JP2011252222A - Cr-CONTAINING STEEL PIPE FOR MEMBER FOR CARBON DIOXIDE INJECTION - Google Patents
Cr-CONTAINING STEEL PIPE FOR MEMBER FOR CARBON DIOXIDE INJECTION Download PDFInfo
- Publication number
- JP2011252222A JP2011252222A JP2010128752A JP2010128752A JP2011252222A JP 2011252222 A JP2011252222 A JP 2011252222A JP 2010128752 A JP2010128752 A JP 2010128752A JP 2010128752 A JP2010128752 A JP 2010128752A JP 2011252222 A JP2011252222 A JP 2011252222A
- Authority
- JP
- Japan
- Prior art keywords
- carbon dioxide
- less
- steel pipe
- corrosion
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 172
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 86
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 86
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 58
- 239000010959 steel Substances 0.000 title claims abstract description 58
- 238000002347 injection Methods 0.000 title claims abstract description 19
- 239000007924 injection Substances 0.000 title claims abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 20
- 239000012535 impurity Substances 0.000 claims abstract description 11
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 11
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 9
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 8
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 6
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 3
- 239000007789 gas Substances 0.000 claims description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- 230000036961 partial effect Effects 0.000 claims description 12
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 238000005260 corrosion Methods 0.000 abstract description 81
- 230000007797 corrosion Effects 0.000 abstract description 81
- 229910052717 sulfur Inorganic materials 0.000 abstract description 3
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 239000000243 solution Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 21
- 238000000034 method Methods 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 238000005336 cracking Methods 0.000 description 11
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 6
- 238000005496 tempering Methods 0.000 description 6
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 5
- 239000000460 chlorine Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 229910052801 chlorine Inorganic materials 0.000 description 4
- -1 chlorine ions Chemical class 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000003345 natural gas Substances 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 description 3
- 235000002639 sodium chloride Nutrition 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000003129 oil well Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000010913 used oil Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、炭酸ガスインジェクション(炭酸ガス注入)用部材向け素材として好適な、Cr含有鋼管に係り、とくに180℃以下の温度で、かつ5〜100MPa(50超〜1000気圧)という高い分圧の超臨界圧炭酸ガスを含む厳しい腐食環境下での使用が可能な、耐高圧炭酸ガス腐食性に優れたCr含有鋼管に関する。 The present invention relates to a Cr-containing steel pipe suitable as a material for carbon dioxide injection (carbon dioxide injection) members, particularly at a temperature of 180 ° C. or lower and a high partial pressure of 5 to 100 MPa (over 50 to 1000 atmospheres). The present invention relates to a Cr-containing steel pipe that can be used in a severe corrosive environment containing supercritical carbon dioxide and has excellent high-pressure carbon dioxide corrosion resistance.
近年、大気中の炭酸ガスの増加が地球の温暖化に繋がるという考えから、地球環境の保全のために、炭酸ガス排出量の削減が叫ばれている。そして最近では、排出された炭酸ガスを、海洋や、使用済みの油井、岩塩の廃坑等の地中に注入し、貯留(貯蔵)することが検討されている。炭酸ガスの地中への注入は、単なる貯留(貯蔵)以外にも、原油の回収率向上や、石灰層からのメタンガス回収など、石油や天然ガスの回収のために利用が検討されている。 In recent years, from the idea that an increase in carbon dioxide in the atmosphere leads to global warming, reduction of carbon dioxide emissions has been screamed in order to preserve the global environment. Recently, it has been studied to inject and store (store) the discharged carbon dioxide into the ocean, used oil wells, ground such as abandoned salt mine. In addition to simple storage (storage), carbon dioxide injection into the ground is being investigated for use in recovering oil and natural gas, such as improving the recovery rate of crude oil and recovering methane gas from the limestone layer.
例えば、特許文献1には、投棄二酸化炭素を熱源とする天然ガス採取方法が提案されている。特許文献1に記載された技術は、海底または永久凍土域に存在する天然ガスハイドレイト層に投棄二酸化炭素を圧入し、投棄二酸化炭素をガスハイドレイトとして固定するとともに、二酸化炭素の顕熱および潜熱により天然ガスハイドレイトから天然ガスを解離させて採取する方法である。 For example, Patent Document 1 proposes a natural gas collection method using dumped carbon dioxide as a heat source. The technique described in Patent Document 1 presses dumped carbon dioxide into a natural gas hydrate layer existing on the seabed or permafrost, fixes the discarded carbon dioxide as a gas hydrate, and sensible heat and latent heat of carbon dioxide. Is a method of dissociating and collecting natural gas from natural gas hydrate.
地中への炭酸ガスの注入は、いずれにしろ、その目的から少なくとも1000mを超える深い位置までの注入を必要とすることが多く、炭酸ガスを高圧にして注入することになる。単純に乾燥した炭酸ガスを注入するだけであれば、たとえ高圧であっても腐食の問題は生じないが、操業条件の変化等により結露が生じる場合がある。このような場合には、高圧の炭酸ガスの存在により激しい炭酸ガス腐食が生じるという問題がある。 In any case, injection of carbon dioxide into the ground often requires injection to a deep position exceeding at least 1000 m for the purpose, and carbon dioxide is injected at a high pressure. If the dry carbon dioxide gas is simply injected, there will be no corrosion problem even at high pressure, but condensation may occur due to changes in operating conditions. In such a case, there is a problem that severe carbon dioxide corrosion occurs due to the presence of high-pressure carbon dioxide.
通常、原油や天然ガスの採掘する坑井では、油井管として13Cr系鋼管が主として使用されている。しかし、このような坑井では、含まれる炭酸ガスの分圧で表示すれば、高々5MPa程度である。 Normally, 13Cr steel pipes are mainly used as wells in wells where crude oil and natural gas are mined. However, in such a well, it is about 5 MPa at most if expressed by the partial pressure of carbon dioxide contained therein.
炭酸ガスの地中への注入に際しては、10MPaを超える高圧の炭酸ガスが使用される。例えば現状で油井管として使用されている13Cr系鋼管を、炭酸ガス注入用の圧入管として利用すると、高圧の炭酸ガスによる圧入管の腐食が大きな問題となることが推察できる。またさらに、地中へ注入する炭酸ガスとしては、例えば発電所、プラントから発生するガスがある。これらのガスには、不純物として少量の酸素、SOX、NOXが含まれる場合がある。不純物として含まれる酸素は、直接、腐食反応に寄与するが、とくに、炭酸ガスと共存すると、圧入管等の激しい腐食を引き起こす。また、不純物として含まれるSOX、NOXは、水に溶けてpHを低下させ、圧入管等の腐食を促進することが考えられる。 When carbon dioxide is injected into the ground, high-pressure carbon dioxide exceeding 10 MPa is used. For example, if a 13Cr steel pipe currently used as an oil well pipe is used as a press-fit pipe for injecting carbon dioxide, it can be inferred that corrosion of the press-in pipe with high-pressure carbon dioxide is a major problem. Furthermore, as the carbon dioxide gas injected into the ground, for example, there is a gas generated from a power plant or a plant. These gases may contain small amounts of oxygen, SO X and NO X as impurities. Oxygen contained as an impurity directly contributes to the corrosion reaction, but particularly when it coexists with carbon dioxide gas, it causes severe corrosion of a press-fit pipe or the like. Further, it is considered that SO X and NO X contained as impurities dissolve in water to lower the pH and promote corrosion of the press-fit pipe and the like.
このようなことから、不純物として、上記したような酸素、SOX、NOXを少量含み、高分圧の炭酸ガスを含む、ガス(気体)を地中にインジェクションする場合に、圧入管として、現状で油井管として使用されているような13Cr系鋼管を利用すると、孔食や激しい全面腐食が引き起こされることが推定される。このため、炭酸ガスインジェクション部材用として、不純物として酸素、SOX、NOX等を含む高圧炭酸ガス環境下でも、耐腐食性、すなわち耐高圧炭酸ガス腐食性に優れた鋼管が熱望されていた。 For this reason, when a gas (gas) containing a small amount of oxygen, SO X, NO X as described above and containing a high partial pressure of carbon dioxide is injected into the ground as an impurity, It is presumed that pitting corrosion and severe overall corrosion will be caused if 13Cr steel pipes that are currently used as oil well pipes are used. For this reason, steel pipes excellent in corrosion resistance, that is, high-pressure carbon dioxide corrosion resistance, have been eagerly desired for carbon dioxide injection members even under high-pressure carbon dioxide environments containing oxygen, SO X, NO X and the like as impurities.
本発明は、かかる従来技術の問題を解決し、温度が180℃以下で、高い炭酸ガス分圧の雰囲気中でも使用可能な、耐高圧炭酸ガス腐食性に優れた鋼管を提供することを目的とする。ここでいう「耐高圧炭酸ガス腐食性に優れた」とは、温度が180℃以下で、炭酸ガス分圧が5MPa超え、好ましくは10MPa以上である高い炭酸ガス分圧を有し、さらに不純物として酸素、SOX、NOXを少量含む、高圧炭酸ガス雰囲気中での耐腐食性に優れることを意味する。なお、ここでいう「高圧炭酸ガス雰囲気」は、炭酸ガスに加えて、mass%で0.2%以下の酸素、および、合計で0.2%以下のSOXおよびNOXを含み、さらに地中に岩塩等が存在することを考慮して、濃度:10〜120000mass ppm程度の塩素イオン[Cl−]を含むものとする。 An object of the present invention is to solve the problems of the prior art, and to provide a steel pipe excellent in high-pressure carbon dioxide corrosion resistance that can be used in an atmosphere having a high carbon dioxide partial pressure at a temperature of 180 ° C. or lower. . “Excellent high-pressure carbon dioxide corrosion resistance” as used herein means that the temperature is 180 ° C. or less, the carbon dioxide partial pressure exceeds 5 MPa, and preferably a high carbon dioxide partial pressure of 10 MPa or more. It means excellent corrosion resistance in a high-pressure carbon dioxide atmosphere containing a small amount of oxygen, SO X and NO X. The “high pressure carbon dioxide atmosphere” referred to here includes, in addition to carbon dioxide, oxygen of 0.2% or less in mass% and SO X and NO X of 0.2% or less in total, and further, rock salt and the like in the ground In consideration of the presence of chlorine ions [Cl − ] at a concentration of about 10 to 120,000 mass ppm.
本発明者らは、上記した目的を達成するために、13Cr系Cr含有鋼管の組成を基準として、高圧の炭酸ガスを含みかつ塩素イオン、さらに酸素、SOXおよびNOXを少量含む雰囲気下で、耐食性に及ぼす合金元素の種類およびその含有量について鋭意研究した。
その結果、Cr含有鋼管の組成を、C含有量が0.05mass%以下となる低C系で、Cr含有量を14.0%以上と高めとし、かつMo、Ni、Cuを必須含有させ、さらにCr,Ni,Mo,Cu,C,NあるいはさらにWの含有量を、特定の関係式を満足するように、調整することにより、炭酸ガス分圧が5MPa以上で、かつ不純物として酸素、SOXおよびNOXを含む、あるいはさらに塩素イオンを含む、非常に苛酷な高圧炭酸ガス腐食雰囲気下においてもなお、優れた耐腐食性(耐高圧炭酸ガス腐食性)を有し、炭酸ガスインジェクション用部材向け素材として好適な鋼管となることを見出した。
In order to achieve the above-mentioned object, the present inventors, based on the composition of the 13Cr-based Cr-containing steel pipe, are used in an atmosphere containing high-pressure carbon dioxide and containing a small amount of chlorine ions, oxygen, SO X and NO X. In addition, intensive research was conducted on the types of alloying elements and their contents on corrosion resistance.
As a result, the composition of the Cr-containing steel pipe is a low C system in which the C content is 0.05 mass% or less, the Cr content is increased to 14.0% or more, and Mo, Ni, and Cu are contained essential, and Cr, By adjusting the content of Ni, Mo, Cu, C, N or even W so as to satisfy a specific relational expression, the carbon dioxide partial pressure is 5 MPa or more, and oxygen, SO X and NO as impurities It has excellent corrosion resistance (high-pressure carbon dioxide corrosion resistance) even under extremely severe high-pressure carbon dioxide corrosive atmosphere containing X or further containing chlorine ions, and as a material for carbon dioxide injection parts It has been found that this is a suitable steel pipe.
本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
(1)mass%で、C:0.05%以下、Si:0.50%以下、Mn:0.10〜1.80%、P:0.03%以下、S:0.005%以下、Cr:14.0〜18.0%、Cu:2.0%以下、Ni:2.5〜6.5%、Mo:0.5〜3.0%、Al:0.05%以下、N:0.15%以下を、次(1)式
Cr+3.2Mo+1.6W+0.5Ni+0.3Cu+3N−20C ≧ 22.5 ‥‥(1)
(ここで、Cr、Mo 、W、Ni、Cu、N、C:各合金元素の含有量(mass%))
を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成を有し、炭酸ガス分圧:5MPa以上の炭酸ガスと、mass%で0.2%以下の酸素、および、合計で0.2%以下のSOXおよびNOXを含む、高圧炭酸ガス環境下における耐高圧炭酸ガス腐食性に優れることを特徴とする炭酸ガスインジェクション用部材向けCr含有鋼管。
(2)(1)において、前記組成に加えてさらに、mass%で、Nb:0.20%以下、V:0.20%以下、Ti:0.20%以下、W:2.5%以下のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とするCr含有鋼管。
(3)(1)または(2)において、前記組成に加えてさらに、mass%で、Ca:0.0005〜0.01%を含有する組成とすることを特徴とするCr含有鋼管。
(4)(1)ないし(3)のいずれかに記載のCr含有鋼管を使用してなる炭酸ガスインジェクション用部材。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.05% or less, Si: 0.50% or less, Mn: 0.10 to 1.80%, P: 0.03% or less, S: 0.005% or less, Cr: 14.0 to 18.0%, Cu: 2.0% or less , Ni: 2.5-6.5%, Mo: 0.5-3.0%, Al: 0.05% or less, N: 0.15% or less, the following formula (1)
Cr + 3.2Mo + 1.6W + 0.5Ni + 0.3Cu + 3N-20C ≧ 22.5 (1)
(Here, Cr, Mo, W, Ni, Cu, N, C: content of each alloy element (mass%))
The carbon dioxide gas partial pressure: carbon dioxide gas of 5 MPa or more, carbon gas mass of 0.2% or less, and a total of 0.2% A Cr-containing steel pipe for carbon dioxide injection members characterized by being excellent in high-pressure carbon dioxide corrosion resistance in a high-pressure carbon dioxide environment, including the following SO X and NO X.
(2) In (1), in addition to the above composition, it is further selected in mass% from Nb: 0.20% or less, V: 0.20% or less, Ti: 0.20% or less, W: 2.5% or less Alternatively, a Cr-containing steel pipe having a composition containing two or more kinds.
(3) A Cr-containing steel pipe according to (1) or (2), characterized in that, in addition to the above composition, the composition further includes Ca: 0.0005 to 0.01% in mass%.
(4) Carbon dioxide injection member using the Cr-containing steel pipe according to any one of (1) to (3).
本発明によれば、温度が180℃以下で、5MPa以上、好ましくは10MPa以上の高い炭酸ガス分圧と、さらに、0.2mass%以下の酸素、および、合計で0.2mass%以下のSOXおよびNOXを含む、あるいはさらに塩素イオン濃度が0〜120,000mass ppmを含む、高温の厳しい腐食雰囲気中でも使用可能な、耐高圧炭酸ガス腐食性に優れたCr含有鋼管を、容易にしかも安価に製造でき産業上格段の効果を奏する。また、本発明になるCr含有鋼管は、耐高圧炭酸ガス腐食性に優れ、炭酸ガスインジェクション(炭酸ガス圧入)用部材として好適であり、また本発明によれば、熱間加工性にも優れ、通常の製造工程を変更することなく、耐高圧炭酸ガス腐食性に優れた鋼管を製造できるという効果もある。 According to the present invention, the temperature is 180 ° C. or less, a high carbon dioxide partial pressure of 5 MPa or more, preferably 10 MPa or more, oxygen of 0.2 mass% or less, and SO X and NO in total of 0.2 mass% or less. It is possible to easily and inexpensively manufacture Cr-containing steel pipes with excellent resistance to high-pressure carbon dioxide gas that can be used even in severe hot corrosive atmospheres containing X or containing chlorine ions in the range of 0 to 120,000 mass ppm. Has an exceptional effect. In addition, the Cr-containing steel pipe according to the present invention is excellent in high-pressure carbon dioxide gas corrosion resistance and is suitable as a member for carbon dioxide injection (carbon dioxide injection), and according to the present invention, is excellent in hot workability, There is also an effect that a steel pipe excellent in high-pressure carbon dioxide gas corrosion resistance can be manufactured without changing a normal manufacturing process.
まず、本発明のCr含有鋼管の組成限定理由について説明する。なお、以下、mass%は、とくに断わらない限り単に%で記す。
C:0.05%以下
Cは、鋼の強度を増加させる元素であり、所望の強度を確保するために本発明では、0.005%以上含有することが望ましいが、0.05%を超える含有は、Cr、Mo等と炭化物を形成し耐食性を低下させる。とくに、高温の使用雰囲気ではこの傾向が強くなる。このため、本発明ではCは0.05%以下に限定した。なお、好ましくは、0.01〜0.04%である。
First, the reasons for limiting the composition of the Cr-containing steel pipe of the present invention will be described. In the following, mass% is simply expressed as% unless otherwise specified.
C: 0.05% or less C is an element that increases the strength of steel. In the present invention, it is preferable to contain 0.005% or more in order to ensure a desired strength. It forms a carbide with etc. and reduces the corrosion resistance. This tendency is particularly strong in high-temperature use atmospheres. For this reason, in the present invention, C is limited to 0.05% or less. In addition, Preferably, it is 0.01 to 0.04%.
Si:0.50%以下
Siは、脱酸剤として作用する元素であり、このような効果を得るためには0.10%以上含有することが望ましいが、0.50%を超える含有は、耐炭酸ガス腐食性を低下させるとともに、熱間加工性をも低下させる。このため、Siは0.50%以下に限定した。なお、好ましくは0.35%以下である。
Si: 0.50% or less
Si is an element that acts as a deoxidizing agent. In order to obtain such an effect, it is desirable to contain 0.10% or more. However, if it exceeds 0.50%, the corrosion resistance of carbon dioxide gas is deteriorated and heat resistance is reduced. Also reduces the workability. For this reason, Si was limited to 0.50% or less. In addition, Preferably it is 0.35% or less.
Mn:0.10〜1.80%
Mnは、鋼の強度を増加させる元素であり、所望の強度を確保するために本発明では、0.10%以上含有する。一方、1.80%を超える含有は、靭性に悪影響を及ぼす。このため、Mnは0.10〜1.80%の範囲に限定した。なお、好ましくは0.20〜1.0%である。
P:0.03%以下
Pは、耐食性、とくに耐炭酸ガス腐食性、耐炭酸ガス応力腐食割れ性、耐孔食性および耐硫化物応力腐食割れ性をともに劣化させる元素であり、可能なかぎり低減することが望ましいが、極端な低減は製造コストの高騰を招く。このため、本発明では、工業的に実施可能な範囲でかつ安価で、しかも耐炭酸ガス腐食性、耐炭酸ガス応力腐食割れ性、耐孔食性、耐硫化物応力腐食割れ性を劣化させない範囲である、0.03%をPの上限値とした。なお、好ましくは0.01%以下である。
Mn: 0.10 to 1.80%
Mn is an element that increases the strength of steel. In the present invention, Mn is contained in an amount of 0.10% or more in order to ensure a desired strength. On the other hand, the content exceeding 1.80% adversely affects toughness. For this reason, Mn was limited to the range of 0.10 to 1.80%. In addition, Preferably it is 0.20 to 1.0%.
