留分の製造法としては、例えば、ナフサ分解生成物から炭素数9以上のヘビーエンド油を除去し、残部から炭素数1〜4のオレフィン類等を分離した残部(本明細書中では「分解ガソリン」と称することがある)から、沸点が60℃以上の物質を分離する方法などが挙げられる。上記分解ガソリンには、C5(炭素数5)〜C8(炭素数8)の脂肪族炭化水素とC6(炭素数6)〜C8(炭素数8)の芳香族炭化水素等が含まれる。なお、分離の仕組み上、C4(炭素数4)以下やC9(炭素数9)以上の炭化水素も少量含まれる。   The C5 fraction obtained by separating the naphtha decomposition product is a mixture of components contained in the naphtha decomposition product obtained by thermally decomposing naphtha and having a boiling point in the range of 5 carbon atoms. Specifically, it is a mixture of substances having a boiling point in the range of 9 to 60 ° C. Examples of the C5 fraction include pentane, isoprene, 2-methylbutane, and cyclopentadiene. As a method for producing the C5 fraction, for example, the heavy ending oil having 9 or more carbon atoms is removed from the naphtha decomposition product, and the olefins having 1 to 4 carbon atoms and the like are separated from the remainder (in the present specification, And a method of separating a substance having a boiling point of 60 ° C. or higher. The cracked gasoline contains C5 (carbon number 5) to C8 (carbon number 8) aliphatic hydrocarbon, C6 (carbon number 6) to C8 (carbon number 8) aromatic hydrocarbon, and the like. Note that a small amount of hydrocarbons having C4 (carbon number 4) or lower or C9 (carbon number 9) or higher is included in the separation mechanism.

このC5留分は、該C5留分に含まれる物質を分離精製して製造する工程に供される。その工程の一部として、まず、C5留分から蒸留により重質物を除去する蒸留工程を行う。本発明の蒸留塔の圧力制御方法は、当該蒸留工程における蒸留設備の蒸留塔の圧力制御方法である。ここで除去される重質物とは、C5留分よりも高沸のものをいい、主にC10(炭素数10)留分である。蒸留設備の構成としては、例えば、棚段を備えた竪型の蒸留塔の塔底に1.5MPaGの蒸気を加熱源としたリボイラーを備え、塔頂にはコンデンサーを備えた蒸留塔などが用いられる。蒸留塔は単独でもよいし、複数の蒸留塔を並列に構成したものでもよい。   This C5 fraction is subjected to a process for producing by separating and purifying the substance contained in the C5 fraction. As a part of the process, first, a distillation process for removing heavy substances from the C5 fraction by distillation is performed. The distillation tower pressure control method of the present invention is a distillation tower pressure control method for distillation equipment in the distillation step. The heavy material removed here refers to those having a higher boiling point than the C5 fraction, and mainly the C10 (carbon number 10) fraction. As the configuration of the distillation equipment, for example, a reboiler using a 1.5 MPaG vapor as a heating source is provided at the bottom of a vertical distillation tower provided with a shelf, and a distillation tower provided with a condenser is used at the top. It is done. The distillation column may be a single distillation column or a plurality of distillation columns configured in parallel.

C5留分から前記重質物を除去する蒸留の条件は、原料であるC5留分の供給量や設備の仕様等に応じて適宜選択することができるが、例えば、塔底温度は150〜170℃、塔頂圧力は0.01〜0.1MPaG、還流比は0.01〜1程度が好ましい。   The distillation conditions for removing the heavy matter from the C5 fraction can be appropriately selected according to the supply amount of the C5 fraction as a raw material, the specifications of the equipment, and the like. The tower top pressure is preferably 0.01 to 0.1 MPaG, and the reflux ratio is preferably about 0.01 to 1.

本発明では、この蒸留塔の圧力の制御を、「ナフサ分解生成物の処理設備中に存在する、C5以上の炭化水素を含まないガス」(圧力制御ガス)により行う。この圧力制御ガスは、前記のナフサ分解生成物の処理設備中のいずれの場所で排出されるガスでもよいが、C5以上の炭化水素を含まないガスである必要があるので、炭素数4以下の炭化水素を扱う設備から発生するものを用いることが好ましい。ここで、処理設備中に存在するC5以上の炭化水素を含まないガスとしては、具体的には処理設備中に存在していて、さらにC4以下の炭化水素を含むガスが好ましく、例えば、上記重質物が除去されたC5留分から低沸物を除去するための蒸留装置から分離されるオフガス等がより好ましく用いられる。   In the present invention, the pressure in the distillation column is controlled by “a gas that does not contain hydrocarbons of C5 or higher and exists in the processing equipment for naphtha decomposition products” (pressure control gas). This pressure control gas may be a gas discharged at any location in the processing equipment for the naphtha decomposition product, but it is necessary to be a gas not containing C5 or higher hydrocarbons. It is preferable to use one generated from a facility that handles hydrocarbons. Here, the gas that does not contain C5 or higher hydrocarbons present in the processing equipment is specifically a gas that is present in the processing equipment and further contains C4 or lower hydrocarbons. Off-gas etc. which are separated from a distillation apparatus for removing low boilers from the C5 fraction from which the mass has been removed are more preferably used.

かくして重質物が除去されたC5留分は、この後、必要に応じ上記低沸物などが除去された後、該C5留分に含まれる有用物質の分離精製工程に供され、炭素数5の炭化水素製品の製造が行われる。   The C5 fraction from which the heavy substances have been removed is then subjected to a separation and purification process of useful substances contained in the C5 fraction after the above-mentioned low-boiling substances and the like are removed as necessary. Production of hydrocarbon products takes place.

次に、第1図を用いて本発明についてより具体的に説明する。第1図は、本発明の蒸留塔の圧力制御方法の実施の形態を説明する系統図である。第1図中の総ての装置類は、ナフサ分解生成物の処理設備の一部を構成するものである。   Next, the present invention will be described more specifically with reference to FIG. FIG. 1 is a system diagram illustrating an embodiment of a pressure control method for a distillation column according to the present invention. All the devices in FIG. 1 constitute part of the processing equipment for naphtha decomposition products.

[分解系1]
分解系1では、ナフサ分解炉内にナフサと該ナフサの希釈用の蒸気とが導入され、ナフサが熱分解される。
[Decomposition system 1]
In the decomposition system 1, naphtha and steam for diluting the naphtha are introduced into the naphtha decomposition furnace, and the naphtha is thermally decomposed.

[急冷系2]
上記分解系1で生成されたナフサ分解生成物は、急冷系2に導入され、重質油及び分解ガソリンの分離除去が行われる。分離された分解ガソリンは、後述する前留系10に供給される。これら分解ガソリン及び重質油の分離後のガスは、次の圧縮系3に供給される。
[Rapid cooling system 2]
The naphtha cracked product produced in the cracking system 1 is introduced into the quenching system 2, where heavy oil and cracked gasoline are separated and removed. The separated cracked gasoline is supplied to the front distillation system 10 described later. The gas after separation of the cracked gasoline and heavy oil is supplied to the next compression system 3.

[圧縮系3]
上記急冷系2から流出されたガスは、圧縮系3に供給され、ガス圧縮機で圧縮されると共に、必要に応じてその一部又は全部が苛性ソーダ等で洗浄され、さらに圧縮により発生した凝縮水が分離される。
[Compression system 3]
The gas flowing out of the quenching system 2 is supplied to the compression system 3 and compressed by a gas compressor, and part or all of the gas is washed with caustic soda or the like as necessary, and further condensed water generated by the compression. Are separated.

[深冷系4]
上記圧縮系3から流出された圧縮ガスは、深冷系4に導入されて冷却され、水素が分離される。
[Deep cooling system 4]
The compressed gas that has flowed out of the compression system 3 is introduced into the deep cooling system 4 and cooled to separate hydrogen.

[低温精製系5]
上記深冷系4から流出された圧縮ガスは、低温精製系5に導入され、メタン、エチレン及びエタンが分留される。
[Low temperature purification system 5]
The compressed gas that has flowed out of the deep cooling system 4 is introduced into the low temperature purification system 5, and methane, ethylene, and ethane are fractionated.

[高温精製系6]
上記低温精製系5でメタン、エチレン及びエタンが分留除去された後の留分は、高温精製系6に導入され、プロピレン、プロパン、ブタン及びブタジエンが分留される。
[High-temperature purification system 6]
The fraction from which methane, ethylene and ethane have been removed by distillation in the low-temperature purification system 5 is introduced into the high-temperature purification system 6, and propylene, propane, butane and butadiene are fractionated.

