JP2011244568A - Deceleration-energy recovery controller - Google Patents

Deceleration-energy recovery controller Download PDF

Info

Publication number
JP2011244568A
JP2011244568A JP2010113325A JP2010113325A JP2011244568A JP 2011244568 A JP2011244568 A JP 2011244568A JP 2010113325 A JP2010113325 A JP 2010113325A JP 2010113325 A JP2010113325 A JP 2010113325A JP 2011244568 A JP2011244568 A JP 2011244568A
Authority
JP
Japan
Prior art keywords
torque
deceleration
compressor
generator
energy recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010113325A
Other languages
Japanese (ja)
Other versions
JP5387500B2 (en
Inventor
Takayuki Saeki
隆行 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010113325A priority Critical patent/JP5387500B2/en
Priority to DE102011050388A priority patent/DE102011050388A1/en
Publication of JP2011244568A publication Critical patent/JP2011244568A/en
Application granted granted Critical
Publication of JP5387500B2 publication Critical patent/JP5387500B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/30Auxiliary equipments
    • B60W2510/305Power absorbed by auxiliaries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Automation & Control Theory (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a deceleration-energy recovery controller increasing the quantity of a deceleration energy recovered without deteriorating a drivability.SOLUTION: The deceleration-energy recovery controller includes: a recovery control means carrying out a deceleration-energy recovery control driving a refrigerant compressor and a generator in case of the deceleration of a vehicle so as to recover a vehicle deceleration energy to a cold storage and a battery; and a torque-distribution setting means setting the distribution ratio λ of the driving torques of the compressor and the generator in case of the deceleration-energy recovery control in response to the balances of cold-storage demand quantities and electric-storage demand quantities. The generator is driven by the torque larger than the target driving torque (Tsum×(1-λ)) of the generator corresponding to the distribution ratio λ for a response waiting period (t1 to t3 or t1 to t4) until the actual driving torque TH of the compressor increases to the target driving torque (Tsum×λ) corresponding to the distribution ratio λ after starting the driving of the compressor by the deceleration-energy recovery control.

Description

本発明は、車両の減速エネルギをバッテリ及び蓄冷器へ回収させるよう制御する、減速エネルギ回収制御装置に関する。   The present invention relates to a deceleration energy recovery control device that controls a vehicle and a regenerator to recover vehicle deceleration energy.

内燃機関により駆動する補機としては、冷凍サイクル中の冷媒を圧縮して吐出する圧縮機、及び発電機が挙げられる。そして、燃料噴射をカットした状態で車両を減速させている時等に両補機(圧縮機及び発電機)を駆動させて、車両の減速エネルギを蓄冷器及びバッテリへ回収させるシステムが知られている(特許文献1参照)。   Examples of the auxiliary machine driven by the internal combustion engine include a compressor that compresses and discharges the refrigerant in the refrigeration cycle, and a generator. A system is known that drives both auxiliary machines (compressor and generator) when the vehicle is decelerated with the fuel injection cut off, and recovers the vehicle deceleration energy to the regenerator and battery. (See Patent Document 1).

特許文献1記載のシステムはアイドルストップ機能を有する車両を対象としており減速エネルギを回収するにあたり、蓄冷要求量と蓄電要求量とのバランスに応じて、減速時における両補機の駆動トルク分配率を制御している。これによれば、アイドルストップ中に蓄冷量又は蓄電量が不足することの機会を減少させることができ、アイドルストップ期間を拡大させて燃費向上を図ることができる。   The system described in Patent Document 1 is intended for vehicles having an idle stop function. When recovering deceleration energy, the drive torque distribution ratio of both auxiliary machines at the time of deceleration is determined according to the balance between the cold storage requirement amount and the electricity storage requirement amount. I have control. According to this, it is possible to reduce the chance that the cold storage amount or the storage amount is insufficient during the idle stop, and it is possible to expand the idle stop period and improve the fuel efficiency.

特開2009−196457号公報JP 2009-196457 A

ここで、両補機の合計駆動トルクを大きくするほど減速エネルギの回収量を増大できて燃費を向上できるものの、補機の駆動トルクが過大になると、車両運転者に違和感を与えるほどに減速度が大きくなってしまい、ドライバビリティが悪化する。そして上記特許文献1記載の制御では、この点について改良の余地がある。   Here, as the total drive torque of both accessories increases, the recovery amount of deceleration energy can be increased and fuel efficiency can be improved. However, if the drive torque of the accessory is excessive, the vehicle driver will decelerate to a sense of discomfort. Becomes larger and drivability deteriorates. And in the control of the said patent document 1, there exists room for improvement about this point.

本発明は、上記課題を解決するためになされたものであり、その目的は、ドライバビリティを悪化させることなく減速エネルギ回収量を増大させる減速エネルギ回収制御装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a deceleration energy recovery control device that increases the recovery energy recovery amount without deteriorating drivability.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明では、内燃機関により駆動して冷凍サイクル中の冷媒を圧縮して吐出する圧縮機、及び前記冷凍サイクルに設けられた蓄冷器と、内燃機関により駆動して発電する発電機、及び前記発電機により発電された電力を充電可能なバッテリと、を備えた車両に適用されることを前提とする。   According to the first aspect of the present invention, a compressor that is driven by an internal combustion engine to compress and discharge the refrigerant in the refrigeration cycle, a regenerator provided in the refrigeration cycle, and a generator that is driven by the internal combustion engine to generate electric power And a battery that can be charged with electric power generated by the generator.

そして、前記蓄冷器及び前記バッテリの少なくとも一方へ前記車両の減速エネルギを回収させるよう、前記車両の減速時に前記圧縮機及び前記発電機の少なくとも一方を駆動させる減速エネルギ回収制御を実施する回収制御手段と、前記蓄冷器の蓄冷要求量及び前記バッテリの蓄電要求量のバランスに応じて、前記減速エネルギ回収制御時の前記圧縮機及び前記発電機の駆動トルクの分配率を設定するトルク分配設定手段と、前記減速エネルギ回収制御による前記圧縮機の駆動を開始させてから、前記圧縮機の実駆動トルクが前記分配率に応じた目標駆動トルクに上昇するまでの応答待ち期間には、前記分配率に応じた前記発電機の目標駆動トルクよりも大きいトルクで前記発電機を駆動させる応答待ち発電制御手段と、を備えることを特徴とする。   And the recovery control means which implements the deceleration energy recovery control which drives at least one of the compressor and the generator at the time of deceleration of the vehicle so that at least one of the regenerator and the battery recovers the deceleration energy of the vehicle And torque distribution setting means for setting a drive torque distribution ratio of the compressor and the generator during the deceleration energy recovery control in accordance with a balance between the cold storage required amount of the cool storage device and the required storage amount of the battery. In the response waiting period from when the compressor is driven by the deceleration energy recovery control until the actual drive torque of the compressor increases to the target drive torque according to the distribution ratio, the distribution ratio is set to Response-waiting power generation control means for driving the power generator with a torque larger than the target power driving torque of the power generator. To.

ここで、圧縮機の駆動トルクの応答遅れは、発電機の駆動トルクの応答遅れに比べて著しく大きい。そのため、上記発明に反して応答待ち発電制御手段による制御を実施しない場合には以下の問題が生じる。すなわち、圧縮機の駆動を開始させてから所定時間が経過するまでの期間(応答待ち期間)では、圧縮機の実駆動トルクは、蓄冷要求量及び蓄電要求量のバランスに応じて設定された分配率に相当する駆動トルクよりも小さくなっている。よって、そのトルク不足分だけ減速エネルギの回収量が少なくなっている。   Here, the response delay of the drive torque of the compressor is significantly larger than the response delay of the drive torque of the generator. Therefore, the following problems arise when the control by the response waiting power generation control means is not performed contrary to the above invention. In other words, during the period from when the compressor is started to when a predetermined time elapses (response waiting period), the actual drive torque of the compressor is distributed according to the balance between the cold storage request amount and the storage request amount. It is smaller than the driving torque corresponding to the rate. Therefore, the recovery amount of deceleration energy is reduced by the amount of torque shortage.

この点に着目した上記発明では、応答待ち発電制御手段により、圧縮機30の駆動トルクが分配率に応じた値にまで上昇していない応答待ち期間に発電機の駆動トルクを増大させるので、その増大分だけ減速エネルギの回収量を増大できる。しかも、このように発電機の駆動トルクを増大させる大きさを、応答待ち期間における圧縮機30の駆動トルク不足分に設定すれば、車両運転者に違和感を与えるほどに減速度を大きくさせることなく、減速エネルギの回収量を増大させることができる。よって、ドライバビリティを悪化させることなく減速エネルギ回収量を増大させることができる。   In the above-described invention focusing on this point, the response waiting power generation control means increases the drive torque of the generator during the response waiting period in which the driving torque of the compressor 30 has not increased to a value corresponding to the distribution ratio. The recovery amount of deceleration energy can be increased by the increase. In addition, if the magnitude of the increase in the drive torque of the generator is set to the shortage of the drive torque of the compressor 30 during the response waiting period, the deceleration is not increased to the extent that the vehicle driver feels uncomfortable. The amount of recovery of deceleration energy can be increased. Therefore, the deceleration energy recovery amount can be increased without deteriorating drivability.

請求項2記載の発明では、前記応答待ち発電制御手段は、前記分配率に応じた前記圧縮機の目標駆動トルクと前記圧縮機の実駆動トルクとの偏差を取得する偏差取得手段と、前記偏差が大きいほど、前記応答待ち期間に前記発電機の駆動トルクを増大させる量を大きく設定するトルク増大量設定手段と、を有することを特徴とする。   In the invention according to claim 2, the response waiting power generation control means includes a deviation acquisition means for acquiring a deviation between a target drive torque of the compressor and an actual drive torque of the compressor according to the distribution ratio, and the deviation. And a torque increase amount setting means for setting a larger amount to increase the drive torque of the generator during the response waiting period.

上述した圧縮機の応答遅れによる圧縮機のトルク不足量は、圧縮機の駆動開始から逐次変化していく。この点を鑑みた上記発明によれば、上記圧縮機のトルク不足量(つまり分配率に応じた圧縮機の目標駆動トルクと圧縮機の実駆動トルクとの偏差)を取得する偏差取得手段を備え、前記偏差が大きいほど発電機のトルク増大量を大きく設定するので、逐次変化していく圧縮機のトルク不足量に応じて発電機のトルク増大量を設定することができる。よって、減速エネルギの回収量を過不足なく増大させることができるので、回収過大によるドライバビリティ悪化及び回収過小による燃費悪化を回避できる。   The amount of torque shortage of the compressor due to the response delay of the compressor described above changes sequentially from the start of driving of the compressor. According to the above invention in view of this point, there is provided deviation obtaining means for obtaining a torque shortage amount of the compressor (that is, a deviation between the target driving torque of the compressor and the actual driving torque of the compressor according to the distribution ratio). Since the torque increase amount of the generator is set to be larger as the deviation is larger, the torque increase amount of the generator can be set according to the torque shortage amount of the compressor that changes sequentially. Therefore, since the recovery amount of deceleration energy can be increased without excess or deficiency, drivability deterioration due to excessive recovery and fuel consumption deterioration due to excessive recovery can be avoided.

請求項3,4記載の発明では、車両運転者の減速操作に応じた要求減速度に基づき、車両運転者に対して許容できる最大の減速トルクである許容減速トルクを算出する許容減速トルク算出手段と、前記許容減速トルク及び前記分配率に基づき、前記減速エネルギ回収制御を実施する時の前記圧縮機の駆動トルク及び前記発電機の駆動トルクを算出する駆動トルク算出手段と、を備えることを特徴とする。   According to the third and fourth aspects of the present invention, the allowable deceleration torque calculating means for calculating the allowable deceleration torque that is the maximum deceleration torque that can be permitted for the vehicle driver based on the requested deceleration according to the deceleration operation of the vehicle driver. And a drive torque calculation means for calculating a drive torque of the compressor and a drive torque of the generator when the deceleration energy recovery control is performed based on the allowable deceleration torque and the distribution ratio. And

上記発明によれば、減速エネルギ回収制御時の圧縮機及び発電機の駆動トルクを、蓄冷要求量及び蓄電要求量のバランスに応じた値にすることができるとともに、両駆動トルクの合計値を、車両運転者に違和感を与えない範囲内で最大(許容減速トルク)にできる。よって、ドライバビリティを悪化させることなく減速エネルギ回収量を増大させることができる。   According to the above invention, the drive torque of the compressor and the generator at the time of deceleration energy recovery control can be set to a value corresponding to the balance between the cold storage request amount and the storage request amount, and the total value of both drive torques is It can be maximized (allowable deceleration torque) within a range that does not give the vehicle driver a feeling of strangeness. Therefore, the deceleration energy recovery amount can be increased without deteriorating drivability.

請求項5,6記載の発明では、前記車両は、車輪に制動力を付与する制動アクチュエータ、及び当該制動アクチュエータによる制動力を制御する制動力制御手段を備えており、車両運転者の減速操作に応じた要求減速度に基づき、前記制動力を設定する制動力設定手段と、前記減速エネルギ回収制御を実施する時には、前記制動力設定手段により設定された制動力を減少させるとともに、その減少分に相当するトルクだけ、前記圧縮機及び前記発電機の駆動トルクを増大させる補機トルク増大制御手段と、を備えることを特徴とする。   In the fifth and sixth aspects of the invention, the vehicle includes a braking actuator that applies a braking force to the wheel, and a braking force control unit that controls the braking force by the braking actuator. When executing the deceleration energy recovery control and the braking force setting means for setting the braking force on the basis of the requested deceleration corresponding thereto, the braking force set by the braking force setting means is reduced and the reduced amount is reduced. And auxiliary machine torque increase control means for increasing the drive torque of the compressor and the generator by the corresponding torque.

上記発明によれば、減速エネルギ回収制御を実施する時には制動アクチュエータによる制動力を減少させ、その減少分に相当するトルク分だけ圧縮機及び発電機の駆動トルクを増大させるので、車両の減速度を増大させることなく、圧縮機及び発電機による両駆動トルクの合計値を増大させることができる。よって、ドライバビリティを悪化させることなく減速エネルギ回収量を増大させることができる。   According to the above invention, when the deceleration energy recovery control is performed, the braking force by the braking actuator is decreased, and the driving torque of the compressor and the generator is increased by the torque corresponding to the decreased amount. The total value of both drive torques by the compressor and the generator can be increased without increasing. Therefore, the deceleration energy recovery amount can be increased without deteriorating drivability.

本発明の第1実施形態において、バッテリシステム及び空調システムの全体構成を示す図。The figure which shows the whole structure of a battery system and an air conditioning system in 1st Embodiment of this invention. 第1実施形態において、オルタネータ及び圧縮機の駆動トルクを制御する手順を示すフローチャート。The flowchart which shows the procedure which controls the drive torque of an alternator and a compressor in 1st Embodiment. 補機合計トルクTsumをオルタネータ及び圧縮機に分配するにあたり、その分配率λを設定する手法を説明する機能ブロック図。The functional block diagram explaining the method of setting the distribution ratio (lambda) in distributing auxiliary machine total torque Tsum to an alternator and a compressor. 図2中のステップS19〜S22による処理内容を説明する機能ブロック図。The functional block diagram explaining the processing content by step S19-S22 in FIG. 図2〜図4に示す処理を実施した場合における、経過時間に対する各種変化の一態様を示すタイムチャート。The time chart which shows the one aspect | mode of the various change with respect to elapsed time at the time of implementing the process shown in FIGS. 本発明の第2実施形態において、オルタネータ及び圧縮機の駆動トルクを制御する手順を示すフローチャート。The flowchart which shows the procedure which controls the drive torque of an alternator and a compressor in 2nd Embodiment of this invention.

以下、本発明を具体化した各実施形態を図面に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。   Hereinafter, embodiments embodying the present invention will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other are denoted by the same reference numerals in the drawings, and the description of the same reference numerals is used.

(第1実施形態)
図1に、本実施形態にかかるバッテリシステム及び空調システム等の全体構成を示す。
(First embodiment)
FIG. 1 shows the overall configuration of a battery system, an air conditioning system, and the like according to this embodiment.

車両Bに搭載されたエンジン10(内燃機関)の各気筒には、エンジン10の燃焼室に燃料を供給するための燃料噴射弁11が備えられている。燃料噴射弁11の作動は電子制御装置(エンジンECU12)により制御される。エンジンECU12は、周知のCPU、ROM、RAM等よりなるマイクロコンピュータを主体として構成されている。   Each cylinder of the engine 10 (internal combustion engine) mounted on the vehicle B is provided with a fuel injection valve 11 for supplying fuel to the combustion chamber of the engine 10. The operation of the fuel injection valve 11 is controlled by an electronic control unit (engine ECU 12). The engine ECU 12 is mainly configured by a microcomputer including a known CPU, ROM, RAM, and the like.

燃料の燃焼によって発生するエネルギは、エンジン10の出力軸(クランク軸13)の回転動力として取り出される。この回転動力は、変速装置14を介して車両の図示しない駆動輪へと伝達される。なお、エンジン10は、ガソリンエンジン等の火花点火式内燃機関であってもよいし、ディーゼルエンジン等の圧縮着火式内燃機関であってもよい。   The energy generated by the combustion of the fuel is taken out as rotational power of the output shaft (crankshaft 13) of the engine 10. This rotational power is transmitted to drive wheels (not shown) of the vehicle via the transmission 14. The engine 10 may be a spark ignition type internal combustion engine such as a gasoline engine or a compression ignition type internal combustion engine such as a diesel engine.

エンジンECU12には、クランク軸13の回転速度を検出するクランク角センサや、吸気量を検出するエアフローセンサ、車速センサ、外気温センサ等の各種センサの検出信号が入力される。エンジンECU12は、上記入力に応じて、ROMに記憶された各種の制御プログラムを実行することで、燃料噴射弁11による燃料噴射制御等、エンジン10の燃焼制御を行う。   The engine ECU 12 receives detection signals from various sensors such as a crank angle sensor that detects the rotational speed of the crankshaft 13, an airflow sensor that detects the intake air amount, a vehicle speed sensor, and an outside air temperature sensor. In response to the input, the engine ECU 12 executes various control programs stored in the ROM, thereby performing combustion control of the engine 10 such as fuel injection control by the fuel injection valve 11.

クランク軸13には、スタータ20が接続されている。スタータ20は、図示しないイグニッションスイッチのオンによりバッテリ21から電力供給されて始動し、エンジン10を始動させるべくクランク軸13に初期回転を付与する。バッテリ21は、オルタネータ22(発電機)により発電された電力を充電可能な二次電池である。エンジンECU12は、バッテリ21の充電量を表すSOC(State of charge:満充電時の充電量に対する実際の充電量の割合)が適正範囲となるように、オルタネータ22による発電量を制御する。詳細には、オルタネータ22のロータコイルに流す励磁電流を調節することで、発電量を調節(制御)する。   A starter 20 is connected to the crankshaft 13. The starter 20 is started by being supplied with electric power from the battery 21 when an ignition switch (not shown) is turned on, and applies an initial rotation to the crankshaft 13 to start the engine 10. The battery 21 is a secondary battery that can be charged with electric power generated by an alternator 22 (generator). The engine ECU 12 controls the amount of power generated by the alternator 22 so that the SOC (State of charge: the ratio of the actual charge amount with respect to the full charge amount) representing the charge amount of the battery 21 falls within an appropriate range. Specifically, the amount of power generation is adjusted (controlled) by adjusting the excitation current that flows through the rotor coil of the alternator 22.

車両Bには、車室内を空調する空調システムが搭載されている。この空調システムは、冷凍サイクルに冷媒を循環させるべく冷媒を吸入・吐出する圧縮機30や、コンデンサ31、レシーバ32、膨張弁33、及び蒸発器34等を備えて構成されている。   The vehicle B is equipped with an air conditioning system that air-conditions the passenger compartment. This air conditioning system includes a compressor 30 that sucks and discharges refrigerant to circulate the refrigerant in the refrigeration cycle, a condenser 31, a receiver 32, an expansion valve 33, an evaporator 34, and the like.

上記圧縮機30は、これが備える電磁駆動式のコントロールバルブ(CV30a)の通電操作によって冷媒の吐出容量を連続的に可変設定可能な可変容量型圧縮機である。圧縮機30の駆動軸に機械的に連結されたプーリは、ベルト15及びクランクプーリ16を介してクランク軸13と機械的に連結されている。このクランク軸13の回転動力が圧縮機30に伝達される状況下、CV30aへの通電操作により上記吐出容量が調節される。なお、以下の説明では、上記吐出容量が0より大きくなる状態を圧縮機30が駆動されるものとし、上記吐出容量が0となる状態を圧縮機30が停止されるものとする。   The compressor 30 is a variable capacity compressor capable of continuously and variably setting the refrigerant discharge capacity by energization operation of an electromagnetically driven control valve (CV30a) included in the compressor 30. The pulley mechanically connected to the drive shaft of the compressor 30 is mechanically connected to the crankshaft 13 via the belt 15 and the crank pulley 16. Under the situation where the rotational power of the crankshaft 13 is transmitted to the compressor 30, the discharge capacity is adjusted by energizing the CV 30a. In the following description, it is assumed that the compressor 30 is driven when the discharge capacity is greater than 0, and the compressor 30 is stopped when the discharge capacity is 0.

コンデンサ31は、DCモータ等によって回転駆動される図示しないファンから送風される空気(外気)と、圧縮機30から吐出供給される冷媒との熱交換が行われる部材である。レシーバ32は、コンデンサ31より流入した冷媒を気液分離して且つ分離された液冷媒を一時的に貯蔵し、液冷媒のみを下流側に供給するために設けられるものである。レシーバ32に貯蔵された液冷媒は、膨張弁33によって急激に膨張され霧状とされる。霧状とされた冷媒は、車室内へ送風される空気を冷却する蒸発器34に供給される。蒸発器34では、DCモータ等によって回転駆動されるファン(エバファン35)から送風された空気と上記霧状とされた冷媒とが熱交換することで、冷媒の一部又は全部が気化する。これにより、エバファン35から送風された空気が冷却され、冷却された空気が車室内へと送風されることで車室内を冷房することが可能となる。   The condenser 31 is a member that performs heat exchange between air (outside air) blown from a fan (not shown) that is rotationally driven by a DC motor or the like, and refrigerant discharged from the compressor 30. The receiver 32 is provided for gas-liquid separation of the refrigerant flowing in from the condenser 31, temporarily storing the separated liquid refrigerant, and supplying only the liquid refrigerant to the downstream side. The liquid refrigerant stored in the receiver 32 is rapidly expanded into a mist by the expansion valve 33. The mist refrigerant is supplied to an evaporator 34 that cools the air blown into the passenger compartment. In the evaporator 34, a part or all of the refrigerant is vaporized by heat exchange between the air blown from a fan (eva fan 35) that is rotationally driven by a DC motor or the like and the refrigerant in the mist form. As a result, the air blown from the evaporator fan 35 is cooled, and the cooled air is blown into the vehicle interior, whereby the vehicle interior can be cooled.

また、蒸発器34には、冷媒の熱を蓄えるパラフィン等の蓄冷剤を封入して構成される蓄冷器36が取り付けられている。これは、後述するアイドルストップ制御によりエンジン10が自動停止されるアイドルストップ期間において、圧縮機30を駆動させることなく蓄冷器36により車室内を冷房するための構成である。   Further, the evaporator 34 is provided with a regenerator 36 configured to enclose a regenerator such as paraffin that stores heat of the refrigerant. This is a configuration for cooling the vehicle interior by the regenerator 36 without driving the compressor 30 during an idle stop period in which the engine 10 is automatically stopped by idle stop control described later.

詳しくは、圧縮機30が駆動されることで蒸発器34に供給された冷媒と蓄冷器36との熱交換によって、冷媒の熱が蒸発器34に蓄えられる。その後、圧縮機30が停止される状況下、エバファン35から送風された空気と蓄冷器36とが熱交換することにより、上記送風された空気が冷却され、冷却された空気が車室へと送られることで車室内を冷房することが可能となる。なお、蒸発器34の出口直近には、冷媒温度を検出する冷媒温度センサ34aが設けられている。また、蒸発器34から流出した冷媒は、圧縮機30の吸入口に吸入される。   Specifically, when the compressor 30 is driven, heat of the refrigerant is stored in the evaporator 34 by heat exchange between the refrigerant supplied to the evaporator 34 and the regenerator 36. Thereafter, the air blown from the evaporator fan 35 and the regenerator 36 exchange heat while the compressor 30 is stopped, thereby cooling the blown air and sending the cooled air to the passenger compartment. This makes it possible to cool the passenger compartment. A refrigerant temperature sensor 34a for detecting the refrigerant temperature is provided in the immediate vicinity of the outlet of the evaporator 34. Further, the refrigerant that has flowed out of the evaporator 34 is sucked into the suction port of the compressor 30.

空調システムを制御対象とする電子制御装置(以下、エアコンECU37)は、周知のCPU、ROM、RAM等よりなるマイクロコンピュータを主体として構成されている。エアコンECU37には、車両乗員により操作されるA/Cスイッチの操作信号であって車室内を冷房すべく圧縮機30の駆動指令となる信号や、車両乗員により操作される目標温度設定スイッチの操作信号であって車室内温度の目標値(目標温度)となる信号、車室内温度を検出する車室内温度センサ及び冷媒温度センサ34a等の検出信号が入力される。エアコンECU37は、これら入力に応じてROMに記憶された各種の制御プログラムを実行することで、エバファン35や、CV30a等の各種機器を操作する。そして、これら各種機器を操作することで、圧縮機30の駆動制御や車室内の冷房制御等を行う。   An electronic control device (hereinafter referred to as an air conditioner ECU 37) that controls the air conditioning system is mainly configured by a microcomputer including a known CPU, ROM, RAM, and the like. The air conditioner ECU 37 has an operation signal of an A / C switch operated by a vehicle occupant and serving as a drive command for the compressor 30 to cool the passenger compartment, and an operation of a target temperature setting switch operated by the vehicle occupant. A signal which is a signal and becomes a target value (target temperature) of the vehicle interior temperature, and detection signals such as a vehicle interior temperature sensor for detecting the vehicle interior temperature and a refrigerant temperature sensor 34a are input. The air conditioner ECU 37 operates various devices such as the EVA fan 35 and the CV 30a by executing various control programs stored in the ROM in response to these inputs. And by operating these various devices, drive control of the compressor 30 and cooling control of the passenger compartment are performed.

圧縮機30の駆動制御は、圧縮機30の現在の実駆動トルクを、後述する目標値に制御すべくCV30aが通電操作されることで行われる。詳しくは、実駆動トルクを目標値にするよう圧縮機30に対する指令吐出容量を算出し、この指令吐出容量をCV30aの駆動電流値に換算する。そして、この駆動電流値に応じてCV30aに流れる駆動電流をデューティ制御することにより、実駆動トルクを目標値にするようフィードバック制御する。   The drive control of the compressor 30 is performed by energizing the CV 30a to control the current actual drive torque of the compressor 30 to a target value described later. Specifically, the command discharge capacity for the compressor 30 is calculated so that the actual drive torque becomes the target value, and this command discharge capacity is converted into the drive current value of the CV 30a. Then, by performing duty control on the drive current flowing through the CV 30a according to the drive current value, feedback control is performed so that the actual drive torque becomes the target value.

本実施形態にかかる車両Bはアイドルストップ機能を有する。すなわち、エンジンECU12は、エンジン10の運転中に所定の停止条件が成立した場合に、エンジン10を自動停止させるアイドルストップ制御を行う。そして、アイドルストップ期間中に所定の再始動条件が成立した場合には、スタータ20によりエンジン10を自動再始動させる。これにより、エンジン10の燃費低減効果を得ることが可能となる。   The vehicle B according to the present embodiment has an idle stop function. That is, the engine ECU 12 performs idle stop control for automatically stopping the engine 10 when a predetermined stop condition is satisfied during operation of the engine 10. When a predetermined restart condition is satisfied during the idle stop period, the engine 10 is automatically restarted by the starter 20. Thereby, the fuel consumption reduction effect of the engine 10 can be obtained.

さらに、本実施形態にかかる車両Bは減速エネルギ回収機能を有する。すなわち、燃料噴射弁11からの燃料噴射をカットした状態で車両Bが減速走行しており、かつ、以下に説明するロックアップ機構を作動させている時に、クランク軸13の回転駆動力によりオルタネータ22及び圧縮機30を駆動させる制御(減速エネルギ回収制御)を、エンジンECU12(回収制御手段)は実施する。これにより、車両Bの減速走行エネルギは、熱エネルギに変換されて蓄冷器36に蓄冷されるとともに電気エネルギに変換されてバッテリ21に蓄電されて、回収されることとなる。   Furthermore, the vehicle B according to the present embodiment has a deceleration energy recovery function. That is, the alternator 22 is driven by the rotational driving force of the crankshaft 13 when the vehicle B travels at a reduced speed with the fuel injection from the fuel injection valve 11 cut and the lockup mechanism described below is operated. The engine ECU 12 (recovery control means) performs control (deceleration energy recovery control) for driving the compressor 30. Thereby, the deceleration traveling energy of the vehicle B is converted into heat energy, stored in the regenerator 36, converted into electric energy, stored in the battery 21, and collected.

上記ロックアップ制御について説明すると、クランク軸13と変速装置14との間には、流体を介してクランク軸13の回転駆動力を変速装置14へ伝達するトルクコンバータ(図示せず)が備えられている。そして、トルクコンバータに備えられたロックアップ機構を作動させると、前記流体を介することなくクランク軸13と変速装置14とが直結される。これにより、クランク軸13の回転駆動力は、トルクコンバータによりトルク変換されることなく、クランクプーリ16及びベルト15を介してオルタネータ22及び圧縮機30へ伝達される。   The lockup control will be described. A torque converter (not shown) is provided between the crankshaft 13 and the transmission 14 to transmit the rotational driving force of the crankshaft 13 to the transmission 14 via a fluid. Yes. When the lockup mechanism provided in the torque converter is operated, the crankshaft 13 and the transmission 14 are directly connected without the fluid. Thereby, the rotational driving force of the crankshaft 13 is transmitted to the alternator 22 and the compressor 30 via the crank pulley 16 and the belt 15 without being converted into torque by the torque converter.

減速エネルギ回収制御時の圧縮機30の駆動トルク(蓄冷量に相当)は、CV30aの作動を制御して吐出容量を可変設定することにより制御することができる。また、減速エネルギ回収制御時のオルタネータ22の駆動トルク(蓄電量に相当)は、オルタネータ22のロータコイルに流す励磁電流を調節することにより制御することができる。以下、減速エネルギ回収制御時において、オルタネータ22及び圧縮機30の上記駆動トルクを制御する手順について説明する。   The driving torque of the compressor 30 (corresponding to the cold storage amount) during the deceleration energy recovery control can be controlled by controlling the operation of the CV 30a and variably setting the discharge capacity. Further, the drive torque (corresponding to the amount of stored electricity) of the alternator 22 during deceleration energy recovery control can be controlled by adjusting the excitation current that flows through the rotor coil of the alternator 22. Hereinafter, a procedure for controlling the drive torque of the alternator 22 and the compressor 30 during the deceleration energy recovery control will be described.

図2は、エンジンECU12が有するマイコンによる上記駆動トルクの制御手順を示すフローチャートであり、当該処理は、イグニッションスイッチがオン操作されたことをトリガとして起動した後、所定周期(例えば先述のCPUが行う演算周期又は所定のクランク角度毎)で繰り返し実行される。   FIG. 2 is a flowchart showing a control procedure of the driving torque by the microcomputer of the engine ECU 12, and this processing is started by a trigger that the ignition switch is turned on, and then a predetermined cycle (for example, the CPU described above performs). It is repeatedly executed at every calculation cycle or every predetermined crank angle.

先ず、図2に示すステップS10において、減速エネルギ回収が要求されているか否かを判定する。具体的には、燃料噴射弁11からの燃料噴射をカットした状態で車両Bが減速走行しており、かつ、ロックアップ機構を作動させている時に減速エネルギ回収が要求される。   First, in step S10 shown in FIG. 2, it is determined whether deceleration energy recovery is requested. Specifically, deceleration energy recovery is required when the vehicle B travels at a reduced speed with the fuel injection from the fuel injection valve 11 cut and the lockup mechanism is operating.

減速エネルギ回収が要求されている場合(S10:YES)には、ステップS11に進み、減速エネルギ回収が要求されていない通常時のブレーキトルクTbk(制動力)を取得する。なお、前記ブレーキトルクTbkは、図2とは別のルーチン処理で算出されるものであり、運転者のブレーキペダル操作量に応じたトルクである。   When deceleration energy recovery is requested (S10: YES), the process proceeds to step S11, and normal brake torque Tbk (braking force) where deceleration energy recovery is not requested is acquired. The brake torque Tbk is calculated by a routine process different from that in FIG. 2, and is a torque corresponding to the driver's brake pedal operation amount.

続くステップS12(許容減速トルク算出手段)では、ステップS11で取得したブレーキトルクTbkに基づき、以下に説明する許容トルクT0を算出する。ここで、減速走行時におけるオルタネータ22及び圧縮機30の駆動トルクが過大になると、運転者に違和感を与えるほどに車両Bの減速度が大きくなってしまい、ドライバビリティが悪化する。但し、例えばブレーキトルクTbkに相当する減速度を僅かに増大させただけでは、運転者に違和感を与えることはない。そこで上記ステップS12では、運転者に違和感を与えない程度に減速度を増大できる量を許容トルクT0として算出する。なお、ブレーキ操作量が大きくブレーキトルクTbkが大きい場合であるほど、許容トルクT0を大きく設定することができる。   In subsequent step S12 (allowable deceleration torque calculating means), an allowable torque T0 described below is calculated based on the brake torque Tbk acquired in step S11. Here, if the drive torque of the alternator 22 and the compressor 30 during deceleration traveling is excessive, the deceleration of the vehicle B increases to the extent that the driver feels uncomfortable, and drivability deteriorates. However, for example, if the deceleration corresponding to the brake torque Tbk is slightly increased, the driver does not feel uncomfortable. Therefore, in step S12, an amount capable of increasing the deceleration to such an extent that the driver does not feel uncomfortable is calculated as the allowable torque T0. The allowable torque T0 can be set larger as the brake operation amount is larger and the brake torque Tbk is larger.

車両運転者のブレーキ操作量(要求減速度)に基づき、車両運転者に対して許容できる最大の減速トルクである「許容減速トルク」は、上述したブレーキトルクTbkに許容トルクT0を加算した値に相当する。   Based on the brake operation amount (required deceleration) of the vehicle driver, the “allowable deceleration torque” that is the maximum deceleration torque allowable for the vehicle driver is a value obtained by adding the allowable torque T0 to the above-described brake torque Tbk. Equivalent to.

続くステップS13では、現時点における蓄冷器36での蓄冷量及びバッテリ21での蓄電量を取得する。なお、これらの蓄冷量及び蓄電量は、図2とは別のルーチン処理で算出されるものであり、蓄冷量は、冷媒温度センサ34aの検出値等に基づき算出され、蓄電量を表すSOCは、バッテリ21の入出力電流等に基づき算出される。   In continuing step S13, the cold storage amount in the cool storage 36 and the electrical storage amount in the battery 21 at the present time are acquired. Note that the cold storage amount and the storage amount are calculated by a routine process different from FIG. 2, and the cold storage amount is calculated based on the detection value of the refrigerant temperature sensor 34a and the SOC indicating the storage amount is , Based on the input / output current of the battery 21 and the like.

続くステップS14では、オルタネータ22及び圧縮機30の駆動トルクの最大値(補機最大トルクTmax)を算出する。続くステップS15では、ステップS12で算出した許容トルクT0とステップS14で算出した補機最大トルクTmaxとを大小比較する。   In subsequent step S14, the maximum value of the drive torque of the alternator 22 and the compressor 30 (auxiliary device maximum torque Tmax) is calculated. In subsequent step S15, the allowable torque T0 calculated in step S12 is compared with the auxiliary machine maximum torque Tmax calculated in step S14.

Tmax>T0と判定された場合(S15:YES)には、次のステップS16において、オルタネータ22及び圧縮機30の駆動トルクの合計値(補機合計トルクTsum)を許容トルクT0に設定する。一方、Tmax≦T0と判定された場合(S15:NO)には、次のステップS17において、補機合計トルクTsumを補機最大トルクTmaxに設定する。要するに、補機合計トルクTsumが許容トルクT0を超えると、運転者に違和感を与えてしまう程に減速度が増大するので、このような不具合が生じないように、Tmax>T0である場合には補機合計トルクTsumを補機最大トルクTmaxに制限する。   If it is determined that Tmax> T0 (S15: YES), in the next step S16, the total value of the drive torque of the alternator 22 and the compressor 30 (auxiliary total torque Tsum) is set to the allowable torque T0. On the other hand, when it is determined that Tmax ≦ T0 (S15: NO), the auxiliary machine total torque Tsum is set to the auxiliary machine maximum torque Tmax in the next step S17. In short, if the total auxiliary torque Tsum exceeds the allowable torque T0, the deceleration increases to the extent that the driver feels uncomfortable. Therefore, when Tmax> T0, such a problem does not occur. The auxiliary machine total torque Tsum is limited to the auxiliary machine maximum torque Tmax.

続くステップS18(トルク分配設定手段)では、ステップS13で取得した蓄電量及び蓄熱量に基づき、蓄冷要求レベル(蓄冷要求量に相当)及び蓄電要求レベル(蓄電要求量に相当)を設定し、これら要求レベルに基づき、オルタネータ22及び圧縮機30に対する補機合計トルクTsumの分配率λを設定する。詳しくは、図3を用いて以下に説明する。   In subsequent step S18 (torque distribution setting means), a cold storage request level (corresponding to the cold storage request amount) and an electric storage request level (corresponding to the electric storage request amount) are set based on the electric storage amount and the heat storage amount acquired in step S13. Based on the required level, the distribution ratio λ of the total auxiliary torque Tsum for the alternator 22 and the compressor 30 is set. Details will be described below with reference to FIG.

図3は、ステップS18による処理内容を表した機能ブロック図である。図中の蓄電要求レベル設定手段B10は、バッテリ21のSOCを複数の領域(レベル1〜5等)に分割して構成されたテーブルを有しており、バッテリ入出力電流等に基づき算出した現時点でのSOCが、前記テーブル中のいずれの領域に該当するかを判定する。これにより蓄電要求レベルを設定する。   FIG. 3 is a functional block diagram showing the processing contents in step S18. The power storage requirement level setting means B10 in the figure has a table configured by dividing the SOC of the battery 21 into a plurality of regions (levels 1 to 5 etc.), and is calculated based on the battery input / output current etc. It is determined to which area in the table the SOC in FIG. As a result, the required power storage level is set.

図中の蓄冷要求レベル設定手段B11は、蓄冷器36での蓄冷量を複数の領域(レベル1〜5等)に分割して構成されたテーブルを有しており、冷媒温度センサ34aにより検出された蒸発器出口温度に基づき算出した現時点での蓄冷量が、前記テーブル中のいずれの領域に該当するかを判定する。これにより蓄冷要求レベルを設定する。   The cold storage request level setting means B11 in the figure has a table configured by dividing the cold storage amount in the cold storage 36 into a plurality of regions (levels 1 to 5 etc.), and is detected by the refrigerant temperature sensor 34a. It is determined which region in the table the current cold storage amount calculated based on the evaporator outlet temperature corresponds to. Thereby, a cold storage request | requirement level is set.

図中の分配率設定手段B12は、各々の要求レベル設定手段B10,B11により設定された蓄電要求レベル及び蓄冷要求レベルに基づき、補機合計トルクTsumの分配率λを演算する。具体的には、蓄冷要求レベル>蓄電要求レベル+α1である場合には分配率λを1に設定し、補機合計トルクTsumの全てを圧縮機30の駆動トルクに分配する(圧縮機優先モード)。なお、α1は、例えば1レベル又は2レベルに設定されている。   The distribution ratio setting means B12 in the figure calculates the distribution ratio λ of the auxiliary machine total torque Tsum based on the storage request level and the cold storage request level set by the respective request level setting means B10, B11. Specifically, when cold storage requirement level> storage requirement level + α1, the distribution ratio λ is set to 1, and all the auxiliary machine total torque Tsum is distributed to the drive torque of the compressor 30 (compressor priority mode). . Note that α1 is set to, for example, one level or two levels.

蓄冷要求レベル<蓄電要求レベル−α2である場合には分配率λを0に設定し、補機合計トルクTsumの全てをオルタネータ22の駆動トルクに分配す(オルタネータ優先モード)。なお、α2は、例えば1レベル又は2レベルに設定されている。   If cold storage request level <power storage request level−α2, the distribution ratio λ is set to 0, and all of the auxiliary machine total torque Tsum is distributed to the drive torque of the alternator 22 (alternator priority mode). Note that α2 is set to, for example, one level or two levels.

上記以外である場合、すなわち−α2≦蓄冷要求レベル−蓄電要求レベル≦α1である場合には分配率λを0.5に設定し、補機合計トルクTsumに分配率λを乗じた値を圧縮機30の駆動トルクに分配するとともに、補機合計トルクTsumに(1−λ)を乗じた値をオルタネータ22の駆動トルクに分配する(均等分配モード)。なお、分配率λは1,0.5,0以外の値を用いてもよい。   In other cases, that is, when -α2 ≦ cold storage requirement level−storage requirement level ≦ α1, the distribution ratio λ is set to 0.5, and the value obtained by multiplying the auxiliary machine total torque Tsum by the distribution ratio λ is compressed. A value obtained by multiplying the auxiliary machine total torque Tsum by (1-λ) is distributed to the drive torque of the alternator 22 (equal distribution mode). The distribution ratio λ may be a value other than 1, 0.5, 0.

図2の説明に戻り、次のステップS19(駆動トルク算出手段)では、補機合計トルクTsum及び分配率λに基づき、圧縮機30の駆動トルクの目標値である目標トルクTHtrgを算出する(THtrg=Tsum・λ)。なお、この目標トルクTHtrgは「分配率に応じた圧縮機の目標駆動トルク」に相当する。   Returning to the description of FIG. 2, in the next step S19 (drive torque calculation means), a target torque THtrg, which is a target value of the drive torque of the compressor 30, is calculated based on the auxiliary machine total torque Tsum and the distribution ratio λ (THtrg). = Tsum · λ). The target torque THtrg corresponds to “the target drive torque of the compressor according to the distribution ratio”.

続くステップS20(駆動トルク算出手段)では、補機合計トルクTsum及び分配率λに基づき、オルタネータ22の駆動トルクの目標ベース値である目標ベーストルクTEbを算出する(TEb=Tsum・(1−λ))。なお、この目標ベーストルクTEbは「分配率に応じた発電機の目標駆動トルク」に相当する。   In the subsequent step S20 (drive torque calculation means), a target base torque TEb which is a target base value of the drive torque of the alternator 22 is calculated based on the auxiliary machine total torque Tsum and the distribution ratio λ (TEb = Tsum · (1−λ). )). The target base torque TEb corresponds to “the target drive torque of the generator according to the distribution ratio”.

続くステップS21では、圧縮機30の実駆動トルクTHと目標トルクTHtrgとの偏差ΔTHを算出し、その偏差ΔTHに基づきオルタネータ22の補正トルクTEaを算出する(TEa=f(ΔTH))。具体的には、前記偏差ΔTHが大きいほど補正トルクTEaを大きい値に設定する。なお、上記関数fは、TEa<ΔTHとなるように偏差ΔTHにゲインをかけるものであるが、ゲインを1に設定して偏差ΔTHをそのまま補正トルクTEaとして設定してもよい。   In the subsequent step S21, a deviation ΔTH between the actual driving torque TH of the compressor 30 and the target torque THtrg is calculated, and a correction torque TEa of the alternator 22 is calculated based on the deviation ΔTH (TEa = f (ΔTH)). Specifically, the correction torque TEa is set to a larger value as the deviation ΔTH is larger. The function f is a gain applied to the deviation ΔTH so that TEa <ΔTH, but the gain may be set to 1 and the deviation ΔTH may be set as the correction torque TEa as it is.

続くステップS22(応答待ち発電制御手段)では、目標ベーストルクTEb及び補正トルクTEaに基づき、オルタネータ22の目標最終トルクTEfinを算出する(TEfin=TEb+TEa)。なお、減速エネルギ回収を実施していない時に車両Bへ付与される制動トルクはブレーキトルクTbkであるのに対し、図2の処理に基づく減速エネルギ回収時には、車両Bへ付与される制動トルクはブレーキトルクTbkに許容トルクT0を加算した大きさとなっており、ブレーキ操作量に対する減速度は大きくなっている。但しその減速増大分は、車両運転者へ違和感を与えない範囲で最大に設定される。   In the subsequent step S22 (response waiting power generation control means), the target final torque TEfin of the alternator 22 is calculated based on the target base torque TEb and the correction torque TEa (TEfin = TEb + TEa). Note that the braking torque applied to the vehicle B when the deceleration energy recovery is not performed is the brake torque Tbk, whereas the braking torque applied to the vehicle B during the deceleration energy recovery based on the processing of FIG. The torque Tbk is added to the allowable torque T0, and the deceleration with respect to the brake operation amount is large. However, the increase in deceleration is set to the maximum within a range that does not give the vehicle driver a sense of incongruity.

図4は、ステップS19〜S22による処理内容を表した機能ブロック図である。図中の圧縮機目標トルク演算手段B20は、ステップS19に相当する手段であり、Tsum×λ=THtrgの演算を実施することで圧縮機30の目標トルクTHtrgを算出する。図中のオルタネータ目標ベーストルク演算手段B21は、ステップS20に相当する手段であり、Tsum−THtrg=TEbの演算を実施することでオルタネータ22の目標ベーストルクTEbを算出する。   FIG. 4 is a functional block diagram showing the processing contents in steps S19 to S22. The compressor target torque calculation means B20 in the figure is a means corresponding to step S19, and calculates the target torque THtrg of the compressor 30 by performing the calculation of Tsum × λ = THtrg. The alternator target base torque calculating means B21 in the figure is means corresponding to step S20, and calculates the target base torque TEb of the alternator 22 by calculating Tsum-THtrg = TEb.

実トルク演算手段B22では圧縮機30の実駆動トルクTHを演算し、偏差演算手段B23(偏差取得手段)では目標トルクTHtrgと実駆動トルクTHとの偏差ΔTHを演算する。補正トルク演算手段B24(トルク増大量設定手段)は、ステップS21に相当する手段であり、所定のゲインを偏差ΔTHに乗算し、その演算値をオルタネータ22の補正トルクTEaとして出力する。   The actual torque calculation means B22 calculates the actual drive torque TH of the compressor 30, and the deviation calculation means B23 (deviation acquisition means) calculates the deviation ΔTH between the target torque THtrg and the actual drive torque TH. Correction torque calculation means B24 (torque increase amount setting means) is a means corresponding to step S21, multiplies a predetermined gain by deviation ΔTH, and outputs the calculated value as correction torque TEa of alternator 22.

最終トルク演算手段B25は、ステップS22に相当する手段であり、目標ベーストルクTEbに補正トルクTEaを加算し、その演算値をオルタネータ22の目標最終トルクTEfinとして出力する。要するに、許容トルクT0に基づき設定された補機合計トルクTsumに補機合計実トルクTactが近づくよう、圧縮機30の偏差ΔTHに応じてオルタネータ22の駆動トルクをフィードバック制御する。   The final torque calculation means B25 is a means corresponding to step S22, adds the correction torque TEa to the target base torque TEb, and outputs the calculated value as the target final torque TEfin of the alternator 22. In short, the drive torque of the alternator 22 is feedback-controlled in accordance with the deviation ΔTH of the compressor 30 so that the auxiliary total torque Tact set close to the auxiliary total torque Tsum set based on the allowable torque T0.

なお、図中の実トルク演算手段B26ではオルタネータ22の実駆動トルクTEを演算し、加算手段B27では圧縮機30の実駆動トルクTHとオルタネータ22の実駆動トルクTEとを加算し、その演算値を補機合計実トルクTactとして出力する。   In the figure, the actual torque calculating means B26 calculates the actual driving torque TE of the alternator 22, and the adding means B27 adds the actual driving torque TH of the compressor 30 and the actual driving torque TE of the alternator 22, and the calculated value. Is output as the auxiliary machine total actual torque Tact.

図5は、図2〜図4に示す処理を実施した場合における、経過時間に対する各種変化の一態様を示すタイムチャートである。図5の例では、車両走行中のt1時点で運転者がブレーキペダルの踏み込みを開始しており(図5(a)参照)、このブレーキ操作に伴い車速が減速していきt2時点で車速がゼロになっている(図5(b)参照)。そして、この減速期間t1〜t2中に、オルタネータ22及び圧縮機30の少なくとも一方を駆動させて減速エネルギを回収させる要求が発生している。   FIG. 5 is a time chart showing one aspect of various changes with respect to the elapsed time when the processing shown in FIGS. 2 to 4 is performed. In the example of FIG. 5, the driver starts depressing the brake pedal at time t1 while the vehicle is traveling (see FIG. 5A), and the vehicle speed is reduced in accordance with the brake operation, and the vehicle speed is increased at time t2. It is zero (see FIG. 5B). And during this deceleration period t1-t2, the request | requirement which drives at least one of the alternator 22 and the compressor 30 and collects deceleration energy has generate | occur | produced.

図5の例では、ブレーキ操作量が一定であるため、図2のステップS11にて算出されるブレーキトルクTbkは一定のままである(図5(c)中の実線参照)。したがって、ステップS12にてブレーキトルクTbkに基づき算出される許容トルクT0も一定のままである(図5(c)中の点線参照)。なお、図5の例では、許容トルクT0を補機合計トルクTsumとして設定している。   In the example of FIG. 5, since the brake operation amount is constant, the brake torque Tbk calculated in step S11 of FIG. 2 remains constant (see the solid line in FIG. 5C). Accordingly, the allowable torque T0 calculated based on the brake torque Tbk in step S12 remains constant (see the dotted line in FIG. 5C). In the example of FIG. 5, the allowable torque T0 is set as the auxiliary machine total torque Tsum.

図5(d)に示す如く圧縮機優先モード(λ=1)に設定されている場合には、圧縮機30の実駆動トルクが目標トルクTHtrg(この場合THtrg=Tsum)に上昇するまでに応答遅れ(応答待ち期間)が発生する(図5(d)中の一点鎖線参照)。この応答待ち期間t1〜t3にはオルタネータ22が駆動される(図5(d)中の点線参照)。   When the compressor priority mode (λ = 1) is set as shown in FIG. 5D, a response is made until the actual drive torque of the compressor 30 increases to the target torque THtrg (in this case, THtrg = Tsum). A delay (response waiting period) occurs (see the dashed line in FIG. 5D). The alternator 22 is driven during the response waiting periods t1 to t3 (see the dotted line in FIG. 5D).

この時、図4に示すフィードバック制御により、圧縮機30の実駆動トルクTHと目標トルクTHtrgとの偏差ΔTHが大きいほどオルタネータ22の駆動トルクを増大させる。よって、t1時点からt3時点にかけて圧縮機30の実駆動トルクTHが徐々に上昇するにつれて、オルタネータ22の実駆動トルクTEは徐々に減少している。これにより、応答遅れ期間t1〜t3において、補機合計実トルクTact(図5(d)中の実線参照)を補機合計トルクTsumに過不足なく一致させることができる。   At this time, by the feedback control shown in FIG. 4, the drive torque of the alternator 22 is increased as the deviation ΔTH between the actual drive torque TH of the compressor 30 and the target torque THtrg is larger. Therefore, the actual drive torque TE of the alternator 22 gradually decreases as the actual drive torque TH of the compressor 30 gradually increases from the time t1 to the time t3. Thereby, in the response delay periods t1 to t3, the auxiliary machine total actual torque Tact (see the solid line in FIG. 5D) can be matched with the auxiliary machine total torque Tsum without excess or deficiency.

図5(e)に示す如くオルタネータ優先モード(λ=0)に設定されている場合には、オルタネータ22の実駆動トルクが目標最終トルクTEfin(この場合TEfin=Tsum)にまで直ぐに上昇し、その時の応答遅れは圧縮機30の応答遅れに比べて極めて小さい。よって、オルタネータ22の応答遅れ期間中には圧縮機30を駆動させることはしない。   When the alternator priority mode (λ = 0) is set as shown in FIG. 5 (e), the actual drive torque of the alternator 22 immediately increases to the target final torque TEfin (in this case, TEfin = Tsum). Is much smaller than the response delay of the compressor 30. Therefore, the compressor 30 is not driven during the response delay period of the alternator 22.

図5(f)に示す如く均等分配モード(λ=0.5)に設定されている場合には、圧縮機30の実駆動トルクが目標トルクTHtrg(この場合THtrg=Tsum×0.5)に上昇するまでに応答遅れが発生する(図5(f)中の一点鎖線参照)。この応答遅れが生じている期間(応答待ち期間t1〜t4)には、オルタネータ22の目標ベーストルクTEbは増大するよう補正されることに起因して、オルタネータ22の実駆動トルクは目標ベーストルクTEb(この場合THtrg=Tsum×0.5)よりも高くなっている(図5(f)中の点線参照)。   When the uniform distribution mode (λ = 0.5) is set as shown in FIG. 5F, the actual drive torque of the compressor 30 is set to the target torque THtrg (in this case, THtrg = Tsum × 0.5). There is a response delay before it rises (see the dashed line in FIG. 5 (f)). During the response delay period (response waiting periods t1 to t4), the target drive torque TEb of the alternator 22 is corrected to increase so that the actual drive torque of the alternator 22 is the target base torque TEb. (In this case, THtrg = Tsum × 0.5) (see the dotted line in FIG. 5 (f)).

この時、図4に示すフィードバック制御により、圧縮機30の実駆動トルクTHと目標トルクTHtrgとの偏差ΔTHが大きいほどオルタネータ22の駆動トルクを増大させる。よって、t1時点からt4時点にかけて圧縮機30の実駆動トルクTHが徐々に上昇するにつれて、オルタネータ22の実駆動トルクTEは徐々に減少している。これにより、応答遅れ期間t1〜t4において、補機合計実トルクTact(図5(f)中の実線参照)を補機合計トルクTsumに過不足なく一致させることができる。   At this time, by the feedback control shown in FIG. 4, the drive torque of the alternator 22 is increased as the deviation ΔTH between the actual drive torque TH of the compressor 30 and the target torque THtrg is larger. Therefore, the actual drive torque TE of the alternator 22 gradually decreases as the actual drive torque TH of the compressor 30 gradually increases from the time t1 to the time t4. Thereby, in the response delay periods t1 to t4, the auxiliary machine total actual torque Tact (see the solid line in FIG. 5 (f)) can be matched with the auxiliary machine total torque Tsum without excess or deficiency.

以上により、本実施形態によれば、圧縮機30の実駆動トルクTHと目標トルクTHtrgよりも少なくなっている応答待ち期間t1〜t3,t1〜t4に、オルタネータ22の駆動トルク(目標最終トルクTEfin)を増大させるので、その増大分だけ減速エネルギの回収量を増大できる。よって、アイドルストップ中に蓄電量が不足して、オルタネータ22を駆動させてバッテリ21を充電させるようエンジン10を再始動させたり、アイドルストップ中に蓄冷量が不足して、圧縮機30を駆動させて車室内への送風空気を十分に低下させて冷房させるようエンジンを再始動させたりすることの機会を低減できる。   As described above, according to the present embodiment, during the response waiting periods t1 to t3 and t1 to t4 that are smaller than the actual drive torque TH and the target torque THtrg of the compressor 30, the drive torque (target final torque TEfin) of the alternator 22 is obtained. ) Is increased, the recovery amount of deceleration energy can be increased by the increase. Therefore, the engine 10 is restarted to charge the battery 21 by driving the alternator 22 when the storage amount is insufficient during idle stop, or the compressor 30 is driven due to insufficient cold storage during idle stop. Thus, the opportunity of restarting the engine to sufficiently cool the air blown into the passenger compartment can be reduced.

しかも、圧縮機30の実駆動トルクTHと目標トルクTHtrgとの偏差ΔTHに応じた量だけオルタネータ22の目標ベーストルクTEbを増大させるので、応答遅れに起因した圧縮機30のトルク不足分(偏差ΔTH)だけオルタネータ22の駆動トルクを増大させることができる。よって、車両運転者に違和感を与えるほどに減速度を大きくさせることなく、減速エネルギの回収量増大といった上記効果を発揮できるので、ドライバビリティを悪化させることなく減速エネルギ回収量を増大させることができる。   Moreover, since the target base torque TEb of the alternator 22 is increased by an amount corresponding to the deviation ΔTH between the actual driving torque TH and the target torque THtrg of the compressor 30, the torque shortage (deviation ΔTH) of the compressor 30 due to the response delay. ), The drive torque of the alternator 22 can be increased. Therefore, the above-described effect of increasing the recovery amount of deceleration energy can be exhibited without increasing the deceleration to the extent that the vehicle driver feels uncomfortable, so that the deceleration energy recovery amount can be increased without deteriorating drivability. .

また、本実施形態によれば、ブレーキトルクTbkに加算しても車両運転者が過度な減速と感じない程度の最大値を許容トルクT0として算出し、その許容トルクT0及び分配率λに基づき、減速エネルギ回収制御時の目標トルクTHtrg及び目標ベーストルクTEbを算出する。そのため、減速エネルギ回収制御時の両実駆動トルクTE,THを、蓄冷要求量及び蓄電要求量のバランスに応じた値にすることができるとともに、補機合計実トルクTactを、車両運転者に違和感を与えない範囲内で最大(Tbk+T0)にできる。よって、ドライバビリティを悪化させることなく減速エネルギ回収量を増大させることができる。   Further, according to the present embodiment, the maximum value that does not cause the vehicle driver to feel excessive deceleration even when added to the brake torque Tbk is calculated as the allowable torque T0, and based on the allowable torque T0 and the distribution ratio λ, A target torque THtrg and a target base torque TEb at the time of deceleration energy recovery control are calculated. Therefore, both the actual drive torques TE and TH during the deceleration energy recovery control can be set to values according to the balance between the cold storage request amount and the storage request amount, and the auxiliary total actual torque Tact is uncomfortable to the vehicle driver. Can be maximized (Tbk + T0) within a range in which is not given. Therefore, the deceleration energy recovery amount can be increased without deteriorating drivability.

また、車両運転者が過度な減速と感じない程度の最大値(許容トルクT0)は、その時のブレーキ操作量に応じて異なる。この点を鑑みた本実施形態では、車両運転者によるブレーキ操作量に応じて許容トルクT0を可変設定するので、ドライバビリティを悪化させることなく減速エネルギ回収量を増大させることを高精度で実現できる。   Further, the maximum value (allowable torque T0) to the extent that the vehicle driver does not feel excessive deceleration differs according to the amount of brake operation at that time. In this embodiment in view of this point, the allowable torque T0 is variably set according to the amount of brake operation performed by the vehicle driver, so that it is possible to increase the deceleration energy recovery amount without deteriorating drivability with high accuracy. .

(第2実施形態)
上記第1実施形態では、車両運転者によるブレーキ操作量に応じたブレーキトルクTbkが車両Bの駆動輪や従動輪へ付与される。これに対し本実施形態にかかる車両Bは、図1中の一点鎖線に示す油圧駆動式のブレーキアクチュエータ40(制動アクチュエータ)を備えており、ブレーキアクチュエータ40によるブレーキトルクTbk(制動力)は、エンジンECU12(制動力制御手段)により制御可能である。
(Second Embodiment)
In the first embodiment, the brake torque Tbk corresponding to the amount of brake operation by the vehicle driver is applied to the drive wheels and the driven wheels of the vehicle B. On the other hand, the vehicle B according to the present embodiment includes a hydraulically driven brake actuator 40 (braking actuator) indicated by a one-dot chain line in FIG. 1, and the brake torque Tbk (braking force) by the brake actuator 40 is the engine. It can be controlled by the ECU 12 (braking force control means).

詳細には、先ずエンジンECU12は、運転者のブレーキ操作量に応じた要求制動力を算出する。そして減速回収制御時には、オルタネータ22及び圧縮機30を駆動させることによる制動力(補機合計実トルクTact)の、要求制動力に対する不足分を、ブレーキアクチュエータ40による制動力(ブレーキトルクTbk)で補うよう、ブレーキアクチュエータ40の作動を制御する。このように、ブレーキアクチュエータ40を有する車両Bにおいては、ブレーキトルクTbkを減少させ、その減少分だけ補機合計実トルクTactを増大させるように制御可能である。   Specifically, first, the engine ECU 12 calculates a required braking force corresponding to the driver's brake operation amount. At the time of deceleration recovery control, the deficiency of the braking force (auxiliary total actual torque Tact) by driving the alternator 22 and the compressor 30 with respect to the required braking force is compensated by the braking force (brake torque Tbk) by the brake actuator 40. Thus, the operation of the brake actuator 40 is controlled. As described above, in the vehicle B having the brake actuator 40, the brake torque Tbk can be decreased and the auxiliary total actual torque Tact can be increased by the decrease.

図6は、本実施形態にかかる処理内容を示すフローチャートであり、以下、図2との違いを中心に説明する。なお、図6中、図2と同一符号部分についてはその説明を援用する。また、本実施形態におけるバッテリシステム及び空調システムのハード構成は、図1に示す上記第1実施形態と同じである。   FIG. 6 is a flowchart showing the processing contents according to the present embodiment. Hereinafter, the difference from FIG. 2 will be mainly described. In FIG. 6, the same reference numerals as those in FIG. The hardware configuration of the battery system and the air conditioning system in the present embodiment is the same as that of the first embodiment shown in FIG.

先ず、図6に示すステップS10〜S14では、図2と同様にして、現時点での蓄電量及び蓄冷量を取得するとともに、通常ブレーキトルクTbk、許容トルクT0及び補機最大トルクTmaxを算出する。   First, in steps S10 to S14 shown in FIG. 6, as in FIG. 2, the current storage amount and the cold storage amount are acquired, and the normal brake torque Tbk, the allowable torque T0, and the auxiliary machine maximum torque Tmax are calculated.

続くステップS15aでは、ステップS12で算出した許容トルクT0に通常のブレーキトルクTbkを加算した値と、ステップS14で算出した補機最大トルクTmaxとを大小比較する。   In the subsequent step S15a, the value obtained by adding the normal brake torque Tbk to the allowable torque T0 calculated in step S12 is compared with the auxiliary machine maximum torque Tmax calculated in step S14.

Tmax>T0+Tbkと判定された場合(S15a:YES)には、次のステップS16a(補機トルク増大制御手段)において、オルタネータ22及び圧縮機30の駆動トルクの合計値(補機合計トルクTsum)を、通常ブレーキトルクTbkに許容トルクT0を加算した値にする(Tsum=Tbk+T0)。この場合には、車両Bへ付与する制動力の全てをオルタネータ22及び圧縮機30の駆動トルクにより生成されることとなり、ブレーキアクチュエータ40によるトルクはゼロになる。この変形例として、ブレーキアクチュエータ40によるトルクを僅かでも発生させるために、Tsum=T0+Tbk−Treと設定して、前記Treの分だけブレーキアクチュエータ40によるブレーキトルクを発生させてもよい。   When it is determined that Tmax> T0 + Tbk (S15a: YES), in the next step S16a (auxiliary torque increase control means), the total value of the driving torque of the alternator 22 and the compressor 30 (auxiliary total torque Tsum) is set. The value obtained by adding the allowable torque T0 to the normal brake torque Tbk (Tsum = Tbk + T0). In this case, all of the braking force applied to the vehicle B is generated by the driving torque of the alternator 22 and the compressor 30, and the torque by the brake actuator 40 becomes zero. As a modified example, in order to generate even a small amount of torque by the brake actuator 40, Tsum = T0 + Tbk−Tre may be set, and the brake torque by the brake actuator 40 may be generated by the amount of Tre.

一方、Tmax≦T0+Tbkと判定された場合(S15a:NO)には、次のステップS17において、補機合計トルクTsumを補機最大トルクTmaxに設定する。要するに、補機合計トルクTsumがT0+Tbkを超えると、運転者に違和感を与えてしまう程に減速度が増大するので、このような不具合が生じないように、Tmax>T0+Tbkである場合には補機合計トルクTsumを補機最大トルクTmaxに制限する。   On the other hand, when it is determined that Tmax ≦ T0 + Tbk (S15a: NO), the auxiliary machine total torque Tsum is set to the auxiliary machine maximum torque Tmax in the next step S17. In short, if the total torque Tsum of the auxiliary machine exceeds T0 + Tbk, the deceleration increases to the extent that the driver feels uncomfortable. Therefore, if Tmax> T0 + Tbk, the auxiliary machine will not cause such a problem. The total torque Tsum is limited to the auxiliary machine maximum torque Tmax.

続くステップS16b(補機トルク増大制御手段)では、ブレーキアクチュエータ40によるブレーキトルクの目標値(目標トルクTbktrg)を算出する。具体的には、ステップS16a,S17で決定した補機合計トルクTsumとブレーキアクチュエータ40によるブレーキトルクとの合計が、通常ブレーキトルクTbkに許容トルクT0を加算したトルクとなるよう、ブレーキアクチュエータ40の目標トルクTbktrgを算出する(Tbktrg=Tbk+T0−Tsum)。   In the subsequent step S16b (auxiliary torque increase control means), a target value of brake torque (target torque Tbktrg) by the brake actuator 40 is calculated. Specifically, the target of the brake actuator 40 is set so that the sum of the auxiliary machine total torque Tsum determined in steps S16a and S17 and the brake torque by the brake actuator 40 becomes a torque obtained by adding the allowable torque T0 to the normal brake torque Tbk. Torque Tbktrg is calculated (Tbktrg = Tbk + T0−Tsum).

以降のステップS18〜S22では、図2と同様にして、蓄冷要求レベル及び蓄電要求レベルを設定し、これら要求レベルに基づき補機合計トルクTsumの分配率λを設定する。そして、補機合計トルクTsum及び分配率λに基づき圧縮機30の目標トルクTHtrgを算出するとともに、オルタネータ22の目標ベーストルクTEbを算出する。そして、圧縮機30の偏差ΔTHに基づき目標ベーストルクTEbを補正して目標最終トルクTEfinを算出する。   In subsequent steps S18 to S22, the cold storage request level and the power storage request level are set in the same manner as in FIG. 2, and the distribution ratio λ of the auxiliary machine total torque Tsum is set based on these request levels. Then, the target torque THtrg of the compressor 30 is calculated based on the auxiliary machine total torque Tsum and the distribution ratio λ, and the target base torque TEb of the alternator 22 is calculated. Then, the target final torque TEfin is calculated by correcting the target base torque TEb based on the deviation ΔTH of the compressor 30.

以上詳述した本実施形態によれば、上記第1実施形態と同様の効果が得られるとともに以下の効果も発揮される。すなわち、減速エネルギ回収制御を実施する時にはブレーキアクチュエータ40により発揮されるブレーキトルクを減少させ、その減少分に相当するトルク分だけ補機合計トルクTsumを増大させるので、車両Bの減速度を増大させることなく、補機合計トルクTsumを増大させることができる。よって、ドライバビリティを悪化させることなく減速エネルギ回収量を増大できる。   According to this embodiment described above in detail, the same effects as those of the first embodiment can be obtained, and the following effects can be exhibited. That is, when the deceleration energy recovery control is performed, the brake torque exerted by the brake actuator 40 is decreased, and the auxiliary machine total torque Tsum is increased by a torque corresponding to the decrease, so that the deceleration of the vehicle B is increased. Without this, the auxiliary machine total torque Tsum can be increased. Therefore, the deceleration energy recovery amount can be increased without deteriorating drivability.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・図4に示す例では、補正トルク演算手段B24を設けて偏差ΔTHに所定のゲイン(1未満の正の値)をかけているが、前記ゲインを廃止して偏差ΔTHをそのまま補正トルクTEaとして設定するようにしてもよい。   In the example shown in FIG. 4, the correction torque calculation means B24 is provided to multiply the deviation ΔTH by a predetermined gain (a positive value less than 1), but the gain is eliminated and the deviation ΔTH is used as the correction torque TEa as it is. You may make it set.

・図4に示す例では、補正トルク演算手段B24による上記ゲインを固定した値に設定しているが、バッテリシステムや空調システムの運転状態に応じて可変設定してもよい。すなわち、クランク軸13の回転速度、バッテリ21のSOC、外気温度、冷媒圧力等の状態量が異なれば、目標最終トルクTEfinや目標トルクTHtrgが同じであっても実駆動トルクTH,TEは異なる。この点を鑑みて、前記状態量に応じて補正トルク演算手段B24による上記ゲインを可変設定すれば、ドライバビリティを悪化させることなく減速エネルギ回収量を増大させることをより一層高精度にできる。   In the example shown in FIG. 4, the gain by the correction torque calculation means B24 is set to a fixed value, but may be variably set according to the operating state of the battery system or the air conditioning system. That is, if the amount of state such as the rotational speed of the crankshaft 13, the SOC of the battery 21, the outside air temperature, the refrigerant pressure, and the like are different, the actual drive torques TH and TE are different even if the target final torque TEfin and the target torque THtrg are the same. In view of this point, if the gain by the correction torque calculation means B24 is variably set according to the state quantity, it is possible to increase the deceleration energy recovery amount with higher accuracy without deteriorating drivability.

・図3に示す例では、蓄電要求レベル及び蓄冷要求レベルのレベル分けを3段階に設定しているが、当該レベル分けは2段階でもよいし4段階以上でもよい。   -In the example shown in FIG. 3, although the level division | segmentation of an electrical storage request | requirement level and a cool storage request | requirement level is set to three steps, the said level division may be two steps or four steps or more.

・図4に示す例では、圧縮機30の実駆動トルクTHと目標トルクTHtrgとの偏差ΔTHに基づき、オルタネータ22の目標ベーストルクTEbに対する補正トルクTEaを算出している。この変形例として、補機合計実トルクTactと補機合計トルクTsumとの偏差に応じて補正トルクTEaを算出するようにしてもよい。   In the example shown in FIG. 4, the correction torque TEa for the target base torque TEb of the alternator 22 is calculated based on the deviation ΔTH between the actual drive torque TH of the compressor 30 and the target torque THtrg. As a modified example, the correction torque TEa may be calculated according to the deviation between the auxiliary total actual torque Tact and the auxiliary total torque Tsum.

・上記実施形態では、アイドルストップ機能を有した車両Bにおいて、アイドルストップ中に蓄冷量又は蓄電量が不足することの機会を低減させるべく減速エネルギ回収量の増大を図っているが、本発明は、アイドルストップ機能を有していない車両にも適用できる。   In the above embodiment, in the vehicle B having the idle stop function, the deceleration energy recovery amount is increased in order to reduce the chance that the cold storage amount or the storage amount is insufficient during the idle stop. The present invention can also be applied to a vehicle that does not have an idle stop function.

・図1に示す例では、蓄冷器36を蒸発器34に設けているが、本発明にかかる蓄冷器はこのような配置に限られるものではなく、例えば、圧縮機30の冷媒吸入口と蒸発器34との間に蓄冷器36を接続してもよいし、蒸発器34と蓄冷器36とを並列に接続した構成の冷凍サイクルであってもよい。   In the example shown in FIG. 1, the regenerator 36 is provided in the evaporator 34, but the regenerator according to the present invention is not limited to such an arrangement. For example, the refrigerant intake port of the compressor 30 and the evaporation A regenerator 36 may be connected between the regenerator 34 and a refrigeration cycle having a configuration in which the evaporator 34 and the regenerator 36 are connected in parallel.

12…エンジンECU(回収制御手段、制動力制御手段)、21…バッテリ、22…オルタネータ(発電機)、30…圧縮機、36…蓄冷器、S11…制動力設定手段、S12…許容減速トルク算出手段、S16a,S16b…補機トルク増大制御手段、S18…トルク分配設定手段、S19,S20…駆動トルク算出手段、S22…応答待ち発電制御手段、B23…偏差取得手段、B24…トルク増大量設定手段。   DESCRIPTION OF SYMBOLS 12 ... Engine ECU (collection control means, braking force control means), 21 ... Battery, 22 ... Alternator (generator), 30 ... Compressor, 36 ... Regenerator, S11 ... Braking force setting means, S12 ... Calculation of allowable deceleration torque Means, S16a, S16b ... Auxiliary machine torque increase control means, S18 ... Torque distribution setting means, S19, S20 ... Drive torque calculation means, S22 ... Response waiting power generation control means, B23 ... Deviation acquisition means, B24 ... Torque increase amount setting means .

Claims (6)

内燃機関により駆動して冷凍サイクル中の冷媒を圧縮して吐出する圧縮機、及び前記冷凍サイクルに設けられた蓄冷器と、
内燃機関により駆動して発電する発電機、及び前記発電機により発電された電力を充電可能なバッテリと、
を備えた車両に適用され、
前記蓄冷器及び前記バッテリの少なくとも一方へ前記車両の減速エネルギを回収させるよう、前記車両の減速時に前記圧縮機及び前記発電機の少なくとも一方を駆動させる減速エネルギ回収制御を実施する回収制御手段と、
前記蓄冷器の蓄冷要求量及び前記バッテリの蓄電要求量のバランスに応じて、前記減速エネルギ回収制御時の前記圧縮機及び前記発電機の駆動トルクの分配率を設定するトルク分配設定手段と、
前記減速エネルギ回収制御による前記圧縮機の駆動を開始させてから、前記圧縮機の実駆動トルクが前記分配率に応じた目標駆動トルクに上昇するまでの応答待ち期間には、前記分配率に応じた前記発電機の目標駆動トルクよりも大きいトルクで前記発電機を駆動させる応答待ち発電制御手段と、
を備えることを特徴とする減速エネルギ回収制御装置。
A compressor driven by an internal combustion engine to compress and discharge the refrigerant in the refrigeration cycle, and a regenerator provided in the refrigeration cycle;
A generator that generates electric power by being driven by an internal combustion engine, and a battery that can charge the electric power generated by the generator;
Applied to vehicles with
Recovery control means for performing deceleration energy recovery control for driving at least one of the compressor and the generator when the vehicle is decelerated so that at least one of the regenerator and the battery recovers the deceleration energy of the vehicle;
Torque distribution setting means for setting a distribution ratio of the driving torque of the compressor and the generator during the deceleration energy recovery control according to the balance between the cold storage required amount of the regenerator and the storage required amount of the battery;
During the response waiting period from when the compressor is driven by the deceleration energy recovery control until the actual drive torque of the compressor rises to the target drive torque according to the distribution ratio, the response depends on the distribution ratio. A response waiting power generation control means for driving the generator with a torque larger than a target drive torque of the generator;
A deceleration energy recovery control device comprising:
前記応答待ち発電制御手段は、
前記分配率に応じた前記圧縮機の目標駆動トルクと前記圧縮機の実駆動トルクとの偏差を取得する偏差取得手段と、
前記偏差が大きいほど、前記応答待ち期間に前記発電機の駆動トルクを増大させる量を大きく設定するトルク増大量設定手段と、
を有することを特徴とする請求項1に記載の減速エネルギ回収制御装置。
The response waiting power generation control means includes:
Deviation acquisition means for acquiring a deviation between the target drive torque of the compressor according to the distribution ratio and the actual drive torque of the compressor;
Torque increase amount setting means for setting a larger amount to increase the drive torque of the generator in the response waiting period as the deviation is larger;
The deceleration energy recovery control device according to claim 1, comprising:
車両運転者の減速操作に応じた要求減速度に基づき、車両運転者に対して許容できる最大の減速トルクである許容減速トルクを算出する許容減速トルク算出手段と、
前記許容減速トルク及び前記分配率に基づき、前記減速エネルギ回収制御を実施する時の前記圧縮機の駆動トルク及び前記発電機の駆動トルクを算出する駆動トルク算出手段と、
を備えることを特徴とする請求項1又は2に記載の減速エネルギ回収制御装置。
An allowable deceleration torque calculating means for calculating an allowable deceleration torque that is a maximum deceleration torque allowable for the vehicle driver based on a requested deceleration according to a deceleration operation of the vehicle driver;
Driving torque calculating means for calculating the driving torque of the compressor and the driving torque of the generator when performing the deceleration energy recovery control based on the allowable deceleration torque and the distribution rate;
The deceleration energy recovery control device according to claim 1, further comprising:
内燃機関により駆動して冷凍サイクル中の冷媒を圧縮して吐出する圧縮機、及び前記冷凍サイクルに設けられた蓄冷器と、
内燃機関により駆動して発電する発電機、及び前記発電機により発電された電力を充電可能なバッテリと、
を備えた車両に適用され、
前記蓄冷器及び前記バッテリの少なくとも一方へ前記車両の減速エネルギを回収させるよう、前記車両の減速時に前記圧縮機及び前記発電機の少なくとも一方を駆動させる減速エネルギ回収制御を実施する回収制御手段と、
前記蓄冷器の蓄冷要求量及び前記バッテリの蓄電要求量のバランスに応じて、前記減速エネルギ回収制御時の前記圧縮機及び前記発電機の駆動トルクの分配率を設定するトルク分配設定手段と、
車両運転者の減速操作に応じた要求減速度に基づき、車両運転者に対して許容できる最大の減速トルクである許容減速トルクを算出する許容減速トルク算出手段と、
前記許容減速トルク及び前記分配率に基づき、前記減速エネルギ回収制御を実施する時の前記圧縮機の駆動トルク及び前記発電機の駆動トルクを算出する駆動トルク算出手段と、
を備えることを特徴とする減速エネルギ回収制御装置。
A compressor driven by an internal combustion engine to compress and discharge the refrigerant in the refrigeration cycle, and a regenerator provided in the refrigeration cycle;
A generator that generates electric power by being driven by an internal combustion engine, and a battery that can charge the electric power generated by the generator;
Applied to vehicles with
Recovery control means for performing deceleration energy recovery control for driving at least one of the compressor and the generator when the vehicle is decelerated so that at least one of the regenerator and the battery recovers the deceleration energy of the vehicle;
Torque distribution setting means for setting a distribution ratio of the driving torque of the compressor and the generator during the deceleration energy recovery control according to the balance between the cold storage required amount of the regenerator and the storage required amount of the battery;
An allowable deceleration torque calculating means for calculating an allowable deceleration torque that is a maximum deceleration torque allowable for the vehicle driver based on a requested deceleration according to a deceleration operation of the vehicle driver;
Driving torque calculating means for calculating the driving torque of the compressor and the driving torque of the generator when performing the deceleration energy recovery control based on the allowable deceleration torque and the distribution rate;
A deceleration energy recovery control device comprising:
前記車両は、当該車両に制動力を付与する制動アクチュエータ、及び当該制動アクチュエータによる制動力を制御する制動力制御手段を備えており、
車両運転者の減速操作に応じた要求減速度に基づき、前記制動力を設定する制動力設定手段と、
前記減速エネルギ回収制御を実施する時には、前記制動力設定手段により設定された制動力を減少させるとともに、その減少分に相当するトルクだけ、前記圧縮機及び前記発電機の駆動トルクを増大させる補機トルク増大制御手段と、
を備えることを特徴とする請求項1〜4のいずれか1つに記載の減速エネルギ回収制御装置。
The vehicle includes a braking actuator that applies a braking force to the vehicle, and a braking force control unit that controls the braking force by the braking actuator.
A braking force setting means for setting the braking force based on a requested deceleration according to a deceleration operation of the vehicle driver;
When carrying out the deceleration energy recovery control, an auxiliary device that reduces the braking force set by the braking force setting means and increases the driving torque of the compressor and the generator by a torque corresponding to the reduced amount. Torque increase control means;
The deceleration energy recovery control device according to any one of claims 1 to 4, further comprising:
内燃機関により駆動して冷凍サイクル中の冷媒を圧縮して吐出する圧縮機、及び前記冷凍サイクルに設けられた蓄冷器と、
内燃機関により駆動して発電する発電機、及び前記発電機により発電された電力を充電可能なバッテリと、
車輪に制動力を付与する制動アクチュエータと、
前記制動アクチュエータによる制動力を制御する制動力制御手段と、
を備えた車両に適用され、
前記蓄冷器及び前記バッテリの少なくとも一方へ前記車両の減速エネルギを回収させるよう、前記車両の減速時に前記圧縮機及び前記発電機の少なくとも一方を駆動させる減速エネルギ回収制御を実施する回収制御手段と、
車両運転者の減速操作に応じた要求減速度に基づき、前記制動力を設定する制動力設定手段と、
前記減速エネルギ回収制御を実施する時には、前記制動力設定手段により設定された制動力を減少させるとともに、その減少分に相当するトルクだけ、前記圧縮機及び前記発電機の駆動トルクを増大させる補機トルク増大制御手段と、
を備えることを特徴とする減速エネルギ回収制御装置。
A compressor driven by an internal combustion engine to compress and discharge the refrigerant in the refrigeration cycle, and a regenerator provided in the refrigeration cycle;
A generator that generates electric power by being driven by an internal combustion engine, and a battery that can charge the electric power generated by the generator;
A braking actuator for applying braking force to the wheels;
Braking force control means for controlling the braking force by the braking actuator;
Applied to vehicles with
Recovery control means for performing deceleration energy recovery control for driving at least one of the compressor and the generator when the vehicle is decelerated so that at least one of the regenerator and the battery recovers the deceleration energy of the vehicle;
A braking force setting means for setting the braking force based on a requested deceleration according to a deceleration operation of the vehicle driver;
When carrying out the deceleration energy recovery control, an auxiliary device that reduces the braking force set by the braking force setting means and increases the driving torque of the compressor and the generator by a torque corresponding to the reduced amount. Torque increase control means;
A deceleration energy recovery control device comprising:
JP2010113325A 2010-05-17 2010-05-17 Deceleration energy recovery control device Expired - Fee Related JP5387500B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010113325A JP5387500B2 (en) 2010-05-17 2010-05-17 Deceleration energy recovery control device
DE102011050388A DE102011050388A1 (en) 2010-05-17 2011-05-16 Control device for braking energy recovery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010113325A JP5387500B2 (en) 2010-05-17 2010-05-17 Deceleration energy recovery control device

Publications (2)

Publication Number Publication Date
JP2011244568A true JP2011244568A (en) 2011-12-01
JP5387500B2 JP5387500B2 (en) 2014-01-15

Family

ID=45410644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010113325A Expired - Fee Related JP5387500B2 (en) 2010-05-17 2010-05-17 Deceleration energy recovery control device

Country Status (2)

Country Link
JP (1) JP5387500B2 (en)
DE (1) DE102011050388A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017114379A (en) * 2015-12-25 2017-06-29 三菱自動車工業株式会社 Energy regenerative system of automobile
JP2020011699A (en) * 2018-07-20 2020-01-23 株式会社デンソー Control device
CN113547934A (en) * 2021-08-30 2021-10-26 重庆金康赛力斯新能源汽车设计院有限公司 Energy recovery method and device, storage medium and vehicle control unit
WO2024103452A1 (en) * 2022-11-16 2024-05-23 北汽福田汽车股份有限公司 Vehicle energy recovery method and apparatus, and vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7075843B2 (en) * 2018-07-20 2022-05-26 スズキ株式会社 Control device
JP2020012459A (en) * 2018-07-20 2020-01-23 株式会社デンソー Control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180006A (en) * 2001-08-16 2003-06-27 General Motors Corp <Gm> Regenerative braking system for batteryless fuel cell vehicle
JP2007151222A (en) * 2005-11-24 2007-06-14 Toyota Motor Corp Controller of electric vehicle
JP2009196457A (en) * 2008-02-20 2009-09-03 Nissan Motor Co Ltd Regenerative control system for idle-stop vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003180006A (en) * 2001-08-16 2003-06-27 General Motors Corp <Gm> Regenerative braking system for batteryless fuel cell vehicle
JP2007151222A (en) * 2005-11-24 2007-06-14 Toyota Motor Corp Controller of electric vehicle
JP2009196457A (en) * 2008-02-20 2009-09-03 Nissan Motor Co Ltd Regenerative control system for idle-stop vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017114379A (en) * 2015-12-25 2017-06-29 三菱自動車工業株式会社 Energy regenerative system of automobile
JP2020011699A (en) * 2018-07-20 2020-01-23 株式会社デンソー Control device
JP7164983B2 (en) 2018-07-20 2022-11-02 株式会社デンソー Control device
CN113547934A (en) * 2021-08-30 2021-10-26 重庆金康赛力斯新能源汽车设计院有限公司 Energy recovery method and device, storage medium and vehicle control unit
CN113547934B (en) * 2021-08-30 2022-06-10 重庆金康赛力斯新能源汽车设计院有限公司 Energy recovery method and device, storage medium and vehicle control unit
WO2024103452A1 (en) * 2022-11-16 2024-05-23 北汽福田汽车股份有限公司 Vehicle energy recovery method and apparatus, and vehicle

Also Published As

Publication number Publication date
DE102011050388A1 (en) 2012-03-01
JP5387500B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
US9090262B2 (en) Control apparatus for vehicle
JP5447288B2 (en) Vehicle control device
JP5387500B2 (en) Deceleration energy recovery control device
US10106166B2 (en) Damping control device for hybrid vehicle
JP5547699B2 (en) Vehicle drive device
US9403439B2 (en) Power generation control device
JP5510100B2 (en) Air conditioning control device for vehicles
US20070186573A1 (en) Methods of and systems for dual drive HVAC compressor controls in automotive vehicles
US10639962B2 (en) Air-conditioner for vehicle
JP2019182130A (en) Vehicle system
JP2005291206A (en) Control device for hybrid vehicle
JP2011152855A (en) Air-conditioning control device for vehicle
JP2005023887A (en) Hybrid vehicle control device
US9624895B2 (en) Control device and control method for vehicle
JP6747589B2 (en) Vehicle air-conditioning control method and vehicle air-conditioning apparatus
JP7164983B2 (en) Control device
JP7075843B2 (en) Control device
JP2015137032A (en) vehicle
JP6409735B2 (en) Control device for hybrid vehicle
JP6809178B2 (en) Vehicle air conditioning controller
JP7147130B2 (en) Drive control device for hybrid vehicle
WO2020101605A2 (en) A cabin cooling system method in electric vehicles
JP2020012459A (en) Control device
JP3783663B2 (en) Vehicle engine start control device
JP7081652B2 (en) Vehicle air conditioning control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130923

R151 Written notification of patent or utility model registration

Ref document number: 5387500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees