JPH0929001A - Device and process for distillation - Google Patents

Device and process for distillation

Info

Publication number
JPH0929001A
JPH0929001A JP20292095A JP20292095A JPH0929001A JP H0929001 A JPH0929001 A JP H0929001A JP 20292095 A JP20292095 A JP 20292095A JP 20292095 A JP20292095 A JP 20292095A JP H0929001 A JPH0929001 A JP H0929001A
Authority
JP
Japan
Prior art keywords
pressure
heat exchanger
air
distillation column
reflux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20292095A
Other languages
Japanese (ja)
Other versions
JP3673565B2 (en
Inventor
Ichiro Minami
一郎 南
Toshio Tanuma
利夫 田沼
Yoshitada Nishimoto
嘉忠 西本
Nobuo Matsuyama
信夫 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Idemitsu Kosan Co Ltd
Original Assignee
JGC Corp
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Idemitsu Kosan Co Ltd filed Critical JGC Corp
Priority to JP20292095A priority Critical patent/JP3673565B2/en
Publication of JPH0929001A publication Critical patent/JPH0929001A/en
Application granted granted Critical
Publication of JP3673565B2 publication Critical patent/JP3673565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To control stably the colum top pressure of a distillation column. SOLUTION: A flow rate control valve 25 for controlling the opening degree based on the column top pressure of a distillation column 1 is set on an outlet side piping 24 of an air cooling type heat exchanger 2, and a bypass flow path 4 for directly flowing vapor from the distillation column 1 into a reduction container 3 not through the heat exchanger 2 is formed, and a differential pressure control valve 41 for controlling the opening degree based on the differential pressure between the upstream side and the downstream side is set on the bypass flow path 4. In this case, the flow rate of condensate on the outlet side of the air cooling type heat exchanger 2 is controlled based on the column top pressure of the distillation column 1, by which the heat transfer area of the air cooling type heat exchanger 2 is controlled. On the other hand, the amount of column top vapor flowing in the bypass flow path is controlled by the differential pressure control valve 41, and the condensation amount of vapor and the bypass passing amount of vapor are controlled by both of these actions to control the column top pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、石油精製、石油化
学、一般化学等に用いられ、蒸留塔塔頂からの蒸気を空
冷式熱交換器で冷却凝縮する蒸留装置および蒸留方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distillation apparatus and a distillation method used for petroleum refining, petrochemistry, general chemistry, etc., for cooling and condensing vapor from the top of a distillation column with an air-cooled heat exchanger.

【0002】[0002]

【従来の技術】従来から、連続精留を行う蒸留装置は、
例えば石油精製、石油化学、一般化学等の分野で用いら
れて来た。この種の蒸留装置において、塔頂蒸気を凝縮
するためには、例えば空冷式熱交換器が用いられてお
り、この場合図3〜図5に示すように、蒸留塔50の塔
頂蒸気を空冷式熱交換器51で冷却凝縮し、得られた凝
縮液を還流容器52に貯留して、この凝縮液の一部を蒸
留塔50にポンプ53、調節弁54を介して還流すると
共に、残りの凝縮液を調節弁55を介して製品として取
り出すようにして蒸留が行なわれている。
2. Description of the Related Art Conventionally, distillation apparatuses for continuous rectification have been
For example, it has been used in fields such as petroleum refining, petrochemistry, and general chemistry. In this type of distillation apparatus, for example, an air-cooling type heat exchanger is used to condense the overhead vapor, and in this case, as shown in FIGS. 3 to 5, the overhead vapor of the distillation column 50 is air-cooled. The condensate obtained by cooling and condensing in the type heat exchanger 51 is stored in the reflux container 52, and a part of the condensate is refluxed to the distillation column 50 via the pump 53 and the control valve 54, and the remaining Distillation is performed so that the condensate is taken out as a product through the control valve 55.

【0003】このような装置においては、製品の品質の
安定化を図るために、蒸留塔50の塔頂圧力を一定に保
つことが必要であり、蒸留塔50の塔頂圧力の制御方法
としては、例えば以下の方法が採られている。
In such an apparatus, in order to stabilize the quality of the product, it is necessary to keep the top pressure of the distillation column 50 constant, and as a method of controlling the top pressure of the distillation column 50, For example, the following method is adopted.

【0004】1つの方法は図3に示すように、調節弁5
7を備え窒素等の不活性ガスをシールガスとして用いる
シールガス供給手段に接続される配管と、調節弁58を
備え排ガス燃焼装置に接続される配管とに途中から分離
する配管56を還流容器52に接続すると共に、蒸留塔
50の塔頂圧力を圧力計59で測定し、この値に基づい
て調節弁57、58の開度が制御される装置において実
施されるものであり、この方法では蒸留塔50の塔頂圧
力が所定値以下になると、還流容器52へシールガスを
供給し、前記圧力値が所定値を越えると排ガス燃焼装置
へ排気することにより塔頂圧力が一定に制御される。
One method is to control valve 5 as shown in FIG.
A pipe 56 connected to a seal gas supply means that includes an inert gas such as nitrogen as a seal gas and a pipe that includes a control valve 58 and connected to an exhaust gas combustion apparatus is connected to a reflux vessel 52. It is carried out in an apparatus in which the pressure at the top of the distillation column 50 is measured by a pressure gauge 59 and the openings of the control valves 57 and 58 are controlled based on this value. When the column top pressure of the column 50 becomes a predetermined value or less, a seal gas is supplied to the reflux container 52, and when the pressure value exceeds the predetermined value, the column gas is exhausted to the exhaust gas combustion apparatus to control the column top pressure to be constant.

【0005】また他の方法は図4に示すように、空冷式
熱交換器51の入口側の配管と還流容器52との間に、
蒸留塔の塔頂圧力に基づいて開度が制御される調節弁6
2を備えたバイパス流路61を設けると共に、還流容器
52内の気相部分の圧力を圧力計60により測定し、こ
の値に基づいて調節弁57、58の開度が制御される装
置にて実施されるものである。この方法では、還流容器
52内の圧力が所定値以下のときには還流容器52へシ
ールガスを供給すると共に、還流容器52内の圧力が所
定値を越えると排ガス燃焼装置へ排気し、こうして還流
容器52内の圧力を一定に制御する一方、蒸留塔50の
塔頂圧力に基づいて蒸留塔50からバイパス流路61を
介して還流容器52へ直接送られる塔頂蒸気の量を調整
し、この結果塔頂圧力が一定に制御される。
As another method, as shown in FIG. 4, between the inlet side pipe of the air-cooled heat exchanger 51 and the reflux vessel 52,
Control valve 6 whose opening is controlled based on the top pressure of the distillation column
In a device in which a bypass flow path 61 including 2 is provided, the pressure of a gas phase portion in the reflux container 52 is measured by a pressure gauge 60, and the opening degrees of the control valves 57 and 58 are controlled based on this value. It will be implemented. In this method, when the pressure in the reflux container 52 is below a predetermined value, the seal gas is supplied to the reflux container 52, and when the pressure in the reflux container 52 exceeds the predetermined value, it is exhausted to the exhaust gas combustion device, and thus the reflux container 52 is discharged. While controlling the internal pressure to be constant, the amount of overhead vapor sent directly from the distillation column 50 to the reflux vessel 52 via the bypass flow passage 61 based on the overhead pressure of the distillation column 50 is adjusted. The top pressure is controlled to be constant.