この高温精製系6でプロピレン、プロパン、ブタン及びブタジエンが分留された後の留分は、上記急冷系2から流出された分解ガソリンと共に、後述する前留系10に供給される。   The fraction after propylene, propane, butane and butadiene are fractionally distilled in the high-temperature refining system 6 is supplied to the fore-end system 10 described later together with cracked gasoline discharged from the quenching system 2.

[前留系10]
上記急冷系2から流出される分解ガソリンはC9以上の炭化水素を含んでおり、上記高温精製系6から流出される留分はC6以上C8以下の炭化水素を含んでいる。これら分解ガソリンと高温精製系6からの留分との混合物は、脱C5塔11に導入され、C5留分が分離されて塔頂から流出される。C5留分が分離された残りの留分は、塔底から流出され、図示しない水添系、中間蒸留系、脱アルキル系、精製系等に供給されて、ベンゼン、粗ベンゼン、タール、メタン、エタン、ラフィネート等が製造される。
[Preliminary system 10]
The cracked gasoline flowing out from the quenching system 2 contains C9 or more hydrocarbons, and the fraction flowing out from the high temperature refining system 6 contains C6 or more and C8 or less hydrocarbons. A mixture of the cracked gasoline and the fraction from the high-temperature refining system 6 is introduced into the de-C5 tower 11, and the C5 fraction is separated and discharged from the top of the tower. The remaining fraction from which the C5 fraction has been separated is discharged from the bottom of the column and supplied to a hydrogenation system, intermediate distillation system, dealkylation system, purification system, etc. (not shown), and benzene, crude benzene, tar, methane, Ethane, raffinate, etc. are produced.

この脱C5塔11の塔頂から流出されるC5留分(以下、「粗C5留分」と称することがある。)の組成の一例は以下の通りである。   An example of the composition of the C5 fraction (hereinafter sometimes referred to as “crude C5 fraction”) flowing out from the top of the de-C5 tower 11 is as follows.

<粗C5留分の組成>
C5留分 :65〜90vol%
C4以下の留分:0〜10vol%
C6以上の留分:0〜30vol%
この粗C5留分は、第1の蒸留塔12に導入され、重質物を除去する蒸留工程(第1の蒸留工程)が行われる。なお、この重質物を除去する蒸留工程の詳細は、上述した通りである。
<Composition of crude C5 fraction>
C5 fraction: 65 to 90 vol%
C4 fraction or less: 0 to 10 vol%
C6 or higher fraction: 0 to 30 vol%
This crude C5 fraction is introduced into the first distillation column 12, and a distillation step (first distillation step) for removing heavy substances is performed. The details of the distillation step for removing this heavy material are as described above.

この第1の蒸留塔12の塔頂から流出される、重質物が分離された粗C5留分は、第2の蒸留塔13に導入され、C4以下の低沸物を除去する蒸留工程(第2の蒸留工程)が行われる。このC4以下の低沸物は塔頂から流出され、C5留分(以下、「精製C5留分」と称することがある。)が塔底から流出される。この精製C5留分は、イソプレン、ピペリレン、ジシクロペンタジエン、アミレンなどの有用成分を含んでいる。これらの有用成分は、図示しない後工程で分離精製される。   The crude C5 fraction separated from the heavy substances, which flows out from the top of the first distillation column 12, is introduced into the second distillation column 13 to remove a low boiling point product of C4 or less (first step). 2 distillation step) is performed. The low boiling point C4 or lower is discharged from the top of the column, and the C5 fraction (hereinafter sometimes referred to as “purified C5 fraction”) is discharged from the bottom of the column. This purified C5 fraction contains useful components such as isoprene, piperylene, dicyclopentadiene and amylene. These useful components are separated and purified in a later step (not shown).

なお、上記の第1の蒸留塔12の圧力制御ガスとしては、このナフサ分解生成物の処理設備中に存在するC5以上の炭化水素を含まないガスを使用する。例えば、第2の蒸留塔13の塔頂から流出されるC4以下の低沸物、深冷系4から流出される水素、低温精製系5から流出されるメタン、エチレン及びエタン、高温精製系6から流出されるプロピレン、プロパン、ブタン及びブタジエン、水添系よりも下流側で生成されるC5以上の炭化水素を含まないガス(メタンやエタン等)などの中から選択される1種以上を用いることができる。このように、圧力制御ガスとしてナフサ分解生成物の処理設備中に存在するガスを使用することにより、該処理設備の外部からの外部ガスを使用する場合と比べてコストを低減することができる。また、処理設備内に上記ナフサ分解生成物の処理設備中に存在するガスを入れても、処理設備全体で窒素が危険濃度以下に保持されるので、リサイクルにより窒素ガスがナフサ分解炉で危険濃度以上の酸化窒素となることを防止することができ、安全である。なお、圧力制御ガスとして第2の蒸留塔13の塔頂から流出される低沸物を使用する場合は、この処理設備内で製造された上記炭化水素製品を使用する場合と比べてより安価である。   In addition, as a pressure control gas of said 1st distillation column 12, the gas which does not contain the C5 or more hydrocarbon which exists in the processing equipment of this naphtha decomposition product is used. For example, low boiling point C4 or less flowing out from the top of the second distillation column 13, hydrogen flowing out from the deep cooling system 4, methane, ethylene and ethane flowing out from the low temperature refining system 5, high temperature refining system 6 One or more selected from propylene, propane, butane, butadiene, and other gases that do not contain C5 or higher hydrocarbons (methane, ethane, etc.) generated downstream from the hydrogenation system. be able to. Thus, the cost can be reduced by using the gas existing in the processing facility of the naphtha decomposition product as the pressure control gas as compared with the case of using the external gas from the outside of the processing facility. In addition, even if the gas present in the naphtha decomposition product processing facility is put in the processing facility, nitrogen is kept below the hazardous concentration in the entire processing facility. Therefore, nitrogen gas is recycled in the naphtha decomposition furnace by recycling. It is possible to prevent the above-described nitric oxide from being formed, and it is safe. In addition, when using the low-boiling thing which flows out from the top of the 2nd distillation column 13 as pressure control gas, it is cheaper compared with the case where the said hydrocarbon product manufactured in this processing equipment is used. is there.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited at all by these Examples.

[実施例1]
第1図のナフサ分解生成物の処理設備において、第1の蒸留塔12の圧力制御ガスとして、第2の蒸留塔13の塔頂から流出されるC4以下の低沸物を使用して運転を行った。なお、第1の蒸留塔12の運転条件は以下の通りとした。また、脱C5塔11の塔頂から流出される粗C5留分の組成は表1の通りであった。
粗C5留分の供給量:10t/h
塔底温度:160℃
塔頂圧力:0.04MPaG
還流比:0.033
[Example 1]
In the naphtha decomposition product treatment facility shown in FIG. 1, the operation is performed using a low boiling point C4 or less discharged from the top of the second distillation column 13 as the pressure control gas of the first distillation column 12. went. The operating conditions of the first distillation column 12 were as follows. Further, the composition of the crude C5 fraction flowing out from the top of the de-C5 tower 11 was as shown in Table 1.
Supply amount of crude C5 fraction: 10t / h
Column bottom temperature: 160 ° C
Tower top pressure: 0.04 MPaG
Reflux ratio: 0.033

運転開始から1週間後、第1の蒸留塔12の塔頂から流出する塔頂留分の組成を分析した。その結果を表2に示す。   One week after the start of operation, the composition of the top fraction flowing out from the top of the first distillation column 12 was analyzed. The results are shown in Table 2.

表2に示す通り、第1の蒸留塔12の塔頂留分は、C5以下の炭化水素を主体としたものとなった。このように実施例1によると、外部からガスを導入することなく、安価で安全に蒸留塔の運転を行うことができることが確認された。   As shown in Table 2, the top fraction of the first distillation column 12 was mainly composed of C5 or lower hydrocarbons. As described above, according to Example 1, it was confirmed that the operation of the distillation tower can be performed safely at low cost without introducing gas from the outside.

Figure 2011256157
Figure 2011256157

Figure 2011256157
Figure 2011256157

[比較例1]
実施例1と同様のナフサ分解生成物の処理設備のスタティックシミュレーションモデルを、コンピューター上に構築した。そして、第1の蒸留塔12の圧力制御ガスとして、上記表1の粗C5留分100重量部に対して0.1重量部のNを添加したものを使用すること以外は、実施例1と同様に運転する条件として、第1の蒸留塔12の塔頂留分の組成を計算した。その結果を表3に示す。表3に示す通り、第1の蒸留塔12の塔頂留分の組成の0.09wt%が窒素となった。
[Comparative Example 1]
A static simulation model of the processing equipment for naphtha decomposition products similar to that in Example 1 was constructed on a computer. Except for using those as the pressure control gas in the first distillation column 12, was added N 2 of 0.1 parts by weight of the crude C5 fraction 100 parts by weight in Table 1, Example 1 As a condition for operating in the same manner as above, the composition of the top fraction of the first distillation column 12 was calculated. The results are shown in Table 3. As shown in Table 3, 0.09 wt% of the composition of the top fraction of the first distillation column 12 became nitrogen.

AIChEの検討では、該処理設備の深冷分離装置内にppmオーダーの窒素が蓄積すると、爆発の危険が生じるとされている(非特許文献3)。このため、この第1の蒸留塔12の塔頂留分がナフサを熱分解・分離する系(すなわち、第1図の圧縮系3)に回収されリサイクルガスとして危険濃度以上の窒素が混入する場合に、危険濃度の酸化窒素が蓄積する可能性があることがわかった。   In the study of AIChE, it is said that if ppm order nitrogen accumulates in the cryogenic separator of the treatment facility, there is a risk of explosion (Non-patent Document 3). For this reason, the top fraction of the first distillation column 12 is recovered in a system for thermally decomposing and separating naphtha (that is, the compression system 3 in FIG. 1), and nitrogen having a dangerous concentration or more is mixed as a recycle gas. It was also found that dangerous concentrations of nitric oxide can accumulate.

Figure 2011256157
Figure 2011256157

1 分解系
2 急冷系
3 圧縮系
4 深冷系
5 低温精製系
6 高温精製系
10 前留系
11 脱C5塔
12 蒸留塔
13 蒸留塔
DESCRIPTION OF SYMBOLS 1 Decomposition system 2 Rapid cooling system 3 Compression system 4 Deep cooling system 5 Low temperature purification system 6 High temperature purification system 10 Pre-distillation system 11 De-C5 tower 12 Distillation tower 13 Distillation tower

Claims (3)

ナフサの分解により生成されるナフサ分解生成物を処理する処理設備における、該ナフサ分解生成物を分離して得られるC5留分から重質物を分離除去する蒸留設備の蒸留塔に対し、圧力制御ガスを導入して該蒸留塔の圧力を制御する方法において、
該圧力制御ガスとして、前記処理設備中に存在するC5以上の炭化水素を含まないガスを使用することを特徴とする蒸留塔の圧力制御方法。
A pressure control gas is supplied to a distillation tower of a distillation facility for separating and removing heavy substances from a C5 fraction obtained by separating the naphtha decomposition product in a processing facility for processing the naphtha decomposition product generated by the decomposition of naphtha. In the method of introducing and controlling the pressure of the distillation column,
A pressure control method for a distillation column, characterized in that a gas not containing C5 or higher hydrocarbons present in the processing facility is used as the pressure control gas.
請求項1において、前記処理設備中に存在するC5以上の炭化水素を含まないガスが、C4以下の炭化水素ガスを含有することを特徴とする蒸留塔の圧力制御方法。   2. The pressure control method for a distillation column according to claim 1, wherein the gas that does not contain C5 or higher hydrocarbons present in the processing equipment contains C4 or lower hydrocarbon gas. 請求項1又は2において、前記処理設備中に存在するC5以上の炭化水素を含まないガスが、前記処理設備内のC5留分から軽沸物を除去するための蒸留装置から分離されるオフガスであることを特徴とする蒸留塔の圧力制御方法。   In Claim 1 or 2, the gas which does not contain C5 or more hydrocarbons present in the processing facility is an off-gas separated from a distillation apparatus for removing light boiling substances from a C5 fraction in the processing facility. A pressure control method for a distillation column,
JP2011009013A 2010-05-12 2011-01-19 Distillation tower pressure control method Active JP5582044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011009013A JP5582044B2 (en) 2010-05-12 2011-01-19 Distillation tower pressure control method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010110039 2010-05-12
JP2010110039 2010-05-12
JP2011009013A JP5582044B2 (en) 2010-05-12 2011-01-19 Distillation tower pressure control method

Publications (3)

Publication Number Publication Date
JP2011256157A true JP2011256157A (en) 2011-12-22
JP2011256157A5 JP2011256157A5 (en) 2013-09-19
JP5582044B2 JP5582044B2 (en) 2014-09-03

Family

ID=45472754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011009013A Active JP5582044B2 (en) 2010-05-12 2011-01-19 Distillation tower pressure control method

Country Status (1)

Country Link
JP (1) JP5582044B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017057142A1 (en) * 2015-09-30 2018-07-26 株式会社ダイセル Method and apparatus for producing acetic acid
JP2018532793A (en) * 2015-11-04 2018-11-08 エクソンモービル ケミカル パテンツ インコーポレイテッド Method and system for producing cyclopentadiene and / or dicyclopentadiene

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123138A (en) * 1985-11-22 1987-06-04 Mitsubishi Chem Ind Ltd Method for separating and recovering cyclopentadiene
JPH05301828A (en) * 1992-01-13 1993-11-16 Mitsui Toatsu Chem Inc Production of high quality pentane
JPH0929001A (en) * 1995-07-17 1997-02-04 Jgc Corp Device and process for distillation
JP2007520519A (en) * 2004-02-06 2007-07-26 ビーエーエスエフ アクチェンゲゼルシャフト Method for obtaining crude 1,3-butadiene
JP2007222846A (en) * 2006-02-27 2007-09-06 Sumitomo Chemical Co Ltd Distillation tower
JP2011256156A (en) * 2010-05-12 2011-12-22 Mitsubishi Chemicals Corp Temperature control method for distillation column

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123138A (en) * 1985-11-22 1987-06-04 Mitsubishi Chem Ind Ltd Method for separating and recovering cyclopentadiene
JPH05301828A (en) * 1992-01-13 1993-11-16 Mitsui Toatsu Chem Inc Production of high quality pentane
JPH0929001A (en) * 1995-07-17 1997-02-04 Jgc Corp Device and process for distillation
JP2007520519A (en) * 2004-02-06 2007-07-26 ビーエーエスエフ アクチェンゲゼルシャフト Method for obtaining crude 1,3-butadiene
JP2007222846A (en) * 2006-02-27 2007-09-06 Sumitomo Chemical Co Ltd Distillation tower
JP2011256156A (en) * 2010-05-12 2011-12-22 Mitsubishi Chemicals Corp Temperature control method for distillation column

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017057142A1 (en) * 2015-09-30 2018-07-26 株式会社ダイセル Method and apparatus for producing acetic acid
US10894759B2 (en) 2015-09-30 2021-01-19 Daicel Corporation Method and apparatus for producing acetic acid
JP2018532793A (en) * 2015-11-04 2018-11-08 エクソンモービル ケミカル パテンツ インコーポレイテッド Method and system for producing cyclopentadiene and / or dicyclopentadiene

Also Published As

Publication number Publication date
JP5582044B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
EP3143103B1 (en) Process to produce aromatics from crude oil
US7273542B2 (en) Process and apparatus for recovering olefins
JP6465874B2 (en) Method and apparatus for improved propylene yield for converting crude oil to petrochemical products
US3676519A (en) Quench process
JP6215936B2 (en) Conversion process of hydrocarbon feedstock by thermal steam cracking
WO2012027554A1 (en) Producing olefins by pyrolytic cracking of refinery off-gas
CN106062147B (en) Method for converting hydrocarbons to alkene
JP5582044B2 (en) Distillation tower pressure control method
US20100116711A1 (en) Systems and Methods for Producing N-Paraffins From Low Value Feedstocks
US10100260B2 (en) Process for the treatment of a hydrocarbon feed comprising hydrogen and C1 to C4 hydrocarbons
US20170015913A1 (en) Process for the treatment of a hydrocarbon feed containing hydrogen and hydrocarbons
JP2007291281A (en) Treatment method for plastic
US20140012058A1 (en) Distillation column pressure control
JP5803565B2 (en) Method for separating and recovering dicyclopentadiene
JP2011256156A (en) Temperature control method for distillation column
RU2540270C1 (en) Advanced hydrocarbon refinery gas processing method
Parmar et al. Energy reduction and improved product recovery with enhanced safety of industrial scale propane‐propylene separation process
JP6480726B2 (en) Lower olefin production method, lower olefin production apparatus, and lower olefin production facility construction method
US11851621B2 (en) Naphtha catalytic cracking process
US20170015912A1 (en) Process for treating a hydrocarbon feed
CN114432844B (en) Method and system for purifying pyrolysis gas
TW202419614A (en) Catalytic reforming of recycled content raffinate and naphtha from atmospheric distillation
WO2023049036A1 (en) Pyrolysis gas treatment using absorber-stripper system
TW202413509A (en) Catalytic reforming of recycled content light pyrolysis oil
JP2014047176A (en) Method for producing propylene

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140630

R150 Certificate of patent or registration of utility model

Ref document number: 5582044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250