P: 0.03% or less P is an element that degrades corrosion resistance, particularly carbon dioxide corrosion resistance, carbon dioxide stress corrosion cracking resistance, pitting corrosion resistance and sulfide stress corrosion cracking resistance, and should be reduced as much as possible. However, an extreme reduction leads to an increase in manufacturing costs. For this reason, in the present invention, it is an industrially feasible range, is inexpensive, and does not degrade the carbon dioxide corrosion resistance, carbon dioxide stress corrosion cracking resistance, pitting corrosion resistance, and sulfide stress corrosion cracking resistance. The upper limit of P was 0.03%. In addition, Preferably it is 0.01% or less.
S:0.005%以下
Sは、熱間加工性を著しく低下させる元素であり、可能なかぎり低減することが望ましいが、0.005%以下に低減すれば通常工程での鋼管の製造が可能であることから、0.005%をSの上限値とした。なお、好ましくは0.003%以下である。
Cr:14.0〜18.0%
Crは、耐食性を向上させる作用を有する元素であり、とくに耐炭酸ガス腐食性、耐炭酸ガス応力腐食割れ性、耐孔食性を保持するために必要な元素である。このような効果を得るためには14.0%以上の含有を必要とする。一方、18.0%を超える含有は、熱間加工性を低下させる。このため、Crは14.0〜18.0%の範囲に限定した。なお、好ましくは14.5〜17.5%である。
S: 0.005% or less S is an element that significantly reduces hot workability, and it is desirable to reduce it as much as possible. However, if it is reduced to 0.005% or less, it is possible to manufacture a steel pipe in a normal process. 0.005% was taken as the upper limit of S. In addition, Preferably it is 0.003% or less.
Cr: 14.0 to 18.0%
Cr is an element having an action of improving corrosion resistance, and is particularly an element necessary for maintaining carbon dioxide corrosion resistance, carbon dioxide stress corrosion cracking resistance, and pitting corrosion resistance. In order to acquire such an effect, 14.0% or more of content is required. On the other hand, the content exceeding 18.0% decreases the hot workability. For this reason, Cr was limited to the range of 14.0 to 18.0%. In addition, Preferably it is 14.5 to 17.5%.
Cu:2.0%以下
Cuは、保護皮膜を強固にして、鋼中への水素の侵入を抑制し、耐硫化物応力腐食割れ性を向上させる元素である。上記した効果を確保するためには、0.05%以上含有することが望ましいが、2.0%を超えて含有すると、高温でCuSが結晶粒界に析出し、熱間加工性が低下する。このため、含有する場合には、Cuは2.0%以下に限定することが好ましい。なお、より好ましくは0.5〜1.5%である。
Cu: 2.0% or less
Cu is an element that strengthens the protective film, suppresses the penetration of hydrogen into the steel, and improves the resistance to sulfide stress corrosion cracking. In order to ensure the above effect, it is desirable to contain 0.05% or more. However, if it exceeds 2.0%, CuS precipitates at the crystal grain boundary at a high temperature, and hot workability deteriorates. For this reason, when it contains, it is preferable to limit Cu to 2.0% or less. In addition, More preferably, it is 0.5 to 1.5%.
Ni:2.5〜6.5%
Niは、保護皮膜を強固にして、耐食性、とくに耐炭酸ガス腐食性、耐炭酸ガス応力腐食割れ性、耐孔食性および耐硫化物応力腐食割れ性を向上させる元素であり、このような効果を得るためには、2.5%以上含有する必要がある。一方、6.5%を超えて含有すると、オーステナイトが安定化し、強度が低下する。このため、Niは2.5〜6.5%の範囲に限定した。なお、好ましくは3.0〜6.5%である。
Ni: 2.5-6.5%
Ni is an element that strengthens the protective film and improves corrosion resistance, especially carbon dioxide corrosion resistance, carbon dioxide stress corrosion cracking resistance, pitting corrosion resistance and sulfide stress corrosion cracking resistance. In order to obtain it, it is necessary to contain 2.5% or more. On the other hand, if the content exceeds 6.5%, austenite is stabilized and the strength is lowered. For this reason, Ni was limited to the range of 2.5 to 6.5%. In addition, Preferably it is 3.0 to 6.5%.
Mo:0.5〜3.0%
Moは、耐食性、とくに耐孔食性を向上させる元素であり、高温、高塩素イオン環境下での耐食性向上に大きく寄与する。このような効果を得るためには、0.5%以上の含有を必要とする。一方、3.0%を超えて含有しても、効果が飽和し含有量に見合う効果を期待できなくなり経済的に不利となる。このため、Moは0.5〜3.0%の範囲に限定した。なお、好ましくは1.0〜3.0%である。
Mo: 0.5-3.0%
Mo is an element that improves corrosion resistance, particularly pitting corrosion resistance, and greatly contributes to improvement of corrosion resistance under high temperature and high chlorine ion environment. In order to acquire such an effect, 0.5% or more of content is required. On the other hand, if the content exceeds 3.0%, the effect is saturated and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, Mo was limited to the range of 0.5 to 3.0%. In addition, Preferably it is 1.0 to 3.0%.
Al:0.05%以下
Alは、強力な脱酸剤として作用する元素であり、このような効果を得るためには、Alを0.005%以上含有することが望ましいが、0.05%を超えて含有すると、靭性が低下する場合がある。このため、Alは0.05%以下に限定した。なお、好ましくは0.005〜0.03%である。
Al: 0.05% or less
Al is an element that acts as a powerful deoxidizer. To obtain such effects, it is desirable to contain 0.005% or more of Al. However, if it exceeds 0.05%, toughness decreases. There is. For this reason, Al was limited to 0.05% or less. In addition, Preferably it is 0.005-0.03%.
N:0.15%以下
Nは、耐孔食性を著しく向上させる作用を有する元素であり、本発明では0.005%以上含有することが望ましい。一方、0.15%を超えて含有すると、種々の窒化物を形成し、靭性を低下させる。このため、Nは0.15%以下に限定した。なお、好ましくは0.02〜0.07%である。
N: 0.15% or less N is an element having a function of remarkably improving pitting corrosion resistance. In the present invention, N is preferably contained in an amount of 0.005% or more. On the other hand, if the content exceeds 0.15%, various nitrides are formed and the toughness is lowered. For this reason, N was limited to 0.15% or less. In addition, Preferably it is 0.02 to 0.07%.
上記した成分が基本の組成であるが、必要に応じて選択元素として、上記した基本組成に加えてさらに、Nb:0.20%以下、V:0.20%以下、Ti:0.20%以下、W:2.5%以下のうちから選ばれた1種または2種以上、および/または、Ca:0.0005〜0.01%を含有することができる。
Nb:0.20%以下、V:0.20%以下、Ti:0.20%以下、W:2.5%以下の1種または2種以上
Nb、V、Ti、Wはいずれも、鋼の強度を増加させる作用を有する元素であり、必要に応じ1種または2種以上選択して含有できる。
The above-mentioned components have a basic composition. If necessary, in addition to the basic composition described above, Nb: 0.20% or less, V: 0.20% or less, Ti: 0.20% or less, W: 2.5% It can contain 1 type (s) or 2 or more types selected from the following, and / or Ca: 0.0005-0.01%.
One or more of Nb: 0.20% or less, V: 0.20% or less, Ti: 0.20% or less, W: 2.5% or less
Nb, V, Ti, and W are all elements that have the effect of increasing the strength of the steel, and can be selected and contained as needed, if necessary.
Nbは、鋼の強度を増加させ、さらに耐応力腐食割れ性を改善する作用を有する元素であり、このような効果を得るためには0.01%以上含有することが望ましいが、0.20%を超える含有は靭性を低下させる。このため、含有する場合には、Nbは0.20%以下に限定することが好ましい。なお、より好ましくは0.02〜0.12%である。
Vは、鋼の強度を増加させる作用を有するとともに、耐応力腐食割れ性を改善させる作用をも有する。このような効果を得るためには0.02%以上含有することが望ましいが、0.20%を超える含有は靭性を低下させる。このため、含有する場合には、Vは0.20%以下に限定することが好ましい。なお、より好ましくは0.02〜0.12%である。
Nb is an element that has the effect of increasing the strength of the steel and further improving the stress corrosion cracking resistance. To obtain such effects, it is desirable to contain 0.01% or more, but more than 0.20% Reduces toughness. For this reason, when it contains, it is preferable to limit Nb to 0.20% or less. In addition, More preferably, it is 0.02 to 0.12%.
V has the effect of increasing the strength of the steel and also has the effect of improving the stress corrosion cracking resistance. In order to acquire such an effect, it is desirable to contain 0.02% or more, but inclusion exceeding 0.20% reduces toughness. For this reason, when contained, V is preferably limited to 0.20% or less. In addition, More preferably, it is 0.02 to 0.12%.
Tiは、鋼の強度を増加させ、さらに耐応力腐食割れ性を改善する作用を有する元素であり、このような効果を得るためには0.01%以上含有することが望ましいが、0.20%を超える含有は靭性を低下させる。このため、含有する場合には、Tiは0.20%以下に限定することが好ましい。なお、より好ましくは0.01〜0.12%である。
Wは、鋼の強度を増加させ、さらにMoと同様に、耐食性、とくに耐孔食性を改善する作用を有する元素であり、とくにMoと共存させることにより、高塩素イオンの環境下で耐食性向上に大きな効果がある。このような効果を得るためには0.3%以上含有することが望ましいが、2.5%を超える含有は熱間加工性、靭性を低下させる。このため、含有する場合には、Wは2.5%以下に限定することが好ましい。なお、より好ましくは0.5〜2.0%である。
Ti is an element that has the effect of increasing the strength of steel and further improving the stress corrosion cracking resistance. To obtain such effects, it is desirable to contain 0.01% or more, but more than 0.20% Reduces toughness. For this reason, when it contains, it is preferable to limit Ti to 0.20% or less. In addition, More preferably, it is 0.01 to 0.12%.
W is an element that increases the strength of steel and, like Mo, has the effect of improving corrosion resistance, especially pitting corrosion resistance. In particular, W coexists with Mo to improve corrosion resistance in high chlorine ion environments. There is a big effect. In order to acquire such an effect, it is desirable to contain 0.3% or more, but inclusion exceeding 2.5% lowers hot workability and toughness. For this reason, when contained, W is preferably limited to 2.5% or less. In addition, More preferably, it is 0.5 to 2.0%.
Ca:0.0005〜0.01%
Caは、Sと結合して、SをCaSとして固定するとともに、硫化物系介在物の形態を球状化し、介在物の周辺のマトリックスの格子歪を減少させて、水素のトラップ能を低下させる作用を有する元素であり、必要に応じて含有できる。このような効果を得るためには0.0005%以上の含有を必要とする。一方、0.01%を超えて含有すると、CaOの増加を招き、耐炭酸ガス腐食性、耐孔食性が低下する。このため、含有する場合には、Caは0.0005〜0.01%の範囲に限定することが好ましい。なお、より好ましくは0.001〜0.005%である。
Ca: 0.0005 to 0.01%
Ca binds to S, fixes S as CaS, spheroidizes the shape of sulfide inclusions, reduces the lattice strain of the matrix around the inclusions, and reduces the trapping ability of hydrogen It can be contained as necessary. In order to acquire such an effect, 0.0005% or more needs to be contained. On the other hand, if the content exceeds 0.01%, CaO is increased, and the carbon dioxide corrosion resistance and pitting corrosion resistance are reduced. For this reason, when it contains, it is preferable to limit Ca to 0.0005 to 0.01% of range. In addition, More preferably, it is 0.001 to 0.005%.
また、本発明では、Cr、Mo、W、Ni、Cu、N、Cの含有量を、上記した含有範囲でかつ、次(1)式
Cr+3.2Mo+1.6W+0.5Ni+0.3Cu+3N−20C ≧ 22.5 ‥‥(1)
(ここで、Cr、Mo 、W、Ni、Cu、N、C:各合金元素の含有量(mass%))
を満足するように調整する。なお、(1)式を計算するにあたり、選択元素であるWは、含有しない場合には(1)式中のW含有量を零として計算するものとする。
In the present invention, the content of Cr, Mo, W, Ni, Cu, N, and C is within the above-described content range, and the following formula (1)
Cr + 3.2Mo + 1.6W + 0.5Ni + 0.3Cu + 3N-20C ≧ 22.5 (1)
(Here, Cr, Mo, W, Ni, Cu, N, C: content of each alloy element (mass%))
Adjust to satisfy. In calculating the formula (1), W, which is a selective element, is calculated assuming that the W content in the formula (1) is zero when it is not contained.
酸素を含んだ高温高圧炭酸ガス雰囲気では、鋼材に孔食が発生しやすくなる。またさらに、環境中にSOXおよびNOXを含むと、環境中のpHが低下し、鋼材の腐食が促進される。このような環境下では、(1)式を満足するように、Cr、Mo、W、Ni、Cu、N、Cの含有量を調整することにより、孔食の発生や、激しい全面腐食の発生を防止することができる。上記した成分範囲を満足していても(1)式を満足できない場合には、耐高圧炭酸ガス腐食性が低下する。 In a high-temperature and high-pressure carbon dioxide atmosphere containing oxygen, pitting corrosion tends to occur in the steel material. Furthermore, when SO X and NO X are contained in the environment, the pH in the environment is lowered, and corrosion of the steel material is promoted. In such an environment, pitting corrosion and severe overall corrosion occur by adjusting the contents of Cr, Mo, W, Ni, Cu, N, and C so as to satisfy equation (1). Can be prevented. If the formula (1) cannot be satisfied even if the above component range is satisfied, the high-pressure carbon dioxide gas corrosion resistance is reduced.
上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、O:0.006%以下が許容できる。
上記した組成を有するCr含有鋼管は、耐高圧炭酸ガス腐食性に優れることから、高圧の炭酸ガスを注入する炭酸ガスインジェクション用部材として好適であり、炭酸ガスインジェクション用圧入管等に適用しても、激しい炭酸ガス腐食を生じることなく使用が可能となり、炭酸ガスインジェクション用部材の耐久性を大幅に向上させることができる。
The balance other than the components described above consists of Fe and inevitable impurities. As an inevitable impurity, O: 0.006% or less is acceptable.
The Cr-containing steel pipe having the above-described composition is excellent as a high-pressure carbon dioxide gas corrosion resistance, and is therefore suitable as a member for carbon dioxide injection for injecting high-pressure carbon dioxide, and can be applied to a press-fit pipe for carbon dioxide injection. It can be used without causing severe carbon dioxide corrosion, and the durability of the carbon dioxide injection member can be greatly improved.
本発明鋼管は、上記した組成を有すれば、継目無鋼管、溶接鋼管のいずれもが好適である。
つぎに、本発明鋼管の好ましい製造方法について説明する。
まず、上記した組成を有する溶鋼を、転炉、電気炉、真空溶解炉等の常用の溶製方法で溶製し、連続鋳造法、造塊−分塊圧延等の常用の方法でスラブ、ビレット等の鋼素材とすることが好ましい。
The steel pipe of the present invention is preferably a seamless steel pipe or a welded steel pipe as long as it has the above composition.
Below, the preferable manufacturing method of this invention steel pipe is demonstrated.
First, molten steel having the above composition is melted by a conventional melting method such as a converter, an electric furnace, a vacuum melting furnace, etc., and a slab, billet is obtained by a conventional method such as a continuous casting method or ingot-bundling rolling. It is preferable to use a steel material such as
ついで、鋼素材を加熱し、常用の製造工程を用いて熱間加工して、さらに造管して所望の寸法を有する鋼管とする。継目無鋼管であれば、加熱された鋼素材を、常用の、マンネスマン−プラグミル方式あるいはマンネスマン−マンドレルミル方式の製造工程を用いて、熱間加工、造管して所望寸法の継目無鋼管とする。
得られた鋼管は、さらに焼戻処理、あるいは焼入れ−焼戻処理を施すことが好ましい。焼入れ処理は、800℃以上の温度に再加熱し、該温度に好ましくは5min以上保持したのち、空冷以上の冷却速度で、200℃以下、好ましくは室温まで冷却することが好ましい。焼入れ処理の加熱温度が800℃未満では、十分な焼入れ組織(マルテンサイト組織)とすることができないため、所望の強度を確保できない場合がある。
Next, the steel material is heated, hot-worked using a conventional manufacturing process, and further piped to obtain a steel pipe having a desired dimension. If it is a seamless steel pipe, the heated steel material is hot-worked and piped into a seamless steel pipe of the desired dimensions using the usual Mannesmann-plug mill method or Mannesmann-mandrel mill method manufacturing process. .
It is preferable that the obtained steel pipe is further subjected to tempering treatment or quenching-tempering treatment. In the quenching treatment, it is preferable to reheat to a temperature of 800 ° C. or higher, hold at that temperature, preferably 5 min or higher, and then cool to 200 ° C. or lower, preferably room temperature, at a cooling rate of air cooling or higher. When the heating temperature in the quenching treatment is less than 800 ° C., a sufficient quenched structure (martensite structure) cannot be obtained, and thus a desired strength may not be ensured.
また、焼戻処理は、Ac1変態点以下の温度に加熱し、冷却する処理とすることが好ましい。焼戻処理を行うことにより、所望の強度を確保できる。
なお、本発明の鋼管は、S、Si、Al、さらにはOを著しく低減した組成としているため、通常の製造工程を変更することなく製造できるという利点もある。
以下、さらに実施例に基づいて本発明について説明する。
The tempering process is preferably a process of heating to a temperature not higher than the A c1 transformation point and cooling. By performing the tempering treatment, a desired strength can be ensured.
In addition, since the steel pipe of this invention is made into the composition which reduced S, Si, Al, and also O remarkably, there also exists an advantage that it can manufacture without changing a normal manufacturing process.
Hereinafter, the present invention will be described based on examples.
表1に示す組成の溶鋼を真空溶解炉で溶製し、さらに脱ガス処理を施したのち、100キロ鋼塊とした。ついで、これら鋼塊を加熱し、研究用モデルシームレス圧延機により、外径3.3 in.×肉厚0.5in.の継目無鋼管とした。
得られた鋼管から、試験用素材を切り出し、該試験用素材に、焼入れ焼戻処理を施した。なお、焼入れ処理は、900℃×20min加熱・保持した後、水冷(水焼入れ)する処理とし、焼戻処理は、600℃×30min加熱・保持したのち空冷する処理とした。
Molten steel having the composition shown in Table 1 was melted in a vacuum melting furnace, further degassed, and then made into a 100 kg steel ingot. Subsequently, these steel ingots were heated and made into seamless steel pipes having an outer diameter of 3.3 in. × wall thickness of 0.5 in. Using a research model seamless rolling mill.
A test material was cut out from the obtained steel pipe, and the test material was subjected to quenching and tempering treatment. The quenching process was a process of heating and holding at 900 ° C. for 20 minutes and then water cooling (water quenching), and the tempering process was a process of heating and holding at 600 ° C. for 30 minutes and then air cooling.
得られた試験用素材から、試験片を採取し、腐食試験、引張試験を実施した。試験方法は次のとおりである。
(1)腐食試験
得られた試験用素材から、腐食試験片(大きさ:板厚3mm×25mm×50mm)を採取し、腐食試験を実施した。腐食試験は、オートクレーブ中に保持された試験液:10%NaCl水溶液(液温:150℃、炭酸ガス分圧:20MPa、酸素濃度:0.2mass%、SOX:0.1mass%、NOX:0.1mass%のガス雰囲気) 中に、腐食試験片を浸漬し、浸漬期間を2週間として実施した。腐食試験後の試験片について、重量を測定し、腐食試験前後の重量減から計算した腐食速度を求めた。また、試験後の腐食試験片について倍率:10倍のルーペを用いて試験片表面の孔食発生の有無を観察した。なお、孔食が発生せず、腐食速度が0.127mm/y以下の場合を耐高圧炭酸ガス腐食性に優れるとした。
(2)引張試験
得られた試験用素材から、API 弧状引張試験片を採取し、引張試験を実施し引張特性(降伏強さYS、引張強さTS)を求めた。
Test pieces were sampled from the obtained test materials and subjected to corrosion tests and tensile tests. The test method is as follows.