【0006】さらに他の方法は図5に示すように、空冷
式熱交換器51の入口側の配管に、蒸留塔50から空冷
式熱交換器51へ流れる塔頂蒸気の流量を調節する調節
弁63を設けると共に、バイパス流路61に蒸留塔50
の塔頂圧力と還流容器52内の圧力との差圧に基づい
て、蒸留塔50から還流容器52へ直接送られる塔頂蒸
気の量を調整する差圧調節弁64を設けた装置にて実施
されるものであり、この方法では蒸留塔50の塔頂圧力
と還流容器52内の圧力が一定に制御される。さらに図
5に一点鎖線で示すように、空冷式熱交換器51出口と
還流容器52との間に均圧管64を設けて、これにより
空冷式熱交換器51や空冷式熱交換器51と還流容器5
2との間の配管内における凝縮液の停留を防ぐことも行
われる。
As another method, as shown in FIG. 5, a control valve for adjusting the flow rate of overhead vapor flowing from the distillation column 50 to the air-cooling heat exchanger 51 is provided in a pipe on the inlet side of the air-cooling heat exchanger 51. 63 is provided, and the distillation column 50 is provided in the bypass channel 61.
Based on the differential pressure between the top pressure of the column and the pressure in the reflux vessel 52, the apparatus is provided with a differential pressure control valve 64 for adjusting the amount of the top vapor sent directly from the distillation column 50 to the reflux vessel 52. In this method, the top pressure of the distillation column 50 and the pressure in the reflux vessel 52 are controlled to be constant. Further, as shown by the alternate long and short dash line in FIG. 5, a pressure equalizing pipe 64 is provided between the outlet of the air-cooling heat exchanger 51 and the reflux vessel 52, whereby the air-cooling heat exchanger 51 and the air-cooling heat exchanger 51 and the reflux Container 5
It is also performed to prevent the condensate from staying in the pipe between the two.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上述の図
3に示す方法では、シールガスを用いて蒸留塔50の塔
頂圧力の制御を行っているため、多量のシールガスが必
要である。また例えば降雨等のような外乱時に蒸留塔5
0の塔頂圧力が低くなった場合は、シールガスはこの圧
力の低下を補償するために還流容器52へ導入される
が、この塔頂系の容量に応じた遅れが生じるため、制御
応答性が悪く、この間に空冷式熱交換器51で凝縮が進
み過ぎて、塔頂圧力が低くなり過ぎ、塔頂圧力が安定す
るまでに数時間必要であるという問題があった。
However, in the method shown in FIG. 3 described above, a large amount of seal gas is required because the top pressure of the distillation column 50 is controlled by using the seal gas. In addition, the distillation column 5 can be used when there is a disturbance such as rainfall.
When the column top pressure of 0 becomes low, the seal gas is introduced into the reflux vessel 52 to compensate for this drop in pressure, but there is a delay depending on the volume of this column top system, so the control response is high. However, there was a problem that during this time, the condensation in the air-cooling heat exchanger 51 proceeded too much, the column top pressure became too low, and it took several hours for the column top pressure to stabilize.

【0008】また図4に示す方法は図3に示す方法を改
良したものであり、この方法ではシールガスは還流容器
52の圧力制御に用いられているため、図3の方法に比
べて量は少なくなるもののやはりシールガスは必要であ
る。また、外乱時に蒸留塔50の塔頂圧力が低くなった
場合には、バイパス流路61を介して還流容器52へ直
接流れる塔頂蒸気が調節弁62により減じられることに
より塔頂圧力を上昇する方向に作用するが、塔頂蒸気の
主流路となる空冷式熱交換器51で過大な凝縮が進行し
塔頂圧力の上昇を妨害することがある。すなわち、空冷
式熱交換器51で凝縮する蒸気量は主として空冷式熱交
換器の伝熱能力により支配されるため、大気温度が低く
空冷式熱交換器の能力が過大になると凝縮蒸気量が予想
以上に増大し塔頂圧力を低下させる方向に作用すること
となり、前記バイパス流路61の蒸気量が減じられても
結果として塔頂圧力の制御が不能となる危険性があっ
た。
The method shown in FIG. 4 is an improvement of the method shown in FIG. 3, and since the sealing gas is used to control the pressure of the reflux container 52 in this method, the amount thereof is smaller than that of the method shown in FIG. Seal gas is still necessary although it is less. Further, when the top pressure of the distillation column 50 becomes low during disturbance, the top vapor flowing directly to the reflux container 52 via the bypass flow passage 61 is reduced by the control valve 62, so that the top pressure rises. However, there is a case where excessive condensation proceeds in the air-cooled heat exchanger 51, which serves as a main flow path for the overhead vapor, to hinder the rise of the overhead pressure. That is, since the amount of steam condensed in the air-cooled heat exchanger 51 is mainly controlled by the heat transfer capacity of the air-cooled heat exchanger, the amount of condensed steam is expected when the atmospheric temperature is low and the capacity of the air-cooled heat exchanger becomes excessive. There is a risk that the above-mentioned pressure will increase and the pressure at the top of the column will decrease, and even if the amount of vapor in the bypass channel 61 is reduced, control of the pressure at the top of the column will become impossible as a result.

【0009】さらに図5に示す方法では、シールガスを
用いない点では前2つの方法より優れているが、蒸留塔
50から空冷式熱交換器51に至る配管径が気体である
蒸気を通す大口径であるため、その配管に設ける調整弁
63も大口径のものが必要となり、高価で大重量のもの
となる。しかも空冷式熱交換器51は発生する熱風が他
の機器に当たらないように最上部の架台上に設置される
が、前記調節弁63はさらにその上流の高所に位置する
必要があり、最上部の架台上より高所に大重量の調節弁
63を設置するための大型架台も設ける必要があった。
このため設備費が増大する上、調節弁63が大型化する
と開閉に時間がかかり、応答性が悪いという欠点もあっ
た。
Furthermore, the method shown in FIG. 5 is superior to the previous two methods in that no seal gas is used, but the pipe diameter from the distillation column 50 to the air-cooled heat exchanger 51 is large so that vapor, which is gas, can pass through. Since the diameter is large, the adjustment valve 63 provided in the pipe also needs to have a large diameter, which is expensive and heavy. Moreover, the air-cooling type heat exchanger 51 is installed on the uppermost pedestal so that the generated hot air does not hit other devices, but the control valve 63 needs to be located at a high position further upstream, It was also necessary to provide a large pedestal for installing the heavy control valve 63 at a higher place than on the upper pedestal.
For this reason, there is a drawback that the facility cost increases, and that if the control valve 63 becomes large, it takes time to open and close, and the responsiveness is poor.

