JP2011239972A - Blood pressure measuring device and method - Google Patents

Blood pressure measuring device and method Download PDF

Info

Publication number
JP2011239972A
JP2011239972A JP2010115044A JP2010115044A JP2011239972A JP 2011239972 A JP2011239972 A JP 2011239972A JP 2010115044 A JP2010115044 A JP 2010115044A JP 2010115044 A JP2010115044 A JP 2010115044A JP 2011239972 A JP2011239972 A JP 2011239972A
Authority
JP
Japan
Prior art keywords
blood
vessel diameter
blood vessel
blood pressure
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010115044A
Other languages
Japanese (ja)
Other versions
JP5884256B2 (en
Inventor
tomonori Mano
知典 真野
Toshihiko Yokoyama
敏彦 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010115044A priority Critical patent/JP5884256B2/en
Priority to CN201110129046.XA priority patent/CN102247169B/en
Priority to CN201410391906.0A priority patent/CN104161547A/en
Publication of JP2011239972A publication Critical patent/JP2011239972A/en
Application granted granted Critical
Publication of JP5884256B2 publication Critical patent/JP5884256B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a constantly attachable blood pressure measuring apparatus that achieves easy correction without using a cuff blood pressure measurement device when a subject is constantly measured under free actions.SOLUTION: The blood pressure measuring device includes: a blood flow sensor part 18 for detecting the flow of flood flow in a living body; a blood speed sensor driving part 20 for driving the blood flow sensor part 18; a blood speed sensor signal calculation part 22 for controlling the blood speed sensor driving part 20 and the blood speed sensor part 18, and calculating the blood speed in the living body; a blood vessel diameter sensor part 27 for detecting differences in a reflection arrival time of a blood wall of the living body; a blood vessel diameter sensor driving part 28 for driving the blood vessel diameter sensor part 27; a blood vessel sensor signal calculation part 30 for controlling the blood vessel diameter sensor driving part 28 and the blood vessel diameter sensor 27, and calculates a blood vessel diameter in the living body; and a blood pressure signal calculation part 32 for calculating a blood pressure of the person to be measured using calculation results of the blood speed sensor signal calculation part 22 and the blood vessel diameter sensor signal calculation part 30.

Description

本発明は、血圧測定装置及び血圧測定方法に関するものである。   The present invention relates to a blood pressure measurement device and a blood pressure measurement method.

今日、血圧を測定する方法として、超音波を用いて測定する方法が提案されている。例えば、動脈の局所部位において、最大直径及び最小直径を求め、それらのパラメーター値を非線形関数に与えて、その非線形関数により、入力される各時刻の直径を換算することにより、局所部位についての各時刻の圧力を演算するようにしている(例えば、特許文献1参照)。   Today, as a method for measuring blood pressure, a method using ultrasonic waves has been proposed. For example, in the local region of the artery, the maximum diameter and the minimum diameter are obtained, the parameter values thereof are given to the nonlinear function, and the diameter at each input time is converted by the nonlinear function, so that The pressure at the time is calculated (for example, see Patent Document 1).

また、血流速度、流量、又は容量などを超音波により及び脈波速度を光波により検出し、この両量を関連付けて血圧及びその変化量を算出する方法が提案されている(例えば、特許文献2及び3参照)。   Further, a method has been proposed in which blood flow velocity, flow rate, volume, or the like is detected by ultrasonic waves and pulse wave velocity is detected by light waves, and the blood pressure and the amount of change thereof are calculated by associating both of these amounts (for example, Patent Documents). 2 and 3).

特開2004−041382号公報Japanese Patent Laid-Open No. 2004-041382 特開平4−250135号公報JP-A-4-250135 特開2004−154231号公報JP 2004-154231 A

しかしながら、特許文献1〜3にあるように従来の超音波を用いた血圧値の算出には、カフ型血圧計による校正が必要となる。これは24時間自由行動下、血圧測定(24hABPM)や一拍ごとの連続血圧測定を考えた場合、カフを常時身に付けたり、持ち歩いて適時使用するといった不便があり、普段の生活を送る上で実用が困難になる虞がある。   However, as disclosed in Patent Documents 1 to 3, the calculation of blood pressure values using conventional ultrasonic waves requires calibration with a cuff type sphygmomanometer. This is a 24 hour free action, considering blood pressure measurement (24hABPM) and continuous blood pressure measurement every beat, there are inconveniences such as wearing a cuff all the time or carrying it around and use it regularly. Therefore, there is a possibility that the practical use becomes difficult.

また、カフ型血圧計による校正が必要なことに加え、その校正が定期的(30分〜1時間程度)に必要であることがさらに問題となる虞がある。一般的に、脈波伝播速度から血圧値を推定すると、校正間隔が伸びることによって誤差確率が大きくなることが知られている。これは、短時間内では血管弾性特性(E0:無圧力時の血管弾性率、γ:特定血管における定数)が一定とみなせるが、ある時間以上では誤差が大きくなってくるということからである。特許文献1ではカフ型血圧計により求めた最高血圧Ps及び最低血圧Pdからスティフネスパラメーターβを算出しているが、これは前述の血管弾性率と相関があるので、当然ある時間以上では値が変化してくる。すなわち、連続的かつ継続的に正しい血圧値を求めるには、校正は一度行うだけでは足りず、ある程度の間隔、例えば一時間程度ごとに行う必要がある。   Moreover, in addition to the need for calibration with a cuff type sphygmomanometer, there is a possibility that the calibration is required regularly (about 30 minutes to 1 hour). In general, it is known that when the blood pressure value is estimated from the pulse wave velocity, the error probability increases as the calibration interval increases. This is because the vascular elasticity characteristic (E0: vascular elasticity at no pressure, γ: constant in a specific blood vessel) can be considered constant within a short time, but the error increases after a certain time. In Patent Document 1, the stiffness parameter β is calculated from the systolic blood pressure Ps and the systolic blood pressure Pd obtained by the cuff type sphygmomanometer. However, since this correlates with the vascular elastic modulus, the value naturally changes after a certain time. Come on. That is, in order to obtain a correct blood pressure value continuously and continuously, it is not necessary to perform calibration once, but it is necessary to perform it at a certain interval, for example, about every hour.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]被測定者の生体表面から生体内部の血液に波動を送受信して、該生体内部の血液の流れを検出する血流速度センサー部と、前記血流速度センサー部を駆動させる血流速度センサー駆動部と、前記血流速度センサー駆動部と前記血流速度センサー部とを制御し前記生体内部の血流速度を求める血流速度センサー信号演算部と、前記生体内部の血管に超音波を送受信して、該生体内部の血管壁の反射到達時間差を検出する血管径センサー部と、前記血管径センサー部を駆動させる血管径センサー駆動部と、前記血管径センサー駆動部と前記血管径センサー部とを制御し前記生体内部の血管径を求める血管径センサー信号演算部と、前記血流速度センサー信号演算部と前記血管径センサー信号演算部との演算結果を用いて前記被測定者の血圧を求める血圧信号演算部と、を有することを特徴とする血圧測定装置。   Application Example 1 A blood flow velocity sensor unit that detects a flow of blood inside a living body by transmitting and receiving waves from the surface of the subject's living body to the blood inside the living body, and blood that drives the blood flow velocity sensor unit A blood flow velocity sensor driving unit; a blood flow velocity sensor driving unit that controls the blood flow velocity sensor driving unit and the blood flow velocity sensor unit to obtain a blood flow velocity inside the living body; A blood vessel diameter sensor unit that transmits and receives sound waves to detect a difference in reflection arrival time of a blood vessel wall inside the living body, a blood vessel diameter sensor drive unit that drives the blood vessel diameter sensor unit, the blood vessel diameter sensor drive unit, and the blood vessel diameter A blood vessel diameter sensor signal calculation unit for controlling a sensor unit to obtain a blood vessel diameter inside the living body, and the measurement subject using calculation results of the blood flow velocity sensor signal calculation unit and the blood vessel diameter sensor signal calculation unit Blood pressure measuring apparatus characterized by comprising: a blood pressure signal operation unit for obtaining the blood pressure, the.

これによれば、最初にカフ型血圧計を用いて測定した血圧値によって補正係数を求めておくだけで、その後はカフ型血圧計を使用することなく精度良く血圧を測定することができ、被測定者が自由行動下で常時血圧測定する場合に、カフ型血圧計を使わず簡易に校正ができる常時装着可能な血圧測定装置を提供できる。   According to this, it is possible to measure blood pressure with high accuracy without using a cuff sphygmomanometer after that, only by obtaining a correction coefficient based on the blood pressure value first measured using a cuff sphygmomanometer. When a measurer constantly measures blood pressure under free action, a blood pressure measuring device that can be always worn can be provided that can be easily calibrated without using a cuff sphygmomanometer.

[適用例2]上記血圧測定装置であって、前記血圧信号演算部は、前記血管径を水頭圧に換算することにより前記血圧を求める演算を実行することを特徴とする血圧測定装置。   Application Example 2 In the blood pressure measurement device, the blood pressure signal calculation unit performs a calculation to obtain the blood pressure by converting the blood vessel diameter into a head pressure.

これによれば、血管径及び血圧が略線形変化するとみなせるので、血管径の時間変化を測定することで、血圧の時間変化に相関した値を得ることができる。   According to this, since it can be considered that the blood vessel diameter and the blood pressure change substantially linearly, a value correlated with the time change of the blood pressure can be obtained by measuring the time change of the blood vessel diameter.

[適用例3]上記血圧測定装置であって、前記被測定者の所定の部位が所定の高さに位置決めされた第1状態で、該第1状態と前記所定の部位が前記被測定者の心臓の高さに位置決めされた第2状態との前記所定の部位の高低差を求める高さ位置センサー部をさらに含み、前記水頭圧は、前記高さ位置センサー部により測定された前記高低差を用いて求められていることを特徴とする血圧測定装置。   [Application Example 3] In the blood pressure measurement device, the first state and the predetermined part of the measured person are in the first state in which the predetermined part of the measured person is positioned at a predetermined height. A height position sensor unit that obtains a height difference of the predetermined part from the second state positioned at the height of the heart, and the hydraulic head pressure is obtained by calculating the height difference measured by the height position sensor unit. A blood pressure measurement apparatus characterized by being obtained by using.

これによれば、水頭圧を求める際の一要素である高低差を容易に測定できる。   According to this, the height difference which is one element at the time of calculating | requiring water head pressure can be measured easily.

[適用例4]上記血圧測定装置であって、前記血流速度センサー部は、送信用素子と受信用素子とから構成し、しかも前記送信用素子と前記受信用素子との対は複数対あり、送受信する波動の進行方向と血液の流れる方向とのなす角度が対ごとに異なることを特徴とする血圧測定装置。   Application Example 4 In the blood pressure measurement device, the blood flow velocity sensor unit includes a transmission element and a reception element, and there are a plurality of pairs of the transmission element and the reception element. The blood pressure measuring device, wherein the angle formed by the traveling direction of the wave to be transmitted / received and the direction of blood flow is different for each pair.

これによれば、血管と波動とのなす角度が未知な場合についても血流速度を求めることができる。   According to this, the blood flow velocity can be obtained even when the angle formed between the blood vessel and the wave is unknown.

[適用例5]上記血圧測定装置であって、前記血流速度センサー部は、圧電素子を用いて構成することを特徴とする血圧測定装置。   Application Example 5 In the blood pressure measurement device, the blood flow velocity sensor unit is configured using a piezoelectric element.

これによれば、圧電素子は構造が簡単なので、血流速度センサーを小型化することができる。   According to this, since the piezoelectric element has a simple structure, the blood flow velocity sensor can be reduced in size.

[適用例6]被測定者の所定の部位が所定の高さに位置決めされた第1状態で、前記所定の部位の血流速度を該所定の部位の血管径の2乗で割った値に対して所定の比例定数で比例する前記被測定者の血圧であって、前記比例定数を求める校正工程と、前記第1状態で、前記所定の部位の前記血管径及び前記血流速度をそれぞれ測定する工程と、前記血管径、前記血流速度、及び前記比例定数を用いて前記血圧を求める工程と、前記血圧を表示する工程と、及び、前記比例定数の校正が必要か判断する工程と、を有することを特徴とする血圧測定方法。   Application Example 6 In a first state in which a predetermined part of the measurement subject is positioned at a predetermined height, the blood flow velocity of the predetermined part is divided by the square of the blood vessel diameter of the predetermined part. The blood pressure of the measurement subject that is proportional to a predetermined proportionality constant, and the blood vessel diameter and the blood flow velocity at the predetermined portion are measured in the calibration step for obtaining the proportionality constant and in the first state, respectively. Determining the blood pressure using the blood vessel diameter, the blood flow velocity, and the proportional constant, displaying the blood pressure, and determining whether the proportional constant needs to be calibrated, A blood pressure measurement method characterized by comprising:

これによれば、最初にカフ型血圧計を用いて測定した血圧値によって補正係数を求めておくだけで、その後はカフ型血圧計を使用することなく精度良く血圧を測定することができ、被測定者が自由行動下で常時血圧測定する場合に、カフ型血圧計を使わず簡易に校正ができる常時装着可能な血圧測定方法を提供できる。   According to this, it is possible to measure blood pressure with high accuracy without using a cuff sphygmomanometer after that, only by obtaining a correction coefficient based on the blood pressure value first measured using a cuff sphygmomanometer. When a measurer constantly measures blood pressure under free action, a blood pressure measuring method that can be always worn and can be easily calibrated without using a cuff type sphygmomanometer can be provided.

[適用例7]上記血圧測定方法であって、前記校正工程は、前記所定の部位が前記被測定者の心臓の高さに位置決めされた第2状態で、前記所定の部位の血管径、及び該所定の部位の収縮期及び拡張期の血管径をそれぞれ計測し、第1平均血管径、平均収縮期血管径、及び平均拡張期血管径を求める工程と、前記第1状態で、該第1状態と前記第2状態との前記所定の部位の高低差を測定する高低差測定工程と、前記高低差を用いて前記第1状態と前記第2状態との間の水頭圧を求める工程と、前記第1状態で、前記所定の部位の血管径、及び該所定の部位の収縮期及び拡張期の血流速度と血管径とをそれぞれ計測し、第2平均血管径、収縮期血流速度、収縮期血管径、拡張期血流速度、及び拡張期血管径を求める工程と、前記第1平均血管径と前記第2平均血管径とを用いて平均血管径変化を求める工程と、前記水頭圧、前記平均血管径変化、前記平均収縮期血管径、及び前記平均拡張期血管径を用いて収縮期血圧と拡張期血圧との血圧差を求める工程と、及び、前記血圧差、前記収縮期血流速度、前記収縮期血管径、前記拡張期血流速度、及び前記拡張期血管径を用いて前記比例定数を求める工程と、を有することを特徴とする血圧測定方法。   Application Example 7 In the blood pressure measurement method, the calibration step includes a second state in which the predetermined part is positioned at a height of the heart of the measurement subject, a blood vessel diameter of the predetermined part, and Measuring the first and second systolic blood vessel diameters, the first systolic blood vessel diameter, and the average diastolic blood vessel diameter, respectively, in the first state; A height difference measuring step of measuring a height difference of the predetermined portion between the state and the second state, a step of obtaining a hydraulic head pressure between the first state and the second state using the height difference; In the first state, the blood vessel diameter of the predetermined part, and the blood flow velocity and blood vessel diameter of the predetermined part of the systole and the diastole are measured, respectively, the second average blood vessel diameter, the systolic blood flow velocity, A step of obtaining a systolic blood vessel diameter, a diastolic blood flow velocity, and a diastolic blood vessel diameter, and the first average blood vessel And calculating the average blood vessel diameter change using the second average blood vessel diameter, and the hydrostatic pressure, the average blood vessel diameter change, the average systolic blood vessel diameter, and the systolic blood pressure using the average diastolic blood vessel diameter. Determining the blood pressure difference between the blood pressure and the diastolic blood pressure, and the proportionality using the blood pressure difference, the systolic blood flow velocity, the systolic blood vessel diameter, the diastolic blood flow velocity, and the diastolic blood vessel diameter And a step of determining a constant.

これによれば、比例定数を容易に校正できる。   According to this, the proportionality constant can be easily calibrated.

[適用例8]上記血圧測定方法であって、前記高低差測定工程は、前記第1状態と前記第2状態との前記所定の部位の前記高低差を測定する高さ位置センサー部により測定されていることを特徴とする血圧測定方法。   Application Example 8 In the blood pressure measurement method, the height difference measurement step is measured by a height position sensor unit that measures the height difference of the predetermined part between the first state and the second state. A blood pressure measurement method characterized by comprising:

これによれば、水頭圧を求める際の一要素である高低差を容易に測定できる。   According to this, the height difference which is one element at the time of calculating | requiring water head pressure can be measured easily.

本実施形態に係る血圧測定装置が装着された状態を示す外観図。The external view which shows the state with which the blood-pressure measuring apparatus which concerns on this embodiment was mounted | worn. 本実施形態に係る血流速度センサー及び血管径センサーを示す図。The figure which shows the blood flow velocity sensor and blood vessel diameter sensor which concern on this embodiment. 本実施形態に係る回路ブロックを示す図。The figure which shows the circuit block which concerns on this embodiment. 本実施形態に係る血圧測定装置の測定位置を示す図。The figure which shows the measurement position of the blood-pressure measurement apparatus which concerns on this embodiment. 本実施形態に係る水頭圧分が加わった血管径を示す図。The figure which shows the blood vessel diameter to which the hydraulic head pressure part which concerns on this embodiment was added. 本実施形態に係る血管壁圧力と血管径(容積)との関係を示す図。The figure which shows the relationship between the blood vessel wall pressure which concerns on this embodiment, and the blood vessel diameter (volume). 本実施形態に係るカフ加圧測定値を示す図。The figure which shows the cuff pressurization measurement value which concerns on this embodiment. 本実施形態に係る血流速度センサーを示す図。The figure which shows the blood flow velocity sensor which concerns on this embodiment. 本実施形態に係る測定方法を示す図。The figure which shows the measuring method which concerns on this embodiment. 本実施形態に係る校正ルーチンを示す図。The figure which shows the calibration routine which concerns on this embodiment.

以下、本実施形態について図面に従って説明する。なお、使用する図面は、説明する部分が認識可能な状態となるように、適宜拡大又は縮小して表示している。   Hereinafter, the present embodiment will be described with reference to the drawings. Note that the drawings to be used are appropriately enlarged or reduced so that the part to be described can be recognized.

図1は、本実施形態に係る血圧測定装置が装着された状態を示す外観図である。図2は、本実施形態に係る血流速度センサー及び血管径センサーを示す図である。図3は、本実施形態に係る回路ブロックを示す図である。本実施形態に係る血圧測定装置2は、血流速度センサー10と、血管径センサー12と、を備えている。血圧測定装置2は、被測定者4(図4参照)の手首部16に装着され、橈骨動脈(血管)14の血流速度v及び血管径dを測定し、血圧Pを求める。   FIG. 1 is an external view showing a state in which the blood pressure measurement device according to the present embodiment is mounted. FIG. 2 is a diagram showing a blood flow velocity sensor and a blood vessel diameter sensor according to the present embodiment. FIG. 3 is a diagram illustrating a circuit block according to the present embodiment. The blood pressure measurement device 2 according to this embodiment includes a blood flow velocity sensor 10 and a blood vessel diameter sensor 12. The blood pressure measurement device 2 is attached to the wrist 16 of the person to be measured 4 (see FIG. 4) and measures the blood flow velocity v and the blood vessel diameter d of the radial artery (blood vessel) 14 to obtain the blood pressure P.

血流速度センサー10は、手首部16の内側の橈骨動脈14に対して超音波が照射できるような位置に取り付けられている。血流速度センサー10は、血流速度センサー10から出た基本波動f及び受信波動f´をミキシングする。ミキシングされた波動は血流速度センサー信号演算部(信号演算部)22で検波されることによりドップラーシフトの周波数成分のみが抽出される。信号演算部22ではこのドップラー周波数成分Δf(=f−f´)と、波動f,f´及び橈骨動脈14のなす角θより血流速度vが算出される。   The blood flow velocity sensor 10 is attached at a position where ultrasonic waves can be applied to the radial artery 14 inside the wrist 16. The blood flow velocity sensor 10 mixes the fundamental wave f and the received wave f ′ output from the blood flow velocity sensor 10. The mixed wave is detected by a blood flow velocity sensor signal calculation unit (signal calculation unit) 22 so that only the frequency component of Doppler shift is extracted. In the signal calculation unit 22, the blood flow velocity v is calculated from the Doppler frequency component Δf (= f−f ′), the angle θ formed by the waves f and f ′ and the radial artery 14.

血流速度センサー10は、血流速度センサー部18と、血流速度センサー駆動部(駆動部)20と、信号演算部22と、を備えている。血流速度センサー部18は、被測定者4の生体表面から生体内部の血液に波動を送受信して、生体内部の血液の流れを検出する。血流速度センサー部18は、発信部(送信用素子)24と受信部(受信用素子)26とから構成されている。発信部24と受信部26との対は複数対あり、送受信する波動の進行方向と橈骨動脈14とのなす角度が対ごとに異なる。駆動部20は、血流速度センサー部18を駆動させる。信号演算部22は、駆動部20と血流速度センサー部18とを制御し生体内部の血流速度vを求める。血流速度センサー部18は、圧電素子を用いて構成されている。これにより、圧電素子は構造が簡単なので、血流速度センサーを小型化することができる。   The blood flow velocity sensor 10 includes a blood flow velocity sensor unit 18, a blood flow velocity sensor drive unit (drive unit) 20, and a signal calculation unit 22. The blood flow velocity sensor unit 18 transmits and receives waves from the surface of the living body of the measurement subject 4 to the blood inside the living body, and detects the flow of blood inside the living body. The blood flow velocity sensor unit 18 includes a transmission unit (transmission element) 24 and a reception unit (reception element) 26. There are a plurality of pairs of the transmitting unit 24 and the receiving unit 26, and the angle formed between the traveling direction of the wave to be transmitted and received and the radial artery 14 is different for each pair. The drive unit 20 drives the blood flow velocity sensor unit 18. The signal calculation unit 22 controls the drive unit 20 and the blood flow velocity sensor unit 18 to obtain the blood flow velocity v inside the living body. The blood flow velocity sensor unit 18 is configured using a piezoelectric element. Thereby, since the piezoelectric element has a simple structure, the blood flow velocity sensor can be reduced in size.

血管径センサー12は、手首部16の内側の橈骨動脈14に対して超音波が照射できるような位置に取り付けられている。血管径センサー12は、数M〜数十MHzのパルス信号やバースト信号を送信し、送信波及び受信波より橈骨動脈14壁からの反射波の到達時間を測定する。血管径センサー部27は、生体内部の橈骨動脈14に超音波を送受信して、生体内部の橈骨動脈14壁の反射到達時間差を検出する。   The blood vessel diameter sensor 12 is attached at a position where ultrasonic waves can be applied to the radial artery 14 inside the wrist portion 16. The blood vessel diameter sensor 12 transmits a pulse signal or burst signal of several M to several tens of MHz, and measures the arrival time of the reflected wave from the radial artery 14 wall from the transmitted wave and the received wave. The blood vessel diameter sensor unit 27 transmits / receives ultrasonic waves to / from the radial artery 14 inside the living body, and detects the reflection arrival time difference of the radial artery 14 wall inside the living body.

血管径センサー12は、血管径センサー部27と、血管径センサー駆動部(駆動部)28と、血管径センサー信号演算部(信号演算部)30と、を備えている。血管径センサー部27は、発信部29と受信部31とから構成されている。血管径センサー部27は、生体内部の橈骨動脈14に超音波を送受信して、生体内部の橈骨動脈14壁の反射到達時間差を検出する。駆動部28は、血管径センサー部27を駆動させる。信号演算部30は、駆動部28と血管径センサー部27とを制御し生体内部の血管径dを求める。   The blood vessel diameter sensor 12 includes a blood vessel diameter sensor unit 27, a blood vessel diameter sensor drive unit (drive unit) 28, and a blood vessel diameter sensor signal calculation unit (signal calculation unit) 30. The blood vessel diameter sensor unit 27 includes a transmission unit 29 and a reception unit 31. The blood vessel diameter sensor unit 27 transmits / receives ultrasonic waves to / from the radial artery 14 inside the living body, and detects the reflection arrival time difference of the radial artery 14 wall inside the living body. The drive unit 28 drives the blood vessel diameter sensor unit 27. The signal calculation unit 30 controls the driving unit 28 and the blood vessel diameter sensor unit 27 to obtain the blood vessel diameter d inside the living body.

本実施形態に係る血圧測定装置2は、血圧信号演算部32と、表示部34と、気圧センサー(高さ位置センサー部)36と、スイッチ37と、電源部40とを備えている。血圧信号演算部32は、信号演算部22と信号演算部30との演算結果を用いて被測定者4の血圧Pを求める。表示部34は、被測定者4の血圧Pを表示する。また、それをグラフなどで可視化して表示することもできる。さらに、脈拍についても同様に表示してもよい。さらにまた、校正が必要である旨を表示する。気圧センサー36は、血圧測定装置2の高さ位置を測定する。スイッチ37は、血圧測定装置2の各機能部に対して電源部40からの電源の供給/遮断を切り替える。電源部40は、血圧測定装置2の各機能部に対して電源を供給する。本実施形態では、例えば、充電可能な二次電池を想定している。   The blood pressure measurement device 2 according to the present embodiment includes a blood pressure signal calculation unit 32, a display unit 34, an atmospheric pressure sensor (height position sensor unit) 36, a switch 37, and a power supply unit 40. The blood pressure signal calculation unit 32 obtains the blood pressure P of the measurement subject 4 using the calculation results of the signal calculation unit 22 and the signal calculation unit 30. The display unit 34 displays the blood pressure P of the person 4 to be measured. It can also be visualized and displayed on a graph or the like. Further, the pulse may be displayed in the same manner. Furthermore, it is displayed that calibration is necessary. The atmospheric pressure sensor 36 measures the height position of the blood pressure measurement device 2. The switch 37 switches supply / cut-off of power from the power supply unit 40 to each functional unit of the blood pressure measurement device 2. The power supply unit 40 supplies power to each functional unit of the blood pressure measurement device 2. In the present embodiment, for example, a rechargeable secondary battery is assumed.

図4は、本実施形態に係る血圧測定装置2の測定位置を示す図である。図5は、本実施形態に係る水頭圧分が加わった血管径dを示す図である。ここで非侵襲の血圧測定に、カフ(圧迫帯)を用いずに血流速度v及び血管径dを測定して血圧Pを算出する方法について説明する。血圧Pは血流量Q及び血管抵抗Rの積により求められる。   FIG. 4 is a diagram illustrating measurement positions of the blood pressure measurement device 2 according to the present embodiment. FIG. 5 is a view showing the blood vessel diameter d to which the hydraulic head pressure component is applied according to the present embodiment. Here, a method of calculating blood pressure P by measuring blood flow velocity v and blood vessel diameter d without using a cuff (compression band) for non-invasive blood pressure measurement will be described. The blood pressure P is obtained by the product of the blood flow rate Q and the vascular resistance R.

P=Q・R …(1)
このうち、血流量Qは式(2)に表すような血管径d及び血流速度vの積で求められる。
P = Q · R (1)
Among these, the blood flow rate Q is obtained by the product of the blood vessel diameter d and the blood flow velocity v as expressed in the equation (2).

Q=(π・d2・v)/8 …(2)
また、血管抵抗Rは橈骨動脈14の中を流れる血液の粘度η及び血管径dの比によって決まり、血管径dが大きいほど血管抵抗Rが小さくなるという関係が成り立つ。Cを定数と考えると。
Q = (π · d 2 · v) / 8 (2)
The vascular resistance R is determined by the ratio of the viscosity η of blood flowing in the radial artery 14 and the vascular diameter d, and the relationship that the vascular resistance R decreases as the vascular diameter d increases. Consider C as a constant.

R=η・C/d4 …(3)
これらの関係式を考慮して血圧Pを導き出そうとすると、脈波と呼ばれる容積脈波の強度変化は、実際には血液が脈動するときの血管径dの変化が容積変化として捕らえられているものであり、容積脈波を測定することにより血管径dと相関した値を測定することができ、血管抵抗Rに相関する値を測定することができる。そして、血管内の血流速度vを測定することにより血流量Qに相関する値も求めることができ、したがって、血圧Pを測定することができる。
R = η · C / d 4 (3)
When trying to derive the blood pressure P in consideration of these relational expressions, the intensity change of the volume pulse wave called a pulse wave is actually captured as a change in volume of the blood vessel diameter d when blood pulsates. By measuring the volume pulse wave, a value correlated with the blood vessel diameter d can be measured, and a value correlated with the vascular resistance R can be measured. Then, by measuring the blood flow velocity v in the blood vessel, a value correlating with the blood flow rate Q can also be obtained, and therefore the blood pressure P can be measured.

次に、収縮期血圧Psys及び拡張期血圧Pdiaの算出について説明する。収縮期血圧Psys及び拡張期血圧Pdiaは、式(1)〜(3)を用いることにより、式(4)及び(5)のように求めることができる。   Next, calculation of the systolic blood pressure Psys and the diastolic blood pressure Pdia will be described. The systolic blood pressure Psys and the diastolic blood pressure Pdia can be obtained as in equations (4) and (5) by using equations (1) to (3).

Psys=π/8・η・C・vsys/dsys2 …(4)
Pdia=π/8・η・C・vdia/ddia2 …(5)
これにより、収縮期血圧Psys及び拡張期血圧Pdiaの血圧差(Psys−Pdia)は、式(6)のように求めることができる。
Psys = π / 8 · η · C · vsys / dsys 2 (4)
Pdia = π / 8 · η · C · vdia / ddia 2 (5)
Thereby, the blood pressure difference (Psys−Pdia) between the systolic blood pressure Psys and the diastolic blood pressure Pdia can be obtained as shown in Expression (6).

Psys−Pdia=π/8・η・C・(vsys/dsys2−vdia/ddia2) …(6)
ここでvsysは収縮期血流速度、dsysは収縮期血管径、vdiaは拡張期血流速度、ddiaは拡張期血管径である。
Psys−Pdia = π / 8 · η · C · (vsys / dsys 2 −vdia / ddia 2 ) (6)
Here, vsys is a systolic blood flow velocity, dsys is a systolic blood vessel diameter, vdia is a diastolic blood flow velocity, and ddia is a diastolic blood vessel diameter.

図6は、本実施形態に係る血管壁圧力と血管径(容積)との関係を示す図である。図6は、血管の管法則を示す図である。従来のカフ加圧による血圧測定ではオシロメトリック波形を得るために管法則の非線形領域を用いている。これに対し、本実施形態では図6に示す略線形近似領域を用いている。この部分では、血管径d及び血管壁圧力(血圧P)が略線形変化するとみなせるので、血管径dの時間変化を測定することで、血圧Pの時間変化に相関した値が得られる。   FIG. 6 is a diagram showing a relationship between the blood vessel wall pressure and the blood vessel diameter (volume) according to the present embodiment. FIG. 6 is a diagram showing a blood vessel law. Conventional blood pressure measurement by cuff pressurization uses a non-linear region of tube law to obtain an oscillometric waveform. In contrast, in the present embodiment, a substantially linear approximation region shown in FIG. 6 is used. In this portion, the blood vessel diameter d and the blood vessel wall pressure (blood pressure P) can be considered to change substantially linearly. Therefore, by measuring the time change of the blood vessel diameter d, a value correlated with the time change of the blood pressure P can be obtained.

次に、上記式を用いて収縮期血圧Psys及び拡張期血圧Pdiaを算出する方法を説明する。先ず、心臓38の位置と同じ高さH、つまり水頭圧の補正が必要ない状態で、収縮期血流速度vsys、収縮期血管径dsys、拡張期血流速度vdia、及び拡張期血管径ddiaを求める。波動を生体内部の血管に送受信し、血流散乱波のドップラーシフト量から収縮期血流速度vsys及び拡張期血流速度vdiaを、血管両壁の反射到達時間差から収縮期血管径dsys及び拡張期血管径ddiaを算出する。それと同時に、血管径dの時間変化を測定する。血管の管法則より、無加圧若しくは微加圧時においては血管径d及び血管壁圧力(血圧P)が略線形に近似できる。そのとき、血管径dの時間変化は血圧Pの時間変化と相似である(図6参照)。   Next, a method for calculating the systolic blood pressure Psys and the diastolic blood pressure Pdia using the above equations will be described. First, the systolic blood flow velocity vsys, the systolic blood vessel diameter dsys, the diastolic blood flow velocity vdia, and the diastolic blood vessel diameter ddia are set at the same height H as the position of the heart 38, that is, in a state where correction of the hydrocephalic pressure is not necessary. Ask. Waves are transmitted / received to / from the blood vessel inside the living body, the systolic blood flow velocity vsys and the diastolic blood flow velocity vdia are calculated from the Doppler shift amount of the blood flow scattered wave, and the systolic blood vessel diameter dsys and the diastole are calculated from the reflection arrival time difference between the blood vessels. The blood vessel diameter ddia is calculated. At the same time, the time change of the blood vessel diameter d is measured. From the blood vessel law, the blood vessel diameter d and the blood vessel wall pressure (blood pressure P) can be approximately linearly approximated when there is no pressure or slight pressure. At that time, the time change of the blood vessel diameter d is similar to the time change of the blood pressure P (see FIG. 6).

続いて、心臓38の位置と高さhだけ下げた状態の位置Lで同様に血管径dを測定する。その場合、被測定者4が安定状態にあるとすると、血管には心臓38の位置に比べ水頭圧分のみの圧力が余分にかかることになる。つまり、この状態で再び血管径dの時間変化を測定すると、水頭圧分が加わった血圧Pの時間変化が得られる(図5参照)。これより、水頭圧(ρ・g・h)、(ρ:血液の密度、g:重力加速度)に対応する血管径dの変化分Δdがわかる。収縮期及び拡張期での血管径dの変化分は測定により求まり、収縮期血圧Psys及び拡張期血圧Pdiaの血圧差ΔP(=Psys−Pdia)も算出することができる。この値を式(6)に当てはめると比例定数(π/8・η・C)が求まるので、式(4)及び式(5)から収縮期実血圧Prsys及び拡張期実血圧Prdiaが算出できる。   Subsequently, the blood vessel diameter d is similarly measured at the position L of the heart 38 and the position L lowered by the height h. In that case, assuming that the person to be measured 4 is in a stable state, an extra pressure corresponding to the head pressure is applied to the blood vessel as compared with the position of the heart 38. That is, when the time change of the blood vessel diameter d is measured again in this state, the time change of the blood pressure P to which the hydraulic head pressure is added is obtained (see FIG. 5). From this, the change Δd of the blood vessel diameter d corresponding to the hydrocephalic pressure (ρ · g · h), (ρ: density of blood, g: gravitational acceleration) is known. The change of the blood vessel diameter d in the systole and the diastole is obtained by measurement, and the blood pressure difference ΔP (= Psys−Pdia) between the systolic blood pressure Psys and the diastole blood pressure Pdia can also be calculated. When this value is applied to the equation (6), the proportionality constant (π / 8 · η · C) is obtained, so that the systolic actual blood pressure Prsys and the diastolic actual blood pressure Prdia can be calculated from the equations (4) and (5).

血液の密度ρは個人差で1.055±0.005g/cm2程度なので、血圧値への影響は±0.数mmHgであることから一定とみなせる。水頭圧(ρ・g・h)は、高さの測定を正確に行えば正しい値が得られることがわかる。本実施形態によれば、カフ型血圧計などによる他の血圧計による校正が不要で、水頭圧を用いることで非常に簡便に校正が行うことができる。また容積脈波の計測を行わずに済み、波動による血流速及び血管径の測定だけで血圧の常時計測ができる。 Since the blood density ρ is about 1.055 ± 0.005 g / cm 2 depending on the individual, the influence on the blood pressure value is ± 0.00. Since it is several mmHg, it can be considered constant. It can be seen that the correct value of the water head pressure (ρ · g · h) can be obtained if the height is accurately measured. According to the present embodiment, calibration by another sphygmomanometer such as a cuff sphygmomanometer is unnecessary, and calibration can be performed very simply by using the hydraulic head pressure. Further, it is not necessary to measure the volume pulse wave, and blood pressure can always be measured only by measuring the blood flow velocity and blood vessel diameter by wave motion.

(水頭圧(ρ・g・h)を血管径dに換算する方法)
本実施形態に係る血圧測定装置を、図4に示すように、手首部16に装着した状態で心臓38の高さと同じ高さHの位置で血管径dの時間変化の測定、及びカフ加圧式血圧計42による収縮期実血圧Prsys及び拡張期実血圧Prdiaの測定を行う。続いて、高さLの位置に腕を下ろし、血管径dの時間変化の測定を行う。これにより、水頭圧による圧力値がどのくらいの血管径d変化に対応するのかを算出できる(図5参照)。
(Method of converting hydrocephalic pressure (ρ · g · h) into vessel diameter d)
As shown in FIG. 4, the blood pressure measurement device according to the present embodiment is measured with respect to the time variation of the blood vessel diameter d at the position of the same height H as the heart 38 in the state where the blood pressure measurement device is worn on the wrist 16, and the cuff pressurization type. The systolic actual blood pressure Prsys and the diastolic actual blood pressure Prdia are measured by the sphygmomanometer 42. Subsequently, the arm is lowered to the position of the height L, and the time change of the blood vessel diameter d is measured. As a result, it is possible to calculate how much the pressure value due to the hydraulic head pressure corresponds to the change in the blood vessel diameter d (see FIG. 5).

図7は、本実施形態に係るカフ加圧測定値を示す図である。水頭圧による圧力値がどのくらいの血管径d変化に対応するのかの算出は、下記の(a)〜(c)の方法がある。
(a)血管径d変化は10秒程度計測し、図4の高さH,Lの位置での平均血管径(dm1及びdm2)をそれぞれ算出する。続いて、平均血管径(dm1,dm2)の変化分Δdmを式(7)より求める。
FIG. 7 is a diagram showing cuff pressurization measurement values according to the present embodiment. There are the following methods (a) to (c) for calculating how much the pressure value due to the water head pressure corresponds to the change in the blood vessel diameter d.
(A) The change in blood vessel diameter d is measured for about 10 seconds, and the average blood vessel diameters (dm1 and dm2) at the heights H and L in FIG. 4 are calculated. Subsequently, a change Δdm in the average blood vessel diameter (dm1, dm2) is obtained from the equation (7).

Δdm=dm2−dm1 …(7)
水頭圧分の血管径変化Δdを式(8)より求める。
Δdm = dm2-dm1 (7)
The blood vessel diameter change Δd corresponding to the hydraulic head pressure is obtained from the equation (8).

Δd=Δdm …(8)
これにより、図4の高さHの位置での平均収縮期血管径dmsys1及び平均拡張期血管径dmdia1を用いると、圧力及び血管径の関係を考えると式(9)が成立する。
Δd = Δdm (8)
Accordingly, when the average systolic blood vessel diameter dmsys1 and the average diastolic blood vessel diameter dmdia1 at the position of the height H in FIG. 4 are used, Equation (9) is established when the relationship between the pressure and the blood vessel diameter is considered.

(Prsys−Prdia):ρ・g・h=(dmsys1−dmdia1):Δdm …(9)
よって水頭圧(ρ・g・h)は、式(10)より求まる(図7(A)参照)。
(Prsys−Prdia): ρ · g · h = (dmsys1−dmdia1): Δdm (9)
Therefore, the water head pressure (ρ · g · h) is obtained from the equation (10) (see FIG. 7A).

ρ・g・h=(Prsys−Prdia)・Δdm/(dmsys1−dmdia1) …(10)   ρ · g · h = (Prsys−Prdia) · Δdm / (dmsys1−dmdia1) (10)

(b)血管径d変化は10秒程度計測し、図4の高さH及びLの位置での平均収縮期血管径(dmsys1,dmsys2)及び平均拡張期血管径(dmdia1,dmdia2)を算出する。続いて、平均血管径(dm1及びdm2)の変化分(Δdmsys,Δdmdia)を式(11)及び(12)より求める。   (B) The change in blood vessel diameter d is measured for about 10 seconds, and the average systolic blood vessel diameter (dmsys1, dmsys2) and average diastolic blood vessel diameter (dmdia1, dmdia2) at the positions of heights H and L in FIG. 4 are calculated. . Subsequently, the change (Δdmsys, Δdmdia) of the average blood vessel diameter (dm1 and dm2) is obtained from the equations (11) and (12).

Δdmsys=dmsys2−dmsys1 …(11)
Δdmdia=dmdia2−dmdia1 …(12)
また、上記より平均をとり、水頭圧分の血管径変化Δdを式(13)より求める。
Δdmsys = dmsys2-dmsys1 (11)
Δdmdia = dmdia2-dmdia1 (12)
Further, taking the average from the above, the blood vessel diameter change Δd corresponding to the hydraulic head pressure is obtained from the equation (13).

Δd=(Δdmsys+Δdmdia)/2 …(13)
これにより、圧力及び血管径の関係を考えると式(14)が成立する。
Δd = (Δdmsys + Δdmdia) / 2 (13)
Thereby, when the relationship between the pressure and the blood vessel diameter is considered, Expression (14) is established.

(Prsys−Prdia):ρ・g・h=(dmsys1−dmdia1):(Δdmsys+Δdmdia)/2 …(14)
よって水頭圧(ρ・g・h)は、式(15)より求まる(図7(B)参照)。
(Prsys−Prdia): ρ · g · h = (dmsys1−dmdia1): (Δdmsys + Δdmdia) / 2 (14)
Therefore, the water head pressure (ρ · g · h) is obtained from the equation (15) (see FIG. 7B).

ρ・g・h=(Prsys−Prdia)・(Δdmsys+Δdmdia)/2・(dmsys1−dmdia1) …(15)   ρ · g · h = (Prsys−Prdia) · (Δdmsys + Δdmdia) / 2 · (dmsys1−dmdia1) (15)

(c)上記(a)及び(b)の方法では、図6の略線形近似領域を用いるといった考えで算出したが、ここではより厳密に測定する方法を示す。先ず、図4の高さHの位置での血管径dの時間変化より、血管体積Vの時間変化を算出する。一般的に血管体積V及び血管内圧及びカフ圧の圧力差Ptの関係は式(16)で表せるので、b=0.03mmHg-1を用いると、収縮期実血圧Prsys及び拡張期実血圧Prdiaでの血管体積(Vrsys,Vrdia)の関係から、V0及びVmaxが求まる。これにより血管体積Vの時間変化から、高さHの位置での血管内圧及びカフ圧の圧力差Ptの時間変化が算出できる。 (C) In the above methods (a) and (b), the calculation was made based on the idea of using the substantially linear approximation region of FIG. 6, but here, a method of measuring more strictly is shown. First, the time change of the blood vessel volume V is calculated from the time change of the blood vessel diameter d at the position of the height H in FIG. In general, the relationship between the blood vessel volume V and the pressure difference Pt between the intravascular pressure and the cuff pressure can be expressed by equation (16). Therefore, when b = 0.03 mmHg −1 is used, the systolic actual blood pressure Prsys and the diastolic actual blood pressure Prdia V0 and Vmax are obtained from the relationship of the blood vessel volume (Vrsys, Vrdia). Thereby, from the time change of the blood vessel volume V, the time change of the pressure difference Pt between the blood vessel pressure and the cuff pressure at the position of the height H can be calculated.

V=Vmax+(V0−Vmax)・eb・Pt …(16)
次に、高さLの位置での血管径dの時間変化から血管体積(Vrsys,Vrdia)の時間変化を算出し、式(16)を用いて血管内圧及びカフ圧の圧力差Ptの時間変化を求める。高さH及びLの位置での血管内圧及びカフ圧の圧力差Ptの時間変化より、それぞれの位置での血管内圧及びカフ圧の圧力差Ptの平均値の差分を求め、その値を水頭圧(ρ・g・h)とする。若しくは、それぞれの平均収縮期血圧及び平均拡張期血圧の各同士の差分を求め、その差分の平均値を水頭圧とする。水頭圧(ρ・g・h)及び血管径d(血管体積)の換算ができれば、収縮期実血圧Prsys及び拡張期実血圧Prdiaの血圧差(Prsys−Prdia)は、式(17)のように求まる。
V = Vmax + (V0−Vmax) · e b · Pt (16)
Next, the time change of the blood vessel volume (Vrsys, Vrdia) is calculated from the time change of the blood vessel diameter d at the position of the height L, and the time change of the pressure difference Pt between the intravascular pressure and the cuff pressure is calculated using the equation (16). Ask for. From the time change of the pressure difference Pt between the intravascular pressure and the cuff pressure at the positions of heights H and L, the difference between the average values of the intravascular pressure and the cuff pressure difference Pt at each position is obtained, and the value is obtained as the hydraulic head pressure. (Ρ · g · h). Alternatively, the difference between each of the average systolic blood pressure and the average diastolic blood pressure is obtained, and the average value of the differences is set as the hydraulic head pressure. If the hydrocephalic pressure (ρ · g · h) and the blood vessel diameter d (blood vessel volume) can be converted, the blood pressure difference (Prsys−Prdia) between the systolic actual blood pressure Prsys and the diastolic actual blood pressure Prdia can be expressed by equation (17). I want.

Prsys−Prdia=1/b・log{(Vsys−Vmax)/(Vdia−Vmax)} …(17)
ここでVsysは収縮期血管体積、Vdiaは拡張期血管体積である。
Prsys−Prdia = 1 / b · log {(Vsys−Vmax) / (Vdia−Vmax)} (17)
Here, Vsys is a systolic blood vessel volume, and Vdia is a diastolic blood vessel volume.

水頭圧(ρ・g・h)の算出ができれば、前述の関係より血管径dの計測のみで収縮期実血圧Prsys及び拡張期実血圧Prdiaの血圧差(Prsys−Prdia)がわかる。水頭圧(ρ・g・h)の算出は常時連続測定開始前、つまり1日のはじめなどに一度行うことで、より高精度な測定ができる。また、測定位置高さH及びLの高低差hは精度にかかわる重要なパラメーターなので、測定ごとに同じ位置で行う。例えば高さHを心臓38の位置、高さLを腕を真っ直ぐ下ろした位置などに決め、高低差hを測定しておく。若しくは、高精度な気圧センサー36などを用いて高さの計算を行ってもよい。これにより、水頭圧を求める際の一要素である高低差を容易に測定できる。   If the hydrocephalic pressure (ρ · g · h) can be calculated, the blood pressure difference (Prsys−Prdia) between the systolic actual blood pressure Prsys and the diastolic actual blood pressure Prdia can be determined from the above-described relationship only by measuring the blood vessel diameter d. The calculation of the water head pressure (ρ · g · h) is always performed before the start of continuous measurement, that is, once at the beginning of the day, etc., so that more accurate measurement can be performed. In addition, the height difference h between the measurement position heights H and L is an important parameter related to accuracy, and is therefore performed at the same position for each measurement. For example, the height H is determined to be the position of the heart 38, the height L is determined to be a position where the arm is lowered straight, and the height difference h is measured. Alternatively, the height may be calculated using a highly accurate barometric sensor 36 or the like. Thereby, the height difference which is one element at the time of calculating | requiring a hydraulic head pressure can be measured easily.

(血管径の測定方法)
血管径dの測定の場合、図3に示す血管径センサー12の駆動部28により、図2に示すように数M〜数十MHzのパルス信号やバースト信号を送信し、送信波及び受信部26の受信波より血管壁からの反射波の到達時間を測定する。仮に、反射波到達時間が1.73μs、生体内部での音速を1500m/sとすると、血管径dは2.6mmと算出できる。例えば、超音波の送受信にはピエゾ素子を用いてもよい。さらに血管径dの測定方法としては、超音波ビームから得られるエコー信号に基づいて血管壁などを追跡するエコートラッキング法が知られている。エコートラッキング法により、超音波の波長以下の数μm程度の精度で血管壁などの変位を計測することができる。
(Measurement method of blood vessel diameter)
In the case of measuring the blood vessel diameter d, the drive unit 28 of the blood vessel diameter sensor 12 shown in FIG. 3 transmits a pulse signal or burst signal of several M to several tens of MHz as shown in FIG. The arrival time of the reflected wave from the blood vessel wall is measured from the received wave. If the reflected wave arrival time is 1.73 μs and the sound velocity inside the living body is 1500 m / s, the blood vessel diameter d can be calculated as 2.6 mm. For example, a piezoelectric element may be used for transmitting and receiving ultrasonic waves. Furthermore, as a method for measuring the blood vessel diameter d, an echo tracking method for tracking a blood vessel wall or the like based on an echo signal obtained from an ultrasonic beam is known. By the echo tracking method, the displacement of the blood vessel wall or the like can be measured with an accuracy of about several μm below the wavelength of the ultrasonic wave.

(血流速度の測定方法)
図8は、本実施形態に係る血流速度センサーを示す図である。血流速度vを測定する場合、図3に示す血流速度センサー10の駆動部20から出た基本波動f及び受信部26の受信波動f´(図2参照)をミキシングして信号演算部22で検波を行うことによりドップラーシフトの周波数成分のみを抽出する。信号演算部22ではこのドップラー周波数成分Δf(=f−f´)と、波動及び橈骨動脈14のなす角θより式(18)を利用して血流速度vを算出する。
(Measurement method of blood flow velocity)
FIG. 8 is a diagram showing a blood flow velocity sensor according to the present embodiment. When measuring the blood flow velocity v, the fundamental wave f output from the drive unit 20 of the blood flow velocity sensor 10 shown in FIG. 3 and the received wave f ′ (see FIG. 2) of the reception unit 26 are mixed and the signal calculation unit 22 is mixed. Only the frequency component of the Doppler shift is extracted by performing detection at. The signal calculation unit 22 calculates the blood flow velocity v from the Doppler frequency component Δf (= f−f ′), the wave and the angle θ formed by the radial artery 14 using the equation (18).

v=ε・Δf/(2・f・cosθ) …(18)
ここでεは生体内部の音速、fは入力した波動の周波数、vは血流速度、θは橈骨動脈14及び波動のなす角である。実際には波動及び橈骨動脈14のなす角θを求めることは困難なので、図8に示すような複数個の血流速度センサーを用いて波動及び橈骨動脈14のなす角θが未知な場合についても血流速度vが求められるように、2個の血流速度センサーを用いて測定する血流の流れる方向に対して角度θと角度θ−αの2つの超音波波動が送受信できるセンサーを用いる。2個の血流速度センサーのなす角をαとすると、波動及び橈骨動脈14のなす角θを求めることができる。すなわち、生体表面から内部に波動を送受信する血流速度センサー10は1対となる。血流速度センサーがそれぞれ受信するドップラー周波数成分Δf0,Δf1、そして2個の血流速度センサーのなす角をαとすると式(19)を用いてθを求める。
v = ε · Δf / (2 · f · cos θ) (18)
Here, ε is the speed of sound inside the living body, f is the frequency of the input wave, v is the blood flow velocity, and θ is the angle between the radial artery 14 and the wave. Actually, since it is difficult to obtain the angle θ formed by the wave and the radial artery 14, the angle θ formed by the wave and the radial artery 14 is unknown using a plurality of blood flow velocity sensors as shown in FIG. In order to obtain the blood flow velocity v, a sensor capable of transmitting and receiving two ultrasonic waves of an angle θ and an angle θ-α with respect to the direction of blood flow measured using two blood flow velocity sensors is used. If the angle formed by the two blood flow velocity sensors is α, the angle θ formed by the wave and the radial artery 14 can be obtained. That is, a pair of blood flow velocity sensors 10 that transmit and receive waves from the surface of the living body to the inside. If the Doppler frequency components Δf0 and Δf1 received by the blood flow velocity sensors and the angle formed by the two blood flow velocity sensors are α, θ is obtained using equation (19).

θ=Tan-1(Δf1/Δf0−cosα)/sinα …(19)
そして、ここで求めた波動及び橈骨動脈14のなす角θ及びドップラー周波数成分Δf0をΔf=Δf0として式(18)に代入することにより、血流速度vを求める。
θ = Tan −1 (Δf1 / Δf0−cos α) / sin α (19)
And the blood flow velocity v is calculated | required by substituting the angle (theta) and Doppler frequency component (DELTA) f0 which the wave and the radial artery 14 which were calculated | required here calculated | required into (18) as (DELTA) f = (DELTA) f0.

例えば、血流速度vを求めるために、1MHzのパルス信号を送信し、受信波のドップラー周波数成分Δfを算出する。ドップラー周波数成分Δfが0.33kHzで橈骨動脈14と波動とのなす角θが45度のとき、血流速度vはおよそ50cm/sと算出できる。以上求めた血管径d及び血流速度vより、一拍ごとの血圧Pを算出する。つまり、一拍ごとに式(4)及び(5)にあるように血管径d及び血流速度vを超音波などの波動で測定し、血圧Pを決定する。式(4)及び(5)にある比例定数(π/8・η・C)は、式(6)を変形した式(20)より求まる。   For example, in order to obtain the blood flow velocity v, a 1 MHz pulse signal is transmitted, and the Doppler frequency component Δf of the received wave is calculated. When the Doppler frequency component Δf is 0.33 kHz and the angle θ between the radial artery 14 and the wave is 45 degrees, the blood flow velocity v can be calculated as approximately 50 cm / s. The blood pressure P for each beat is calculated from the blood vessel diameter d and the blood flow velocity v obtained above. That is, the blood pressure P is determined by measuring the blood vessel diameter d and the blood flow velocity v with a wave such as an ultrasonic wave as shown in the equations (4) and (5) for each beat. The proportionality constant (π / 8 · η · C) in the equations (4) and (5) is obtained from the equation (20) obtained by modifying the equation (6).

π/8・η・C=(Psys−Pdia)/(vsys/dsys2−vdia/ddia2) …(20)
よって式(4)及び(5)の関係からサンプルレートごと若しくは一定間隔ごとに血圧Pを算出することにより、安定した常時血圧測定を非加圧下で行うことができる。
π / 8 · η · C = (Psys−Pdia) / (vsys / dsys 2 −vdia / ddia 2 ) (20)
Therefore, stable blood pressure measurement can be performed under no pressure by calculating the blood pressure P for each sample rate or at regular intervals from the relationship of equations (4) and (5).

(簡便な校正方法)
比例定数(π/8・η・C)は、生体情報を多分に反映しているため、ある程度の間隔で値の校正を行う必要がある。その場合、図4のように高さHの位置及び高さLの位置、それぞれでの血管径d及び血流速度vを超音波などの波動により前述の通り求め、収縮期血圧Psys及び拡張期血圧Pdiaの血圧差(Psys−Pdia)を、水頭圧(ρ・g・h)及び血管径dの換算により求める、以上よりカフ加圧無しでも適時校正できる。
(Simple calibration method)
Since the proportionality constant (π / 8 · η · C) largely reflects biological information, it is necessary to calibrate the value at a certain interval. In that case, as shown in FIG. 4, the position of the height H and the position of the height L, the blood vessel diameter d and the blood flow velocity v at the respective positions are obtained as described above by waves such as ultrasonic waves, and the systolic blood pressure Psys and the diastole. The blood pressure difference (Psys-Pdia) of the blood pressure Pdia is obtained by conversion of the hydrocephalic pressure (ρ · g · h) and the blood vessel diameter d. From the above, calibration can be performed in a timely manner without cuff pressurization.

(血圧測定方法及び校正値算出)
図9は、本実施形態に係る血圧測定方法を示す図である。先ず、スイッチ37を投入後、ステップS10に示すように、比例定数(π/8・η・C)算出のための校正を行う。ステップS10の詳細については後述する。
(Blood pressure measurement method and calibration value calculation)
FIG. 9 is a diagram illustrating a blood pressure measurement method according to the present embodiment. First, after the switch 37 is turned on, calibration for calculating a proportionality constant (π / 8 · η · C) is performed as shown in step S10. Details of step S10 will be described later.

続いて、ステップS20に示すように、血管径d及び血流速度vを測定する。測定方法は前述の超音波反射到達時間を測定し血管径dを測定するものや、ドップラー法により血流速度vを測定する方法を用いる。   Subsequently, as shown in step S20, the blood vessel diameter d and the blood flow velocity v are measured. As the measurement method, the above-described ultrasonic reflection arrival time is measured to measure the blood vessel diameter d, or the blood flow velocity v is measured by the Doppler method.

次に、ステップS30に示すように、ステップS10の校正ルーチンにより求めてある比例定数を用いて血圧Pを算出する。同一箇所、同時刻の血管径d及び血流速度vの時間的変化を求め、血圧Pの時間変化を算出することもできる。   Next, as shown in step S30, the blood pressure P is calculated using the proportionality constant obtained by the calibration routine of step S10. The temporal change in blood pressure P can also be calculated by obtaining temporal changes in the blood vessel diameter d and blood flow velocity v at the same location and at the same time.

次に、ステップS40に示すように、血圧Pを表示部34に表示する。また、それをグラフなどで可視化して表示部34に表示することもできる。さらに、脈拍についても同様に表示してもよい。   Next, as shown in step S <b> 40, the blood pressure P is displayed on the display unit 34. Further, it can be visualized by a graph or the like and displayed on the display unit 34. Further, the pulse may be displayed in the same manner.

次に、ステップS50に示すように、校正が再度必要であるか判断する。必要があればステップS10に戻り校正を行う。必要がなければステップS60へ進む。校正が必要である場合とは、例えば血圧が通常と比べて±15mmHg以上変化した場合である。この場合再校正の指示が表示部34に表示される。   Next, as shown in step S50, it is determined whether calibration is necessary again. If necessary, return to step S10 and perform calibration. If not necessary, the process proceeds to step S60. The case where calibration is necessary is, for example, a case where the blood pressure changes by ± 15 mmHg or more compared to normal. In this case, a recalibration instruction is displayed on the display unit 34.

次に、ステップS60に示すように、測定の続行が必要であるか判断する。必要があればステップS20に戻り血管径d及び血流速度vを測定する。必要がなければ終了する。これにより、最初にカフ型血圧計を用いて測定した血圧値によって補正係数を求めておくだけで、その後はカフ型血圧計を使用することなく精度良く血圧を測定することができ、被測定者が自由行動下で常時血圧測定する場合に、カフ型血圧計を使わず簡易に校正ができる。   Next, as shown in step S60, it is determined whether it is necessary to continue the measurement. If necessary, the process returns to step S20 to measure the blood vessel diameter d and the blood flow velocity v. Exit if not needed. As a result, it is possible to measure the blood pressure accurately without using a cuff sphygmomanometer after that, only by obtaining the correction coefficient based on the blood pressure value first measured using the cuff sphygmomanometer. Can calibrate easily without using a cuff sphygmomanometer when measuring blood pressure constantly under free action.

図10は、本実施形態に係る校正ルーチンを示す図である。
ステップS10の校正ルーチンの詳細を示したフローを図10に示す。水頭圧換算方法の(a)による手順は以下の通りである。先ず、ステップS110に示すように、図4の高さHの位置での血管径dを計測すると同時に平均血管径dm1を算出する。血管径変化は10秒程度測定する。
FIG. 10 is a diagram showing a calibration routine according to the present embodiment.
A flow showing details of the calibration routine in step S10 is shown in FIG. The procedure according to (a) of the water head pressure conversion method is as follows. First, as shown in step S110, the blood vessel diameter d at the height H in FIG. 4 is measured, and at the same time, the average blood vessel diameter dm1 is calculated. The blood vessel diameter change is measured for about 10 seconds.

次に、ステップS120に示すように、腕を高さLの位置に移す。その際の高さH及びLの位置の高低差hを測定する。なお、高さ位置センサー部としての高精度な気圧センサー36(図3参照)などを用いて高さの計算を行ってもよい。これにより、水頭圧を求める際の一要素である高低差を容易に測定できる。   Next, as shown in step S120, the arm is moved to the position of the height L. At that time, the height difference h between the positions of the heights H and L is measured. Note that the height may be calculated using a high-precision atmospheric pressure sensor 36 (see FIG. 3) as the height position sensor unit. Thereby, the height difference which is one element at the time of calculating | requiring a hydraulic head pressure can be measured easily.

次に、ステップS130に示すように、水頭圧(ρ・g・h)を算出する。   Next, as shown in step S130, the hydraulic head pressure (ρ · g · h) is calculated.

続いて、ステップS140に示すように、血管径d及び血流速度vを測定すると同時に平均血管径dm2を求める。   Subsequently, as shown in step S140, the blood vessel diameter d and the blood flow velocity v are measured, and at the same time, the average blood vessel diameter dm2 is obtained.

次に、ステップS150に示すように、高さH及びLの位置での平均血管径変化Δdm(=dm1−dm2)を算出する。   Next, as shown in step S150, an average blood vessel diameter change Δdm (= dm1-dm2) at the positions of heights H and L is calculated.

次に、ステップS160に示すように、拡張期血圧Pdia及び収縮期血圧Psysの血圧差(Psys−Pdia)を算出する。図4の高さHの位置での平均収縮期血管径dmsys1及び平均拡張期血管径dmdia1を用いると、式(9)を変形して式(21)より、拡張期血圧Pdiaと収縮期血圧Psysとの血圧差(Psys−Pdia)を算出する。   Next, as shown in step S160, a blood pressure difference (Psys−Pdia) between the diastolic blood pressure Pdia and the systolic blood pressure Psys is calculated. When the average systolic blood vessel diameter dmsys1 and the average diastolic blood vessel diameter dmdia1 at the position of the height H in FIG. 4 are used, the equation (9) is transformed and the diastolic blood pressure Pdia and the systolic blood pressure Psys are obtained from the equation (21). Blood pressure difference (Psys−Pdia).

Psys−Pdia=ρ・g・h・(dmsys1−dmdia1)/Δdm …(21)
なお、この場合拡張期実血圧Prdiaと収縮期実血圧Prsysとの血圧差(Prsys−Prdia)は、拡張期血圧Pdiaと収縮期血圧Psysとの血圧差(Psys−Pdia)と等しいとして算出する。
Psys−Pdia = ρ · g · h · (dmsys1−dmdia1) / Δdm (21)
In this case, the blood pressure difference (Prsys−Prdia) between the diastolic actual blood pressure Prdia and the systolic blood pressure Prsys is calculated as being equal to the blood pressure difference (Psys−Pdia) between the diastolic blood pressure Pdia and the systolic blood pressure Psys.

次に、ステップS170に示すように、以下の式より比例定数(π/8・η・C)を算出する。式(20)より、比例定数(π/8・η・C)を算出する。なお、この場合拡張期血圧Pdiaと収縮期血圧Psysとの血圧差(Psys−Pdia)は、拡張期実血圧Prdiaと収縮期実血圧Prsysとの血圧差(Prsys−Prdia)と等しいとして算出する。また、水頭圧と血管径変化との関係は変わらないので拡張期血圧Pdiaと収縮期血圧Psysとの血圧差(Psys−Pdia)はカフ圧無しで算出することができる。これにより、比例定数を容易に校正できる。   Next, as shown in step S170, a proportionality constant (π / 8 · η · C) is calculated from the following equation. The proportionality constant (π / 8 · η · C) is calculated from the equation (20). In this case, the blood pressure difference (Psys−Pdia) between the diastolic blood pressure Pdia and the systolic blood pressure Psys is calculated as being equal to the blood pressure difference (Prsys−Prdia) between the diastolic actual blood pressure Prdia and the systolic blood pressure Prsys. Further, since the relationship between the hydrocephalic pressure and the blood vessel diameter change does not change, the blood pressure difference (Psys-Pdia) between the diastolic blood pressure Pdia and the systolic blood pressure Psys can be calculated without cuff pressure. Thereby, the proportionality constant can be easily calibrated.

本実施形態の血圧測定装置及び血圧測定方法によれば、カフを使用することなく適時校正を簡便にすることができ、精度良く血圧Pを測定することができる。またそれによりウエアラブルで常時計測可能な血圧測定装置及び血圧測定方法が提供できる。   According to the blood pressure measurement device and the blood pressure measurement method of the present embodiment, timely calibration can be simplified without using a cuff, and the blood pressure P can be measured with high accuracy. Further, it is possible to provide a blood pressure measuring device and a blood pressure measuring method that are wearable and can always be measured.

2…血圧測定装置 4…被測定者 10…血流速度センサー 12…血管径センサー 14…橈骨動脈(血管) 16…手首部 18…血流速度センサー部 20…駆動部(血流速度センサー駆動部) 22…信号演算部(血流速度センサー信号演算部) 24…発信部(送信用素子) 26…受信部(受信用素子) 27…血管径センサー部 28…駆動部(血管径センサー駆動部) 29…発信部 30…信号演算部(血管径センサー信号演算部) 31…受信部 32…血圧信号演算部 34…表示部 36…気圧センサー(高さ位置センサー部) 37…スイッチ 38…心臓 40…電源部 42…カフ加圧式血圧計。   DESCRIPTION OF SYMBOLS 2 ... Blood pressure measuring apparatus 4 ... Person to be measured 10 ... Blood flow velocity sensor 12 ... Blood vessel diameter sensor 14 ... Radial artery (blood vessel) 16 ... Wrist 18 ... Blood flow velocity sensor unit 20 ... Drive unit (blood flow velocity sensor drive unit) 22 ... Signal calculation unit (blood flow velocity sensor signal calculation unit) 24 ... Transmission unit (transmission element) 26 ... Reception unit (reception element) 27 ... Blood vessel diameter sensor unit 28 ... Drive unit (blood vessel diameter sensor drive unit) DESCRIPTION OF SYMBOLS 29 ... Transmitting part 30 ... Signal calculating part (blood vessel diameter sensor signal calculating part) 31 ... Receiving part 32 ... Blood pressure signal calculating part 34 ... Display part 36 ... Barometric pressure sensor (height position sensor part) 37 ... Switch 38 ... Heart 40 ... Power source 42 ... Cuff pressurization type blood pressure monitor.

Claims (8)

被測定者の生体表面から生体内部の血液に波動を送受信して、該生体内部の血液の流れを検出する血流速度センサー部と、
前記血流速度センサー部を駆動させる血流速度センサー駆動部と、
前記血流速度センサー駆動部と前記血流速度センサー部とを制御し前記生体内部の血流速度を求める血流速度センサー信号演算部と、
前記生体内部の血管に超音波を送受信して、該生体内部の血管壁の反射到達時間差を検出する血管径センサー部と、
前記血管径センサー部を駆動させる血管径センサー駆動部と、
前記血管径センサー駆動部と前記血管径センサー部とを制御し前記生体内部の血管径を求める血管径センサー信号演算部と、
前記血流速度センサー信号演算部と前記血管径センサー信号演算部との演算結果を用いて前記被測定者の血圧を求める血圧信号演算部と、
を有することを特徴とする血圧測定装置。
A blood flow velocity sensor that detects the flow of blood inside the living body by transmitting and receiving waves from the surface of the living body of the subject to the blood inside the living body;
A blood flow velocity sensor driving unit for driving the blood flow velocity sensor unit;
A blood flow velocity sensor signal calculation unit for controlling the blood flow velocity sensor driving unit and the blood flow velocity sensor unit to obtain a blood flow velocity inside the living body;
A blood vessel diameter sensor unit that transmits and receives ultrasonic waves to and from the blood vessel inside the living body, and detects a reflection arrival time difference of the blood vessel wall inside the living body; and
A blood vessel diameter sensor driving unit for driving the blood vessel diameter sensor unit;
A blood vessel diameter sensor signal calculating unit for controlling the blood vessel diameter sensor driving unit and the blood vessel diameter sensor unit to obtain a blood vessel diameter inside the living body;
A blood pressure signal calculation unit for obtaining the blood pressure of the measurement subject using calculation results of the blood flow velocity sensor signal calculation unit and the blood vessel diameter sensor signal calculation unit;
A blood pressure measurement device comprising:
請求項1に記載の血圧測定装置において、
前記血圧信号演算部は、前記血管径を水頭圧に換算することにより前記血圧を求める演算を実行することを特徴とする血圧測定装置。
The blood pressure measurement device according to claim 1,
The blood pressure measurement device, wherein the blood pressure signal calculation unit performs a calculation for obtaining the blood pressure by converting the blood vessel diameter into a hydrocephalic pressure.
請求項1又は2に記載の血圧測定装置において、
前記被測定者の所定の部位が所定の高さに位置決めされた第1状態で、該第1状態と前記所定の部位が前記被測定者の心臓の高さに位置決めされた第2状態との前記所定の部位の高低差を求める高さ位置センサー部をさらに含み、
前記水頭圧は、前記高さ位置センサー部により測定された前記高低差を用いて求められていることを特徴とする血圧測定装置。
The blood pressure measurement device according to claim 1 or 2,
A first state in which the predetermined part of the subject is positioned at a predetermined height, and the first state and a second state in which the predetermined part is positioned at the height of the heart of the subject A height position sensor unit for obtaining a height difference of the predetermined part;
The blood pressure measuring device, wherein the water head pressure is obtained using the height difference measured by the height position sensor unit.
請求項1〜3のいずれか一項に記載の血圧測定装置において、
前記血流速度センサー部は、送信用素子と受信用素子とから構成し、しかも前記送信用素子と前記受信用素子との対は複数対あり、送受信する波動の進行方向と血液の流れる方向とのなす角度が対ごとに異なることを特徴とする血圧測定装置。
The blood pressure measurement device according to any one of claims 1 to 3,
The blood flow velocity sensor unit is composed of a transmitting element and a receiving element, and there are a plurality of pairs of the transmitting element and the receiving element, and the traveling direction of waves to be transmitted and received and the direction of blood flow The blood pressure measuring device is characterized in that the angle formed by the pair is different for each pair.
請求項1〜3のいずれか一項に記載の血圧測定装置において、
前記血流速度センサー部は、圧電素子を用いて構成することを特徴とする血圧測定装置。
The blood pressure measurement device according to any one of claims 1 to 3,
The blood flow rate sensor unit is configured by using a piezoelectric element.
被測定者の所定の部位が所定の高さに位置決めされた第1状態で、前記所定の部位の血流速度を該所定の部位の血管径の2乗で割った値に対して所定の比例定数で比例する前記被測定者の血圧であって、前記比例定数を求める校正工程と、
前記第1状態で、前記所定の部位の前記血管径及び前記血流速度をそれぞれ測定する工程と、
前記血管径、前記血流速度、及び前記比例定数を用いて前記血圧を求める工程と、
前記血圧を表示する工程と、及び、
前記比例定数の校正が必要か判断する工程と、
を有することを特徴とする血圧測定方法。
In a first state where a predetermined part of the measurement subject is positioned at a predetermined height, a predetermined proportionality to a value obtained by dividing the blood flow velocity of the predetermined part by the square of the blood vessel diameter of the predetermined part A blood pressure of the measurement subject proportional to a constant, and a calibration step for obtaining the proportionality constant;
Measuring the blood vessel diameter and the blood flow velocity at the predetermined site in the first state,
Determining the blood pressure using the blood vessel diameter, the blood flow velocity, and the proportionality constant;
Displaying the blood pressure; and
Determining whether calibration of the proportionality constant is necessary;
A blood pressure measurement method characterized by comprising:
請求項6に記載の血圧測定方法において、
前記校正工程は、
前記所定の部位が前記被測定者の心臓の高さに位置決めされた第2状態で、前記所定の部位の血管径、及び該所定の部位の収縮期及び拡張期の血管径をそれぞれ計測し、第1平均血管径、平均収縮期血管径、及び平均拡張期血管径を求める工程と、
前記第1状態で、該第1状態と前記第2状態との前記所定の部位の高低差を測定する高低差測定工程と、
前記高低差を用いて前記第1状態と前記第2状態との間の水頭圧を求める工程と、
前記第1状態で、前記所定の部位の血管径、及び該所定の部位の収縮期及び拡張期の血流速度と血管径とをそれぞれ計測し、第2平均血管径、収縮期血流速度、収縮期血管径、拡張期血流速度、及び拡張期血管径を求める工程と、
前記第1平均血管径と前記第2平均血管径とを用いて平均血管径変化を求める工程と、
前記水頭圧、前記平均血管径変化、前記平均収縮期血管径、及び前記平均拡張期血管径を用いて収縮期血圧と拡張期血圧との血圧差を求める工程と、及び、
前記血圧差、前記収縮期血流速度、前記収縮期血管径、前記拡張期血流速度、及び前記拡張期血管径を用いて前記比例定数を求める工程と、
を有することを特徴とする血圧測定方法。
The blood pressure measurement method according to claim 6,
The calibration process includes
In the second state where the predetermined portion is positioned at the height of the heart of the measurement subject, the blood vessel diameter of the predetermined portion, and the blood vessel diameter of the predetermined portion and the systolic and diastolic phases are respectively measured. Obtaining a first average vessel diameter, an average systolic vessel diameter, and an average diastolic vessel diameter;
A height difference measuring step for measuring a height difference of the predetermined portion between the first state and the second state in the first state;
Obtaining a hydraulic head pressure between the first state and the second state using the height difference;
In the first state, the blood vessel diameter of the predetermined part, and the blood flow velocity and blood vessel diameter of the predetermined part of the systole and the diastole are measured, respectively, the second average blood vessel diameter, the systolic blood flow velocity, Obtaining a systolic blood vessel diameter, a diastolic blood flow velocity, and a diastolic blood vessel diameter;
Obtaining an average blood vessel diameter change using the first average blood vessel diameter and the second average blood vessel diameter;
Determining a blood pressure difference between systolic blood pressure and diastolic blood pressure using the hydrocephalic pressure, the mean blood vessel diameter change, the mean systolic blood vessel diameter, and the mean diastolic blood vessel diameter; and
Obtaining the proportionality constant using the blood pressure difference, the systolic blood flow velocity, the systolic blood vessel diameter, the diastolic blood flow velocity, and the diastolic blood vessel diameter;
A blood pressure measurement method characterized by comprising:
請求項7に記載の血圧測定方法において、
前記高低差測定工程は、
前記第1状態と前記第2状態との前記所定の部位の前記高低差を測定する高さ位置センサー部により測定されていることを特徴とする血圧測定方法。
The blood pressure measurement method according to claim 7,
The height difference measuring step includes
A blood pressure measurement method characterized by being measured by a height position sensor unit that measures the height difference of the predetermined part between the first state and the second state.
JP2010115044A 2010-05-19 2010-05-19 Blood pressure measuring device and blood pressure measuring method Active JP5884256B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010115044A JP5884256B2 (en) 2010-05-19 2010-05-19 Blood pressure measuring device and blood pressure measuring method
CN201110129046.XA CN102247169B (en) 2010-05-19 2011-05-18 Blood pressure measuring device and blood pressure measuring method
CN201410391906.0A CN104161547A (en) 2010-05-19 2011-05-18 Blood pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010115044A JP5884256B2 (en) 2010-05-19 2010-05-19 Blood pressure measuring device and blood pressure measuring method

Publications (2)

Publication Number Publication Date
JP2011239972A true JP2011239972A (en) 2011-12-01
JP5884256B2 JP5884256B2 (en) 2016-03-15

Family

ID=44974999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010115044A Active JP5884256B2 (en) 2010-05-19 2010-05-19 Blood pressure measuring device and blood pressure measuring method

Country Status (2)

Country Link
JP (1) JP5884256B2 (en)
CN (2) CN104161547A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123529A (en) * 2011-12-14 2013-06-24 Seiko Epson Corp Device and method of measuring blood pressure
JP2013220243A (en) * 2012-04-18 2013-10-28 Seiko Epson Corp Central blood pressure estimation parameter calibration method, central blood pressure measurement method and central blood pressure measurement device
WO2015049963A1 (en) * 2013-10-03 2015-04-09 コニカミノルタ株式会社 Bio-information measurement device and method therefor
JP2015173952A (en) * 2014-03-18 2015-10-05 日本光電工業株式会社 blood pressure measurement system
WO2015179356A1 (en) * 2014-05-19 2015-11-26 Qualcomm Incorporated Method of calibrating a blood pressure measurement device
JP2016112277A (en) * 2014-12-17 2016-06-23 セイコーエプソン株式会社 Blood pressure measurement device, electronic apparatus and blood pressure measurement method
EP2916725A4 (en) * 2012-11-08 2016-07-06 Le Thai Improved blood pressure monitor and method
WO2017139016A1 (en) * 2016-02-12 2017-08-17 Qualcomm Incorporated Methods and devices for calculating blood pressure based on measurements of arterial blood flow and arterial lumen
WO2020080601A1 (en) * 2018-10-18 2020-04-23 (주)참케어 Blood pressure monitor, and method for measuring blood pressure by using same
WO2020121377A1 (en) * 2018-12-10 2020-06-18 国立大学法人東海国立大学機構 Biological information measurement device
WO2020218819A1 (en) * 2019-04-25 2020-10-29 (주)참케어 Sensor module for measuring blood pressure, and wrist-wearable portable blood pressure measurement device using same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6098101B2 (en) * 2011-12-14 2017-03-22 セイコーエプソン株式会社 Blood pressure measurement device and blood pressure measurement method
JP6028897B2 (en) * 2012-04-18 2016-11-24 セイコーエプソン株式会社 Blood pressure measurement device and blood pressure estimation parameter calibration method
JP6019854B2 (en) * 2012-07-13 2016-11-02 セイコーエプソン株式会社 Blood pressure measuring device and parameter correction method for central blood pressure estimation
CN105792755B (en) * 2013-11-20 2018-11-02 株式会社爱发科 The measurement method of the intravital blood vessel diameter of ultrasonic probe and the use ultrasonic probe
CN103610454B (en) * 2013-12-06 2017-01-11 黄志海 Blood pressure measurement method and system
JP2017153875A (en) * 2016-03-04 2017-09-07 セイコーエプソン株式会社 Biological information measurement device and biological information measurement method
CN106175832B (en) * 2016-06-27 2019-07-26 联想(北京)有限公司 A kind of method and mobile terminal detecting blood pressure
US20180092622A1 (en) * 2016-09-30 2018-04-05 Robert Bosch Gmbh Phased Array for Detecting Artery Location to Measure Blood Velocity
CN108272446B (en) * 2018-01-30 2021-03-26 浙江大学 Noninvasive continuous blood pressure measuring system and calibration method thereof
JP2020025627A (en) * 2018-08-09 2020-02-20 ソニー株式会社 Biological information acquisition device, head mounted information presentation device, and biological information acquisition method
CN110200613B (en) * 2019-04-08 2024-02-20 深圳市贝斯曼精密仪器有限公司 Blood flow and blood pressure detection device
CN110037673B (en) * 2019-05-13 2020-12-01 深圳六合六医疗器械有限公司 Statistical method and device for blood pressure personalized interval
CN111904404B (en) * 2020-08-06 2021-06-18 苏州国科医工科技发展(集团)有限公司 Blood pressure regulation and control equipment containing closed-loop monitoring and based on ear vagus nerve stimulation
CN112890790B (en) * 2021-01-22 2022-03-15 浙江大学 Wearable noninvasive dynamic blood pressure tracking and monitoring method
CN112932429B (en) * 2021-02-02 2022-08-26 成都泰盟软件有限公司 Automatic real-time calibration method for continuous blood pressure measurement
CN113812977B (en) * 2021-08-13 2023-08-25 安徽理工大学 Ultrasonic sphygmomanometer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250135A (en) * 1990-07-18 1992-09-07 Rudolf A Hatschek Blood pressure measuring apparatus and method
JP2001178694A (en) * 2000-11-24 2001-07-03 Matsushita Electric Works Ltd Wrist sphygmomanometer
JP2003019119A (en) * 2001-07-10 2003-01-21 Canon Inc Eyeground rheometer
JP2004041382A (en) * 2002-07-10 2004-02-12 Aloka Co Ltd Ultrasonograph
JP2004154231A (en) * 2002-11-05 2004-06-03 Seiko Instruments Inc Blood pressure measuring device and blood pressure measuring method
JP2006102190A (en) * 2004-10-06 2006-04-20 Nippon Telegr & Teleph Corp <Ntt> Sphygmomanometer, blood pressure correcting method, and measurement start pressure correcting method
JP2006204722A (en) * 2005-01-31 2006-08-10 Seiko Instruments Inc Blood viscosity measuring instrument
JP2007111245A (en) * 2005-10-20 2007-05-10 Seiko Instruments Inc Blood circulation state measuring apparatus
WO2009090646A2 (en) * 2008-01-15 2009-07-23 Intercure Ltd. Determination of physiological parameters using repeated blood pressure measurements

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040073123A1 (en) * 2002-10-11 2004-04-15 Hessel Stephen R. Apparatus and methods for non-invasively measuring hemodynamic parameters
CN2728423Y (en) * 2004-07-07 2005-09-28 无锡贝尔森影像技术有限公司 Cerebrovascular hemodynamics detection instrument
JP4945300B2 (en) * 2007-04-25 2012-06-06 株式会社東芝 Ultrasonic diagnostic equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250135A (en) * 1990-07-18 1992-09-07 Rudolf A Hatschek Blood pressure measuring apparatus and method
JP2001178694A (en) * 2000-11-24 2001-07-03 Matsushita Electric Works Ltd Wrist sphygmomanometer
JP2003019119A (en) * 2001-07-10 2003-01-21 Canon Inc Eyeground rheometer
JP2004041382A (en) * 2002-07-10 2004-02-12 Aloka Co Ltd Ultrasonograph
JP2004154231A (en) * 2002-11-05 2004-06-03 Seiko Instruments Inc Blood pressure measuring device and blood pressure measuring method
JP2006102190A (en) * 2004-10-06 2006-04-20 Nippon Telegr & Teleph Corp <Ntt> Sphygmomanometer, blood pressure correcting method, and measurement start pressure correcting method
JP2006204722A (en) * 2005-01-31 2006-08-10 Seiko Instruments Inc Blood viscosity measuring instrument
JP2007111245A (en) * 2005-10-20 2007-05-10 Seiko Instruments Inc Blood circulation state measuring apparatus
WO2009090646A2 (en) * 2008-01-15 2009-07-23 Intercure Ltd. Determination of physiological parameters using repeated blood pressure measurements

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013123529A (en) * 2011-12-14 2013-06-24 Seiko Epson Corp Device and method of measuring blood pressure
JP2013220243A (en) * 2012-04-18 2013-10-28 Seiko Epson Corp Central blood pressure estimation parameter calibration method, central blood pressure measurement method and central blood pressure measurement device
EP2916725A4 (en) * 2012-11-08 2016-07-06 Le Thai Improved blood pressure monitor and method
WO2015049963A1 (en) * 2013-10-03 2015-04-09 コニカミノルタ株式会社 Bio-information measurement device and method therefor
JP2015173952A (en) * 2014-03-18 2015-10-05 日本光電工業株式会社 blood pressure measurement system
US10039455B2 (en) 2014-05-19 2018-08-07 Qualcomm Incorporated Continuous calibration of a blood pressure measurement device
WO2015179356A1 (en) * 2014-05-19 2015-11-26 Qualcomm Incorporated Method of calibrating a blood pressure measurement device
US10052036B2 (en) 2014-05-19 2018-08-21 Qualcomm Incorporated Non-interfering blood pressure measuring
JP2016112277A (en) * 2014-12-17 2016-06-23 セイコーエプソン株式会社 Blood pressure measurement device, electronic apparatus and blood pressure measurement method
WO2017139016A1 (en) * 2016-02-12 2017-08-17 Qualcomm Incorporated Methods and devices for calculating blood pressure based on measurements of arterial blood flow and arterial lumen
US11020058B2 (en) 2016-02-12 2021-06-01 Qualcomm Incorporated Methods and devices for calculating blood pressure based on measurements of arterial blood flow and arterial lumen
US11020057B2 (en) 2016-02-12 2021-06-01 Qualcomm Incorporated Ultrasound devices for estimating blood pressure and other cardiovascular properties
WO2020080601A1 (en) * 2018-10-18 2020-04-23 (주)참케어 Blood pressure monitor, and method for measuring blood pressure by using same
WO2020121377A1 (en) * 2018-12-10 2020-06-18 国立大学法人東海国立大学機構 Biological information measurement device
WO2020218819A1 (en) * 2019-04-25 2020-10-29 (주)참케어 Sensor module for measuring blood pressure, and wrist-wearable portable blood pressure measurement device using same
CN113747834A (en) * 2019-04-25 2021-12-03 参凯尔株式会社 Sensor module for measuring blood pressure and wrist-worn portable blood pressure measuring device using same

Also Published As

Publication number Publication date
CN102247169A (en) 2011-11-23
CN102247169B (en) 2015-03-11
CN104161547A (en) 2014-11-26
JP5884256B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP5884256B2 (en) Blood pressure measuring device and blood pressure measuring method
JP6582199B2 (en) Blood pressure measurement device and blood pressure measurement method
JP3910521B2 (en) Blood pressure measurement device
JP4716279B2 (en) Blood viscosity measuring device
JP4766546B2 (en) Ultrasonic diagnostic equipment
JP5552982B2 (en) Pulse pressure measuring device and pulse pressure measuring method
US20110288420A1 (en) Blood pressure measuring device and blood pressure measuring method
JP2017170014A (en) Blood pressure estimation device, sphygmomanometer, blood pressure estimation system, and blood pressure estimation method
JP3908660B2 (en) Blood pressure measurement device
JP2006263128A (en) Method and device for measuring vascular elasticity modulus
JP2017127494A (en) Blood vessel elasticity index value measuring device, blood pressure measuring device, and blood vessel elasticity index value measuring method
JP2016043162A (en) Ultrasonic blood pressure measuring instrument and blood pressure measuring method
JP2013132437A (en) Blood pressure measurement apparatus and control method for the same
JP5817512B2 (en) Blood pressure measuring device and method for controlling blood pressure measuring device
KR20100048359A (en) Ultrasound system for providing ultrasound image with additional information
US20220218217A1 (en) Blood pressure measurement system and blood pressure measurement method using the same
JP5552984B2 (en) Pulse pressure measuring device and pulse pressure measuring method
JP2010207344A (en) Blood pressure/blood velocity state determination device and method for determining the same
JP2012061130A (en) Device and method for measuring pulse pressure
JP4627221B2 (en) Ultrasonic diagnostic equipment
JP2008168055A (en) Stroke volume estimating apparatus
JP6825341B2 (en) Measuring device, blood pressure measuring device and measuring method
WO2006126485A1 (en) Ultrasonograph
JP2014176744A (en) Blood pressure measuring device and blood pressure measuring method
JP2016174798A (en) Blood pressure measurement apparatus and calibration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140926

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R150 Certificate of patent or registration of utility model

Ref document number: 5884256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350