(1) Corrosion test A corrosion test piece (size: plate thickness 3 mm x 25 mm x 50 mm) was sampled from the obtained test material and subjected to a corrosion test. Corrosion test was performed in a test solution held in an autoclave: 10% NaCl aqueous solution (liquid temperature: 150 ° C, carbon dioxide partial pressure: 20 MPa, oxygen concentration: 0.2 mass%, SO X : 0.1 mass%, NO X : 0.1 mass % Gas atmosphere) was immersed in a corrosion test piece, and the immersion period was 2 weeks. The test piece after the corrosion test was weighed, and the corrosion rate calculated from the weight loss before and after the corrosion test was obtained. Moreover, about the corrosion test piece after a test, the presence or absence of pitting corrosion on the test piece surface was observed using a magnifying glass with a magnification of 10 times. When pitting corrosion does not occur and the corrosion rate is 0.127 mm / y or less, the high-pressure carbon dioxide gas corrosion resistance is considered excellent.
(2) Tensile test From the obtained test material, API arc-shaped tensile test pieces were sampled and subjected to a tensile test to determine tensile properties (yield strength YS, tensile strength TS).
得られた結果を表2に示す。 The obtained results are shown in Table 2.
本発明例はいずれも、高温で、高い炭酸ガス分圧で不純物として酸素、SOX、NOXを含む腐食環境下においても、耐食性(耐高圧炭酸ガス腐食性)に優れた鋼管であり、炭酸ガスインジェクション用部材向けとして好適に使用しうることがわかる。一方、本発明の範囲を外れる比較例は、腐食速度が大きく、また孔食も発生し耐食性が低下して、所望の耐高圧炭酸ガス腐食性を確保できていない。 All of the examples of the present invention are steel pipes having excellent corrosion resistance (high-pressure carbon dioxide corrosive resistance) even in a corrosive environment containing oxygen, SO x , and NO x as impurities at high temperature and high carbon dioxide partial pressure. It turns out that it can be used conveniently for the member for gas injection. On the other hand, the comparative example outside the scope of the present invention has a high corrosion rate, and pitting corrosion occurs and the corrosion resistance is lowered, so that the desired high-pressure carbon dioxide gas corrosion resistance cannot be ensured.
Claims (4)
C:0.05%以下、 Si:0.50%以下、
Mn:0.10〜1.80%、 P:0.03%以下、
S:0.005%以下、 Cr:14.0〜18.0%、
Cu:2.0%以下、 Ni:2.5〜6.5%、
Mo:0.5〜3.0%、 Al:0.05%以下、
N:0.15%以下
を、下記(1)式を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成を有し、炭酸ガス分圧:5MPa以上の炭酸ガスと、mass%で0.2%以下の酸素、および、合計で0.2%以下のSOXおよびNOXを含む、高圧炭酸ガス環境下における耐高圧炭酸ガス腐食性に優れることを特徴とする炭酸ガスインジェクション用部材向けCr含有鋼管。
記
Cr+3.2Mo+1.6W+0.5Ni+0.3Cu+3N−20C ≧ 22.5 ‥‥(1)
ここで、Cr、Mo 、W、Ni、Cu、N、C:各合金元素の含有量(mass%)、 mass%
C: 0.05% or less, Si: 0.50% or less,
Mn: 0.10 to 1.80%, P: 0.03% or less,
S: 0.005% or less, Cr: 14.0 to 18.0%,
Cu: 2.0% or less, Ni: 2.5-6.5%,
Mo: 0.5-3.0%, Al: 0.05% or less,
N: 0.15% or less, adjusted so as to satisfy the following formula (1), having a composition composed of the balance Fe and inevitable impurities, carbon dioxide partial pressure: carbon dioxide gas of 5 MPa or more, and mass% Cr-containing steel pipe for carbon dioxide injection parts, characterized by excellent resistance to high-pressure carbon dioxide in a high-pressure carbon dioxide environment, containing 0.2% or less oxygen and a total of 0.2% or less SO X and NO X .
Record
Cr + 3.2Mo + 1.6W + 0.5Ni + 0.3Cu + 3N-20C ≧ 22.5 (1)
Here, Cr, Mo, W, Ni, Cu, N, C: content of each alloy element (mass%),
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010128752A JP5505100B2 (en) | 2010-06-04 | 2010-06-04 | Cr-containing steel pipe for carbon dioxide injection parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010128752A JP5505100B2 (en) | 2010-06-04 | 2010-06-04 | Cr-containing steel pipe for carbon dioxide injection parts |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011252222A true JP2011252222A (en) | 2011-12-15 |
JP5505100B2 JP5505100B2 (en) | 2014-05-28 |
Family
ID=45416361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010128752A Active JP5505100B2 (en) | 2010-06-04 | 2010-06-04 | Cr-containing steel pipe for carbon dioxide injection parts |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5505100B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012149317A (en) * | 2011-01-20 | 2012-08-09 | Jfe Steel Corp | High strength martensitic stainless steel seamless pipe for oil well |
WO2013190834A1 (en) * | 2012-06-21 | 2013-12-27 | Jfeスチール株式会社 | High-strength stainless steel seamless pipe having excellent corrosion resistance for oil well, and method for manufacturing same |
JP2015110822A (en) * | 2012-12-21 | 2015-06-18 | Jfeスチール株式会社 | High strength seamless stainless steel tube for oil well, having excellent corrosion resistance, and method for manufacturing the same |
JP2016132821A (en) * | 2015-01-22 | 2016-07-25 | Jfeスチール株式会社 | High strength stainless thick steel plate excellent in low temperature toughness and manufacturing method therefor |
WO2017010036A1 (en) * | 2015-07-10 | 2017-01-19 | Jfeスチール株式会社 | High strength seamless stainless steel pipe and manufacturing method therefor |
RU2661972C1 (en) * | 2014-11-18 | 2018-07-23 | ДжФЕ СТИЛ КОРПОРЕЙШН | High-strength seamless steel pipe for oil-field pipe articles and method for manufacture thereof |
US11072835B2 (en) | 2016-07-27 | 2021-07-27 | Jfe Steel Corporation | High-strength seamless stainless steel pipe for oil country tubular goods, and method for producing the same |
US11193179B2 (en) | 2015-01-15 | 2021-12-07 | Jfe Steel Corporation | Seamless stainless steel pipe for oil country tubular goods and method of manufacturing the same |
CN117646147A (en) * | 2023-12-06 | 2024-03-05 | 鞍钢股份有限公司 | CO-resistant with high crack-arrest toughness 2 Corrosion pipeline steel plate and production method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07150251A (en) * | 1993-11-26 | 1995-06-13 | Nippon Steel Corp | Production of seamless martensitic stainless steel tube excellent in hot workability and corrosion resistance and having high toughness |
JPH08120345A (en) * | 1994-08-23 | 1996-05-14 | Nippon Steel Corp | Production of martensitic stainless steel seamless tube excellent in corrosion resistance |
WO2004001082A1 (en) * | 2002-06-19 | 2003-12-31 | Jfe Steel Corporation | Stainless-steel pipe for oil well and process for producing the same |
-
2010
- 2010-06-04 JP JP2010128752A patent/JP5505100B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07150251A (en) * | 1993-11-26 | 1995-06-13 | Nippon Steel Corp | Production of seamless martensitic stainless steel tube excellent in hot workability and corrosion resistance and having high toughness |
JPH08120345A (en) * | 1994-08-23 | 1996-05-14 | Nippon Steel Corp | Production of martensitic stainless steel seamless tube excellent in corrosion resistance |
WO2004001082A1 (en) * | 2002-06-19 | 2003-12-31 | Jfe Steel Corporation | Stainless-steel pipe for oil well and process for producing the same |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012149317A (en) * | 2011-01-20 | 2012-08-09 | Jfe Steel Corp | High strength martensitic stainless steel seamless pipe for oil well |
US9758850B2 (en) | 2012-06-21 | 2017-09-12 | Jfe Steel Corporation | High strength stainless steel seamless pipe with excellent corrosion resistance for oil well and method of manufacturing the same |
WO2013190834A1 (en) * | 2012-06-21 | 2013-12-27 | Jfeスチール株式会社 | High-strength stainless steel seamless pipe having excellent corrosion resistance for oil well, and method for manufacturing same |
JP2014025145A (en) * | 2012-06-21 | 2014-02-06 | Jfe Steel Corp | High strength stainless seamless pipe for oil well having excellent corrosion resistance, and method for producing the same |
CN104411852A (en) * | 2012-06-21 | 2015-03-11 | 杰富意钢铁株式会社 | High-strength stainless steel seamless pipe having excellent corrosion resistance for oil well, and method for manufacturing same |
JP2015110822A (en) * | 2012-12-21 | 2015-06-18 | Jfeスチール株式会社 | High strength seamless stainless steel tube for oil well, having excellent corrosion resistance, and method for manufacturing the same |
RU2649919C2 (en) * | 2012-12-21 | 2018-04-05 | ДжФЕ СТИЛ КОРПОРЕЙШН | Oil and gas field seamless tube or pipe made of high-strength stainless steel and method for manufacturing same |
US10151011B2 (en) | 2012-12-21 | 2018-12-11 | Jfe Steel Corporation | High-strength stainless steel seamless tube or pipe for oil country tubular goods, and method of manufacturing the same |
RU2661972C1 (en) * | 2014-11-18 | 2018-07-23 | ДжФЕ СТИЛ КОРПОРЕЙШН | High-strength seamless steel pipe for oil-field pipe articles and method for manufacture thereof |
US11193179B2 (en) | 2015-01-15 | 2021-12-07 | Jfe Steel Corporation | Seamless stainless steel pipe for oil country tubular goods and method of manufacturing the same |
JP2016132821A (en) * | 2015-01-22 | 2016-07-25 | Jfeスチール株式会社 | High strength stainless thick steel plate excellent in low temperature toughness and manufacturing method therefor |
WO2017010036A1 (en) * | 2015-07-10 | 2017-01-19 | Jfeスチール株式会社 | High strength seamless stainless steel pipe and manufacturing method therefor |
JPWO2017010036A1 (en) * | 2015-07-10 | 2017-07-13 | Jfeスチール株式会社 | High strength stainless steel seamless pipe and method for manufacturing the same |
US10876183B2 (en) | 2015-07-10 | 2020-12-29 | Jfe Steel Corporation | High-strength seamless stainless steel pipe and method of manufacturing high-strength seamless stainless steel pipe |
US11072835B2 (en) | 2016-07-27 | 2021-07-27 | Jfe Steel Corporation | High-strength seamless stainless steel pipe for oil country tubular goods, and method for producing the same |
CN117646147A (en) * | 2023-12-06 | 2024-03-05 | 鞍钢股份有限公司 | CO-resistant with high crack-arrest toughness 2 Corrosion pipeline steel plate and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5505100B2 (en) | 2014-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5505100B2 (en) | Cr-containing steel pipe for carbon dioxide injection parts | |
JP4893196B2 (en) | High strength stainless steel pipe for oil well with high toughness and excellent corrosion resistance | |
JP5092204B2 (en) | Stainless steel pipe for oil wells with excellent pipe expandability | |
US10151011B2 (en) | High-strength stainless steel seamless tube or pipe for oil country tubular goods, and method of manufacturing the same | |
JP5145793B2 (en) | Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same | |
JP6540922B1 (en) | Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing the same | |
JP5446335B2 (en) | Evaluation method of high strength stainless steel pipe for oil well | |
JP5765036B2 (en) | Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone | |
JP6237873B2 (en) | High strength stainless steel seamless steel pipe for oil well | |
US20150354022A1 (en) | Stainless steel seamless pipe for oil well use and method for manufacturing the same (as amended) | |
JP5582307B2 (en) | High strength martensitic stainless steel seamless pipe for oil wells | |
JP5499575B2 (en) | Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same | |
JP6540920B1 (en) | Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing the same | |
JP6743992B1 (en) | Martensitic stainless seamless steel pipe for oil country tubular goods and method for producing the same | |
JPWO2019065114A1 (en) | Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same | |
JP4978070B2 (en) | Stainless steel pipe for oil wells with excellent pipe expandability | |
JP4470617B2 (en) | High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance | |
JP5162820B2 (en) | Stainless steel pipe for oil well pipes with excellent pipe expandability | |
JP5640777B2 (en) | Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone | |
WO2019225280A1 (en) | Martensitic stainless steel seamless steel tube for oil well pipes, and method for producing same | |
JP5245238B2 (en) | Stainless steel pipe for oil well pipe excellent in pipe expandability and manufacturing method thereof | |
WO2006117926A1 (en) | Stainless steel pipe for oil well excellent in enlarging characteristics | |
JP4289109B2 (en) | High strength stainless steel pipe for oil well with excellent corrosion resistance | |
JP2010242162A (en) | Cr-CONTAINING STEEL PIPE FOR CARBON DIOXIDE GAS INJECTION AT SUPER CRITICAL-PRESSURE | |
JP5040215B2 (en) | Stainless steel pipe for oil wells with excellent pipe expandability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130419 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20130712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140303 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5505100 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |