JP2011251267A - Biodesulfurization apparatus and method - Google Patents

Biodesulfurization apparatus and method Download PDF

Info

Publication number
JP2011251267A
JP2011251267A JP2010127924A JP2010127924A JP2011251267A JP 2011251267 A JP2011251267 A JP 2011251267A JP 2010127924 A JP2010127924 A JP 2010127924A JP 2010127924 A JP2010127924 A JP 2010127924A JP 2011251267 A JP2011251267 A JP 2011251267A
Authority
JP
Japan
Prior art keywords
liquid
circulating
absorption
hydrogen sulfide
oxidizing bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010127924A
Other languages
Japanese (ja)
Inventor
Tomomi Toyoda
智美 豊田
Kenji Sato
健治 佐藤
Kentaro Narai
健太郎 成相
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010127924A priority Critical patent/JP2011251267A/en
Publication of JP2011251267A publication Critical patent/JP2011251267A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gas Separation By Absorption (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a biodesulfurization apparatus simple in the device constitution and excellent in the operability, and to provide a biodesulfurization method.SOLUTION: The biodesulfurization apparatus includes: an absorption tower 1 which brings a processed gas containing a hydrogen sulfide into contact with a circulation liquid of an acid aqueous solution containing a trivalent iron ion, so that the circulation liquid absorbs the hydrogen sulfide to be an absorption liquid; a biological reaction part 8 which subjects the absorption liquid to a regeneration treatment by iron-oxidizing bacteria and sulfur-oxidizing bacteria to make it a treatment liquid; and a circulation liquid supply means that recovers the treatment liquid and supplies it to the absorption tower 1 as the circulation liquid.

Description

本発明は、生物脱硫装置及び方法に関する。   The present invention relates to a biological desulfurization apparatus and method.

周知のように脱硫装置として、乾式脱硫装置、湿式脱硫装置及び生物脱硫装置が知られている。例えば下記特許文献1及び非特許文献1、2には、上記生物脱硫装置の関連技術として、鉄化合物を含む循環液に硫化水素を吸収させて吸収液とし、この吸収液を微生物によって再生する技術が開示されている。特許文献1の生物脱硫技術は、鉄酸化物を含むスラリーを循環液とし、硫化水素と反応した鉄酸化物を硫黄酸化菌(微生物)によって硫化水素吸収前の状態に再生するものである。また、非特許文献1、2の生物脱硫技術は、硫酸鉄の酸性水溶液を循環液とし、吸収液中に生じた硫黄を分離し、硫化水素と反応した硫酸鉄を鉄酸化菌(微生物)で酸化して再生するものである。   As is well known, dry desulfurization apparatuses, wet desulfurization apparatuses, and biological desulfurization apparatuses are known as desulfurization apparatuses. For example, in the following Patent Document 1 and Non-Patent Documents 1 and 2, as a technique related to the biological desulfurization apparatus, a technique of absorbing hydrogen sulfide into a circulating liquid containing an iron compound to form an absorbing liquid, and regenerating the absorbing liquid with microorganisms. Is disclosed. The biological desulfurization technique of Patent Document 1 uses a slurry containing iron oxide as a circulating liquid, and regenerates iron oxide reacted with hydrogen sulfide to a state before hydrogen sulfide absorption by sulfur-oxidizing bacteria (microorganisms). The biological desulfurization technology of Non-Patent Documents 1 and 2 uses an acidic aqueous solution of iron sulfate as a circulating liquid, separates sulfur generated in the absorption liquid, and converts iron sulfate reacted with hydrogen sulfide to iron-oxidizing bacteria (microorganisms). It is oxidized and regenerated.

特許第3880468号公報Japanese Patent No. 3880468

C.Pagella et.al “H2S gas Treatment by iron bioprocess” Chemical Engineering Science 55(2000)p2185-2194C. Pagella et.al “H2S gas Treatment by iron bioprocess” Chemical Engineering Science 55 (2000) p2185-2194 M.M.Mesa et.al “Biological ion oxidation by Acidithiobacillus ferrooxidans in a packed bed bioreactor” Chem. Biochem. Eng,(2002)p69-73M.M.Mesa et.al “Biological ion oxidation by Acidithiobacillus ferrooxidans in a packed bed bioreactor” Chem. Biochem. Eng, (2002) p69-73

ところで、上記特許文献1の技術では、循環液がスラリーであるために、スラリーを濃縮する分離膜や遠心分離装置が必要である。また上記非特許文献1及び2の技術では、吸収液中の固体硫黄を分離する分離装置が必要である。すなわち、従来の生物脱硫装置は、スラリーや固体硫黄を扱わなければならなのので、装置構成が複雑化し、また操作性が悪いという問題があった。   By the way, in the technique of the said patent document 1, since a circulating liquid is a slurry, the separation membrane and centrifuge which concentrate a slurry are required. Further, the techniques of Non-Patent Documents 1 and 2 require a separation device that separates solid sulfur in the absorbing liquid. That is, since the conventional biological desulfurization apparatus must handle slurry and solid sulfur, the apparatus configuration is complicated and the operability is poor.

本発明は、上述した事情に鑑みてなされたものであり、装置構成が単純で操作性の良好な生物脱硫装置及び方法を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a biodesulfurization apparatus and method having a simple apparatus configuration and good operability.

上記目的を達成するために、本発明では、生物脱硫装置に係る第1の解決手段として、3価の鉄イオンを含有する酸性水溶液の循環液に硫化水素を含有する被処理ガスを接触させて前記硫化水素を前記循環液に吸収させて吸収液とする吸収手段と、鉄酸化細菌及び硫黄酸化細菌によって前記吸収液を再生処理して処理液とする生物反応手段と、該処理液を回収して前記吸収手段に前記循環液として供給する循環液供給手段とを具備する、という手段を採用する。   In order to achieve the above object, in the present invention, as a first solution for a biological desulfurization apparatus, a gas to be treated containing hydrogen sulfide is brought into contact with a circulating liquid of an acidic aqueous solution containing trivalent iron ions. Absorbing means for absorbing the hydrogen sulfide into the circulating liquid to make an absorbing liquid, biological reaction means for regenerating the absorbing liquid with iron-oxidizing bacteria and sulfur-oxidizing bacteria to make a treating liquid, and collecting the treating liquid And a circulating fluid supply means for supplying the absorbing means as the circulating fluid.

生物脱硫装置に係る第2の解決手段として、上記第1の解決手段において、前記生物反応手段は吸収液を曝気する機能を備える、という手段を採用する。   As a second solving means related to the biological desulfurization apparatus, a means is adopted in which, in the first solving means, the biological reaction means has a function of aeration of the absorbing solution.

また、本発明では、生物脱硫方法に係る第1の解決手段として、3価の鉄イオンを含有する酸性水溶液の循環液に硫化水素を含有する被処理ガスを接触させて前記硫化水素を前記循環液に吸収させて吸収液とする吸収工程と、前記吸収液を鉄酸化細菌及び硫黄酸化細菌によって再生処理して処理液とする生物反応工程と、前記処理液を回収して前記循環液として前記吸収工程に供給する循環液供給工程とを有する、という手段を採用する。   Further, in the present invention, as a first solving means related to the biological desulfurization method, a gas to be treated containing hydrogen sulfide is brought into contact with a circulating solution of an acidic aqueous solution containing trivalent iron ions to circulate the hydrogen sulfide. An absorption step of absorbing the solution into an absorption solution, a biological reaction step of regenerating the absorption solution with iron-oxidizing bacteria and sulfur-oxidizing bacteria to obtain a treatment solution, and collecting the treatment solution as the circulating solution A means of having a circulating fluid supply step for supplying to the absorption step is adopted.

本発明によれば、3価の鉄イオンを含有する酸性水溶液を循環液として用いることで硫化水素を吸収液に吸収し、当該吸収液中に生成した硫黄を硫黄酸化菌によって硫酸とすると共に鉄酸化菌によって3価の鉄イオンを再生するので、吸収液中に固体硫黄が析出したり、スラリー化することがないので、吸収液中の硫黄を分離する分離装置やスラリーを濃縮するための分離膜や遠心分離装置等が不要となり、装置構成を単純化できると共に操作性を向上させることができる。   According to the present invention, by using an acidic aqueous solution containing trivalent iron ions as a circulating liquid, hydrogen sulfide is absorbed into the absorbing liquid, and the sulfur generated in the absorbing liquid is converted into sulfuric acid by sulfur-oxidizing bacteria and iron. Since trivalent iron ions are regenerated by oxidizing bacteria, solid sulfur does not deposit or slurries in the absorption liquid. Separation equipment for separating sulfur in the absorption liquid or separation for concentrating the slurry A membrane, a centrifuge, and the like are not required, and the apparatus configuration can be simplified and the operability can be improved.

本発明の一実施形態に係る生物脱硫装置の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the biodesulfurization apparatus which concerns on one Embodiment of this invention.

以下、図面を参照して、本発明の一実施形態について説明する。
本実施形態に係る生物脱硫装置は、図1に示すように、吸収塔1(吸収手段)、吸収液流路2、再生塔3(生物反応手段)、循環ポンプ4、循環液流路5、給気管6、浄化ガス管7、生物反応部8、エア供給管9、及びエア排気管10を備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the biological desulfurization apparatus according to this embodiment includes an absorption tower 1 (absorption means), an absorption liquid flow path 2, a regeneration tower 3 (biological reaction means), a circulation pump 4, a circulation liquid flow path 5, An air supply pipe 6, a purified gas pipe 7, a biological reaction unit 8, an air supply pipe 9, and an air exhaust pipe 10 are provided.

本生物脱硫装置の適用対象となる被処理ガスは、硫化水素を含有してなるものであれば特に限定されるものではなく、例えば有機性廃棄物等のバイオマスを分解して得られるバイオガスや石炭をガス化して得られる石炭ガス化ガス等である。本生物脱硫装置は、微生物を利用することにより、このような被処理ガスから硫化水素を除去(脱硫)するものである。   The gas to be treated to which this biological desulfurization apparatus is applied is not particularly limited as long as it contains hydrogen sulfide. For example, biogas obtained by decomposing biomass such as organic waste, Coal gasification gas obtained by gasifying coal. This biological desulfurization apparatus removes (desulfurizes) hydrogen sulfide from such a gas to be treated by using microorganisms.

吸収塔1は、底部に被処理ガスを導入する給気管6の一端が接続されており、また頂部には循環液流路5の一端が接続されている。この吸収塔1は、給気管6を介して外部から供給された被処理ガスに所定の循環液を接触させて、被処理ガス中の硫化水素を循環液に吸収させて吸収液とする。このような吸収塔1は、例えば充填塔、液滴塔、気泡塔等である。循環液流路5によって吸収塔1の頂部に供給された循環液は、下方に向けて散布状に滴下されるので、給気管6を介して吸収塔1の底部に供給された被処理ガスと良好に気液接触する。   In the absorption tower 1, one end of an air supply pipe 6 for introducing a gas to be treated is connected to the bottom, and one end of a circulating liquid flow path 5 is connected to the top. The absorption tower 1 makes a predetermined circulating liquid contact a gas to be processed supplied from the outside through an air supply pipe 6 and absorbs hydrogen sulfide in the gas to be processed into the absorbing liquid to obtain an absorbing liquid. Such an absorption tower 1 is, for example, a packed tower, a droplet tower, a bubble tower or the like. Since the circulating liquid supplied to the top of the absorption tower 1 by the circulating liquid flow path 5 is dropped downward in a sprayed manner, the gas to be treated supplied to the bottom of the absorption tower 1 via the air supply pipe 6 and Good gas-liquid contact.

上記循環液は、3価の鉄イオン(Fe3+)を含有し、pHが例えば1〜2、酸化還元電位(標準水素電極の電位を「0」としたときの酸化還元電位(E値))が例えば600mV以上の酸性水溶液である。このような循環液は、被処理ガスと接触することにより、上記3価の鉄イオン(Fe3+)が被処理ガスに含まれる硫化水素と反応することにより当該硫化水素を吸収する。循環液に関する上記pHと酸化還元電位とは、循環液中の鉄イオンが3価のイオンとして存在できる条件であり、鉄イオンに関して公知のものである。循環液中の鉄イオンを2価のイオンではなく、3価のイオンに維持することにより、硫化水素と鉄が反応して硫化水素を除去することができ、またpHと酸化還元電位を上述の範囲内に維持することにより、吸収液のスラリー化を抑制することができる。このような循環液は、例えば硫酸鉄(III):Fe(SOの水溶液である。 The circulating fluid contains trivalent iron ions (Fe 3+ ), has a pH of, for example, 1 to 2, and an oxidation-reduction potential (an oxidation-reduction potential (E H value) when the potential of the standard hydrogen electrode is “0”). ) Is an acidic aqueous solution of 600 mV or more, for example. Such a circulating liquid absorbs the hydrogen sulfide by contacting with the gas to be processed, and the trivalent iron ions (Fe 3+ ) react with the hydrogen sulfide contained in the gas to be processed. The above-mentioned pH and redox potential relating to the circulating fluid are conditions under which iron ions in the circulating fluid can exist as trivalent ions, and are known for iron ions. By maintaining the iron ions in the circulating fluid as trivalent ions instead of divalent ions, hydrogen sulfide and iron can react to remove hydrogen sulfide, and the pH and oxidation-reduction potential can be adjusted as described above. By maintaining it within the range, slurrying of the absorbent can be suppressed. Such a circulating liquid is, for example, an aqueous solution of iron (III) sulfate: Fe 2 (SO 4 ) 3 .

また、吸収塔1の底部には、吸収液流路2の一端が接続されている。吸収液流路2は、吸収液を吸収塔1から排出して再生塔3に供給するためのものである。また、吸収塔1の頂部には浄化ガス管7の一端が接続されている。この浄化ガス管7は、被処理ガスから硫化水素が除去された処理済ガス(浄化ガス)を外部に排気するためのものである。   In addition, one end of the absorption liquid channel 2 is connected to the bottom of the absorption tower 1. The absorption liquid channel 2 is for discharging the absorption liquid from the absorption tower 1 and supplying it to the regeneration tower 3. One end of the purified gas pipe 7 is connected to the top of the absorption tower 1. This purified gas pipe 7 is for exhausting treated gas (purified gas) from which hydrogen sulfide has been removed from the gas to be treated to the outside.

再生塔3は、頂部に吸収液流路2の他端が接続されると共に、微生物を担持する生物反応部8を内部に備えている。また、再生塔3の側部には循環液流路5の他端が接続され、再生塔3の上側部にはエア排気管10の一端が接続され、再生塔3の底部にはエア供給管9の一端が接続されている。また、循環液流路5の途中部位には、処理液を再生塔3から払い出して吸収塔1に供給する循環ポンプ4が備えられている。   The regeneration tower 3 is connected to the other end of the absorbent flow path 2 at the top and includes a biological reaction section 8 that carries microorganisms. The other end of the circulating fluid flow path 5 is connected to the side of the regeneration tower 3, one end of the air exhaust pipe 10 is connected to the upper part of the regeneration tower 3, and the air supply pipe is connected to the bottom of the regeneration tower 3. One end of 9 is connected. A circulating pump 4 is provided in the middle of the circulating liquid flow path 5 to discharge the processing liquid from the regeneration tower 3 and supply it to the absorption tower 1.

このような再生塔3は、吸収液流路2から導入された吸収液を生物反応部8の微生物による好気的分解反応によって再生し、処理液として循環液流路5に排出する。また、この再生塔3では、エア供給管9から底部に供給されたエアによって生物反応部8内の吸収液が曝気されるので、微生物の好気的酸化分解反応を活性化させると共に、吸収液を攪拌させる。このようなエアは、上側部のエア排気管10から外部に排気される。   Such a regeneration tower 3 regenerates the absorbing solution introduced from the absorbing solution channel 2 by an aerobic decomposition reaction by microorganisms in the biological reaction section 8 and discharges it as a processing solution to the circulating solution channel 5. Further, in the regeneration tower 3, the absorption liquid in the biological reaction section 8 is aerated by the air supplied from the air supply pipe 9 to the bottom, so that the aerobic oxidative decomposition reaction of microorganisms is activated and the absorption liquid Let stir. Such air is exhausted to the outside from the upper air exhaust pipe 10.

生物反応部8の担体は特に限定されるものではなく、スポンジ、活性炭、吸収塔で使用した充填材あるいはこれらを組み合わせたものを例示できるが、高密度に細菌を保持でき、液体と酸素とを十分に通過させ、かつ形状を自由に変化させ易いものが適当である。より具体的には、徐膜したスポンジのように、網目内に閉塞物がなく、網目が細かく、比表面積が大きく、網目内に細菌を絡ませて多量に保持できる担体が好適である。   The carrier of the biological reaction unit 8 is not particularly limited, and examples thereof include sponges, activated carbon, packing materials used in the absorption tower, or combinations thereof, but can retain bacteria at high density, and can contain liquid and oxygen. A material that can be sufficiently passed and easily changed in shape is suitable. More specifically, a carrier that does not have an obstruction in the mesh, has a fine mesh, has a large specific surface area, and can be entangled with bacteria in the mesh and retained in a large amount, such as a slow-film sponge, is preferable.

また、生物反応部8に担持される微生物は、吸収液中の硫黄を好気的に分解可能な硫黄酸化菌と、2価の鉄イオン(Fe2+)を3価の鉄イオン(Fe3+)に酸化可能な鉄酸化菌とであり、硫黄酸化菌と鉄酸化菌とはそれぞれ一種類であっても複数種類であってもよい。これらの酸化菌は特に限定されるものではないが、硫黄酸化菌としてはAcidithiobacillus thiooxidans等、鉄酸化菌としてはAcidithiobacillus ferroxidans等を例示できる。 Moreover, the microorganisms carried in the biological reaction unit 8 are sulfur-oxidizing bacteria capable of aerobically decomposing sulfur in the absorption liquid, and divalent iron ions (Fe 2+ ) and trivalent iron ions (Fe 3+ ). The iron-oxidizing bacteria that can be oxidized to each other, and the sulfur-oxidizing bacteria and the iron-oxidizing bacteria may be one kind or plural kinds respectively. These oxidizing bacteria are not particularly limited. Examples of sulfur oxidizing bacteria include Acidithiobacillus thiooxidans, and examples of iron oxidizing bacteria include Acidithiobacillus ferroxidans.

また、上記エアとしては、生物反応部8における好気的分解に必要な酸素を含むものであれば特に限定されるものではなく、酸素ガス、空気、あるいはこれらを組み合わせたものでも良い。   The air is not particularly limited as long as it contains oxygen necessary for aerobic decomposition in the biological reaction section 8, and may be oxygen gas, air, or a combination thereof.

なお、このような本生物脱硫装置の各構成要素のうち、吸収液流路2、再生塔3、循環ポンプ4及び循環液流路5は、硫化水素を吸収した吸収液を微生物による好気的酸化分解反応によって再生させ、循環液として吸収塔1に循環供給する循環液供給手段を構成するものである。循環液供給手段は、吸収塔1において硫化水素を吸収した吸収液を吸収液流路2を介して再生塔3に回収して再生処理し、循環ポンプ4及び循環液流路5を介して吸収塔1に循環液として再供給する。   Among the components of the present biological desulfurization apparatus, the absorbent liquid flow path 2, the regeneration tower 3, the circulation pump 4 and the circulating liquid flow path 5 are aerobic by microorganisms for absorbing liquid that has absorbed hydrogen sulfide. The circulating liquid supply means is configured to regenerate by an oxidative decomposition reaction and to supply the circulating liquid to the absorption tower 1 as a circulating liquid. The circulating liquid supply means recovers the absorption liquid that has absorbed hydrogen sulfide in the absorption tower 1 to the regeneration tower 3 via the absorption liquid flow path 2 and absorbs it through the circulation pump 4 and the circulating liquid flow path 5. It is resupplied to the tower 1 as a circulating liquid.

次に、このように構成された生物脱硫装置を用いた生物脱硫方法について説明する。
被処理ガスは給気管6から吸収塔1に導入されて、当該吸収塔1内において循環液と気液接触する。この気液接触によって、被処理ガス中の硫化水素は循環液中に吸収されて吸収液となる。吸収塔1内における循環液との気液接触で硫化水素が除去された被処理ガスは、浄化ガスとして浄化ガス管7から外部に排出されて、燃料ガスや合成ガス等として使用に供される。
Next, a biodesulfurization method using the biodesulfurization apparatus configured as described above will be described.
The gas to be treated is introduced into the absorption tower 1 from the supply pipe 6 and comes into gas-liquid contact with the circulating liquid in the absorption tower 1. By this gas-liquid contact, hydrogen sulfide in the gas to be treated is absorbed into the circulating liquid and becomes an absorbing liquid. The treated gas from which hydrogen sulfide has been removed by gas-liquid contact with the circulating liquid in the absorption tower 1 is discharged to the outside as a purified gas from the purified gas pipe 7 and is used as fuel gas, synthesis gas, or the like. .

ここで、循環液が硫化水素を吸収すると、循環液中の3価の鉄イオンは2価の鉄イオンとなり、硫化水素を硫黄とする。この際に循環液のpHが1〜2、酸化還元電位が600mV以上とされていると、吸収液はスラリー化することがなく、装置内における吸収液の取り扱い性が良くなる。また、スラリーを濃縮する必要もない。   Here, when the circulating fluid absorbs hydrogen sulfide, the trivalent iron ions in the circulating fluid become divalent iron ions, and the hydrogen sulfide becomes sulfur. At this time, if the circulating liquid has a pH of 1 to 2 and an oxidation-reduction potential of 600 mV or more, the absorbent does not become a slurry, and the handling of the absorbent in the apparatus is improved. Moreover, it is not necessary to concentrate the slurry.

このような吸収液は、吸収液流路2を介して吸収塔1から再生塔3に導入され、生物反応部8の微生物による好気的酸化分解反応によって、処理液として再生される。すなわち、吸収液中の2価の鉄イオンが鉄酸化菌によって酸化処理されて3価の鉄イオンに再生される。また、吸収液中の硫黄は、硫黄酸化菌によって硫酸にされるので、吸収液から硫黄(固形物)を分離する必要がない。   Such an absorption liquid is introduced from the absorption tower 1 to the regeneration tower 3 via the absorption liquid flow path 2 and is regenerated as a treatment liquid by an aerobic oxidative decomposition reaction by microorganisms in the biological reaction section 8. That is, divalent iron ions in the absorbing solution are oxidized by iron oxidizing bacteria and regenerated to trivalent iron ions. Moreover, since sulfur in the absorbing solution is converted into sulfuric acid by sulfur-oxidizing bacteria, it is not necessary to separate sulfur (solid matter) from the absorbing solution.

なお、処理液は、硫黄酸化菌が生成した硫酸によって酸性を呈するが、本プロセスは酸性下で進行するものなので、何等問題はなく、むしろ処理液をそのまま循環液として再使用できて好都合である。循環液のさらに厳密なpH調整が必要な場合には、pH調整用の薬剤を添加してもよい。循環液のpHを上げる場合に好適なアルカリとしては水酸化ナトリウムが例示でき、また、循環液のpHを下げる場合に好適な酸としては硫酸が例示できる。処理液は循環液流路5から吸収塔1に供給されて、循環液として再使用される。   The treatment liquid is acidic due to the sulfuric acid produced by the sulfur-oxidizing bacteria, but since this process proceeds under acidity, there is no problem, and it is convenient that the treatment liquid can be reused as a circulating liquid as it is. . If more precise pH adjustment of the circulating fluid is necessary, a pH adjusting agent may be added. Sodium hydroxide can be exemplified as a suitable alkali when raising the pH of the circulating liquid, and sulfuric acid can be exemplified as a suitable acid when lowering the pH of the circulating liquid. The processing liquid is supplied from the circulating liquid channel 5 to the absorption tower 1 and reused as the circulating liquid.

循環液の温度は、生物反応部8における微生物の活性を保持する目的で、25〜35℃の範囲に維持することが好ましい。この温度範囲以外では、当該微生物の活性が低下するためである。循環液を加熱する方法としては、特に制限はないが、例えば循環液流路5全体に電熱器等の加熱装置を張りめぐらせる方法等が挙げられる。   The temperature of the circulating fluid is preferably maintained in the range of 25 to 35 ° C. for the purpose of maintaining the activity of microorganisms in the biological reaction section 8. This is because the activity of the microorganism is reduced outside this temperature range. The method of heating the circulating fluid is not particularly limited, and examples thereof include a method of spreading a heating device such as an electric heater over the entire circulating fluid flow path 5.

以上説明したように、本実施形態に係る生物脱硫装置及び生物脱硫方法では、3価の鉄イオンを含む酸性水溶液を循環液とすることによって、吸収液のスラリー化を抑制することができる。また、吸収液中の硫黄を硫黄酸化菌で硫酸とし、鉄酸化菌で3価の鉄イオンを再生するので、再生部3から排出される処理液をそのまま循環液として使用可能となる。よって、本実施形態によれば、従来必要とされたスラリー濃縮装置や硫黄(固形物)の分離装置等が不要となり、装置構成と工程とが複雑化せず、また操作性を向上させることができる。   As explained above, in the biological desulfurization apparatus and the biological desulfurization method according to this embodiment, slurrying of the absorbing liquid can be suppressed by using an acidic aqueous solution containing trivalent iron ions as a circulating liquid. Further, since sulfur in the absorbing solution is converted to sulfuric acid by sulfur-oxidizing bacteria and trivalent iron ions are regenerated by iron-oxidizing bacteria, the treatment liquid discharged from the regeneration unit 3 can be used as it is as a circulating solution. Therefore, according to this embodiment, the conventionally required slurry concentrating device, sulfur (solid matter) separating device, etc. are not required, the apparatus configuration and the process are not complicated, and the operability can be improved. it can.

1…吸収塔(吸収手段)、2…吸収液流路、3…再生塔(生物反応手段)、4…循環ポンプ、5…循環液流路、6…給気管、7…浄化ガス管、8…生物反応部、9…エア供給管、10…エア排気管   DESCRIPTION OF SYMBOLS 1 ... Absorption tower (absorption means), 2 ... Absorption liquid flow path, 3 ... Regeneration tower (biological reaction means), 4 ... Circulation pump, 5 ... Circulation liquid flow path, 6 ... Supply pipe, 7 ... Purified gas pipe, 8 ... Bioreaction unit, 9 ... Air supply pipe, 10 ... Air exhaust pipe

Claims (3)

3価の鉄イオンを含有する酸性水溶液の循環液に硫化水素を含有する被処理ガスを接触させて前記硫化水素を前記循環液に吸収させて吸収液とする吸収手段と、
鉄酸化細菌及び硫黄酸化細菌によって前記吸収液を再生処理して処理液とする生物反応手段と、
該処理液を回収して前記吸収手段に前記循環液として供給する循環液供給手段と
を具備することを特徴とする生物脱硫装置。
An absorbing means for bringing the treated gas containing hydrogen sulfide into contact with the circulating solution of the acidic aqueous solution containing trivalent iron ions so that the circulating fluid absorbs the hydrogen sulfide to make the absorbing solution;
A biological reaction means for regenerating the absorption liquid with iron-oxidizing bacteria and sulfur-oxidizing bacteria to obtain a treatment liquid;
A biological desulfurization apparatus comprising: a circulating liquid supply unit that collects the processing liquid and supplies the treated liquid to the absorption unit as the circulating liquid.
前記生物反応手段は吸収液を曝気する機能を備えることを特徴とする請求項1記載の生物脱硫装置。   The biological desulfurization apparatus according to claim 1, wherein the biological reaction means has a function of aeration of the absorbing solution. 3価の鉄イオンを含有する酸性水溶液の循環液に硫化水素を含有する被処理ガスを接触させて前記硫化水素を前記循環液に吸収させて吸収液とする吸収工程と、
前記吸収液を鉄酸化細菌及び硫黄酸化細菌によって再生処理して処理液とする生物反応工程と、
前記処理液を回収して前記循環液として前記吸収工程に供給する循環液供給工程と
を有することを特徴とする生物脱硫方法。
An absorption step in which a gas to be treated containing hydrogen sulfide is brought into contact with a circulating liquid of an acidic aqueous solution containing trivalent iron ions to absorb the hydrogen sulfide in the circulating liquid to obtain an absorbing liquid;
A biological reaction step in which the absorption liquid is regenerated by iron-oxidizing bacteria and sulfur-oxidizing bacteria to form a treatment liquid;
A biological fluid desulfurization method comprising: a circulating fluid supply step of collecting the treatment fluid and supplying the circulating fluid as the circulating fluid to the absorption step.
JP2010127924A 2010-06-03 2010-06-03 Biodesulfurization apparatus and method Pending JP2011251267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010127924A JP2011251267A (en) 2010-06-03 2010-06-03 Biodesulfurization apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010127924A JP2011251267A (en) 2010-06-03 2010-06-03 Biodesulfurization apparatus and method

Publications (1)

Publication Number Publication Date
JP2011251267A true JP2011251267A (en) 2011-12-15

Family

ID=45415650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010127924A Pending JP2011251267A (en) 2010-06-03 2010-06-03 Biodesulfurization apparatus and method

Country Status (1)

Country Link
JP (1) JP2011251267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604688A (en) * 2012-03-28 2012-07-25 江苏中显集团有限公司 Top-spraying self-priming regeneration tower

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604688A (en) * 2012-03-28 2012-07-25 江苏中显集团有限公司 Top-spraying self-priming regeneration tower

Similar Documents

Publication Publication Date Title
CN1215592C (en) Fuel cell power generation method and system
JP5127200B2 (en) Wastewater treatment equipment containing ammonia nitrogen
RU2664929C1 (en) Method of biological transformation of bisulphide into elemental sulfur
JP2006159112A (en) Microorganism carrying battery combined electrolyzer, and electrolytic method using the same
CN105771968A (en) Method for preparing loaded catalyst for heterogeneous phase ozone oxidizing
KR100762715B1 (en) Desulfurization and catalyst regeneration apparatus and method thereof
CN107814385A (en) A kind of method for handling industrial wastewater using biomass char and preparing graphite mould porous carbon materials
JP2007038169A (en) Method and apparatus for removing acid gas
CN102500323A (en) Modified active carbon desulfurizer and preparation method thereof and treatment method of hydrogen sulfide waste gas
CN102432125B (en) Device and method for treating pulping wastewater by using catalytic ozone
CN105903460A (en) Powdered activated carbon ectopic self generation and regeneration method for hard-degradation organic wastewater treatment
JP2010116516A (en) Method and apparatus for purifying energy gas
KR101344278B1 (en) Apparatus Equipped a Rotary Porous Desulfurization Disk and Method for Treatment of Gases Containing Hydrogen Sulfide
JP2011251267A (en) Biodesulfurization apparatus and method
JP2010029746A (en) Biological desulfurization method and apparatus
JP2010022977A (en) Biological desulfurization method and biological desulfurization apparatus
JP4113759B2 (en) Waste water treatment method and waste water treatment equipment
JP2010024294A (en) Biological desulfurization apparatus and biological desulfurization method
Mohammadi et al. Analysis and evaluation of the biogas purification technologies from H2S
KR101279548B1 (en) Method of improving performance and device of sulfide removal device
JP4299168B2 (en) Anaerobic treatment equipment
JP3880468B2 (en) Desulfurization method and apparatus
CN212549029U (en) Device for advanced treatment of pyridine waste gas
JP2004002509A (en) Method for desulfurizing fermentation gas and apparatus therefor
CN107890758A (en) A kind of outer circulation type electrochemistry sewage treatment plant deodoration system and method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120118