JP2011256156A - Temperature control method for distillation column - Google Patents

Temperature control method for distillation column Download PDF

Info

Publication number
JP2011256156A
JP2011256156A JP2011009012A JP2011009012A JP2011256156A JP 2011256156 A JP2011256156 A JP 2011256156A JP 2011009012 A JP2011009012 A JP 2011009012A JP 2011009012 A JP2011009012 A JP 2011009012A JP 2011256156 A JP2011256156 A JP 2011256156A
Authority
JP
Japan
Prior art keywords
temperature
distillation column
distillation
column
fraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011009012A
Other languages
Japanese (ja)
Other versions
JP2011256156A5 (en
Inventor
Yoshinori Ota
好則 太田
Tomomi Oishi
智巳 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Research Association of Refinery Integration for Group Operation
Original Assignee
Mitsubishi Chemical Corp
Research Association of Refinery Integration for Group Operation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Research Association of Refinery Integration for Group Operation filed Critical Mitsubishi Chemical Corp
Priority to JP2011009012A priority Critical patent/JP2011256156A/en
Publication of JP2011256156A publication Critical patent/JP2011256156A/en
Publication of JP2011256156A5 publication Critical patent/JP2011256156A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature control method for a distillation column which enables the stable temperature control of a distillation column, hardly gives a loss of hydrocarbon fraction and is highly efficient.SOLUTION: In a facility for treating a product generated by naphtha cracking, the method controls the temperature of a distillation column 12 of a distillation facility which separate and eliminate heavy substances from the C5 fraction obtained by separating the naphtha-cracked product. In the temperature control method, the temperature of the column base of the distillation column 12 is controlled so that the amount of 5C hydrocarbon in a discharge liquid from the column base of the distillation column 12 becomes at most 3 wt.%. Since the temperature of the column base does not change greatly even when the temperature at the middle stage of the distillation column 12 made a sudden change, by controlling the temperature of the column base, the stable temperature control of the distillation column 12 becomes possible and the temperature control of the distillation column 12 with a small loss of hydrocarbon fraction and high efficiency can be performed.

Description

本発明は、ナフサの分解により生成するナフサ分解生成物を処理する処理設備における、該ナフサ分解生成物を分離して得られるC5留分から重質物を分離除去する蒸留設備の蒸留塔の温度を制御する方法に関する。   The present invention controls the temperature of a distillation column of a distillation facility that separates and removes heavy matter from a C5 fraction obtained by separating the naphtha decomposition product in a processing facility that processes the naphtha decomposition product generated by the decomposition of naphtha. On how to do.

石油化学産業の基礎製品であるエチレン、プロピレン、ブタジエン、ベンゼン、トルエン、キシレンなどは、ナフサの熱分解により生成されるナフサ分解生成物を、処理設備において分離精製することにより製造される。この分離精製過程で生成されるC5留分には、有用成分として、イソプレン、ピペリレン、シクロペンタジエン、アミレンなどが含まれる。またシクロペンタジエンが二量化して生ずるジシクロペンタジエンも含まれる。このC5留分を複数の蒸留塔で蒸留することにより、これら有用成分が分離される。例えば、特許文献1(特開平5−301828号公報)の第0003,0004段落には、このC5留分からジシクロペンタジエンやイソプレン等を蒸留により単離することが記載されている。   Ethylene, propylene, butadiene, benzene, toluene, xylene and the like, which are basic products of the petrochemical industry, are produced by separating and purifying naphtha decomposition products generated by thermal decomposition of naphtha in a processing facility. The C5 fraction produced in this separation and purification process includes isoprene, piperylene, cyclopentadiene, amylene and the like as useful components. Further, dicyclopentadiene produced by dimerization of cyclopentadiene is also included. These useful components are separated by distilling the C5 fraction in a plurality of distillation columns. For example, paragraphs 0003 and 0004 of Patent Document 1 (JP-A-5-301828) describe that dicyclopentadiene, isoprene, and the like are isolated from this C5 fraction by distillation.

通常、蒸留塔においては、塔内温度は塔底付近に配したリボイラによって調節される。この塔内温度の制御は、塔内の温度変化が起こりやすい部分の温度を監視し、該温度が適正範囲となるように制御することにより行われるのが一般的である。ここで、塔内の温度変化が起こりやすい部分としては、塔内の温度勾配がある部分、つまり組成変化が大きい部分が選択される。上記のナフサ分解生成物の処理設備内におけるC5留分の蒸留分離工程においても、通常、温度勾配の大きい部分として、蒸留塔中段の温度を監視し、当該温度が一定の範囲となるように制御される。   Usually, in a distillation column, the temperature in the column is adjusted by a reboiler arranged near the bottom of the column. The control of the temperature in the tower is generally performed by monitoring the temperature of the portion where the temperature change in the tower is likely to occur and controlling the temperature to be within an appropriate range. Here, as the part where the temperature change in the tower is likely to occur, a part having a temperature gradient in the tower, that is, a part having a large composition change is selected. Also in the distillation separation process of the C5 fraction in the above naphtha decomposition product processing equipment, the temperature of the middle stage of the distillation tower is usually monitored as a part having a large temperature gradient, and the temperature is controlled to be within a certain range. Is done.

しかしながら、本発明者らの検討によれば、上記蒸留塔の運転を一定時間継続すると、監視している蒸留塔中段の温度が急激に上昇し、これに伴い蒸留塔の温度や圧力の制御装置が急激に温度を低下させる方向に作動する結果、逆に蒸留塔の温度が制御不能になってしまうという現象が生じていた。この温度の急激な上昇は、突然に起こることがわかっている。また、この蒸留塔が制御不能となっている間は重質物の分離が充分に行われず、その間に製造される製品にオフスペック品が含まれるという問題につながっていた。   However, according to the study by the present inventors, when the operation of the distillation column is continued for a certain period of time, the temperature of the middle stage of the distillation column that is monitored rises rapidly, and the temperature and pressure control device for the distillation column is accordingly increased. As a result, the phenomenon that the temperature of the distillation column becomes uncontrollable has occurred. This rapid increase in temperature has been found to occur suddenly. Further, while the distillation column is not controllable, the heavy material is not sufficiently separated, leading to a problem that off-spec products are included in products manufactured during that time.

特開平5−301828号公報JP-A-5-301828

本発明は、C5留分から重質物を分離除去する蒸留塔の安定した温度制御が可能であり、蒸留を高効率に行うことができる蒸留塔の温度制御方法を提供することを目的とする。   An object of the present invention is to provide a distillation column temperature control method capable of stably controlling the temperature of a distillation column for separating and removing heavy substances from a C5 fraction and capable of performing distillation with high efficiency.

上記課題に鑑み、本発明者らは、エチレンプラントにおけるナフサ分解生成物を分離して得られるC5留分から重質物を分離除去する蒸留塔において、該蒸留塔の中段における急激な温度変化が如何なる原因によって生じるのかを検討した。その結果、蒸留塔フィード液(C5+C10留分)の中に、重質物と共沸する不純物(例えば水など)が含まれると、蒸留塔フィード液の重質物と該不純物とが共沸してトレイ上に流入してトレイ上の液組成が変化し、トレイ最下段(蒸留塔の中段)に設置した温度制御点の温度が40〜50℃急激に上昇することが原因であると考えるに至った。そして、上記中段の温度の急激な変化があった時でも、塔底温度(塔底流出液温度)には大きな変化が無いため、塔底温度を制御することによりC5留分と重質物とを分離し得るかを検討したところ、良好に分離可能であることを見出した。本発明者らは当該知見に基づいて本発明を完成させるに至ったものである。   In view of the above problems, the inventors of the present invention, in a distillation column that separates and removes heavy matter from a C5 fraction obtained by separating naphtha decomposition products in an ethylene plant, what causes the rapid temperature change in the middle stage of the distillation column? It was examined whether it was caused by. As a result, if the distillation column feed liquid (C5 + C10 fraction) contains impurities (for example, water) that azeotrope with the heavy substances, the heavy substances in the distillation column feed liquid and the impurities azeotrope to form a tray. The liquid composition on the tray changed into the upper part of the tray, and the temperature at the temperature control point installed at the bottom of the tray (middle of the distillation column) was thought to be a cause of a sudden rise of 40-50 ° C. . And even when there is a sudden change in the temperature of the middle stage, there is no significant change in the tower bottom temperature (the bottom bottom effluent temperature). Therefore, the C5 fraction and heavy matter are removed by controlling the tower bottom temperature. As a result of examining whether it can be separated, it was found that separation is possible. The present inventors have completed the present invention based on the findings.

すなわち、本発明(請求項1)の蒸留塔の温度制御方法は、ナフサの分解により生成するナフサ分解生成物を処理する処理設備における、該ナフサ分解生成物を分離して得られるC5留分から重質物を分離除去する蒸留設備の蒸留塔の温度を制御する方法において、該蒸留塔の塔底流出液中における炭素数5の炭化水素の含有量が3重量%以下となるように、該蒸留塔の塔底温度を制御することを特徴とするものである。   That is, the temperature control method for a distillation column according to the present invention (Claim 1) is a method for treating heavy water from a C5 fraction obtained by separating the naphtha decomposition product in a processing facility for processing the naphtha decomposition product generated by naphtha decomposition. In the method for controlling the temperature of the distillation column of the distillation facility for separating and removing the mass, the distillation column is adjusted so that the content of hydrocarbon having 5 carbon atoms in the bottom effluent of the distillation column is 3% by weight or less. The column bottom temperature is controlled.

請求項2の蒸留塔の温度制御方法は、請求項1において、前記塔底流出液の温度を測定し、この塔底流出液温度が150〜170℃の範囲となるように制御することにより、該塔底温度を制御することを特徴とするものである。   The temperature control method for a distillation column according to claim 2 is the method according to claim 1, wherein the temperature of the bottom effluent is measured and controlled so that the bottom effluent temperature is in a range of 150 to 170 ° C. The tower bottom temperature is controlled.

請求項3の蒸留塔の温度制御方法は、請求項1において、前記塔底流出液の一部を加熱して前記蒸留塔に返送するリボイラが設けられており、該リボイラの出口における返送流体の温度を測定し、該返送流体温度が160〜190℃の範囲となるように制御することにより、該塔底温度を制御することを特徴とするものである。   The temperature control method for a distillation column according to claim 3 is the method according to claim 1, further comprising a reboiler for heating a part of the bottom effluent and returning it to the distillation column. The tower bottom temperature is controlled by measuring the temperature and controlling the return fluid temperature to be in the range of 160 to 190 ° C.

本発明では、C5留分から重質物を分離除去する蒸留塔の温度制御に際して、該蒸留塔の塔底温度を制御する。この塔底温度は、蒸留塔の中段温度の急激な変化があった時でも大きな変化が生じないため、この塔底温度を制御することにより、蒸留塔の安定した温度制御が可能となり、蒸留を高効率にて行うことができる。   In the present invention, when the temperature of the distillation column for separating and removing heavy substances from the C5 fraction is controlled, the column bottom temperature of the distillation column is controlled. Since the bottom temperature does not change greatly even when there is a sudden change in the middle temperature of the distillation tower, controlling the bottom temperature enables stable temperature control of the distillation tower, thereby allowing distillation to be performed. It can be performed with high efficiency.

この塔底温度を制御する方法としては、塔底流出液の温度を測定し、この塔底流出液温度が150〜170℃の範囲となるように制御する方法を適用することが好ましい。この場合、蒸留塔内に温度計を設置する必要がない。   As a method of controlling the tower bottom temperature, it is preferable to apply a method of measuring the temperature of the tower bottom effluent and controlling the tower bottom effluent temperature in the range of 150 to 170 ° C. In this case, there is no need to install a thermometer in the distillation column.

また、この塔底温度を制御する別の方法としては、リボイラの出口における返送流体の温度を測定し、該返送流体温度が160〜190℃の範囲となるように制御する方法を適用してもよい。この場合にも、蒸留塔内に温度計を設置する必要がない。   Further, as another method for controlling the tower bottom temperature, a method of measuring the temperature of the return fluid at the outlet of the reboiler and controlling the return fluid temperature in the range of 160 to 190 ° C. may be applied. Good. In this case, it is not necessary to install a thermometer in the distillation column.

