KR100762715B1 - Desulfurization and catalyst regeneration apparatus and method thereof - Google Patents

Desulfurization and catalyst regeneration apparatus and method thereof Download PDF

Info

Publication number
KR100762715B1
KR100762715B1 KR1020070066871A KR20070066871A KR100762715B1 KR 100762715 B1 KR100762715 B1 KR 100762715B1 KR 1020070066871 A KR1020070066871 A KR 1020070066871A KR 20070066871 A KR20070066871 A KR 20070066871A KR 100762715 B1 KR100762715 B1 KR 100762715B1
Authority
KR
South Korea
Prior art keywords
catalyst
desulfurization
reactor
gas
sulfur compound
Prior art date
Application number
KR1020070066871A
Other languages
Korean (ko)
Inventor
최경일
김전국
Original Assignee
김전국
환경플라즈마(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김전국, 환경플라즈마(주) filed Critical 김전국
Priority to KR1020070066871A priority Critical patent/KR100762715B1/en
Application granted granted Critical
Publication of KR100762715B1 publication Critical patent/KR100762715B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption

Abstract

A method and an apparatus for desulfurizing digested gas and reproducing catalysts are provided to decrease the consumption amount of catalysts, by continuously reproducing oxidizing catalysts used in a desulfurizing process. A sulfur compound receiving process is performed by receiving in a first reactor from an anaerobic digestion bath(S10). A pretreating process is performed by previously desulfurizing the received sulfur compound(S20). A reactive gas receiving process is performed by receiving the desulfurized reactive gas in a second reactor(S30). A desulfurizing process is performed by removing the sulfur compound from the received reactive gas through catalysts(S40). Desulfurizing catalysts used in the pretreating process and the desulfurizing process are collected(S50). The desulfurized catalysts are reacted with oxidizing agents consisting of at least one of air, oxygen, ozone, and peroxide so that the desulfurized catalysts are reproduced(S60). A desulfurizing catalyst recirculating process is performed so that the reproduced catalysts are transferred and supplied for the pretreating process and the desulfurizing process(S70).

Description

소화가스 탈황 및 촉매재생장치와 그 방법 {DESULFURIZATION AND CATALYST REGENERATION APPARATUS AND METHOD THEREOF } Exhaust gas desulfurization and catalytic regeneration device and method thereof {DESULFURIZATION AND CATALYST REGENERATION APPARATUS AND METHOD THEREOF}

본 발명은 소화가스 탈황방법 및 장치와 그 촉매재생방법 및 장치에 관한 것으로, 더욱 구체적으로는 액상산화반응촉매를 활용하여 혐기성 소화조 내의 황화합물을 효율적으로 제거할 수 있도록 한 탈황방법 및 장치와 상기 탈황에 사용된 산화촉매를 연속적으로 재생시켜 촉매소모량을 감소시킬 있는 촉매재생방법 및 장치에 관한 것이다.The present invention relates to a digestion gas desulfurization method and apparatus, and a catalyst regeneration method and apparatus, and more particularly, to a desulfurization method and apparatus for efficiently removing sulfur compounds in an anaerobic digestion tank by using a liquid oxidation catalyst. A catalyst regeneration method and apparatus for reducing catalyst consumption by continuously regenerating an oxidation catalyst used in the present invention.

일반적으로 사용되고 있는 혐기성 소화조내의 황 화합물을 제거하기 위한 탈황방법으로는 크게 건식 흡수법과 습식 흡수법으로 나뉘어진다.Desulfurization methods to remove sulfur compounds in the anaerobic digester which are generally used are divided into dry absorption method and wet absorption method.

상기 건식 흡수법은 산화철(Fe2O3), 활성탄 등과 같은 고체 흡착제와 접촉해서 황화합물을 제거하는 방식으로서 저온 및 저 습도에서 흡착성이 뛰어나지만 고 농도의 물질을 처리할 겨우 발열이 심하게 일어나고 가스의 온도가 높은 겨우 흡착성능이 현저히 감소하며 습도가 높은 가스를 처리할 경우 수분에 의한 흡착 방해 또는 채널링(channeling)현상에 의해 흡착 효율이 급격히 저하된다.The dry absorption method removes sulfur compounds by contact with solid adsorbents such as iron oxide (Fe 2 O 3 ) and activated carbon, which is excellent in adsorption at low temperatures and low humidity, but generates excessive heat when processing high concentrations of materials. If the temperature is high, the adsorption performance is remarkably reduced, and when the gas is treated with high humidity, the adsorption efficiency is drastically reduced due to the adsorption disturbance or channeling phenomenon due to moisture.

습식 흡수법은 기체와 액체(흡수제)가 세정장치를 통해 향류 또는 병류로 접촉해서 황 화합물을 제거하는 기술로서 가성소다법과 액상산화법이 상용화 기술로서 존재한다. 가성소다법은 가장 오래된 기술로서 운전이 용이하고 성능이 뛰어나 과거에는 가장 보편화된 기술 중 하나였으나 사용 후 발생되는 폐가성소다의 처리비용이 고가이며 혐기성 소화조 내이 이산화탄소와의 반응 빼문에 과량의 가성소다가 소모되어 운전비용이 과다하고 과량의 강알칼리 페가성소다 발생으로 비환경친화적 기술로 분류되어 선진국에서는 기술보급이 중지되어 있다. In the wet absorption method, a gas and a liquid (absorbent) come into contact with each other in countercurrent or cocurrent flow through a washing apparatus to remove sulfur compounds, and a caustic soda method and a liquid oxidation method exist as commercialization technologies. The caustic soda method is the oldest technology, and it is one of the most popular technologies in the past because it is easy to operate and has excellent performance. However, the cost of disposal of spent caustic soda after use is high and the excess of caustic soda Due to the excessive operation cost and excessive alkali alkali pegasic soda generation, it is classified as an unfriendly environment, and the supply of technology is stopped in the developed countries.