【0010】また例えば外乱により塔頂圧力が低くなっ
た場合には、空冷式熱交換器51への塔頂蒸気の供給量
を少くするため、調節弁63の開度を小さくするが、こ
の際応答性の遅れ等により調節弁63を絞り過ぎたとき
に空冷式熱交換器51の出口側が負圧になって吸引現象
が起こり、還流容器52内の凝縮液が一気に空冷式熱交
換器51内に引き込まれてしまい、次には熱交換器内が
満液となり凝縮能力がなくなって反対に塔頂圧力が急激
に高目に振れるという振動現象におちいり、蒸留塔50
の塔頂圧力の制御を安定的に行なうことが困難になるお
それがあった。
Further, for example, when the top pressure becomes low due to disturbance, the opening amount of the control valve 63 is made small in order to reduce the supply amount of the top vapor to the air-cooling heat exchanger 51. When the control valve 63 is excessively throttled due to a delay in response or the like, a suction phenomenon occurs due to negative pressure on the outlet side of the air-cooling heat exchanger 51, and the condensate in the reflux container 52 suddenly enters the air-cooling heat exchanger 51. Then, the heat exchanger is filled with liquid and the condensing capacity is lost. On the contrary, the pressure at the top of the column suddenly fluctuates to a higher level.
There was a possibility that it would be difficult to stably control the column top pressure of.

【0011】この対策として均圧管64を設けると、空
冷式熱交換器51の出口側が負圧になった場合、還流容
器52内の熱い蒸気が均圧管64を通って逆流し、空冷
式熱交換器51の出口側で急に冷やされて液化すること
によりハンマリング(蒸気の液化が断続的に起こるこ
と)が発生する場合があり、この衝撃により空冷式熱交
換器51に損傷を与えるおそれがあった。
If a pressure equalizing tube 64 is provided as a countermeasure against this, when the outlet side of the air-cooling type heat exchanger 51 becomes a negative pressure, the hot steam in the reflux container 52 flows back through the pressure equalizing tube 64 and the air-cooling type heat exchange is performed. Hammering (intermittent vapor liquefaction) may occur due to sudden cooling and liquefaction on the outlet side of the vessel 51, and this impact may damage the air-cooled heat exchanger 51. there were.

【0012】本発明はこのような事情のもとになされた
ものであり、その目的は、蒸留塔の塔頂圧力の安定化を
図ることができる蒸留装置および蒸留方法を提供するこ
とにある。
The present invention has been made under such circumstances, and an object thereof is to provide a distillation apparatus and a distillation method capable of stabilizing the top pressure of the distillation column.

【0013】[0013]

【課題を解決するための手段】請求項1の発明は、蒸留
塔塔頂からの蒸気を空冷式熱交換器で凝縮し、得られた
凝縮液を還流容器に貯留すると共に、この還流容器内の
凝縮液の一部を前記蒸留塔に還流する蒸留装置におい
て、前記蒸留塔の塔頂圧力を検出する圧力検出部と、前
記空冷式熱交換器の出口と還流容器との間に設けられ、
前記圧力検出部の検出圧力に基づいて凝縮液の流量を制
御する第1の調節弁と、前記蒸留塔と還流容器との間に
設けられ、蒸留塔塔頂からの蒸気の一部を空冷式熱交換
器及び第1の調節弁を介さずに還流容器に直接通流する
ためのバイパス流路と、前記バイパス流路に設けられ、
その上流側と下流側との差圧または還流容器内の圧力に
基づいて前記蒸気の流量を制御する第2の調節弁と、を
備えることを特徴とする。
According to a first aspect of the present invention, the vapor from the top of the distillation column is condensed by an air-cooling heat exchanger, the obtained condensate is stored in a reflux container, and In a distillation apparatus for refluxing a part of the condensate to the distillation column, a pressure detection unit that detects the top pressure of the distillation column, and is provided between the outlet of the air-cooled heat exchanger and the reflux container,
A first control valve that controls the flow rate of the condensate based on the pressure detected by the pressure detection unit, and is provided between the distillation column and the reflux vessel, and a part of the vapor from the top of the distillation column is air-cooled. A bypass flow passage for directly communicating with the reflux container without passing through the heat exchanger and the first control valve, and provided in the bypass flow passage,
A second control valve for controlling the flow rate of the steam based on the pressure difference between the upstream side and the downstream side or the pressure in the reflux container.

【0014】請求項2の発明は、蒸留塔塔頂からの蒸気
を空冷式熱交換器で凝縮し、得られた凝縮液を還流容器
に貯留すると共に、この還流容器内の凝縮液の一部を前
記蒸留塔に還流する蒸留方法において、前記空冷式熱交
換器により凝縮された凝縮液を、蒸留塔の塔頂圧力に基
づいて流量を制御しながら還流容器内へ送液すると共
に、蒸留塔からの蒸気の一部を、空冷式熱交換器を介さ
ずにその上流側と下流側との差圧または還流容器内の圧
力に基づいて流量を制御しながら、還流容器内へ直接通
流することを特徴とする。
According to a second aspect of the present invention, the vapor from the top of the distillation column is condensed by an air-cooled heat exchanger, the obtained condensate is stored in a reflux container, and a part of the condensate in the reflux container is stored. In the distillation method of refluxing to the distillation column, the condensate condensed by the air-cooled heat exchanger is fed into the reflux container while controlling the flow rate based on the top pressure of the distillation column, and the distillation column A part of the steam from is directly flowed into the reflux vessel while controlling the flow rate based on the pressure difference in the upstream side and the downstream side or the pressure in the reflux vessel without passing through the air-cooled heat exchanger. It is characterized by

【0015】降雨等により蒸留塔の塔頂圧力が低下した
場合は、第1の制御系としての第1の調節弁が絞られて
空冷式熱交換器の出口側から還流容器への凝縮液流量が
少なくなる。これにより空冷式熱交換器内に凝縮液の溜
まる量が多くなり、空冷式熱交換器管路群のうち凝縮に
寄与する管路が減少、すなわち伝熱面積が減少するた
め、蒸留塔からの蒸気が凝縮される量が少なくなり、塔
頂圧力を上昇する方向に作用する。また第2の制御系と
しての第2の調節弁の開度は、その上流側である塔頂圧
力と下流側である還流容器内圧力との差圧が小さくなる
ため小さくなり、これによりバイパス流路を流通する蒸
気の量が抑えられ塔頂圧力を上昇する方向に作用する。
すなわち、空冷式熱交換器の出口側の凝縮液の液流量を
減少させる第1の制御系とバイパス流路の蒸気の流量を
減少させる第2の制御系との総合作用で塔頂圧力を上昇
させることとなる。
When the top pressure of the distillation column is lowered due to rainfall or the like, the first control valve as the first control system is throttled to flow the condensate from the outlet side of the air-cooled heat exchanger to the reflux vessel. Is less. As a result, the amount of condensate accumulated in the air-cooled heat exchanger increases, and the number of conduits that contribute to condensation in the group of air-cooled heat exchanger conduits decreases, that is, the heat transfer area decreases. The amount of vapor condensed is reduced, which acts to increase the overhead pressure. Further, the opening degree of the second control valve as the second control system becomes small because the differential pressure between the upstream pressure on the upstream side and the internal pressure of the reflux container on the downstream side becomes small, whereby the bypass flow rate is reduced. The amount of steam flowing through the channel is suppressed, and the column top pressure is increased.
That is, the tower top pressure is increased by the combined action of the first control system that reduces the liquid flow rate of the condensate on the outlet side of the air-cooling heat exchanger and the second control system that reduces the flow rate of the vapor in the bypass passage. Will be made.

【0016】塔頂圧力が上昇した場合は、上記の逆とな
り、第1の調節弁の開度が大となり、空冷式熱交換器の
出口側から還流容器への凝縮液の流通量を増やし伝熱面
積を増加して凝縮を促進し塔頂圧力を減少させる方向に
作用するとともに、バイパス流路の第2の調節弁の開度
を大きくして塔頂側から還流容器に流通する蒸気を増加
し塔頂圧力を減少させる方向に作用する。すなわち、空
冷式熱交換器の出口側の凝縮液の液流量を増加させる第
1の制御系とバイパス流路の蒸気の流量を増加させる第
2の制御系との両方の総合作用で塔頂圧力を低下させる
こととなる。
When the column top pressure rises, the above is reversed, the opening of the first control valve becomes large, and the flow rate of the condensate from the outlet side of the air-cooling heat exchanger to the reflux vessel is increased to increase the transmission. It acts to increase the heat area to promote condensation and reduce the overhead pressure, and increase the opening of the second control valve in the bypass channel to increase the vapor flowing from the overhead side to the reflux vessel. It works to reduce the overhead pressure. That is, the overhead pressure is obtained by the combined action of both the first control system that increases the liquid flow rate of the condensate on the outlet side of the air-cooling heat exchanger and the second control system that increases the flow rate of the vapor in the bypass passage. Will be reduced.

【0017】そして、塔頂圧力が大きく低下又は上昇す
るように振れた場合には、上記の作用が交互に繰り返さ
れて蒸留塔の塔頂圧力が所定圧力に収斂することとな
る。
When the top pressure of the distillation column swings so as to largely decrease or rise, the above-mentioned action is repeated alternately and the top pressure of the distillation column converges to a predetermined pressure.

【0018】[0018]

【発明の実施の形態】以下本発明の実施例について説明
する。図1は本発明方法を実施するための蒸留装置を示
す構成図である。図中1は蒸留塔であり、この蒸留塔の
塔頂部は配管11により空冷式熱交換器2の入口側(後
述の側部フレームの上端)に接続されている。空冷式熱
交換器2は、側部フレーム21により水平方向に伸びる
管路22を上下方向に複数段(通常4〜6段)となるよ
うに支持し、最上段の管路22から最下段の管路22ま
では側部フレーム21の内部の流路を介して屈曲路を形
成するように繋がっており、管路22の下方側に管路2
2に向って送風するファン23を配設して構成される。
前記空冷式熱交換器2の出口側、即ち側部フレーム21
の下部には、第1の調節弁である流量調節弁25を備え
た配管24が接続されており、その先端は還流容器3の
底部付近まで延没されている。また蒸留塔1には塔頂圧
力を検出するための圧力検出部をなす圧力計12が取付
けられており、前記流量調節弁25は、この圧力計12
の圧力検出値に基づき制御部13を介してその開度が制
御(第1の制御系)される。
Embodiments of the present invention will be described below. FIG. 1 is a block diagram showing a distillation apparatus for carrying out the method of the present invention. In the figure, 1 is a distillation column, and the column top is connected to the inlet side (upper end of a side frame described later) of the air-cooled heat exchanger 2 by a pipe 11. The air-cooling type heat exchanger 2 supports a pipeline 22 extending horizontally by a side frame 21 in a plurality of stages (usually 4 to 6 stages) in the vertical direction, and the pipeline 22 from the uppermost stage to the lowermost stage. The conduit 22 is connected via a flow path inside the side frame 21 so as to form a bent path, and the conduit 2 is provided below the conduit 22.
2, a fan 23 for blowing air is provided.
The outlet side of the air-cooled heat exchanger 2, that is, the side frame 21.
A pipe 24 provided with a flow rate control valve 25 that is a first control valve is connected to the lower part of the, and the tip end thereof is extended to the vicinity of the bottom of the reflux container 3. Further, the distillation column 1 is provided with a pressure gauge 12 which serves as a pressure detection unit for detecting the pressure at the top of the distillation column.
The opening degree is controlled (first control system) via the control unit 13 on the basis of the pressure detection value.

【0019】また蒸留塔1から空冷式熱交換器2に蒸気
を送る前記配管11からは、空冷式熱交換器2及び調節
弁25を介さずに直接還流容器3の頂部部分に蒸気を流
すためのバイパス流路4が分岐されている。このバイパ
ス流路4には第2の調節弁である差圧調節弁41が介設
されており、この差圧調節弁41は、その上流側と下流
側との差圧を検出する差圧検出計42の差圧検出値に基
づいて制御部43により開度が制御(第2の制御系)さ
れる。
In order to flow steam directly from the distillation column 1 to the air-cooling heat exchanger 2 through the pipe 11, without passing through the air-cooling heat exchanger 2 and the control valve 25, to the top portion of the reflux container 3. The bypass flow path 4 is branched. A differential pressure control valve 41, which is a second control valve, is interposed in the bypass flow path 4, and the differential pressure control valve 41 detects differential pressure between the upstream side and the downstream side thereof. The opening degree is controlled (second control system) by the control unit 43 based on the differential pressure detection value of the total 42.

【0020】還流容器3の底部には、還流容器3内の凝
縮液を抜き取るための配管31が接続されており、この
配管31は、ポンプ32、調節弁33を介して蒸留塔1
の例えば塔頂近傍に接続されると共に、ポンプ32、調
節弁33の間において、調節弁35を備えた製品取り出
し用の配管34に分岐している。
At the bottom of the reflux container 3, a pipe 31 for extracting the condensate in the reflux container 3 is connected, and this pipe 31 is connected to a distillation column 1 via a pump 32 and a control valve 33.
Is connected to, for example, the vicinity of the top of the tower, and is branched between the pump 32 and the regulating valve 33 into a pipe 34 for taking out a product, which is provided with a regulating valve 35.

【0021】このような構成の蒸留装置では、蒸留塔頂
からの蒸気の大部分は配管11を介して空冷式熱交換器
2へ送られ、この空冷式熱交換器2では、下方側からの
ファン23による送風で管路22が冷却され、これによ
りここを通過する蒸気は冷却されて凝縮液化される。そ
して得られた凝縮液は、流量調節弁25により送液量が
調節されながら配管24を介して還流容器3の底部付近
へ送液される。次いでこの凝縮液の一部は配管31、ポ
ンプ32、調節弁33を介して蒸留塔1の塔頂近傍へ還
流され、残りの凝縮液は配管31から分岐する配管3
4、調節弁35を介して製品として取り出される。
In the distillation apparatus having such a structure, most of the vapor from the top of the distillation column is sent to the air-cooled heat exchanger 2 through the pipe 11, and in the air-cooled heat exchanger 2, the steam from the lower side is supplied. The duct 22 is cooled by the air blown by the fan 23, whereby the steam passing therethrough is cooled and condensed and liquefied. Then, the obtained condensate is sent to the vicinity of the bottom of the reflux container 3 through the pipe 24 while the amount of the sent liquid is adjusted by the flow rate adjusting valve 25. Next, a part of the condensate is refluxed to the vicinity of the top of the distillation column 1 via the pipe 31, the pump 32, and the control valve 33, and the remaining condensate is branched from the pipe 31 to the pipe 3.
4. The product is taken out through the control valve 35.

【0022】ここで上述の第1の制御系では蒸留塔1の
塔頂圧力の変化に応じて空冷式熱交換器2の出口側の配
管24の凝縮液の流量が調整されるので、空冷式熱交換
器2における、熱交換に寄与する管路22の段数が変化
し、これにより空冷式熱交換器2で凝縮される蒸気の凝
縮量が調整されて蒸留塔1の塔頂圧力が制御される。一
方、第2の制御系では蒸留塔1の塔頂圧力と還流容器3
の気相部分の圧力との差圧に応じて、蒸留塔1からバイ
パス流路4を通って還流容器3へ直接流れる蒸気の流量
を調整しているため、塔頂圧力の大きな振れが抑えら
れ、そしてこのバイパス流路4の蒸気流量の調整によっ
て、蒸気の凝縮量の調整による空冷式熱交換器2の伝面
変化のいわばオーバシュート分が抑えられ、これら2系
統の制御が相俟って塔頂圧力の急激な変化を抑えて、塔
頂圧力が一定値になるように制御される。
In the first control system described above, the flow rate of the condensate in the pipe 24 on the outlet side of the air-cooling heat exchanger 2 is adjusted according to the change in the top pressure of the distillation column 1, so that the air-cooling system is used. In the heat exchanger 2, the number of stages of the pipe lines 22 contributing to heat exchange changes, whereby the amount of vapor condensed in the air-cooled heat exchanger 2 is adjusted and the top pressure of the distillation column 1 is controlled. It On the other hand, in the second control system, the top pressure of the distillation column 1 and the reflux container 3
Since the flow rate of the steam that directly flows from the distillation column 1 to the reflux container 3 through the bypass flow path 4 is adjusted according to the pressure difference between the gas phase portion and By adjusting the flow rate of the steam in the bypass passage 4, the so-called overshoot of the change in the transmission surface of the air-cooled heat exchanger 2 due to the adjustment of the amount of condensation of the steam is suppressed, and the control of these two systems is combined. The top pressure is controlled so as to be a constant value by suppressing a rapid change in the top pressure.

【0023】今例えば降雨等の外乱時に蒸留塔1の塔頂
圧力が所定値より低くなった場合、即ち蒸留塔1より発
生する蒸気量よりも空冷式熱交換器2で凝縮される蒸気
量の方が多くなった場合には、第1の制御系である流量
調節弁25の開度が小さくなり、凝縮液の流量が少なく
なる。これにより例えば図2に示すように、凝縮液が配
管24内及び空冷式熱交換器2の最下段の管路22内へ
溜まり始め(図中Aで示す部分)、空冷式熱交換器2の
伝熱面積(図中Bで示す部分)即ち管路22の熱交換に
寄与する部分の面積が減少するため、空冷式熱交換器2
における蒸気の凝縮量が抑えられ、塔頂圧力を上昇させ
る方向に作用する。
Now, for example, when the top pressure of the distillation column 1 becomes lower than a predetermined value during disturbance such as rainfall, that is, the amount of vapor condensed in the air-cooled heat exchanger 2 is smaller than the amount of vapor generated from the distillation column 1. When the number is larger, the opening degree of the flow rate control valve 25, which is the first control system, becomes smaller and the flow rate of the condensate becomes smaller. As a result, for example, as shown in FIG. 2, the condensate begins to accumulate in the pipe 24 and the lowermost pipe line 22 of the air-cooling heat exchanger 2 (the portion indicated by A in the figure), and the condensate of the air-cooling heat exchanger 2 Since the heat transfer area (the portion indicated by B in the figure), that is, the area of the portion of the conduit 22 that contributes to heat exchange, decreases, the air-cooled heat exchanger 2
In this case, the amount of vapor condensation in the column is suppressed, and the column top pressure is increased.

【0024】一方、第2の制御系である差圧調節弁41
は、バイパス流路4の上流側である塔頂圧力と下流側で
ある還流容器3内圧力との差圧が小となるためその開度
が小さくなり、蒸留塔1からバイパス流路4を経由して
還流容器3へ流れる蒸気の量が抑えられ、塔頂圧力を上
昇させる方向に作用する。
On the other hand, the differential pressure control valve 41 which is the second control system.
Is small because the pressure difference between the column top pressure on the upstream side of the bypass flow passage 4 and the internal pressure of the reflux container 3 on the downstream side is small, so that the opening degree becomes small, and the distillation tower 1 passes through the bypass flow passage 4 As a result, the amount of steam flowing to the reflux container 3 is suppressed, and the column top pressure is increased.

【0025】上記第1及び第2の制御系は共同で作用す
るため効率がよく、また相互に影響しあって急激なる圧
力変化も抑えることができる。
Since the first and second control systems work together, efficiency is high, and sudden pressure changes due to mutual influences can be suppressed.

【0026】塔頂圧力が大きく低下した場合には、上記
の作用で塔頂圧力が過度に上昇することがある。その場
合、圧力の上昇に伴い空冷式熱交換器2における凝縮液
の上昇が抑えられ、第1及び第2の調節弁25、41が
開かれて、満液となっている管路22から凝縮液が減少
し空冷式熱交換器2の冷却能力が回復し、かつバイパス
流路4から還流容器3へ直接流れる蒸気量も増加して塔
頂圧力を減少する方向に作用する。そして、圧力上昇と
減少の上記の制御が繰り返されて塔頂圧力が所定の圧力
に収斂する。
When the column top pressure is greatly reduced, the above action may cause the column top pressure to rise excessively. In that case, the rise of the condensate in the air-cooled heat exchanger 2 is suppressed as the pressure rises, and the first and second control valves 25 and 41 are opened to condense from the line 22 which is full. The amount of liquid decreases, the cooling capacity of the air-cooled heat exchanger 2 is restored, and the amount of vapor flowing directly from the bypass flow path 4 to the reflux container 3 also increases, which acts to decrease the overhead pressure. Then, the above control of pressure increase and pressure decrease is repeated, and the column top pressure converges to a predetermined pressure.

【0027】本発明では空冷式熱交換器2の出口側に流
量調節弁25を設けるとともに、バイパス流路4に差圧
調節弁41を設けたので、塔頂蒸気あるいは凝縮液は、
系内を連続的に安定して流れ、流量調節弁25や差圧調
節弁41の開度の急激な大きな変化が抑えられ、このた
め塔頂圧力の急激な変化を防止できるので、塔頂圧力の
制御を安定して行うことができる。
In the present invention, since the flow rate adjusting valve 25 is provided on the outlet side of the air-cooling heat exchanger 2 and the differential pressure adjusting valve 41 is provided in the bypass flow passage 4, the overhead vapor or the condensate is
It continuously and stably flows in the system, and abrupt large changes in the openings of the flow rate control valve 25 and the differential pressure control valve 41 are suppressed. Therefore, abrupt changes in the column top pressure can be prevented. Can be stably controlled.

【0028】また空冷式熱交換器2では、例えば最下段
の管路22に溜まっている凝縮液は、常にファン23に
より冷却されるため、この凝縮液は凝縮温度よりも低い
温度まで過冷却され、この温度のまま還流容器3の底部
へ送液される。一方還流容器3内へは、バイパス流路4
を介して凝縮温度以上の熱い蒸気が送られてくるため、
還流容器3内の凝縮液はこの蒸気により加熱されて昇温
し、その表層部分はほぼ沸点温度となるまで上昇する。
このため還流容器3内の凝縮液の表層部分は平衡状態と
なり、これにより還流容器3内の圧力はより安定し、こ
の結果塔頂圧力の制御がより安定に行なわれる。
Further, in the air-cooling type heat exchanger 2, for example, the condensate accumulated in the lowermost pipe line 22 is always cooled by the fan 23, so that the condensate is supercooled to a temperature lower than the condensing temperature. The liquid is sent to the bottom of the reflux container 3 at this temperature. On the other hand, the bypass flow path 4 is introduced into the reflux container 3.
Since hot steam above the condensation temperature is sent via
The condensate in the reflux container 3 is heated by this vapor and rises in temperature, and the surface layer portion rises to almost the boiling temperature.
For this reason, the surface layer portion of the condensate in the reflux container 3 is in an equilibrium state, whereby the pressure in the reflux container 3 is more stable, and as a result, the control of the overhead pressure is more stable.

【0029】以上のように上述実施例では、空冷式熱交
換器2の出口側に流量調節弁25を設けて、塔頂圧力に
応じて還流容器3へ送液する凝縮液の液量を変えること
により、空冷式熱交換器2の伝熱面積を調節して、塔頂
蒸気の凝縮量を調節することができるため、塔頂圧力を
応答性よく制御することができる。また流量調節弁25
は凝縮液の送液量を調節するために設けられているの
で、調節弁25を絞り過ぎたとしても空冷式熱交換器2
の出口側が負圧になって凝縮液が還流容器3から一気に
吸引して空冷式熱交換器2の入口側まで逆流するような
おそれはなく、この結果塔頂圧力の安定化を図ることが
できる。
As described above, in the above-described embodiment, the flow rate control valve 25 is provided on the outlet side of the air-cooling type heat exchanger 2, and the amount of the condensate to be sent to the reflux vessel 3 is changed according to the column top pressure. As a result, the heat transfer area of the air-cooled heat exchanger 2 can be adjusted to adjust the condensation amount of the overhead vapor, so that the overhead pressure can be controlled with good response. In addition, the flow control valve 25
Is provided in order to adjust the amount of condensate to be sent, so even if the control valve 25 is excessively throttled, the air-cooled heat exchanger 2
There is no possibility that the outlet side becomes negative pressure and the condensate is sucked from the reflux container 3 all at once and flows backward to the inlet side of the air-cooling heat exchanger 2, and as a result, the overhead pressure can be stabilized.

【0030】また空冷式熱交換器2の出口側の配管24
は凝縮液の流路用配管であり、蒸気の流路用配管である
空冷式熱交換器2の入口側の配管11に比べて管径が小
さいため、この出口側配管24に取り付けられる調節弁
25は、入口側配管に取り付けられる調節弁に比べて小
型のものを用いることができる。そのうえ調節弁25の
設置場所も空冷式熱交換器2より低い位置である還流容
器3の上部付近位置であるため、空冷式熱交換器2より
高い位置に設けなければならない入口側調節弁を設置す
る場合に比べて、取り付けが容易であると共に、高所の
大型の架台等も不要となるため、設備費を大幅に削減で
きる。
The pipe 24 on the outlet side of the air-cooled heat exchanger 2
Is a condensate flow passage pipe, and has a smaller pipe diameter than the inlet side pipe 11 of the air-cooling heat exchanger 2 which is a vapor flow passage pipe, and is therefore a control valve attached to the outlet side pipe 24. As the valve 25, a smaller valve than the control valve attached to the inlet side pipe can be used. Moreover, since the control valve 25 is installed near the upper part of the reflux container 3 which is lower than the air-cooling heat exchanger 2, an inlet-side control valve which must be installed at a position higher than the air-cooling heat exchanger 2 is installed. As compared with the case where it is carried out, the installation is easy and a large pedestal at a high place is not necessary, so that the equipment cost can be significantly reduced.

【0031】以上において、蒸留塔の塔頂圧力と還流容
器内の圧力との差圧を所定値とするために、差圧調節弁
の上流側と下流側との差圧を検出して、その検出値に基
づいて差圧調節弁の開度を調整しているが、本発明では
差圧を検出する代わりに、還流容器内の気相部分の圧力
を検出し、その検出値に基づいて差圧調節弁の開度を調
節してもよい。還流容器内の気相部分の圧力に基づいて
差圧調節弁を調整する場合には、還流容器内の圧力が高
すぎると差圧調節弁41が絞られ、還流容器液表面温度
(圧力)を下げる方向となり、逆に還流容器内の圧力が
低すぎると差圧調節弁41の開度が大きくなり、この結
果還流容器内の圧力が一定となるように制御される。こ
のような条件のもとで、塔頂圧力が一定となるように制
御されることとなる。
In the above, in order to make the differential pressure between the top pressure of the distillation column and the pressure in the reflux vessel a predetermined value, the differential pressure between the upstream side and the downstream side of the differential pressure control valve is detected and Although the opening of the differential pressure control valve is adjusted based on the detected value, in the present invention, instead of detecting the differential pressure, the pressure of the gas phase portion in the reflux container is detected, and the difference based on the detected value is detected. The opening of the pressure control valve may be adjusted. When adjusting the differential pressure control valve based on the pressure of the gas phase portion in the reflux container, if the pressure in the reflux container is too high, the differential pressure control valve 41 is throttled to adjust the liquid surface temperature (pressure) of the reflux container. When the pressure in the reflux container is too low, the opening degree of the differential pressure control valve 41 is increased, and as a result, the pressure in the reflux container is controlled to be constant. Under these conditions, the column top pressure is controlled to be constant.

【0032】[0032]

【発明の効果】本発明によれば、空冷式熱交換器の出口
側配管に蒸留塔の塔頂圧力に基づいて制御される調節弁
を設けるとともに、バイパス流路に塔頂圧力と還流容器
内圧力との差圧または還流用容器内圧力に基づいて制御
される差圧調節弁を設けたので、塔頂圧力に応じて空冷
式熱交換器から送液される凝縮液量を調節して空冷式熱
交換器の伝熱面積を調節し、これにより空冷式熱交換器
における塔頂蒸気の凝縮量を制御することができ、また
塔頂圧力と還流容器内圧力との差圧または還流容器内の
圧力に応じてバイパス流路を流れる蒸気の量を直接制御
できることとなり、両制御の共同作用により蒸留塔の塔
頂圧力の変化を応答性よく制御できる。また空冷式熱交
換器の出口側が負圧になるおそれがないため、凝縮液の
停流や逆流の心配がなく蒸気及び凝縮液が系内を連続的
に安定して流れ、これにより塔頂圧力の制御を安定して
行なうことができ、蒸留製品の品質を安定化することが
できる。さらに第1の調節弁は空冷式熱交換器出口側の
液体流通用の細い配管に設けられるので、応答性がよい
小型のものでよく、しかも設置場所が低所であるため、
取り付けが容易であるとともに高所での大型の取付け架
台等も不要となり、設備費用を大幅に低減することがで
きる。
According to the present invention, the outlet side pipe of the air-cooled heat exchanger is provided with a control valve which is controlled based on the top pressure of the distillation column, and the bypass channel is provided with the top pressure and the inside of the reflux vessel. Since a differential pressure control valve that is controlled based on the pressure difference from the pressure or the pressure in the reflux vessel is installed, the amount of condensate sent from the air-cooling heat exchanger is adjusted according to the tower top pressure to perform air cooling. By adjusting the heat transfer area of the heat exchanger, it is possible to control the amount of condensation of the overhead vapor in the air-cooled heat exchanger, and also the differential pressure between the overhead pressure and the pressure in the reflux vessel or the pressure in the reflux vessel. It is possible to directly control the amount of vapor flowing through the bypass flow passage in accordance with the pressure of 1, and the change in the top pressure of the distillation column can be controlled with good responsiveness by the cooperation of both controls. In addition, since there is no risk of negative pressure on the outlet side of the air-cooled heat exchanger, there is no concern of stopping or backflow of the condensate, and steam and condensate flow continuously and stably in the system. Can be stably controlled, and the quality of the distilled product can be stabilized. Further, since the first control valve is provided in the thin pipe for liquid circulation on the outlet side of the air-cooled heat exchanger, it may be a small one with good responsiveness, and since the installation location is low,
It is easy to install and does not require a large installation base or the like at a high place, and the equipment cost can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蒸留方法を実施するための蒸留装置の
一実施例を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment of a distillation apparatus for carrying out a distillation method of the present invention.

【図2】空冷式熱交換器の作用を説明するための説明図
である。
FIG. 2 is an explanatory diagram for explaining the operation of the air-cooled heat exchanger.

【図3】従来の蒸留装置の構成図である。FIG. 3 is a block diagram of a conventional distillation apparatus.

【図4】従来の蒸留装置の構成図である。FIG. 4 is a configuration diagram of a conventional distillation apparatus.

【図5】従来の蒸留装置の構成図である。FIG. 5 is a configuration diagram of a conventional distillation apparatus.

【符号の説明】[Explanation of symbols]

1 蒸留塔 2 空冷式熱交換器 25 流量調節弁 3 還流容器 4 バイパス流路 41 差圧調節弁 1 Distillation tower 2 Air-cooled heat exchanger 25 Flow rate control valve 3 Reflux container 4 Bypass flow path 41 Differential pressure control valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西本 嘉忠 愛知県知多市南浜町11番地 出光興産株式 会社内 (72)発明者 松山 信夫 愛知県知多市南浜町11番地 出光興産株式 会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kachu Nishimoto 11 Minamihamacho, Chita City, Aichi Prefecture, Idemitsu Kosan Co., Ltd. (72) Nobuo Matsuyama 11th Minamihama Town, Chita City, Aichi Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 蒸留塔塔頂からの蒸気を空冷式熱交換器
で凝縮し、得られた凝縮液を還流容器に貯留すると共
に、この還流容器内の凝縮液の一部を前記蒸留塔に還流
する蒸留装置において、 前記蒸留塔の塔頂圧力を検出する圧力検出部と、 前記空冷式熱交換器の出口と還流容器との間に設けら
れ、前記圧力検出部の検出圧力に基づいて凝縮液の流量
を制御する第1の調節弁と、 前記蒸留塔と還流容器との間に設けられ、蒸留塔塔頂か
らの蒸気の一部を空冷式熱交換器及び第1の調節弁を介
さずに還流容器に直接通流するためのバイパス流路と、 前記バイパス流路に設けられ、その上流側と下流側との
差圧または還流容器内の圧力に基づいて前記蒸気の流量
を制御する第2の調節弁と、 を備えることを特徴とする蒸留装置。
1. The vapor from the top of the distillation column is condensed by an air-cooled heat exchanger, the obtained condensate is stored in a reflux container, and a part of the condensate in the reflux container is stored in the distillation column. In a reflux distillation apparatus, a pressure detection unit that detects the top pressure of the distillation column, and is provided between the outlet of the air-cooled heat exchanger and a reflux container, and condenses based on the pressure detected by the pressure detection unit. A first control valve for controlling the flow rate of the liquid is provided between the distillation column and the reflux vessel, and a part of the vapor from the top of the distillation column is passed through the air-cooled heat exchanger and the first control valve. A bypass flow path for directly flowing into the reflux container without being provided, and the bypass flow path, which is provided in the bypass flow path and controls the flow rate of the steam based on the pressure difference between the upstream side and the downstream side or the pressure in the reflux container. A second control valve, and a distillation apparatus comprising:
【請求項2】 蒸留塔塔頂からの蒸気を空冷式熱交換器
で凝縮し、得られた凝縮液を還流容器に貯留すると共
に、この還流容器内の凝縮液の一部を前記蒸留塔に還流
する蒸留方法において、 前記空冷式熱交換器により凝縮された凝縮液を、蒸留塔
の塔頂圧力に基づいて流量を制御しながら還流容器内へ
送液すると共に、蒸留塔からの蒸気の一部を、空冷式熱
交換器を介さずにその上流側と下流側との差圧または還
流容器内の圧力に基づいて流量を制御しながら、還流容
器内へ直接通流することを特徴とする蒸留方法。
2. The vapor from the top of the distillation column is condensed by an air-cooled heat exchanger, the obtained condensate is stored in a reflux container, and a part of the condensate in the reflux container is stored in the distillation column. In the reflux distillation method, the condensate condensed by the air-cooled heat exchanger is fed into the reflux vessel while controlling the flow rate based on the top pressure of the distillation column, and at the same time, one of the vapors from the distillation column The part is directly flowed into the reflux container while controlling the flow rate based on the pressure difference between the upstream side and the downstream side or the pressure inside the reflux container without passing through the air-cooled heat exchanger. Distillation method.
JP20292095A 1995-07-17 1995-07-17 Distillation apparatus and distillation method Expired - Lifetime JP3673565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20292095A JP3673565B2 (en) 1995-07-17 1995-07-17 Distillation apparatus and distillation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20292095A JP3673565B2 (en) 1995-07-17 1995-07-17 Distillation apparatus and distillation method

Publications (2)

Publication Number Publication Date
JPH0929001A true JPH0929001A (en) 1997-02-04
JP3673565B2 JP3673565B2 (en) 2005-07-20

Family

ID=16465357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20292095A Expired - Lifetime JP3673565B2 (en) 1995-07-17 1995-07-17 Distillation apparatus and distillation method

Country Status (1)

Country Link
JP (1) JP3673565B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222846A (en) * 2006-02-27 2007-09-06 Sumitomo Chemical Co Ltd Distillation tower
JP2008132418A (en) * 2006-11-28 2008-06-12 Taiyo Nippon Sanso Corp Distillation apparatus
US20110240525A1 (en) * 2010-03-30 2011-10-06 Uop Llc Distillation Column Pressure Control
JP2011256157A (en) * 2010-05-12 2011-12-22 Mitsubishi Chemicals Corp Pressure control method for distillation column
WO2016006604A1 (en) * 2014-07-09 2016-01-14 千代田化工建設株式会社 Distillation equipment, distillation method and distillation equipment modification method
CN106334328A (en) * 2016-09-18 2017-01-18 宁波巨化化工科技有限公司 Differential pressure type thermal coupling rectification device
US9642737B2 (en) 2012-12-24 2017-05-09 Seres Healthcare Limited Portable level sensor
JPWO2017057142A1 (en) * 2015-09-30 2018-07-26 株式会社ダイセル Method and apparatus for producing acetic acid
CN110194964A (en) * 2018-02-27 2019-09-03 中国石油化工股份有限公司 The system and method for tower top oil gas heat utilization

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2751049C9 (en) * 2018-02-19 2022-04-26 ДжГК Корпорейшн Plant for natural gas liquefaction

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222846A (en) * 2006-02-27 2007-09-06 Sumitomo Chemical Co Ltd Distillation tower
JP2008132418A (en) * 2006-11-28 2008-06-12 Taiyo Nippon Sanso Corp Distillation apparatus
US20110240525A1 (en) * 2010-03-30 2011-10-06 Uop Llc Distillation Column Pressure Control
WO2011126698A2 (en) * 2010-03-30 2011-10-13 Uop Llc Distillation column pressure control
WO2011126698A3 (en) * 2010-03-30 2012-02-02 Uop Llc Distillation column pressure control
US8524046B2 (en) 2010-03-30 2013-09-03 Uop Llc Distillation column pressure control
JP2011256157A (en) * 2010-05-12 2011-12-22 Mitsubishi Chemicals Corp Pressure control method for distillation column
US9642737B2 (en) 2012-12-24 2017-05-09 Seres Healthcare Limited Portable level sensor
JP2016016379A (en) * 2014-07-09 2016-02-01 千代田化工建設株式会社 Distillation facility, distillation method and remodeling method of distillation facility
WO2016006604A1 (en) * 2014-07-09 2016-01-14 千代田化工建設株式会社 Distillation equipment, distillation method and distillation equipment modification method
JPWO2017057142A1 (en) * 2015-09-30 2018-07-26 株式会社ダイセル Method and apparatus for producing acetic acid
US10894759B2 (en) 2015-09-30 2021-01-19 Daicel Corporation Method and apparatus for producing acetic acid
CN106334328A (en) * 2016-09-18 2017-01-18 宁波巨化化工科技有限公司 Differential pressure type thermal coupling rectification device
CN106334328B (en) * 2016-09-18 2019-03-05 宁波巨化化工科技有限公司 A kind of differential pressure type thermal coupling rectification device
CN110194964A (en) * 2018-02-27 2019-09-03 中国石油化工股份有限公司 The system and method for tower top oil gas heat utilization
CN110194964B (en) * 2018-02-27 2024-04-26 中国石油化工股份有限公司 System and method for utilizing heat of tower top oil gas

Also Published As

Publication number Publication date
JP3673565B2 (en) 2005-07-20

Similar Documents

Publication Publication Date Title
JPH0929001A (en) Device and process for distillation
KR102513055B1 (en) Method of adjusting duty of heat exchange in heat integrated distillation column
RU99114833A (en) METHOD AND DEVICE FOR CONTROL OF GAS-HYDROCARBON FLOW CONDENSATION
US4353213A (en) Side stream type condensing system and method of operating the same
CN1368922A (en) Pressure control system improving power plant efficiency
US2187662A (en) Controller for gas flow
JP3706475B2 (en) Heavy oil emulsion fuel evaporator system and operating method thereof
EP2959240B1 (en) A heating, ventilation and air conditioning (hvac) system and a method of regulating flow of refrigerant to the falling film evaporator of the hvac system
US4239511A (en) Process and apparatus for cooling coke oven gas
RU2751049C1 (en) Plant for natural gas liquefaction
JP2005058873A (en) Low temperature liquid heating method and apparatus therefor
JP4725360B2 (en) Distillation system and method for controlling top pressure of distillation column in distillation system
JPH067602A (en) Distillation column accompanied by removal of vapor side flow
JP2000319095A (en) Apparatus and method for vaporizing and supplying trichlorosilane
CN211158650U (en) Process control device of high-load reboiler
JPS637244B2 (en)
Harrison et al. Trouble-Shooting Distillation Columns-Part 4: Auxiliary Equipment
Dejanović et al. Hydraulic design of thermally coupled columns and a DWC for NGL fractionation plants
JPH10141712A (en) Piping system structure of fan coil device
JP2005061484A (en) Cryogenic liquid heating method and its device
JPH06174194A (en) Lpg evaporator
Kister Flooded Condenser Controls: Principles and Troubleshooting.
SU1714313A1 (en) Condenser of rectifying column
JPH10274006A (en) Drain pipe system
JPH0379902A (en) Supply water heater

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050425

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term