本発明の蒸留塔の温度制御方法の実施の形態を説明する系統図である。It is a systematic diagram explaining embodiment of the temperature control method of the distillation tower of this invention. 実施例1における蒸留塔内の温度変化を示すグラフである。3 is a graph showing a temperature change in the distillation column in Example 1. FIG. 比較例1における蒸留塔内の温度変化を示すグラフである。6 is a graph showing a temperature change in a distillation column in Comparative Example 1.

本発明の蒸留塔の温度制御方法は、ナフサの分解により生成するナフサ分解生成物を処理する処理設備における、該ナフサ分解生成物を分離して得られるC5留分から重質物を分離除去する蒸留設備の蒸留塔の温度を制御する方法において、該蒸留塔の塔底流出液中における炭素数5の炭化水素の含有量が3重量%以下となるように、該蒸留塔の塔底温度を制御することを特徴とするものである。   The distillation tower temperature control method of the present invention is a distillation facility for separating and removing heavy substances from a C5 fraction obtained by separating the naphtha decomposition product in a processing facility for processing the naphtha decomposition product generated by the decomposition of naphtha. In the method for controlling the temperature of the distillation column, the bottom temperature of the distillation column is controlled so that the content of hydrocarbon having 5 carbon atoms in the bottom effluent of the distillation column is 3% by weight or less. It is characterized by this.

ここで、ナフサ分解生成物の処理設備とは、ナフサを高温で熱分解して、メタン、エタン、エチレン、プロピレン、ブタン、ブタジエン、炭素数5の炭化水素、ベンゼン、キシレン、その他のオフガス、重質油などを生成させ、これらを分離取得していく設備の全般をいう。このナフサ分解生成物の処理設備としては、例えば、ナフサ分解炉、分解ガス急冷部等の熱回収装置、脱硫設備、蒸留分離設備などを含むものが用いられるが、本発明に係るナフサ分解生成物の処理設備は、C5留分の蒸留設備を含み、全体としてナフサ分解生成物の処理を行うものであれば何れのものでもよい。   Here, the processing equipment for naphtha decomposition products means that naphtha is thermally decomposed at a high temperature, methane, ethane, ethylene, propylene, butane, butadiene, hydrocarbons having 5 carbon atoms, benzene, xylene, other off-gas, heavy This refers to the entire facility that produces quality oil and separates and acquires these. As the processing equipment for the naphtha cracking product, for example, a naphtha cracking furnace, a heat recovery device such as a cracking gas quenching section, a desulfurization equipment, a distillation separation equipment or the like is used, but the naphtha cracking product according to the present invention is used. As long as the treatment equipment includes a distillation equipment for the C5 fraction, the whole treatment equipment for the naphtha decomposition product may be used.

また、ナフサ分解生成物を分離して得られるC5留分とは、ナフサを熱分解してなるナフサ分解生成物に含まれる、沸点が炭素数5の炭化水素の範囲にある成分の混合物であり、具体的には、沸点が9〜60℃の範囲にある物質の混合物である。このC5留分としては、ペンタン、イソプレン、2−メチルブタン、シクロペンタジエン等が挙げられる。このC5留分の製造法としては、例えば、ナフサ分解生成物から炭素数9以上のヘビーエンド油を除去し、残部から炭素数1〜4のオレフィン類等を分離した残部(本明細書中では「分解ガソリン」と称することがある。)から、沸点が60℃以上の物質を分離する方法などが挙げられる。上記分解ガソリンには、C5(炭素数5)〜C8(炭素数8)の脂肪族炭化水素とC6(炭素数6)〜C8(炭素数8)の芳香族炭化水素等が含まれる。なお、分離の仕組み上C4(炭素数4)以下やC9(炭素数9)以上の炭化水素も少量含まれる。   The C5 fraction obtained by separating the naphtha decomposition product is a mixture of components having a boiling point in the range of 5 hydrocarbons contained in the naphtha decomposition product obtained by thermally decomposing naphtha. Specifically, it is a mixture of substances having a boiling point in the range of 9 to 60 ° C. Examples of the C5 fraction include pentane, isoprene, 2-methylbutane, and cyclopentadiene. As a method for producing the C5 fraction, for example, the heavy ending oil having 9 or more carbon atoms is removed from the naphtha decomposition product, and the olefins having 1 to 4 carbon atoms and the like are separated from the remainder (in the present specification, And a method of separating a substance having a boiling point of 60 ° C. or higher. The cracked gasoline contains C5 (carbon number 5) to C8 (carbon number 8) aliphatic hydrocarbon, C6 (carbon number 6) to C8 (carbon number 8) aromatic hydrocarbon, and the like. Note that a small amount of hydrocarbons having C4 (carbon number 4) or less or C9 (carbon number 9) or more is included due to the separation mechanism.

このC5留分は、該C5留分に含まれる物質を分離精製して製造する工程に供される。その工程の一部として、まず、C5留分から蒸留により重質物を除去する蒸留工程を行う。本発明の蒸留塔の温度制御方法は、当該蒸留工程における蒸留設備の蒸留塔の温度制御方法である。ここで除去される重質物とは、C5留分よりも高沸のものをいい、主にC10(炭素数10)留分である。蒸留設備の構成としては、例えば、棚段を備えた竪型の蒸留塔の塔底に1.5MPaGの蒸気を加熱源としたリボイラーを備え、塔頂にはコンデンサーを備えた蒸留塔などが用いられる。蒸留塔は単独でもよいし、複数の蒸留塔を並列に構成したものでもよい。   This C5 fraction is subjected to a process for producing by separating and purifying the substance contained in the C5 fraction. As a part of the process, first, a distillation process for removing heavy substances from the C5 fraction by distillation is performed. The distillation tower temperature control method of the present invention is a temperature control method for a distillation tower of distillation equipment in the distillation step. The heavy material removed here refers to those having a higher boiling point than the C5 fraction, and mainly the C10 (carbon number 10) fraction. As the configuration of the distillation equipment, for example, a reboiler using a 1.5 MPaG vapor as a heating source is provided at the bottom of a vertical distillation tower provided with a shelf, and a distillation tower provided with a condenser is used at the top. It is done. The distillation column may be a single distillation column or a plurality of distillation columns configured in parallel.

C5留分から前記重質物を除去する蒸留の条件は、原料であるC5留分の供給量や設備の仕様等に応じて適宜選択することができるが、例えば、塔底温度は150〜170℃、塔頂圧力は0.01〜0.1MPaG、還流比は0.01〜1程度が好ましい。   The distillation conditions for removing the heavy matter from the C5 fraction can be appropriately selected according to the supply amount of the C5 fraction as a raw material, the specifications of the equipment, and the like. The tower top pressure is preferably 0.01 to 0.1 MPaG, and the reflux ratio is preferably about 0.01 to 1.

また、この蒸留塔の温度制御は、蒸留塔の塔底温度を制御することにより行う。詳しくは、塔底流出液中のC5炭化水素(炭素数5の炭化水素)の含有量が3重量%以下、好ましくは2重量%以下となる温度範囲で、該塔底温度を制御する。このような塔底温度は、蒸留塔により異なるが、通常は150〜170℃の範囲である。   The temperature control of the distillation column is performed by controlling the column bottom temperature of the distillation column. Specifically, the tower bottom temperature is controlled in a temperature range in which the content of C5 hydrocarbons (C5 hydrocarbons) in the tower bottom effluent is 3% by weight or less, preferably 2% by weight or less. Such a column bottom temperature varies depending on the distillation column, but is usually in the range of 150 to 170 ° C.

なお、蒸留塔の塔底温度が測定できない場合には、塔底流出液の温度を測定し、該温度が150〜170℃の範囲となるように制御してもよい。但し、この場合、塔底流出液の流量が大きく変化する場合には、良好な温度制御を行うことができないことがある。すなわち、塔底から流出した塔底流出液が塔底ラインを流れて温度計の設置位置に達するまでの時間tの間に、該塔底流出液の温度は低下(ΔT)する。そして、塔底流出液の流量が変化すると、該塔底ラインを流れる流速が変化する結果、上記時間tが変化し、温度低下(ΔT)の程度も変化する。このため、塔底流出液の流量が大きく変化する場合には、この温度低下(ΔT)の影響を大きく受けることになり、良好な温度制御を行うことができないことがある。このような場合には、塔底流出液が供給されるリボイラの出口温度(リボイラの出口における返送流体の温度)を測定して、該出口温度が160〜190℃の範囲となるように制御してもよい。   In addition, when the tower bottom temperature of a distillation tower cannot be measured, the temperature of a tower bottom effluent may be measured and it may be controlled so that this temperature may be in the range of 150-170 degreeC. However, in this case, when the flow rate of the bottom effluent changes greatly, it may not be possible to perform good temperature control. That is, the temperature of the bottom effluent falls (ΔT) during the time t until the bottom effluent flowing out from the bottom flows through the bottom line and reaches the installation position of the thermometer. When the flow rate of the column bottom effluent changes, the flow velocity flowing through the column bottom line changes. As a result, the time t changes and the degree of temperature drop (ΔT) also changes. For this reason, when the flow rate of the column bottom effluent changes greatly, it is greatly affected by this temperature drop (ΔT), and good temperature control may not be performed. In such a case, the outlet temperature of the reboiler to which the tower bottom effluent is supplied (the temperature of the return fluid at the outlet of the reboiler) is measured and controlled so that the outlet temperature is in the range of 160 to 190 ° C. May be.

本発明において、この蒸留塔の圧力の制御を、ナフサ分解生成物の処理設備中に存在する、C5以上の炭化水素を含まないガス(圧力制御ガス)の蒸留塔への導入により行うことが好ましい。この圧力制御ガスは、前記のナフサ分解生成物の処理設備中のいずれの場所で排出されるガスでもよいが、C5以上の炭化水素を含まないガスである必要があるので、前記処理設備内の炭素数4以下の炭化水素類を扱う設備から発生するものを用いることが好ましい。ここで、前記処理設備中のC5以上の炭化水素を含まないガスとしては、具体的にはC4以下の炭化水素を含むガスが好ましく、例えば、上記処理設備内の、重質物が除去されたC5留分から低沸物を除去するための蒸留装置から分離されるオフガス等がより好ましく用いられる。   In the present invention, it is preferable to control the pressure of the distillation column by introducing into the distillation column a gas not containing C5 or higher hydrocarbons (pressure control gas) present in the naphtha decomposition product processing facility. . The pressure control gas may be a gas discharged at any location in the processing facility for the naphtha decomposition product, but it is necessary to be a gas that does not contain C5 or higher hydrocarbons. It is preferable to use those generated from facilities that handle hydrocarbons having 4 or less carbon atoms. Here, the gas not containing hydrocarbons of C5 or higher in the processing equipment is specifically preferably a gas containing hydrocarbons of C4 or lower, for example, C5 from which heavy substances in the processing equipment are removed. An off gas or the like separated from a distillation apparatus for removing low boilers from the fraction is more preferably used.

かくして重質物が除去されたC5留分は、この後、必要に応じ上記低沸物などが除去された後、該C5留分に含まれる有用物質の分離精製工程に供され、炭素数5の炭化水素製品の製造が行われる。   The C5 fraction from which the heavy substances have been removed is then subjected to a separation and purification process of useful substances contained in the C5 fraction after the above-mentioned low-boiling substances and the like are removed as necessary. Production of hydrocarbon products takes place.

次に、第1図を用いて本発明についてより具体的に説明する。第1図は、本発明の蒸留塔の温度制御方法の実施の形態を説明する系統図である。第1図中の総ての装置類は、ナフサ分解生成物の処理設備の一部を構成するものである。   Next, the present invention will be described more specifically with reference to FIG. FIG. 1 is a system diagram illustrating an embodiment of a temperature control method for a distillation column according to the present invention. All the devices in FIG. 1 constitute part of the processing equipment for naphtha decomposition products.

[分解系1]
分解系1では、ナフサ分解炉(エチレンクラッカー)内にナフサと該ナフサの希釈用の蒸気とが導入され、ナフサが熱分解される。
[Decomposition system 1]
In the cracking system 1, naphtha and steam for diluting the naphtha are introduced into a naphtha cracking furnace (ethylene cracker), and the naphtha is thermally decomposed.

[急冷系2]
上記分解系1で生成されたナフサ分解生成物は、急冷系2に導入され、重質油及び分解ガソリンの分離除去が行われる。分離された分解ガソリンは、後述する前留系10に供給される。これら分解ガソリン及び重質油の分離後のガスは、次の圧縮系3に供給される。
[Rapid cooling system 2]
The naphtha cracked product produced in the cracking system 1 is introduced into the quenching system 2, where heavy oil and cracked gasoline are separated and removed. The separated cracked gasoline is supplied to the front distillation system 10 described later. The gas after separation of the cracked gasoline and heavy oil is supplied to the next compression system 3.

[圧縮系3]
上記急冷系2から流出されたガスは、圧縮系3に供給され、ガス圧縮機で圧縮されると共に、必要に応じてその一部又は全部が苛性ソーダ等で洗浄され、さらに圧縮により発生した凝縮水が分離される。
[Compression system 3]
The gas flowing out of the quenching system 2 is supplied to the compression system 3 and compressed by a gas compressor, and part or all of the gas is washed with caustic soda or the like as necessary, and further condensed water generated by the compression. Are separated.

[深冷系4]
上記圧縮系3から流出された圧縮ガスは、深冷系4に導入されて冷却され、水素が分離される。
[Deep cooling system 4]
The compressed gas that has flowed out of the compression system 3 is introduced into the deep cooling system 4 and cooled to separate hydrogen.

[低温精製系5]
上記深冷系4から流出された圧縮ガスは、低温精製系5に導入され、メタン、エチレン及びエタンが分留される。
[Low temperature purification system 5]
The compressed gas that has flowed out of the deep cooling system 4 is introduced into the low temperature purification system 5, and methane, ethylene, and ethane are fractionated.

[高温精製系6]
上記低温精製系5でメタン、エチレン及びエタンが分留除去された後の留分は、高温精製系6に導入され、プロピレン、プロパン、ブタン及びブタジエンが分留される。
[High-temperature purification system 6]
The fraction from which methane, ethylene and ethane have been removed by distillation in the low-temperature purification system 5 is introduced into the high-temperature purification system 6, and propylene, propane, butane and butadiene are fractionated.

この高温精製系6でプロピレン、プロパン、ブタン及びブタジエンが分留された後の留分は、上記急冷系2から流出された分解ガソリンと共に、後述する前留系10に供給される。   The fraction after propylene, propane, butane and butadiene are fractionally distilled in the high-temperature refining system 6 is supplied to the fore-end system 10 described later together with cracked gasoline discharged from the quenching system 2.

[前留系10]
上記急冷系2から流出される分解ガソリンはC9以上の炭化水素を含んでおり、上記高温精製系6から流出される留分はC6以上C8以下の炭化水素を含んでいる。これら分解ガソリンと高温精製系6からの留分との混合物は、脱C5塔11に導入され、C5留分が分離されて塔頂から流出される。C5留分が分離された残りの留分は、塔底から流出され、図示しない水添系、中間蒸留系、脱アルキル系、精製系等に供給されて、ベンゼン、粗ベンゼン、タール、メタン、エタン、ラフィネート等が製造される。
[Preliminary system 10]
The cracked gasoline flowing out from the quenching system 2 contains C9 or more hydrocarbons, and the fraction flowing out from the high temperature refining system 6 contains C6 or more and C8 or less hydrocarbons. A mixture of the cracked gasoline and the fraction from the high-temperature refining system 6 is introduced into the de-C5 tower 11, and the C5 fraction is separated and discharged from the top of the tower. The remaining fraction from which the C5 fraction has been separated is discharged from the bottom of the column and supplied to a hydrogenation system, intermediate distillation system, dealkylation system, purification system, etc. (not shown), and benzene, crude benzene, tar, methane, Ethane, raffinate, etc. are produced.

この脱C5塔11の塔頂から流出されるC5留分(以下、「粗C5留分」と称することがある。)の組成の一例は以下の通りである。   An example of the composition of the C5 fraction (hereinafter sometimes referred to as “crude C5 fraction”) flowing out from the top of the de-C5 tower 11 is as follows.

<粗C5留分の組成>
炭素数5の炭化水素 :65〜90vol%
炭素数4以下の炭化水素 :0〜10vol%
炭素数6以上の炭化水素 :0〜30vol%
<Composition of crude C5 fraction>
C5 hydrocarbon: 65 to 90 vol%
Hydrocarbons having 4 or less carbon atoms: 0 to 10 vol%
Hydrocarbons having 6 or more carbon atoms: 0 to 30 vol%

この粗C5留分は、前留系10の蒸留設備に供給される。この蒸留設備は、蒸留塔12と、蒸留塔12の塔底流出液(塔底留分)を流出させる流出ライン19と、該流出ライン19から分岐するリボイラ供給ライン19aと、塔底流出液の一部を加熱するリボイラ13と、該リボイラ13から流出する返送流体を蒸留塔に返送するための返送ライン19bと、塔頂流出ガスを冷却するコンデンサ14と、コンデンサ流出流体を気液分離するドラム15と、ドラム15から流出する凝縮液の一部を蒸留塔12に返送する返送ポンプ16と、該凝縮液の残部を流出させる塔頂留分排出ポンプ17と、ドラム15で分離されたガスを排出するガス排出ライン18とを有する。   This crude C5 fraction is supplied to the distillation equipment of the fore-end system 10. This distillation equipment includes a distillation column 12, an outflow line 19 for flowing out the bottom effluent (column bottom fraction) of the distillation column 12, a reboiler supply line 19a branched from the outflow line 19, and a bottom effluent. A reboiler 13 for heating a part, a return line 19b for returning a return fluid flowing out from the reboiler 13 to the distillation column, a condenser 14 for cooling the tower top effluent gas, and a drum for gas-liquid separation of the condenser effluent fluid 15, a return pump 16 for returning a part of the condensate flowing out of the drum 15 to the distillation column 12, a tower top discharge pump 17 for discharging the remainder of the condensate, and the gas separated by the drum 15 And a gas discharge line 18 for discharging.

上記粗C5留分は、この蒸留塔12に導入され、重質物が塔底流出液(塔底留分)として塔底から除去される。また、この塔底流出液の一部はリボイラ13に供給され、加熱された後、返送流体として蒸留塔12内に返送される。   The crude C5 fraction is introduced into the distillation column 12, and heavy matter is removed from the bottom as a bottom effluent (a bottom fraction). A part of the tower bottom effluent is supplied to the reboiler 13, heated, and then returned to the distillation tower 12 as a return fluid.

重質物が分離されたC5留分は、塔頂から流出され、コンデンサ14で冷却された後、ドラム15内で気液分離される。ドラム15内に溜まった液体の一部は、ポンプ16を介して蒸留塔12に返送される。ドラム15内に溜まった液体の残部は、精製C5留分(塔頂留分)としてポンプ17によって流出される。この精製C5留分は、イソプレン、ピペリレン、ジシクロペンタジエン、アミレンなどの有用成分が含んでいる。これらの有用成分は、図示しない後工程で分離精製される。ドラム15内で分離されたガスは、ガス排出ライン18から排出される。   The C5 fraction from which the heavy matter has been separated flows out from the top of the column, is cooled by the condenser 14, and is then gas-liquid separated in the drum 15. A part of the liquid accumulated in the drum 15 is returned to the distillation column 12 via the pump 16. The remainder of the liquid accumulated in the drum 15 is discharged by the pump 17 as a refined C5 fraction (top fraction). This purified C5 fraction contains useful components such as isoprene, piperylene, dicyclopentadiene and amylene. These useful components are separated and purified in a later step (not shown). The gas separated in the drum 15 is discharged from the gas discharge line 18.

本実施の形態では、この蒸留設備において、該蒸留塔12の塔底流出液中における炭素数5の炭化水素の含有量が3重量%以下となるように、該蒸留塔12の塔底温度を制御する。この塔底温度を制御する方法の一例としては、蒸留塔12内に温度計を設置し、該温度計の測定結果に基づいて、塔底温度を制御する。また、蒸留塔12内に温度計を設置するのが困難な場合には、流出ライン19内に温度計を設置し、該温度計の測定結果に基づいて、塔底温度を制御してもよい。さらに、リボイラ13の返送ライン19b内に温度計を設置し、該温度計の測定結果に基づいて、塔底温度を制御してもよい。これらのうち少なくとも1つの温度計の測定結果に基づいて、リボイラ13の温度、リボイラ13への塔底流出液の供給流量、コンデンサ14の温度、ドラム15内の凝縮液の蒸留塔12への返送量等を変化させることにより、塔底温度を制御することができる。   In the present embodiment, in this distillation facility, the bottom temperature of the distillation column 12 is set so that the content of hydrocarbons having 5 carbon atoms in the bottom effluent of the distillation column 12 is 3% by weight or less. Control. As an example of a method for controlling the tower bottom temperature, a thermometer is installed in the distillation column 12, and the tower bottom temperature is controlled based on the measurement result of the thermometer. Further, when it is difficult to install a thermometer in the distillation column 12, a thermometer may be installed in the outflow line 19, and the tower bottom temperature may be controlled based on the measurement result of the thermometer. . Further, a thermometer may be installed in the return line 19b of the reboiler 13, and the tower bottom temperature may be controlled based on the measurement result of the thermometer. Based on the measurement result of at least one of these thermometers, the temperature of the reboiler 13, the supply flow rate of the bottom effluent to the reboiler 13, the temperature of the condenser 14, and the return of the condensate in the drum 15 to the distillation column 12. The column bottom temperature can be controlled by changing the amount and the like.

本実施の形態は本発明の一例であり、本発明は上記実施の形態に限定されるものではない。例えば、第1図の蒸留設備において、蒸留塔12内に圧力制御ガスを供給して該蒸留塔12内の圧力を制御することは、好ましい態様である。この場合、圧力制御ガスとしては、このナフサ分解生成物の処理設備中に存在する、C5以上の炭化水素を含まないガスを使用するのが好ましい。このように、圧力制御ガスとしてナフサ分解生成物の処理設備中に存在するガスを使用することにより、該処理設備の外部からの外部ガスを使用する場合と比べてコストを低減することができる。また、処理設備内に上記ナフサ分解生成物の処理設備中に存在するガスを入れても、処理設備全体で窒素が危険濃度以下に保持されるので、リサイクルにより窒素ガスがナフサ分解炉で危険濃度以上の酸化窒素となることを防止することができ、安全である。   This embodiment is an example of the present invention, and the present invention is not limited to the above embodiment. For example, in the distillation facility shown in FIG. 1, it is a preferred embodiment to control the pressure in the distillation column 12 by supplying a pressure control gas into the distillation column 12. In this case, as the pressure control gas, it is preferable to use a gas that does not contain C5 or higher hydrocarbons, which exists in the processing equipment for the naphtha decomposition product. Thus, the cost can be reduced by using the gas existing in the processing facility of the naphtha decomposition product as the pressure control gas as compared with the case of using the external gas from the outside of the processing facility. In addition, even if the gas present in the naphtha decomposition product processing facility is put in the processing facility, nitrogen is kept below the hazardous concentration in the entire processing facility. Therefore, nitrogen gas is recycled in the naphtha decomposition furnace by recycling. It is possible to prevent the above-described nitric oxide from being formed, and it is safe.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited at all by these Examples.

[実施例1]
第1図のナフサ分解生成物の処理設備を使用して運転を行った。蒸留塔12の運転条件としては、塔頂圧力を0.04MPaG、粗C5留分の供給量を15t/hとした。また、リボイラ13の返送ライン19b内に温度計を設置してリボイラ出口温度(返送流体の温度)を測定し、このリボイラ出口温度が174℃となるように制御して運転を行った。なお、蒸留塔12の中段(最下段のトレーの上部)及び塔底部にも温度計を設置し、温度測定を行った。運転開始時における、脱C5塔11の塔頂から流出される粗C5留分(蒸留塔12への供給液)の組成は、表1の通りであった。
[Example 1]
The operation was carried out using the naphtha decomposition product treatment facility of FIG. As operating conditions for the distillation column 12, the pressure at the top of the column was 0.04 MPaG, and the supply amount of the crude C5 fraction was 15 t / h. Further, a thermometer was installed in the return line 19b of the reboiler 13, the reboiler outlet temperature (return fluid temperature) was measured, and the reboiler outlet temperature was controlled to be 174 ° C. for operation. Thermometers were also installed at the middle stage of the distillation column 12 (upper part of the lowermost tray) and the bottom of the column to measure the temperature. The composition of the crude C5 fraction (feed solution to the distillation column 12) discharged from the top of the de-C5 column 11 at the start of operation was as shown in Table 1.

運転開始から1週間後に、分離性能及び運転安定性の確認を行った。具体的には、粗C5留分(蒸留塔12への供給液)の組成、ドラム15から流出される精製C5留分の組成、及び蒸留塔12の塔底流出液の組成を測定した。その結果を表2に示す。また、蒸留塔12の中段及び塔底部に設置した上記2つの温度計の測定値の経時変化を、第2図にプロットした。なお、この表2は、第2図の運転安定性の確認を開始してから6時間が経過した時点における分離性能の確認結果を示すものである。   One week after the start of operation, separation performance and operation stability were confirmed. Specifically, the composition of the crude C5 fraction (feed liquid to the distillation column 12), the composition of the purified C5 fraction flowing out from the drum 15, and the composition of the bottom effluent of the distillation column 12 were measured. The results are shown in Table 2. Moreover, the time-dependent change of the measured value of said two thermometers installed in the middle stage and tower bottom part of the distillation column 12 was plotted in FIG. In addition, this Table 2 shows the confirmation result of the separation performance when 6 hours have passed since the start of the confirmation of the operational stability in FIG.

第2図から明らかな通り、リボイラ出口温度の測定結果に基づいて温度制御を行うことにより、塔底部の温度が安定していると共に、供給液の組成の変化に応じて組成が大きく変化する中段の温度も安定していることが確認された。また、表2に示す通り、このときの塔底流出液中のC5炭化水素は全体の1.8重量%であり、重質物の分離も良好に行われていることが確認された。   As is clear from FIG. 2, by controlling the temperature based on the measurement result of the reboiler outlet temperature, the temperature at the bottom of the tower is stabilized, and the middle stage in which the composition changes greatly according to the change in the composition of the feed liquid. It was confirmed that the temperature of was also stable. Moreover, as shown in Table 2, C5 hydrocarbons in the column bottom effluent at this time accounted for 1.8% by weight of the total, and it was confirmed that heavy substances were well separated.

Figure 2011256156
Figure 2011256156

Figure 2011256156
Figure 2011256156

[比較例1]
上記の中段の温度計の温度が55℃となるように制御したこと以外は実施例1と同様にして運転を行い、運転開始から1週間後に分離性能及び運転安定性の確認を行った。これらの結果を表3及び第3図に示す。詳しくは、第3図に示す通り、この運転安定性の確認を開始してから21時間経過時点(第3図の縦線が描かれている時点)において、分離性能の確認を行った。表3はこの時点での分離性能の確認結果を示すものである。
[Comparative Example 1]
The operation was performed in the same manner as in Example 1 except that the temperature of the middle thermometer was controlled to 55 ° C., and the separation performance and operation stability were confirmed one week after the start of operation. These results are shown in Table 3 and FIG. Specifically, as shown in FIG. 3, the separation performance was confirmed when 21 hours had elapsed since the start of the confirmation of the operational stability (at the time when the vertical line in FIG. 3 was drawn). Table 3 shows the confirmation results of the separation performance at this point.

第3図から明らかなように、蒸留塔12中段の温度が急激に上昇する期間があることが確認された。また、この中段の温度の急上昇に伴い、蒸留塔12の制御装置が温度を下げる方向に働いたが、その後に中段の温度計の温度を一定範囲に保つことができず、それに伴い塔底温度が激しく変化し、蒸留塔12全体として温度制御不能の状態となったことが確認された。また、この温度制御不能の状態のときには、表3に示す通り、塔底流出液中のC5炭化水素が全体の11重量%となっており、重質物との分離が充分にできていないことがわかった。   As is clear from FIG. 3, it was confirmed that there was a period in which the temperature of the middle stage of the distillation column 12 increased rapidly. Further, along with the sudden rise in the temperature of the middle stage, the control device for the distillation column 12 worked in the direction of lowering the temperature, but thereafter, the temperature of the middle stage thermometer could not be kept within a certain range, and accordingly, the bottom temperature of the tower It was confirmed that the temperature changed drastically and the temperature of the distillation column 12 as a whole could not be controlled. Further, when this temperature control is impossible, as shown in Table 3, the C5 hydrocarbon in the bottom effluent is 11% by weight of the total, and the separation from the heavy matter is not sufficient. all right.

Figure 2011256156
Figure 2011256156

1 分解系
2 急冷系
3 圧縮系
4 深冷系
5 低温精製系
6 高温精製系
11 脱C5塔
12 蒸留塔
13 リボイラ
14 コンデンサ
15 ドラム
DESCRIPTION OF SYMBOLS 1 Decomposition system 2 Rapid cooling system 3 Compression system 4 Deep cooling system 5 Low temperature purification system 6 High temperature purification system 11 De-C5 tower 12 Distillation tower 13 Reboiler 14 Condenser 15 Drum

Claims (3)

ナフサの分解により生成するナフサ分解生成物を処理する処理設備における、該ナフサ分解生成物を分離して得られるC5留分から重質物を分離除去する蒸留設備の蒸留塔の温度を制御する方法において、
該蒸留塔の塔底流出液中における炭素数5の炭化水素の含有量が3重量%以下となるように、該蒸留塔の塔底温度を制御することを特徴とする蒸留塔の温度制御方法。
In a method for controlling the temperature of a distillation tower of a distillation facility for separating and removing heavy substances from a C5 fraction obtained by separating the naphtha decomposition product in a processing facility for processing a naphtha decomposition product generated by the decomposition of naphtha,
A temperature control method for a distillation column, comprising controlling the column bottom temperature of the distillation column so that the content of hydrocarbon having 5 carbon atoms in the bottom effluent of the distillation column is 3% by weight or less. .
請求項1において、前記塔底流出液の温度を測定し、この塔底流出液温度が150〜170℃の範囲となるように制御することにより、該塔底温度を制御することを特徴とする蒸留塔の温度制御方法。   2. The temperature at the bottom of the tower is measured according to claim 1, and the bottom temperature is controlled by controlling the temperature at the bottom of the tower to be in the range of 150 to 170 ° C. Temperature control method for distillation tower. 請求項1において、前記塔底流出液の一部を加熱して前記蒸留塔に返送するリボイラが設けられており、
該リボイラの出口における返送流体の温度を測定し、該返送流体温度が160〜190℃の範囲となるように制御することにより、該塔底温度を制御することを特徴とする蒸留塔の温度制御方法。
In claim 1, a reboiler for heating a part of the bottom effluent and returning it to the distillation column is provided,
The temperature control of the distillation column is characterized in that the temperature of the return fluid at the outlet of the reboiler is measured and controlled so that the temperature of the return fluid is in the range of 160 to 190 ° C. Method.
JP2011009012A 2010-05-12 2011-01-19 Temperature control method for distillation column Pending JP2011256156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011009012A JP2011256156A (en) 2010-05-12 2011-01-19 Temperature control method for distillation column

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010110038 2010-05-12
JP2010110038 2010-05-12
JP2011009012A JP2011256156A (en) 2010-05-12 2011-01-19 Temperature control method for distillation column

Publications (2)

Publication Number Publication Date
JP2011256156A true JP2011256156A (en) 2011-12-22
JP2011256156A5 JP2011256156A5 (en) 2013-09-19

Family

ID=45472753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011009012A Pending JP2011256156A (en) 2010-05-12 2011-01-19 Temperature control method for distillation column

Country Status (1)

Country Link
JP (1) JP2011256156A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256157A (en) * 2010-05-12 2011-12-22 Mitsubishi Chemicals Corp Pressure control method for distillation column
JP2013040263A (en) * 2011-08-12 2013-02-28 Kashima Oil Co Ltd Method for producing isopentane fraction, and apparatus for separating isopentane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123138A (en) * 1985-11-22 1987-06-04 Mitsubishi Chem Ind Ltd Method for separating and recovering cyclopentadiene
JPS62250094A (en) * 1986-04-22 1987-10-30 Mitsubishi Chem Ind Ltd Method for separating and purifying aromatic component
JPH11349499A (en) * 1998-04-07 1999-12-21 Nippon Zeon Co Ltd Apparatus and method for separating and purifying unsaturated hydrocarbon
WO2007129736A1 (en) * 2006-05-10 2007-11-15 Idemitsu Kosan Co., Ltd. Process for production of dicyclopentadiene
JP2010150224A (en) * 2008-12-26 2010-07-08 Nippon Oil Corp Method for purifying dicyclopentadiene

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62123138A (en) * 1985-11-22 1987-06-04 Mitsubishi Chem Ind Ltd Method for separating and recovering cyclopentadiene
JPS62250094A (en) * 1986-04-22 1987-10-30 Mitsubishi Chem Ind Ltd Method for separating and purifying aromatic component
JPH11349499A (en) * 1998-04-07 1999-12-21 Nippon Zeon Co Ltd Apparatus and method for separating and purifying unsaturated hydrocarbon
US6413378B1 (en) * 1998-04-07 2002-07-02 Nippon Zeon Co., Ltd. Apparatus for separation and purification of saturated hydrocarbon and method for separation and purification
WO2007129736A1 (en) * 2006-05-10 2007-11-15 Idemitsu Kosan Co., Ltd. Process for production of dicyclopentadiene
JP2010150224A (en) * 2008-12-26 2010-07-08 Nippon Oil Corp Method for purifying dicyclopentadiene

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011256157A (en) * 2010-05-12 2011-12-22 Mitsubishi Chemicals Corp Pressure control method for distillation column
JP2013040263A (en) * 2011-08-12 2013-02-28 Kashima Oil Co Ltd Method for producing isopentane fraction, and apparatus for separating isopentane

Similar Documents

Publication Publication Date Title
US9505678B2 (en) Process to produce aromatics from crude oil
EP3551728A1 (en) A method of pretreating and converting hydrocarbons
CN107922293B (en) Method and apparatus for toluene methylation in aromatic compound compounding equipment
US20070007174A1 (en) Method for processing hydrocarbon pyrolysis effluent
US9783748B2 (en) Process for producing diesel fuel
US10023509B2 (en) Processes and apparatuses for production of aromatic products
JP6104360B2 (en) Separation of olefins in slow cracking.
CN106062147B (en) Method for converting hydrocarbons to alkene
US3597494A (en) Steam-cracking of hydrocarbons
JP2011256156A (en) Temperature control method for distillation column
US20150175502A1 (en) Method for making high purity dicyclopentadiene
US8524046B2 (en) Distillation column pressure control
CN108698955B (en) Process and apparatus for recycle of naphthenes in production of aromatic products
JP5582044B2 (en) Distillation tower pressure control method
US20190119185A1 (en) Process and apparatus for desorbent recovery
JP5803565B2 (en) Method for separating and recovering dicyclopentadiene
US11110428B2 (en) Hydrodearylation reactor
CN111373020B (en) Method and system for obtaining polymerizable aromatic compounds
US4002554A (en) Process of minimizing or preventing fouling
JP5540530B2 (en) Method for removing diolefins from C5 raffinate, and method for using C5 raffinate as a raw material for ethylene crackers
KR102614971B1 (en) Dual-fed para-xylene separation
WO2016199040A1 (en) Process for the production of styrene from xylene by dehydrogenation of ethyl benzene
US1912136A (en) Process for obtaining low-boiling distillates from heavy carbonaceous material
RU2102432C1 (en) Method of producing gasoline components
Abushwireb et al. The effect of solvent selection on energy-integrated extractive distillation for aromatics recovery from pyrolysis gasoline: Simulation and optimization

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130808

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141014