따라서, 혐기성 소화조내의 황화합물을 환경친화적으로 제거하고 제거효율을 높일 수 있는 탈황수단이 요구되고 있으며, 또한 황화합물을 제거하기 위한 탈황비용이 상당하여 사업화하는데 있어 장애가 되고 있는 실정이다.Therefore, there is a need for a desulfurization means that can environmentally remove sulfur compounds in the anaerobic digester and increase the removal efficiency, and the desulfurization cost for removing sulfur compounds is considerable, which hinders commercialization.

본 발명은 상기와 같은 문제점을 해결하기 위하여 혐기성 소화조의 황화합물을 액상산화반응촉매에 의해 제거하되 1차 반응기에서 수용된 황화합물의 산화촉매작용을 활성화시킨다음 2차 반응기에서 산화촉매에 의해 황화합물을 무해하고 무취한 황으로 전환시켜 황화합물을 저감할 수 있도록 한 소화가스 탈황방법 및 장치를 그 목적으로 한다.The present invention is to solve the above problems by removing the sulfur compounds of the anaerobic digestion tank by the liquid oxidation reaction catalyst to activate the oxidation catalyst action of sulfur compounds contained in the first reactor and then harmless sulfur compounds by the oxidation catalyst in the secondary reactor It is an object of the present invention to provide a method and apparatus for desulfurization of a digestive gas which is converted to odorless sulfur to reduce sulfur compounds.

또한, 상기 1 또는 2차 반응기에서 사용된 탈황촉매는 재생공정부로 회수되어 산화제에 반응하는 연속적인 재생을 한 다음 1,2차 반응기로 재순환 공급되어 재활용할 수 있도록 한 촉매재생방법 및 장치를 제공함에 있다.In addition, the desulfurization catalyst used in the first or the secondary reactor is recovered to the regeneration process unit to provide a continuous regeneration reaction to the oxidant and then recycled to the first and second reactors to provide a catalyst regeneration method and apparatus for recycling. Is in.

본 발명은 상기와 같은 목적을 달성하기 위하여 소화가스 탈황방법은, 혐기성 소화조의 황화합물을 액상산화반응촉매에 의해 제거하되, 전처리단계에서 혐기성 소화조내에서 유입된 황화합물을 주 반응기(2차 반응기)에서 사용된 산화촉매로 선(先) 반응시킨 다음 주 탈황단계로 반응가스를 이송하고 주 탈황단계에서는 상기 전처리된 반응가스를 산화촉매에 의해 황화합물을 최종 제거할 수 있도록 한 것을 특징으로 한다.In the present invention, in order to achieve the above object, the digestion gas desulfurization method removes sulfur compounds of an anaerobic digestion tank using a liquid oxidation reaction catalyst, but in the main reactor (secondary reactor), sulfur compounds introduced into the anaerobic digestion tank in a pretreatment step. It is characterized in that the reaction gas is pre-reacted with the used oxidation catalyst and then the reaction gas is transferred to the main desulfurization step, and the main desulfurization step allows the pre-reacted reaction gas to finally remove the sulfur compound by the oxidation catalyst.

또, 본 발명에 따른 소화가스 탈황장치는, 혐기성 소화조 내의 유입되는 반응가스를 선(先) 반응시키기 위해 주 반응기(2차 반응기)에서 기 사용되고 재생시 킨 산화촉매가 유입되고 반응가스를 2차 반응기로 이송하기 위한 구성으로 이루어진 1차 반응기와; 상기 1차 반응기에서 유입된 반응가스를 촉매공급부에서 공급되는 산화촉매에 의해 황화합물을 제거하여 탈황이 이루어지고 가스배출부로 탈황된 가스를 배출시키기 위한 구성으로 이루어진 2차 반응기와: 상기 2차 반응기에 촉매와 물을 혼합한 총매용액을 공급하기 위한 촉매공급부;로 이루어져 있다.In addition, in the digestion gas desulfurization apparatus according to the present invention, in order to pre-react the reaction gas flowing into the anaerobic digestion tank, an oxidation catalyst used and regenerated in the main reactor (secondary reactor) is introduced and the reaction gas is secondary. A primary reactor composed of a configuration for transferring to the reactor; A secondary reactor comprising desulfurization by removing the sulfur compound by an oxidation catalyst supplied from the catalyst supply unit by the reaction gas introduced from the primary reactor and discharging the desulfurized gas into the gas discharge unit; It consists of; a catalyst supply unit for supplying a total solvent mixture of the catalyst and water.

또, 상기 소화가스 탈황장치를 이용한 촉매재생방법 및 장치는, 상기 1차 또는 2차 반응기부터 회수되는 산화촉매를 산화제에 의해 반응하는 작용으로 촉매재생이 이루어져서 1,2차 반응기로 재순환되어 재활용이 이루어지도록 한 재생방법과 장치로 이루어져 있다.In addition, the catalyst regeneration method and apparatus using the digestive gas desulfurization apparatus, by the reaction of the oxidizing catalyst recovered from the primary or secondary reactor by the oxidizing agent is regenerated and recycled to the first and second reactors to recycle It consists of a reproducing method and apparatus to make it happen.

이와같이 된 본 발명은 혐기성 소화조의 황화합물을 1차 반응기에서 기 사용된 촉매를 활용해 선(先) 탈황시킨 후 2차 반응기에서 산화촉매에 의해 황화합물을 무해하고 무취한 황으로 전환시켜 황화합물을 저감할 수 있게 되어 탈황효율성을 극대화시킬 수 있게 된다.In the present invention, the sulfur compound of the anaerobic digestion tank is desulfurized by using a catalyst previously used in the first reactor, and then the sulfur compound is converted into harmless and odorless sulfur by an oxidation catalyst in the second reactor to reduce the sulfur compound. It will be possible to maximize the desulfurization efficiency.

또한, 상기 1 또는 2차 반응기에 사용된 탈황촉매를 산화제에 의해 재생한 다음 1,2차 반응기로 재순환 공급되어 재활용할 수 있게 되므로 촉매소모량을 크게 감소시킬 수 있는 효과가 있다.In addition, since the desulfurization catalyst used in the primary or secondary reactors is regenerated by the oxidizing agent and then recycled to the primary and secondary reactors, it can be recycled, thereby reducing the catalyst consumption.

본 발명에서 액상산화반응촉매를 활용하여 혐기성 소화조 내의 황화합물을 효율적으로 제거할 수 있도록 한 소화가스 탈황방법은 다음과 같다.Exhaust gas desulfurization method using the liquid oxidation catalyst in the present invention to efficiently remove the sulfur compounds in the anaerobic digestion tank is as follows.

본 발명은 혐기성 소화조내에서 유입된 황화합물을 1차 반응기(10)에 수용하는 황화합물 수용단계(S10)와, 2차 주 반응기에서 기 사용된 촉매를 활용해 선(先) 탈황반응을 시키는 전처리단계(S20)와; 상기 전처리된 반응가스를 2차 반응기(30)에 수용시키는 반응가스 수용단계(S30)와; 상기 수용된 반응가스를 산화촉매에 의해 황화합물을 제거하는 탈황단계(S40);로 이루어져서 황화합물을 제거할 수 있도록 한 것을 특징으로 한다.The present invention is a sulfur compound receiving step (S10) for receiving the sulfur compound introduced into the anaerobic digester in the primary reactor (10), and a pre-treatment step for the prior desulfurization reaction using the catalyst used in the secondary main reactor (S20); Reaction gas receiving step (S30) for receiving the pretreated reaction gas in the secondary reactor (30); Desulfurization step (S40) for removing the sulfur compound by the oxidation catalyst in the accommodated reaction gas; characterized in that to be able to remove the sulfur compound.

상기 전처리단계(S20)에서는 혐기성 소화조 가스 내에서 유입된 황화수소(H2S), 메르캅탄(R-SH)과 같은 황화합물을 주 반응기에서 기 사용된 산화촉매를 활용해 1차로 탈황 후 주 탈황단계로 반응가스 이송을 수행하고 주 탈황단계(S40)에서는 전처리된 반응가스를 산화촉매에 의해 원하는 만큼 황화합물을 제거하게 된다.In the pretreatment step (S20), sulfur compounds such as hydrogen sulfide (H 2 S) and mercaptan (R-SH) introduced into the anaerobic digester gas are first desulfurized using an oxidation catalyst used in the main reactor, followed by a main desulfurization step. Reaction gas transfer is carried out in the main desulfurization step (S40) to remove the sulfur compound as desired by the oxidation catalyst to the pretreated reaction gas.

상기 1,2차 반응기(20)(30)에서 사용되는 액상산화반응촉매는 산화마그네슘(MgO), 산화칼슘(CaO), 산화주석(SrO) 및 산화바륨(BaO)와 같은 고상의 알칼리 토금속 산화물 지지체에 전이 금속인 철, 아연, 몰리브덴, 망간, 구리 및 그 산화물로 구성되는 군(群)으로 부터 선택되는 하나 이상의 성분이 담지되어 있는 것, 알칼리 금속 수산화물 및 철 킬레이트로 이루어지는 군(群)에서 적어도 하나 이상 포함하는 것으로 한다.Liquid phase oxidation catalysts used in the first and second reactors 20 and 30 are solid alkaline earth metal oxides such as magnesium oxide (MgO), calcium oxide (CaO), tin oxide (SrO) and barium oxide (BaO). In which at least one component selected from the group consisting of transition metals iron, zinc, molybdenum, manganese, copper and oxides thereof is supported on the support, in the group consisting of alkali metal hydroxides and iron chelates At least one shall be included.

상기 전이금속 또는 그 산화물의 담지량은 고상촉매 전체를 기준으로 0.1~50중량% 범위로 사용된다The supported amount of the transition metal or its oxide is used in the range of 0.1 to 50% by weight based on the total solid catalyst.

본 발명에 따른 탈황촉매를 C 라 하고, 수중의 탈황촉매와 소화조 가스 내의 황화합물의 반응은 다음과 같다.The desulfurization catalyst according to the present invention is referred to as C, and the reaction between the desulfurization catalyst in water and the sulfur compound in the digester gas is as follows.

Figure 112007048732319-pat00001
Figure 112007048732319-pat00001

상기 반응에서와 같이 탈황촉매를 이용하여 황화수소, 메르캅탄과 같은 황화합물을 무해한 황 원소로 전환시킨다.As in the reaction, a desulfurization catalyst is used to convert sulfur compounds such as hydrogen sulfide and mercaptan into harmless elemental sulfur.

위 반응에서 산소는 촉매의 재생에 사용되므로 탈황촉매 슬러리에 산소, 공기, 오존 및 과산화수소와 같은 산화제를 공급하는 촉매재생장치에 적용하므로서 촉매의 황화합물에 의한 성능및 수명을 향상시킨다.In the above reaction, since oxygen is used to regenerate the catalyst, it is applied to a catalyst regeneration device for supplying oxidants such as oxygen, air, ozone, and hydrogen peroxide to the desulfurization catalyst slurry, thereby improving the performance and lifetime of the catalyst by sulfur compounds.

상기 혐기성 소화조 가스에는 황성분 외에도 실록산(Siloxanc) 및 각종 휘발성 유기화합물(Volatile Organic Compounds)들이 포함되어 있어 이들이 촉매 활성 표면을 덮는 현상에 의한 촉매 비활성화를 가속시킨다. 전자 현미경 관찰에 의하면 실록산과 같은 고분자성 물질이 촉매의 표면을 덮고 있는 현상이 관찰되었다. 따라서 주반응기에서 반응이 완료된 촉매를 재생후 폐촉매로 배출되는 부분의 촉매를 1차 전처리 공정으로 보내어 반응시키므로써 실록산과 같은 고분자 이물질에 의한 촉매 비활성화를 지연시켜주고 1차로 일정량(약 30~50%)의 황화합물을 제거시켜줌 으로써 주 반응기에서의 반응 효율을 증대 시키고 촉매 활용을 극대화시켜주므로 촉매 사용량을 획기적으로 감소시킬 수 있다.The anaerobic digester gas contains siloxane (Siloxanc) and various volatile organic compounds (Volatile Organic Compounds) in addition to the sulfur component to accelerate the catalyst deactivation by the phenomenon that they cover the catalytic active surface. Electron microscopy observed that a polymeric material, such as siloxane, covered the surface of the catalyst. Therefore, by regenerating the catalyst in the main reactor after the regeneration, the catalyst of the part discharged to the waste catalyst is sent to the first pretreatment process to delay the catalyst deactivation by polymer foreign substances such as siloxane and to a certain amount (about 30 to 50). By removing the sulfur compound of%), it increases the reaction efficiency in the main reactor and maximizes the utilization of catalyst, which can drastically reduce the amount of catalyst used.

또, 본 발명에 따른 소화가스 탈황장치는, 혐기성 소화조(10)와 연결되어 혐기성 소화조(10)내의 황화합물을 수용하여 탈황하기 위한 황화합물유입관(21)과, 산화촉매의 주입이 이루어지기 위한 촉매주입관(22)과, 1차로 탈황처리된 반응가스를 2차 반응기(30)로 이송하기 위한 가스이송관(23)이 구비되어 전체 반응 효율 및 촉매 수명을 연장시켜주는 1차 반응기(20)와; 상기 1차 반응기(20)에서 가스이송관( 23)을 거쳐 유입된 반응가스를 수용하는 구성과, 산화촉매가 주입되어 황화합물을 제거하기 위한 촉매주입관(31)과, 황화합물이 제거된 가스의 배출이 이루어지기 위한 가스배출관(32)이 구비되어 산화촉매에 의해 황화합물을 제거하는 2차 반응기(30)와; 상기 2차 반응기(30)와 촉매이송관(41)으로 연결되어 촉매와 물을 혼합한 액체 상태의 촉매용액 등을 공급하기 위한 촉매공급부(40);로 이루어져 있다.In addition, the digestion gas desulfurization apparatus according to the present invention is connected to the anaerobic digestion tank (10), the sulfur compound inlet pipe (21) for receiving and desulfurizing sulfur compounds in the anaerobic digestion tank (10), the catalyst for the injection of the oxidation catalyst is made An injection tube 22 and a gas transfer pipe 23 for transferring the first desulfurized reaction gas to the secondary reactor 30 to extend the overall reaction efficiency and catalyst life, and ; The primary reactor 20 receives the reaction gas introduced through the gas transfer pipe 23, the catalyst injection pipe 31 for removing the sulfur compound by the injection of an oxidation catalyst, and the discharge of the gas from which the sulfur compound is removed. A secondary reactor 30 provided with a gas discharge pipe 32 for this purpose to remove sulfur compounds by an oxidation catalyst; It is connected to the secondary reactor 30 and the catalyst transfer pipe 41, the catalyst supply unit 40 for supplying a catalyst solution in the liquid state mixed with the catalyst and water;

상부 1차 반응기(20)의 일측은 개폐밸브가 구비된 여과이송관(61)이 여과기(60)와 연결되어 여과기(60)를 통해 여과시킨 폐수와 페촉매를 별도로 분리 처리를 하게 된다.One side of the upper primary reactor 20 is connected to the filter transfer pipe 61 is provided with an on-off valve is connected to the filter 60 to separate the waste water and the catalyst filtered through the filter 60 separately.

상기에서의 1차 반응기(20)와 2차 반응기(30)는 스크러버, 슬러리반응기, 충진층(packed column) 또는 체판형(seive plate type)반응기와 같은 세정장치 중에서 선택되어 사용된다.The primary reactor 20 and the secondary reactor 30 in the above are selected and used among scrubbers, slurry reactors, packed columns, or sieve plate type reactors.

상기와 같은 구성의 탈황장치에서는 1차 반응기(20)에서 기 사용된 촉매를 활용해 선(先) 탈황반응을 수행함으로써 2차 반응기(30)에서의 산화촉매에 의한 황화합물의 제거기능을 극대화시킬 수 있게 된다.In the desulfurization apparatus having the above-described configuration, the desulfurization reaction is performed by utilizing the catalyst used in the primary reactor 20 in advance to maximize the removal of sulfur compounds by the oxidation catalyst in the secondary reactor 30. It becomes possible.

그리고 본 발명의 소화가스 촉매재생방법은, 황화합물 수용단계(S10)와; 선(先) 탈황반응의 전처리단계(S20)와; 상기 전처리된 반응가스 수용단계(S30)와; 상기 수용된 반응가스 탈황단계(S40)와; 상기 전처리 및 탈황단계에서 사용된 액체/고상의 탈황촉매를 회수하는 단계(S50)와; 상기 탈황촉매를 산화제와 반응시켜 재생이 이루어지도록 하는 탈황촉매 재생 산화단계(S60)와; 상기 재생된 탈황촉매를 전처리단계 및 탈황단계에 이송 공급되도록 하는 재순환공급단계(S70);로 촉매의 재활용이 이루어지게 된다.And digestive gas catalyst regeneration method of the present invention, sulfur compound receiving step (S10) and; A pretreatment step (S20) of the prior desulfurization reaction; Receiving the pretreated reaction gas (S30); The received reaction gas desulfurization step (S40) and; Recovering the liquid / solid desulfurization catalyst used in the pretreatment and desulfurization step (S50); A desulfurization catalyst regeneration oxidation step (S60) for reacting the desulfurization catalyst with an oxidizing agent to perform regeneration; Recycling of the catalyst is achieved; a recirculation supply step (S70) for transporting the regenerated desulfurization catalyst to the pretreatment step and the desulfurization step.

상기에 사용되는 산화제는 공기,산소,오존, 및 과산화수소 등이 해당된다.The oxidizing agent used above corresponds to air, oxygen, ozone, hydrogen peroxide and the like.

상기 탈황촉매 슬러리는 탈황촉매와 물을 혼합한 것이되, 탈황촉매 슬러리는 처리하고자 하는 황화합물의 농도에 따라 다양한 촉매함량으로 운전이 가능하며 일반적으로 0.2~0.5%의 촉매함량으로 운전된다. 운전조건도 기본적으로는 상온,상압 운전이며 가스의 용해도가 높아야 반응 및 재생효율이 증가하므로 가능한 낮은 온도에서 운전되는 것이 바람직하다.The desulfurization catalyst slurry is a mixture of the desulfurization catalyst and water, the desulfurization catalyst slurry can be operated with a variety of catalyst content depending on the concentration of the sulfur compound to be treated, and is generally operated with a catalyst content of 0.2 ~ 0.5%. The operating conditions are basically room temperature and atmospheric pressure, and the reaction and regeneration efficiency increase only when the solubility of the gas is high.

소화가스 촉매재생장치는, 상기 탈황장치와 같이 1차 반응기(20)와; 2차 반응기(30)와: 촉매공급부(40)가 동일한 구성요소로 이루어지되 상기 1차(20) 또는 2차 반응기(30)에서 사용된 탈황촉매가 회수되어 수용되도록 하기 위한 재생회수 관(51)과, 산화제를 공급하기 위한 산화제공급관(52)과, 재생된 탈황촉매를 1,2차 반응기(20)(30)로 공급하기 위한 재순환공급관(53)이 구비되어 탈황촉매를 재활용할 수 있는 재생공정부(50);로 이루어져 있다.Extinguishing gas catalyst regeneration device, the first reactor 20 and the same as the desulfurization device; Secondary reactor 30 and: the catalyst supply unit 40 is made of the same components, but the regeneration recovery pipe 51 for allowing the desulfurization catalyst used in the primary 20 or secondary reactor 30 is recovered and accommodated ), An oxidant supply pipe 52 for supplying an oxidant, and a recycle supply pipe 53 for supplying the regenerated desulfurization catalyst to the primary and secondary reactors 20 and 30 are provided to recycle the desulfurization catalyst. Regeneration process unit 50; consists of.

상기 2차 반응기(30)에서는 분기관(33)을 통해 탈황촉매가 1차 반응기(20) 및 재생공정부(50)로 각각 이송되도록 되어 있다.In the secondary reactor 30, the desulfurization catalyst is transferred to the primary reactor 20 and the regeneration process unit 50 through the branch pipe 33, respectively.

상기 구성에 의해 탈황촉매를 재생하여 재활용하게 되므로 촉매사용량을 크게 절감할 수 있게 된다.By the above configuration, since the desulfurization catalyst is regenerated and recycled, the catalyst usage can be greatly reduced.

이하 본 발명을 비교실시예에 의해 보다 상세히 살펴보면 다음과 같다. Hereinafter, the present invention will be described in more detail with reference to the following Examples.

<< 비교실시예Comparative Example 1> 1>

비교실시예 1에서는, 파우더(Powder) 형상의 6% 철/산화망간(Fe/MgO)촉매를 사용하여 2차 반응기만을 사용한 황화수소(H2S) 탈황 성능과 2차 반응기와 재생공정을 사용한 황화수소 탈황 성능을 비교한 것이다. 가스(N2) 총 유량은 35L/min로 하였으며 황화수소 농도는 1000ppm으로 하였다. 사용되는 촉매량은 0.3%으로 하고 회분식(Batch)으로 하여 황화수소 탈황성능 및 촉매 수명을 측정하였다.In Comparative Example 1, hydrogen sulfide (H 2 S) desulfurization performance using only a secondary reactor using a powder-shaped 6% iron / manganese oxide (Fe / MgO) catalyst, and hydrogen sulfide using a secondary reactor and a regeneration process Desulfurization performance is compared. The total flow rate of gas (N 2 ) was 35 L / min and the hydrogen sulfide concentration was 1000 ppm. The amount of catalyst used was 0.3%, and a batch was used to measure hydrogen sulfide desulfurization performance and catalyst life.

2차 반응기만을 사용한 황화수소 탈황성능은 탈황효율 90% 이상 유지되는 시간이 2.3시간에 불과하였지만 2차 반응기와 재생공정을 사용한 탈황성능은 14hr을 기록하였다. 이 때 재생공정에 사용된 산화제는 공기(Air)였다. 촉매 수명또한 2차 반응기와 재생공정으로 구성되어진 공정이 2차 반응기만을 사용한 공정보다 6.2배가 더 좋은 것으로 확인되었다. 이에 따른 결과는 도 4와 아래 표 1에 나타내었다.The hydrogen sulfide desulfurization performance using only the secondary reactor was only 2.3 hours when the desulfurization efficiency was maintained above 90%, but the desulfurization performance using the secondary reactor and the regeneration process was 14 hr. At this time, the oxidant used in the regeneration process was air. The catalyst life was also found to be 6.2 times better for the process consisting of the secondary reactor and the regeneration process. The results are shown in FIG. 4 and Table 1 below.

(표 1). 2차반응기와 2차반응기 및 재생공정을 이용한 ( Table 1). Using secondary reactor, secondary reactor and regeneration process

탈황성능 및 촉매소모량비교        Desulfurization Performance and Catalyst Consumption Comparison

항 목Item 2차반응기Secondary reactor (단독)(Exclusive) 반응기/재생공(산화제: Air ) Reactor / Regeneration Process (Oxidizer: Air ) HH 22 SS 탈황성능Desulfurization Performance 2.3hr  2.3hr 14hr  14hr 촉매소모량Catalyst consumption 6.2  6.2 1(기준)  1 (standard)

* 90% 제거율 기준* Based on 90% removal rate

<< 비교실시예Comparative Example 2> 2>

비교실시예 2는, 2차 반응기와 1차·2차 반응기(도3)를 동시 사용 했을시 H2S 탈황성능 및 촉매소모량 비교하였다. 두 실험군에 사용된 반응조건들은 비교실시예 1과 같다. 이 실험은 1차·2차 반응기 공정의 2차 반응기에서 사용후 재생한(일부배출)촉매를 1차 반응기로 이송하여 촉매활성성분을 최대로 이용하기 위한 것이며 그 결과는 아래 표 2와 같다. 표 2에서 보는 바와 같이 반응개시후 2.5시간이 경과한 탈황성능은 1차 전처리 반응기 사용시 제거율이 98%까지 상승하였으며 촉매 수명도 약 50% 증가하였다.In Comparative Example 2, the H 2 S desulfurization performance and the catalyst consumption were compared when the secondary reactor and the primary and secondary reactors (FIG. 3) were used simultaneously. The reaction conditions used for the two experimental groups are the same as in Comparative Example 1. This experiment is to transfer the regenerated (partially discharged) catalyst from the secondary reactor of the primary and secondary reactor process to the primary reactor to maximize the catalytically active components. The results are shown in Table 2 below. As shown in Table 2, the desulfurization performance of 2.5 hours after the start of the reaction increased the removal rate up to 98% when the first pretreatment reactor was used and the catalyst life increased about 50%.

표 2. 2차 반응기와 1·2차 반응기를 이용한 탈황성능 및 촉매소모량비교 Table 2. Comparison of Desulfurization Performance and Catalyst Consumption Using Secondary Reactor and Primary and Secondary Reactor

항목Item 2차반응기Secondary reactor (단독)(Exclusive) One· 2차반응기Secondary reactor 1차반응기Primary reactor 2차반응기Secondary reactor H2SH2S 탈황성능Desulfurization Performance (2.(2. 5시간후5 hours later 88%  88% 50%  50% 최종 약 98%  Final 98% 촉매소모량Catalyst consumption (2.(2. 5시간후5 hours later )) 1.5 1.5 1(기준) 1 (standard)

<< 비교실시예Comparative Example 3> 3>

비교실시예 3은, 현장에 설치된 2차반응기와 1차·2차 반응기를 사용(연속식)하여 소화조 가스내의 황화수소 탈황 성능을 비교하여 보았다. 처리가스유량은 100m3/hr 이상이며 황화수소 주입농도는 800ppm이었다. 단 현장에서는 재생공정이 없어 2차반응기에서 사용된 촉매가 재생되지 않고 직접 1차 전처리 반응기로 주입되었으며 그 결과는 표 3과 같다. 표에서 보는 바와 같이 성능은 1차·2차 반응기를 사용한 것이 2차반응기만을 사용한 것보다 15%이상 효율이 증가되는 것으로 나타났다. 촉매수명 또한 1차·2차 반응기를 동시 사용한 것이 약 20% 더 월등한 것으로 나타났다.In Comparative Example 3, the hydrogen sulfide desulfurization performance in the digester gas was compared by using a secondary reactor and a primary and secondary reactor (continuous type) installed in the field. The treated gas flow rate was 100 m 3 / hr or more and the hydrogen sulfide injection concentration was 800 ppm. However, because there was no regeneration process in the field, the catalyst used in the secondary reactor was not regenerated and injected directly into the primary pretreatment reactor, and the results are shown in Table 3. As shown in the table, the performance of the primary and secondary reactors was 15% higher than that of the secondary reactor alone. The catalyst life was also about 20% better than the simultaneous use of primary and secondary reactors.

표 3. 소화조 현장에서 2차반응기와 1·2차 반응기를 이용한 Table 3. Using the Secondary Reactor and the First and Secondary Reactors at the Digester Site

탈황성능 및 촉매소모량비교      Desulfurization Performance and Catalyst Consumption Comparison

항목Item 2차반응기Secondary reactor (단독)(Exclusive) 1·2차 반응기Primary and Secondary Reactors HH 22 SS 탈황성능Desulfurization Performance 75%~80%  75% ~ 80% 93%~95%  93% ~ 95% 촉매 소모량Catalyst consumption 1.2  1.2 1(기준)  1 (standard)

<< 비교실시예Comparative Example 4> 4>

비교실시예 4는, 2차반응기 단독으로 처리했을 경우와 1차·2차 반응기 및 재생공정까지 이용하여 처리했을 경우를 비교하였으며 그 결과는 표4와 같다. 가스, 촉매주입, 기타 조건등은 비교실시예 1과 동일하다. 비교실시예 1번과 같이 2차 반응기만을 사용했을시는 성능이 90%이상 유지되는 시간이 2.3시간에 불과하고 촉매소모량 또한 많았다.그렇지만 도 1과 같이 구성한 1차·2차 반응기 및 재생공정은 2차반응기 단독으로 운전되는 것보다도 성능이 월등히 뛰어나 제거성능 90%이상 유지되는 시간이 22시간 이상을 기록하였다. 촉매수명도 9배 이상 증가됨을 알수 있다. In Comparative Example 4, the case where the secondary reactor was treated alone was compared with the case where the primary and secondary reactors and the regeneration process were used, and the results are shown in Table 4. Gas, catalyst injection, and other conditions are the same as in Comparative Example 1. When only the secondary reactor was used as in Comparative Example 1, the performance was maintained at 90% or more, only 2.3 hours, and the catalyst consumption was also large. The performance was much better than the operation of the secondary reactor alone, so the removal time of more than 90% was recorded for more than 22 hours. It can be seen that the catalyst life is also increased more than nine times.

표 4. 2차 반응기와 1·2차 반응기 및 재생공정을 이용한 제거성능 및 촉매소모량 비교 Table 4 . Comparison of Removal Performance and Catalyst Consumption Using Secondary Reactor, Primary and Secondary Reactors, and Regeneration Process

항목Item 2차반응기Secondary reactor (단독)(Exclusive) 반응기/재생공정(Reactor / Regeneration Process 도2Figure 2 )) AirAir 20L/ 20L / minmin HH 22 SS 탈황성능Desulfurization Performance 2.3hr  2.3hr 22hr  22hr 촉매소모량Catalyst consumption 9.1  9.1 1(기준)  1 (standard)

이상에서 본 발명은 상기 실시예를 참고하여 설명하였지만 본 발명의 기술사상 범위내에서 다양한 변형실시가 가능함은 물론이다.In the above, the present invention has been described with reference to the above embodiment, but various modifications can be made within the technical scope of the present invention.

도 1은 본 발명에 따른 탈황 및 촉매재생장치를 나타낸 구성도1 is a block diagram showing a desulfurization and catalyst regeneration apparatus according to the present invention

도 2는 본 발명이 1차 반응기가 구비되지 않은 촉매재생장치 구성도2 is a block diagram of a catalyst regeneration apparatus in which the present invention is not equipped with a primary reactor

도 3은 본 발명의 촉매재생장치가 구비되지 않은 탈황장치 구성도3 is a block diagram of a desulfurization apparatus not provided with the catalyst regeneration apparatus of the present invention

도 4는 본 발명의 비교실시예 1에 따른 성능비교 그래프4 is a performance comparison graph according to Comparative Example 1 of the present invention

도 5는 본 발명의 비교실시예 4에 따른 성능비교 그래프5 is a performance comparison graph according to Comparative Example 4 of the present invention

도 6은 본 발명의 탈황공정을 나타낸 블록도Figure 6 is a block diagram showing a desulfurization process of the present invention

도 7은 본 발명의 촉매재생공정을 나타낸 블록도7 is a block diagram showing a catalyst regeneration process of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

10 : 소화조 20 : 1차 반응기10: digester 20: primary reactor

30 : 2차 반응기 40 : 촉매공급부30: secondary reactor 40: catalyst supply unit

50 : 재생공정부50: Regeneration Process

Claims (9)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 혐기성 소화조내에서 유입된 황화합물을 1차 반응기에 수용하는 황화합물 수용단계(S10)와;Sulfur compound receiving step (S10) for receiving the sulfur compound introduced into the anaerobic digester in the first reactor; 상기 수용된 황화합물을 선(先) 탈황시키는 전처리단계(S20)와;  A pretreatment step (S20) of preliminary desulfurization of the sulfur compound received; 상기 전처리된 반응가스를 2차 반응기에 수용시키는 반응가스 수용단계(S30)와; A reaction gas accommodating step of receiving the pretreated reaction gas in a secondary reactor (S30); 상기 수용된 반응가스를 산화촉매에 의해 황화합물을 제거하는 탈황단계(S40)와;Desulfurization step (S40) for removing the sulfur compound by the oxidation catalyst to the received reaction gas; 상기 전처리 및 탈황단계에서 사용된 액체/고체상의 탈황촉매를 회수하는단계(S50)와;Recovering the liquid / solid desulfurization catalyst used in the pretreatment and desulfurization step (S50); 상기 탈황촉매를 공기,산소,오존, 및 과산화수소 중에서 적어도 하나 이상으로 이루어진 산화제와 반응시켜 재생이 이루어지도록 하는 탈황촉매 재생 산화단계(S60)와;A desulfurization catalyst regeneration oxidation step (S60) of reacting the desulfurization catalyst with an oxidizing agent consisting of at least one of air, oxygen, ozone, and hydrogen peroxide to perform regeneration; 상기 재생된 탈황촉매를 전처리단계 및 탈황단계에 이송공급되도록 하는 탈황촉매 재순환공급단계(S70);로 이루어진 소화가스 탈황 및 촉매재생방법. The desulfurization catalyst recycling and supplying step (S70) to transfer the regenerated desulfurization catalyst to the pretreatment step and the desulfurization step (S70) . 삭제delete 삭제delete 혐기성 소화조(10)와 연결되어 혐기성 소화조(10)내의 황화합물을 수용하여 탈황하기위한 황화합물유입관(21)과, 산화촉매의 주입이 이루어지기 위한 촉매주입관(22)과, 선(先) 탈황반응 시킨 반응가스를 2차 반응기(30)로 이송하기 위한 가스이송관(23)이 구비된 1차 반응기(20)와; A sulfur compound inlet tube 21 for receiving and desulfurizing sulfur compounds in the anaerobic digester 10 connected to the anaerobic digester 10, a catalyst inlet tube 22 for injecting an oxidation catalyst, and preliminary desulfurization A primary reactor 20 having a gas transfer pipe 23 for transferring the reacted reaction gas to the secondary reactor 30; 상기 1차 반응기에서 가스이송관(23)을 거쳐 유입된 반응가스를 수용하는 구성과, 산화촉매가 주입되어 황화합물을 제거하기 위한 촉매주입관(31)과, 황화합물이 제거된 가스의 배출이 이루어지기 위한 가스배출관(32)이 구비되어 산화촉매에 의해 황화합물을 제거하는 2차 반응기(30)와; The primary reactor is configured to receive the reaction gas introduced through the gas transfer pipe 23, the catalyst injection pipe 31 for removing the sulfur compound by the injection of the oxidation catalyst, and the discharge of the gas from which the sulfur compound is removed A secondary reactor 30 provided with a gas discharge pipe 32 for removing sulfur compounds by an oxidation catalyst; 상기 2차 반응기(30)와 촉매이송관(41)으로 연결되어 촉매와 물을 혼합한 액체 상태의 촉매용액 등을 공급하기 위한 촉매공급부(40)와;A catalyst supply unit 40 connected to the secondary reactor 30 and the catalyst transfer pipe 41 to supply a catalyst solution in a liquid state in which a catalyst and water are mixed; 상기 1차(20) 또는 2차 반응기(30)에서 사용된 탈황촉매가 회수되어 수용되도록 하기 위한 재생회수관(51)과, 산화제를 공급하기 위한 산화제공급관(52)과, 재생된 탈황촉매를 1,2차 반응기(20)(30)로 공급하기 위한 재순환공급관(53)이 구비되어 탈황촉매를 재활용할 수 있는 재생공정부(50);로 이루어져 있는 것을 특징으로 하는 소화가스 탈황 및 촉매재생장치. The regeneration recovery pipe 51 for allowing the desulfurization catalyst used in the primary 20 or the secondary reactor 30 to be recovered and received, the oxidant supply pipe 52 for supplying the oxidant, and the regenerated desulfurization catalyst Digestion gas desulfurization and catalyst regeneration, characterized in that consisting of; regeneration process unit 50 is provided with a recirculation supply pipe 53 for supplying to the primary and secondary reactors 20, 30; Device.
KR1020070066871A 2007-07-04 2007-07-04 Desulfurization and catalyst regeneration apparatus and method thereof KR100762715B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070066871A KR100762715B1 (en) 2007-07-04 2007-07-04 Desulfurization and catalyst regeneration apparatus and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070066871A KR100762715B1 (en) 2007-07-04 2007-07-04 Desulfurization and catalyst regeneration apparatus and method thereof

Publications (1)

Publication Number Publication Date
KR100762715B1 true KR100762715B1 (en) 2007-10-04

Family

ID=39418912

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070066871A KR100762715B1 (en) 2007-07-04 2007-07-04 Desulfurization and catalyst regeneration apparatus and method thereof

Country Status (1)

Country Link
KR (1) KR100762715B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100926124B1 (en) 2009-06-19 2009-11-11 김전국 Catalyst Composition for Removing hydrogen sulfide
KR100954230B1 (en) 2009-09-28 2010-04-21 주식회사 유성엔지니어링 Wet tipic desulfurizing system
KR100963004B1 (en) 2010-03-11 2010-06-10 김전국 Desulpurization and catalyst regeneration apparatus
KR101279548B1 (en) 2010-07-08 2013-07-05 환경플라즈마(주) Method of improving performance and device of sulfide removal device
KR101330499B1 (en) * 2013-03-19 2013-11-19 주식회사 지앤이테크 Liquid type desulfurizng system for digester gas
KR101359193B1 (en) 2006-12-21 2014-02-05 주식회사 포스코 Regeneration of desulfurization agent in desulfurization of anaerobic digester gas
KR101705337B1 (en) 2015-12-23 2017-02-10 (주)제이에스엔 De-sulphurization Tank of Biogas power plant
KR20190106449A (en) * 2018-03-09 2019-09-18 삼성중공업 주식회사 Apparatus for reducing air pollutant
KR102027539B1 (en) * 2018-03-29 2019-10-01 삼성중공업 주식회사 Apparatus for reducing air pollutant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525338A (en) * 1983-01-31 1985-06-25 Chevron Research Company Method for removal of hydrogen sulfide
KR890003436A (en) * 1987-08-21 1989-04-14 오노 알버어스 Removal of acidic components from the gas stream
US6579347B1 (en) * 1998-04-28 2003-06-17 Matsushita Electric Industrial Co., Ltd. Method for removing sulfur compound present in city gas
KR20050116694A (en) * 2004-06-08 2005-12-13 한국과학기술연구원 Desulfurization for simultaneous removal of hydrogen sulfide and sulfur dioxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525338A (en) * 1983-01-31 1985-06-25 Chevron Research Company Method for removal of hydrogen sulfide
KR890003436A (en) * 1987-08-21 1989-04-14 오노 알버어스 Removal of acidic components from the gas stream
US6579347B1 (en) * 1998-04-28 2003-06-17 Matsushita Electric Industrial Co., Ltd. Method for removing sulfur compound present in city gas
KR20050116694A (en) * 2004-06-08 2005-12-13 한국과학기술연구원 Desulfurization for simultaneous removal of hydrogen sulfide and sulfur dioxide

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359193B1 (en) 2006-12-21 2014-02-05 주식회사 포스코 Regeneration of desulfurization agent in desulfurization of anaerobic digester gas
KR100926124B1 (en) 2009-06-19 2009-11-11 김전국 Catalyst Composition for Removing hydrogen sulfide
KR100954230B1 (en) 2009-09-28 2010-04-21 주식회사 유성엔지니어링 Wet tipic desulfurizing system
KR100963004B1 (en) 2010-03-11 2010-06-10 김전국 Desulpurization and catalyst regeneration apparatus
KR101279548B1 (en) 2010-07-08 2013-07-05 환경플라즈마(주) Method of improving performance and device of sulfide removal device
KR101330499B1 (en) * 2013-03-19 2013-11-19 주식회사 지앤이테크 Liquid type desulfurizng system for digester gas
KR101705337B1 (en) 2015-12-23 2017-02-10 (주)제이에스엔 De-sulphurization Tank of Biogas power plant
KR20190106449A (en) * 2018-03-09 2019-09-18 삼성중공업 주식회사 Apparatus for reducing air pollutant
KR102039717B1 (en) 2018-03-09 2019-11-01 삼성중공업 주식회사 Apparatus for reducing air pollutant
KR102027539B1 (en) * 2018-03-29 2019-10-01 삼성중공업 주식회사 Apparatus for reducing air pollutant

Similar Documents

Publication Publication Date Title
KR100762715B1 (en) Desulfurization and catalyst regeneration apparatus and method thereof
JP4010811B2 (en) Fuel cell power generation method and fuel cell power generation system
CN102134519B (en) Combined process for natural gas desulfurization with high resource utilization ratio and good environmental protection effect
CN102309913B (en) Treatment method for stinky waste gas containing sulfides and hydrocarbons
JP2011523671A (en) Biogas purification method and system for methane extraction
CN104548934B (en) A kind of oxidation desulfuration process of desulfurizing agent continuous reproducible
CN113372965A (en) Blast furnace gas desulfurization process
CN101322900A (en) Compositional type reclaiming agent
US10556203B2 (en) Method and device for the desulphurisation of a gas flow
KR100963004B1 (en) Desulpurization and catalyst regeneration apparatus
KR20210046164A (en) external blocking styrofoam cap
KR100780904B1 (en) Apparatus and method for desulfurization of gas streams utilizing catalyst regeneration
KR101279548B1 (en) Method of improving performance and device of sulfide removal device
CN105126530A (en) Coking exhaust gas purification method
CN111905549B (en) Absorb H2S desulfurization solution, desulfurization system and desulfurization method
CN102071280B (en) Purification method of converter gas
CN104118851A (en) Method for regenerating waste sulfuric acid containing high-concentration organic matters
CN1263832C (en) Organic sulfur removing and deoxygenation process for producing high pruity CO gas
KR20210048686A (en) a desk with a mirror
KR20210048696A (en) Forable Cup
JP2001348346A (en) Method for purifying methane fermentation gas
CN1345620A (en) Method for removing phosphorus, phosphide, surfide and recovering phosphorus from yellow phosphorus tail gas
KR101359193B1 (en) Regeneration of desulfurization agent in desulfurization of anaerobic digester gas
CN1086305C (en) Process for removing and recovery of sulfur dioxide from waste gas
CN109310943A (en) The method that joint removes siloxanes and sulfur-containing compound from biological air-flow

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20140617

Year of fee payment: 7

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20141029

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150902

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee