JP5552982B2 - Pulse pressure measuring device and pulse pressure measuring method - Google Patents

Pulse pressure measuring device and pulse pressure measuring method Download PDF

Info

Publication number
JP5552982B2
JP5552982B2 JP2010207675A JP2010207675A JP5552982B2 JP 5552982 B2 JP5552982 B2 JP 5552982B2 JP 2010207675 A JP2010207675 A JP 2010207675A JP 2010207675 A JP2010207675 A JP 2010207675A JP 5552982 B2 JP5552982 B2 JP 5552982B2
Authority
JP
Japan
Prior art keywords
blood vessel
vessel diameter
blood
average
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010207675A
Other languages
Japanese (ja)
Other versions
JP2012061131A5 (en
JP2012061131A (en
Inventor
知典 真野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2010207675A priority Critical patent/JP5552982B2/en
Publication of JP2012061131A publication Critical patent/JP2012061131A/en
Publication of JP2012061131A5 publication Critical patent/JP2012061131A5/ja
Application granted granted Critical
Publication of JP5552982B2 publication Critical patent/JP5552982B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、流体圧測定装置、流体圧測定方法、血圧測定装置、及び血圧測定方法に関するものである。   The present invention relates to a fluid pressure measurement device, a fluid pressure measurement method, a blood pressure measurement device, and a blood pressure measurement method.

ある導管内を流れる流体の圧力を非侵襲、すなわち計測対象に毀損等の物理的痕跡を残すことなく測定することは、測定対象物に負荷無く測定できるため非常に有用である。特に生体内においては、昨今、血管内の流体圧力、すなわち血圧を非侵襲且つ無負荷に測定する試みがなされている。例えば、生体に非侵襲且つ無負荷に血圧を測定する方法として、超音波を用いて測定する方法が提案されている。動脈の局所部位において、最大直径及び最小直径を求め、それらのパラメーター値を非線形関数に与えておき、その非線形関数によって入力される各時刻の直径を換算することにより、局所部位についての各時刻の圧力を演算するようにしたものである(例えば、特許文献1参照)。   It is very useful to measure the pressure of a fluid flowing in a certain conduit non-invasively, that is, without leaving a physical trace such as damage to the measurement target because the measurement target can be measured without load. Particularly in the living body, recently, attempts have been made to measure the fluid pressure in blood vessels, that is, blood pressure in a non-invasive and non-loading manner. For example, as a method for measuring blood pressure non-invasively and without load on a living body, a method using ultrasonic waves has been proposed. Obtain the maximum diameter and the minimum diameter in the local part of the artery, give the parameter values to the nonlinear function, and convert the diameter of each time input by the nonlinear function, so that The pressure is calculated (for example, see Patent Document 1).

また、血流速度、流量、又は容量などを超音波により及び脈波速度を光波により検出し、この両量を関連付けて血圧及びその変化量を算出する方法が提案されている(例えば、特許文献2及び3参照)。   Further, a method has been proposed in which blood flow velocity, flow rate, volume, or the like is detected by ultrasonic waves and pulse wave velocity is detected by light waves, and the blood pressure and the amount of change thereof are calculated by associating both of these amounts (for example, Patent Literature 2 and 3).

特開2004−041382号公報Japanese Patent Laid-Open No. 2004-041382 特開平4−250135号公報JP-A-4-250135 特開2004−154231号公報JP 2004-154231 A

しかしながら、特許文献1〜3にあるように従来の超音波を用いた血圧値の算出には、カフ型血圧計による校正が必要となる。これは24時間自由行動下、血圧測定(24hABPM)や一拍ごとの連続血圧測定を考えた場合、カフを常時身に付けたり、持ち歩いて適時使用するといった不便があり、普段の生活を送る上で実用が困難になる虞がある。   However, as disclosed in Patent Documents 1 to 3, the calculation of blood pressure values using conventional ultrasonic waves requires calibration with a cuff type sphygmomanometer. This is a 24 hour free action, considering blood pressure measurement (24hABPM) and continuous blood pressure measurement every beat, there are inconveniences such as wearing a cuff all the time or carrying it around and use it regularly. Therefore, there is a possibility that the practical use becomes difficult.

また、カフ型血圧計による校正が必要なことに加え、その校正が定期的(30分〜1時間程度)に必要であることがさらに問題となる虞がある。特許文献3では血液粘度を含む補正係数をカフ型血圧計により求め、その補正係数を用いて血圧を導出している。血液粘度は、赤血球量、血漿粘度や赤血球の集合現象によって変化する。赤血球の集合現象は、脂質の多いものを食べたりすることによって、数時間のうちに起こりうるものであり、それに伴う血液粘度の変化は補正係数の変化へとつながる。すなわち、連続的かつ継続的に正しい血圧値を求めるには、校正は一度行うだけでは足りず、ある程度の間隔、例えば一時間程度ごとに行う必要がある。   Moreover, in addition to the need for calibration with a cuff type sphygmomanometer, there is a possibility that the calibration is required regularly (about 30 minutes to 1 hour). In Patent Document 3, a correction coefficient including blood viscosity is obtained by a cuff sphygmomanometer, and blood pressure is derived using the correction coefficient. The blood viscosity varies depending on the amount of red blood cells, plasma viscosity, and red blood cell aggregation phenomenon. The aggregation phenomenon of erythrocytes can occur within a few hours by eating foods rich in lipids, and the change in blood viscosity accompanying this changes in the correction coefficient. That is, in order to obtain a correct blood pressure value continuously and continuously, it is not necessary to perform calibration once, but it is necessary to perform it at a certain interval, for example, about every hour.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]測定対象部の導管の長手方向に沿って、互いに離間して配置された少なくとも2つの測定部と、該測定部を制御する制御部を備えた流体圧測定装置であって、前記測定部は、測定媒体を前記測定対象部に送出する一方、該測定対象部から戻って来る前記測定媒体の一部を取得する測定媒体送受部を備え、前記制御部は、一方及び他方の前記測定部によって前記測定対象部に内在する導管内を流動する流体速度及び導管径を測定し、前記少なくとも1つの測定部において測定した導管径の変化量と、前記一方の測定部と前記他方の測定部での導管径の差と、及び前記2つの測定部の間の距離に基づいて導き出される水頭差と、に基づいて導き出される流体圧の変化量を求め、前記変化量と、前記一方あるいは他方の測定部における流体速度及び導管径と、に基づいて係数値を導き出し、前記導管内を流動する流体の圧力を求めることを特徴とする流体圧測定装置。   [Application Example 1] A fluid pressure measurement device including at least two measurement units that are spaced apart from each other along the longitudinal direction of the conduit of the measurement target unit, and a control unit that controls the measurement unit, The measurement unit includes a measurement medium transmission / reception unit that transmits a measurement medium to the measurement target unit, and acquires a part of the measurement medium returned from the measurement target unit, and the control unit includes one and the other of the measurement medium. The measurement unit measures the velocity of the fluid flowing in the conduit existing in the measurement target unit and the conduit diameter, the amount of change in the conduit diameter measured in the at least one measurement unit, the one measurement unit, and the one measurement unit Obtaining the amount of change in fluid pressure derived based on the difference in conduit diameter at the other measurement unit and the head difference derived based on the distance between the two measurement units, the amount of change, In the one or other measuring part Body rate and a conduit diameter, derived coefficient values based on a fluid pressure measuring apparatus characterized by determining the pressure of the fluid flowing in the conduit.

本適用例によれば、最初に2つの測定部での流体の速度、導管の径及び測定部間の距離からもとまる係数値を求めることによって、その後は簡易に流体の圧力を求めることができる流体圧測定装置を提供できる。   According to this application example, the fluid pressure at the two measuring parts, the diameter of the conduit, and the coefficient value obtained from the distance between the measuring parts are first obtained, and thereafter the fluid pressure can be easily obtained. A fluid pressure measuring device can be provided.

[適用例2]上記流体圧測定装置であって、前記2つの測定部間の重力(鉛直)方向の距離を決定する高低差決定部をさらに備えることを特徴とする流体圧測定装置。   Application Example 2 The fluid pressure measuring device according to claim 1, further comprising an elevation difference determining unit that determines a distance in a gravity (vertical) direction between the two measuring units.

本適用例によれば、水頭圧を求める際の一要素である高低差を容易に決定できる。   According to this application example, it is possible to easily determine the height difference, which is one factor when obtaining the water head pressure.

[適用例3]上記流体圧測定装置であって、前記2つの測定部の間の重力方向の距離は、前記2つの測定部の離間距離と、前記2つの測定部の重力方向との傾き角度により算出されることを特徴とする流体圧測定装置。   Application Example 3 In the fluid pressure measurement device, the distance in the gravity direction between the two measurement units is an inclination angle between the separation distance between the two measurement units and the gravity direction of the two measurement units. The fluid pressure measuring device calculated by the following.

本適用例によれば、2つの測定部の空間的配置に拠らず、水頭圧を求める際の一要素である高低差を容易に求めることできる。   According to this application example, it is possible to easily obtain the height difference, which is one element when obtaining the water head pressure, without depending on the spatial arrangement of the two measurement units.

[適用例4]流体が流動する導管を内存する測定対象部の所定の第一部位が所定の高さに位置決めされた状態で、該第一部位の前記流体速度を該第一部位の前記導管径の2乗で割った値に対して所定の係数値で比例する前記流体の圧力であって、前記係数値を求める校正工程と、前記状態で、前記第一部位の前記導管径及び前記流体速度をそれぞれ測定する工程と、前記状態で、前記測定対象部の所定の第二部位での導管径及び流体速度をそれぞれ測定する工程と、前記第一部位の導管径、該第一部位の流体速度、及び前記係数値を用いて前記圧力を求める工程と、前記圧力を表示する工程と、及び、前記係数値の校正が必要か判断する工程と、を有することを特徴とする流体圧測定方法。   Application Example 4 In a state where a predetermined first portion of the measurement target portion including a conduit through which a fluid flows is positioned at a predetermined height, the fluid velocity of the first portion is guided to the first portion. A pressure of the fluid proportional to a predetermined coefficient value with respect to a value divided by the square of the tube diameter, the calibration step for obtaining the coefficient value, and in the state, the conduit diameter of the first portion and Measuring each of the fluid velocities, measuring a conduit diameter and a fluid velocity at a predetermined second part of the measurement target portion in the state, and a conduit diameter of the first part, the first part A step of determining the pressure using a fluid velocity at one part and the coefficient value; a step of displaying the pressure; and a step of determining whether calibration of the coefficient value is necessary. Fluid pressure measurement method.

本適用例によれば、他の圧力測定器を校正に使用することなく、精度よく流体圧を測定することができる。   According to this application example, the fluid pressure can be accurately measured without using another pressure measuring device for calibration.

[適用例5]上記流体圧測定方法であって、前記校正工程は、前記第一部位が前記流体の圧力基準面の高さに位置決めされた状態で、前記第一及び第二部位の導管径の時間変化を測定し、平均導管径を求める工程と、前記第一部位での流体速度の時間変化を測定する工程と、前記第一部位での導管径及び流体速度の時間変化から、最高圧力時及び最低圧力時での、導管径及び流体速度を求める工程と、前記第一部位での平均導管径と前記第二部位での平均導管径とを用いて平均導管径の変化量を求める工程と、前記状態で、前記第一部位と前記第二部位との高低差を測定する高低差測定工程と、前記高低差を用いて前記第一部位と前記第二部位との間の水頭圧を求める工程と、前記水頭圧、前記平均導管径変化、前記最高圧力時の導管径、及び前記最低圧力時の導管径を用いて最高圧力と最低圧力との圧力差を求める工程と、及び、前記圧力差、前記最高圧力時の流体速度、前記最高圧力時の導管径、前記最低圧力時の流体速度、及び前記最低圧力時の導管径を用いて前記係数値を求める工程と、を有することを特徴とする流体圧測定方法。   Application Example 5 In the above fluid pressure measurement method, the calibration step is performed in the state where the first part is positioned at the height of the pressure reference surface of the fluid, and the conduits of the first and second parts. Measuring the time variation of the diameter to obtain an average conduit diameter, measuring the time variation of the fluid velocity at the first portion, and the time variation of the conduit diameter and the fluid velocity at the first portion. Determining the conduit diameter and fluid velocity at the maximum and minimum pressures, and using the average conduit diameter at the first portion and the average conduit diameter at the second portion A step of obtaining a change in diameter; a height difference measuring step of measuring a height difference between the first part and the second part in the state; and the first part and the second part using the height difference. Determining the head pressure between the head pressure, the head pressure, the average conduit diameter change, the conduit diameter at the maximum pressure, and Obtaining a pressure difference between the maximum pressure and the minimum pressure using the conduit diameter at the minimum pressure, and the pressure difference, the fluid velocity at the maximum pressure, the conduit diameter at the maximum pressure, and the minimum And a step of obtaining the coefficient value using a fluid velocity at the time of pressure and a conduit diameter at the time of the minimum pressure.

本適用例によれば、他の圧力測定器を使用せずに係数値を容易に校正できる。   According to this application example, the coefficient value can be easily calibrated without using another pressure measuring device.

[適用例6]測定対象部の導管の長手方向に沿って、互いに離間して配置された少なくとも2つの測定部と、該測定部を制御する制御部を備えた血圧測定装置であって、前記測定部は、測定媒体を前記測定対象部に送出する一方、該測定対象部から戻って来る前記測定媒体の一部を取得する測定媒体送受部を備え、前記制御部は、一方及び他方の前記測定部によって前記測定対象部に内在する血管内を流動する血流の速度及び血管径を測定し、前記少なくとも1つの測定部において測定した血管径の変化量と、前記一方の測定部と前記他方の測定部での血管径の差と、及び前記2つの測定部の間の距離に基づいて導き出される水頭差と、に基づいて導き出される血圧の変化量を求め、前記変化量と、前記一方あるいは他方の測定部における血流速度及び血管径と、に基づいて係数値を導き出し、前記血管内を流動する血流の圧力を求めることを特徴とする血圧測定装置。   Application Example 6 A blood pressure measurement apparatus including at least two measurement units that are arranged apart from each other along the longitudinal direction of the conduit of the measurement target unit, and a control unit that controls the measurement unit, The measurement unit includes a measurement medium transmission / reception unit that transmits a measurement medium to the measurement target unit, and acquires a part of the measurement medium returned from the measurement target unit, and the control unit includes the one and the other of the measurement medium The measurement unit measures the velocity of blood flow and the blood vessel diameter flowing in the blood vessel existing in the measurement target unit, the change amount of the blood vessel diameter measured in the at least one measurement unit, the one measurement unit and the other A change in blood pressure derived based on a difference in blood vessel diameter at the measurement unit and a hydrocephalic difference derived based on a distance between the two measurement units. Blood in the other measuring unit Speed and the vessel diameter, derive coefficients based on the blood pressure measurement device characterized by determining the pressure of the blood flow flowing through the vessel.

本適用例によれば、最初に2つの測定部での血流速度、血管径及び測定部間の距離からもとまる係数値を求めることによって、その後は簡易に血圧を求めることができる血圧測定装置を提供できる。   According to this application example, a blood pressure measurement device that can first obtain a blood pressure simply by obtaining a coefficient value obtained from a blood flow velocity, a blood vessel diameter, and a distance between the measurement units at two measurement units first. Can provide.

[適用例7]上記血圧測定装置であって、前記2つの測定部間の重力方向の距離を決定する高低差決定部をさらに備えることを特徴とする血圧測定装置。   Application Example 7 The blood pressure measurement device according to the above-described blood pressure measurement device, further comprising a height difference determination unit that determines a distance in the gravity direction between the two measurement units.

本適用例によれば、水頭圧を求める際の一要素である高低差を容易に決定できる。   According to this application example, it is possible to easily determine the height difference, which is one factor when obtaining the water head pressure.

[適用例8]上記血圧測定装置であって、前記2つの測定部の間の重力方向の距離は、前記2つの測定部の離間距離と、前記2つの測定部の重力方向との傾き角度により算出されることを特徴とする血圧測定装置。   Application Example 8 In the blood pressure measurement device, the distance in the gravitational direction between the two measurement units depends on an inclination angle between the separation distance between the two measurement units and the gravity direction of the two measurement units. A blood pressure measurement device characterized by being calculated.

本適用例によれば、2つの測定部の空間的配置に拠らず、水頭圧を求める際の一要素である高低差を容易に測定できる。   According to this application example, it is possible to easily measure the height difference, which is an element when obtaining the hydraulic head pressure, without depending on the spatial arrangement of the two measurement units.

[適用例9]被測定者の所定の第一部位が所定の高さに位置決めされた状態で、前記所定の第一部位の血流速度を該第一部位の血管径の2乗で割った値に対して所定の係数値で比例する前記被測定者の血圧であって、前記係数値を求める校正工程と、前記状態で、前記第一部位の前記血管径及び前記血流速度をそれぞれ測定する工程と、前記状態で、前記被測定者の所定の第二部位での血管径及び血流速度をそれぞれ測定する工程と、前記第一部位の血管径、該第一部位の血流速度、及び前記係数値を用いて前記血圧を求める工程と、前記血圧を表示する工程と、及び、前記係数値の校正が必要か判断する工程と、を有することを特徴とする血圧測定方法。   Application Example 9 With the predetermined first part of the measurement subject positioned at a predetermined height, the blood flow velocity of the predetermined first part is divided by the square of the blood vessel diameter of the first part. A blood pressure of the measurement subject that is proportional to a value by a predetermined coefficient value, and the blood vessel diameter and the blood flow velocity of the first part are measured in the calibration step for obtaining the coefficient value and in the state, respectively. A step of measuring a blood vessel diameter and a blood flow velocity at a predetermined second site of the subject in the state, a blood vessel diameter of the first site, a blood flow velocity of the first site, A blood pressure measurement method comprising: obtaining the blood pressure using the coefficient value; displaying the blood pressure; and determining whether calibration of the coefficient value is necessary.

本適用例によれば、カフ型血圧計を使用することなく、精度よく血圧を測定することができ、校正の際もカフ型血圧計を使用しないため、被測定者が自由行動下で常時血圧測定をする場合の負荷を軽減できる。   According to this application example, the blood pressure can be accurately measured without using a cuff sphygmomanometer, and the cuff sphygmomanometer is not used even during calibration. The load when measuring can be reduced.

[適用例10]上記血圧測定方法であって、前記校正工程は、前記第一部位が前記被測定者の心臓の高さに位置決めされた状態で、前記第一及び第二部位の血管径の時間変化を測定し、平均血管径を求める工程と、前記第一部位での血流速度の時間変化を測定する工程と、前記第一部位での血管径及び血流速度の時間変化から、最高血圧時及び最低血圧時での、血管径及び血流速度を求める工程と、前記第一部位での平均血管径と前記第二部位での平均血管径とを用いて平均血管径変化を求める工程と、前記状態において、前記第一部位と前記第二部位との高低差を測定する高低差測定工程と、前記高低差を用いて前記第一部位と前記第二部位との間の水頭圧を求める工程と、前記水頭圧、前記平均血管径変化、前記最高血圧時の血管径、及び前記最低血圧時の血管径を用いて最高血圧と最低血圧との血圧差を求める工程と、及び、前記血圧差、前記最高血圧時の血流速度、前記最高血圧時の血管径、前記最低血圧時の血流速度、及び前記最低血圧時の血管径を用いて前記係数値を求める工程と、を有することを特徴とする血圧測定方法。   [Application Example 10] In the blood pressure measurement method, the calibration step may be performed with the blood vessel diameters of the first and second sites in a state where the first site is positioned at the height of the heart of the subject. From the steps of measuring temporal changes to determine the average blood vessel diameter, measuring the temporal changes in blood flow velocity at the first site, and temporal changes in blood vessel diameter and blood flow velocity at the first site, A step of obtaining a blood vessel diameter and a blood flow velocity at the time of hypertension and a minimum blood pressure, and a step of obtaining an average blood vessel diameter change using the average blood vessel diameter at the first site and the average blood vessel diameter at the second site. And in the state, a height difference measuring step for measuring a height difference between the first part and the second part, and a hydrohead pressure between the first part and the second part using the height difference. Determining the head pressure, the change in mean blood vessel diameter, the blood vessel diameter at the highest blood pressure, and Obtaining a blood pressure difference between the highest blood pressure and the lowest blood pressure using the blood vessel diameter at the lowest blood pressure; and the blood pressure difference, the blood flow velocity at the highest blood pressure, the blood vessel diameter at the highest blood pressure, and the lowest blood pressure. Blood flow velocity and obtaining the coefficient value using the blood vessel diameter at the time of the lowest blood pressure.

本適用例によれば、カフ型血圧計を使用せずに係数値を容易に校正できる。   According to this application example, the coefficient value can be easily calibrated without using a cuff type sphygmomanometer.

本実施形態に係る血圧測定装置が人体に装着された状態を示す外観図。The external view which shows the state with which the blood-pressure measuring apparatus which concerns on this embodiment was mounted | worn with the human body. 本実施形態に係る血流速度センサー及び血管径センサーを示す図。The figure which shows the blood flow velocity sensor and blood vessel diameter sensor which concern on this embodiment. 本実施形態に係る回路ブロックを示す図。The figure which shows the circuit block which concerns on this embodiment. 本実施形態に係る血圧変動と血管径変動を示す図。The figure which shows the blood-pressure fluctuation | variation and blood-vessel diameter fluctuation | variation which concern on this embodiment. 本実施形態に係る測定方法を示す図。The figure which shows the measuring method which concerns on this embodiment. 本実施形態に係る校正ルーチンを示す図。The figure which shows the calibration routine which concerns on this embodiment.

一実施形態について図面に従って説明する。なお、使用する図面は、説明する部分が認識可能な状態となるように、適宜拡大又は縮小して表示している。   An embodiment will be described with reference to the drawings. Note that the drawings to be used are appropriately enlarged or reduced so that the part to be described can be recognized.

図1は、本実施形態に係る流体圧測定装置としての血圧測定装置が人体に装着された状態を示す外観図である。この場合、流体圧測定装置は特に血圧測定装置1を想定し、上腕動脈(血管)5の血圧を測定する場合を考える。血圧測定装置1は、被測定者3の上腕部に装着され、流体速度として上腕動脈5の血流速度v及び導管径として血管径Dを測定することにより、流体圧として血圧値Pを求める。   FIG. 1 is an external view showing a state in which a blood pressure measuring device as a fluid pressure measuring device according to this embodiment is attached to a human body. In this case, it is assumed that the fluid pressure measuring device is the blood pressure measuring device 1 and the blood pressure of the brachial artery (blood vessel) 5 is measured. The blood pressure measurement device 1 is attached to the upper arm of the person to be measured 3, and obtains the blood pressure value P as the fluid pressure by measuring the blood flow velocity v of the brachial artery 5 as the fluid velocity and the blood vessel diameter D as the conduit diameter. .

図1に示すように、2つの測定部としてセンサー6及び8は、バンド2等を用いて上腕の所定の第一部位と所定の第二部位とにそれぞれ装着される。上腕への装着は、センサー6,8を測定部位へ固定できればいいので、バンド2の代わりに皮膚との密着性のあるシール材などを用いてもよい。望ましくは、どちらか片方のセンサー位置が被測定者3の心臓4位置と同じ高さであり、同じ高さのセンサーを常時血圧測定に用いれば血圧値の水頭圧補正が不要となる。本実施形態ではセンサー6を心臓4と同じ高さとしている。ただし、どちらも高さ位置が心臓4と同じでなくても、予め心臓4との高低差を求めておけば水頭差を補正することで正しく血圧が求まる。つまり、実施例のような上腕部でなくとも測定は可能である。   As shown in FIG. 1, sensors 6 and 8 as two measuring units are respectively attached to a predetermined first part and a predetermined second part of the upper arm using a band 2 or the like. As long as the sensors 6 and 8 can be fixed to the measurement site for attachment to the upper arm, instead of the band 2, a sealing material or the like having adhesiveness with the skin may be used. Desirably, one of the sensor positions is at the same height as the position of the heart 4 of the person to be measured 3, and if a sensor having the same height is used for blood pressure measurement at all times, the head pressure correction of the blood pressure value becomes unnecessary. In this embodiment, the sensor 6 has the same height as the heart 4. However, even if the height position is not the same as that of the heart 4, if the height difference from the heart 4 is obtained in advance, the blood pressure can be correctly obtained by correcting the head difference. In other words, measurement is possible without using the upper arm as in the embodiment.

図2は、本実施形態に係る測定部としての血流速度センサー10及び血管径センサー20を示す図であり、図3は、本実施形態に係る回路ブロックを示す図である。センサー6及び8には、図2に示すように、血流速度センサー10及び血管径センサー20の2つがそれぞれ含まれていて、図1における位置HとLそれぞれにおける血流速度v及び血管径Dが測定される。センサー6及び8に含まれる血流速度センサー10と血管径センサー20とは、1つのセンサーで同時測定できるのであれば、1つのセンサーで代用してもよい。また、本実施形態においては位置Lにおける血流速度の測定は不用である。   FIG. 2 is a diagram illustrating a blood flow velocity sensor 10 and a blood vessel diameter sensor 20 as measurement units according to the present embodiment, and FIG. 3 is a diagram illustrating a circuit block according to the present embodiment. As shown in FIG. 2, each of the sensors 6 and 8 includes a blood flow velocity sensor 10 and a blood vessel diameter sensor 20, and blood flow velocity v and blood vessel diameter D at positions H and L in FIG. Is measured. As long as blood flow velocity sensor 10 and blood vessel diameter sensor 20 included in sensors 6 and 8 can be measured simultaneously by one sensor, one sensor may be substituted. In the present embodiment, the measurement of the blood flow velocity at the position L is unnecessary.

血流速度センサー10は、上腕部内側の上腕動脈5に対し、測定媒体として超音波を照射できるような位置に取り付けられている。血流速度センサー10は、図3に示すように、血流速度センサー部15と、血流速度センサー駆動部11と、信号演算部14と、を備えている。血流速度センサー部15は、被測定者3の生体表面から生体内部の血液に波動を送受信して、生体内部の血液の流れを検出する。血流速度センサー部15は、発信部12(送信用素子)と受信部13(受信用素子)とから構成されている。駆動部11は、血流速度センサー部15を駆動させる。信号演算部14は、駆動部11と血流速度センサー部15とを制御し生体内部の血流速度vを求める。信号演算部14はドプラ法に基づき位置Lにおける、各時間での血流速度vを演算する。ドプラ法は、連続波ドプラ法、パルス波ドプラ法、カラーフローマッピング法など、測定部位や分解能などを考慮して最適なものを用いることができる。   The blood flow velocity sensor 10 is attached to the brachial artery 5 on the inner side of the upper arm so that an ultrasonic wave can be irradiated as a measurement medium. As shown in FIG. 3, the blood flow velocity sensor 10 includes a blood flow velocity sensor unit 15, a blood flow velocity sensor drive unit 11, and a signal calculation unit 14. The blood flow rate sensor unit 15 transmits and receives waves from the surface of the living body of the person to be measured 3 to the blood inside the living body, and detects the blood flow inside the living body. The blood flow velocity sensor unit 15 includes a transmission unit 12 (transmission element) and a reception unit 13 (reception element). The drive unit 11 drives the blood flow velocity sensor unit 15. The signal calculation unit 14 controls the driving unit 11 and the blood flow velocity sensor unit 15 to obtain the blood flow velocity v inside the living body. The signal calculation unit 14 calculates the blood flow velocity v at each time at the position L based on the Doppler method. As the Doppler method, an optimum method such as a continuous wave Doppler method, a pulse wave Doppler method, a color flow mapping method, or the like can be used in consideration of a measurement site and resolution.

血管径センサー20は、上腕部内側の上腕動脈5に対し、測定媒体として超音波を照射できるような位置に取り付けられている。血管径センサー20は、図3に示すように、血管径センサー部25と、血管径センサー駆動部21と、血管径センサー信号演算部24と、を備えている。血管径センサー部25は、発信部22と受信部23とから構成されている。血管径センサー部25は、生体内部の上腕動脈5に超音波を送受信して、生体内部の上腕動脈5壁の変動を検出する。駆動部21は、血管径センサー部25を駆動させる。信号演算部24は、駆動部21と血管径センサー部25とを制御し生体内部の血管径Dを求める。   The blood vessel diameter sensor 20 is attached to a position where ultrasonic waves can be irradiated as a measurement medium to the brachial artery 5 inside the brachial part. As shown in FIG. 3, the blood vessel diameter sensor 20 includes a blood vessel diameter sensor unit 25, a blood vessel diameter sensor drive unit 21, and a blood vessel diameter sensor signal calculation unit 24. The blood vessel diameter sensor unit 25 includes a transmission unit 22 and a reception unit 23. The blood vessel diameter sensor unit 25 transmits and receives ultrasonic waves to and from the brachial artery 5 inside the living body, and detects a change in the wall of the brachial artery 5 inside the living body. The drive unit 21 drives the blood vessel diameter sensor unit 25. The signal calculation unit 24 controls the driving unit 21 and the blood vessel diameter sensor unit 25 to obtain the blood vessel diameter D inside the living body.

血管径センサー20は、数MHzのパルス信号やバースト信号を送信し、管壁からの反射受信波の位相変化から血管の直径を算出する。これはエコートラッキング技術といい、具体的には、2つのトラッキングゲート内において血管の前壁と後壁の拍動を検知し、それぞれの壁の変動分から直径を算出する(参考文献:特公昭61−28336号公報)。なお、実施形態では測定媒体として超音波を用いたが、これに限ることではなく、レーザーやコヒーレントな光などを用いても良い。   The blood vessel diameter sensor 20 transmits a pulse signal or burst signal of several MHz, and calculates the diameter of the blood vessel from the phase change of the reflected reception wave from the tube wall. This is called echo tracking technology. Specifically, the pulsations of the anterior wall and the posterior wall of the blood vessel are detected in the two tracking gates, and the diameter is calculated from the variation of each wall (reference document: JP-B-61). No.-28336). In the embodiment, an ultrasonic wave is used as a measurement medium. However, the present invention is not limited to this, and a laser, coherent light, or the like may be used.

本実施形態に係る血圧測定装置1は、血圧値演算部43と、表示部41と、高低差決定部30と、スイッチ42と、操作パネル44と、電源部40と、を備えている。血圧値演算部43は、(心臓と同じ高さである)センサー6の信号演算部14と信号演算部24との演算結果を用いて被測定者3の血圧値Pを求める。表示部41は、被測定者3の血圧値Pを表示する。また、それをグラフなどで可視化して表示することもできる。さらに、脈拍についても同様に表示してもよい。さらにまた、校正が必要である旨を表示する。高低差決定部30は、血圧測定装置1のセンサー6及び8の高低差を決定する。スイッチ42は、血圧測定装置1の各機能部に対して電源部40からの電源の供給/遮断を切り替える。操作パネル44は表示部41において、測定血圧を表示したり、脈拍に切り替えたり、過去のロギングデータ表示に切り替えたりと操作ができる。電源部40は、血圧測定装置1の各機能部に対して電源を供給する。本実施形態では、例えば、充電可能な二次電池を想定している。   The blood pressure measurement device 1 according to the present embodiment includes a blood pressure value calculation unit 43, a display unit 41, a height difference determination unit 30, a switch 42, an operation panel 44, and a power supply unit 40. The blood pressure value calculation unit 43 obtains the blood pressure value P of the person to be measured 3 using the calculation results of the signal calculation unit 14 and the signal calculation unit 24 of the sensor 6 (which is the same height as the heart). The display unit 41 displays the blood pressure value P of the person to be measured 3. It can also be visualized and displayed on a graph or the like. Further, the pulse may be displayed in the same manner. Furthermore, it is displayed that calibration is necessary. The height difference determination unit 30 determines the height difference between the sensors 6 and 8 of the blood pressure measurement device 1. The switch 42 switches supply / cut-off of power from the power supply unit 40 to each functional unit of the blood pressure measurement device 1. The operation panel 44 can be operated on the display unit 41 to display the measured blood pressure, switch to a pulse, or switch to past logging data display. The power supply unit 40 supplies power to each functional unit of the blood pressure measurement device 1. In the present embodiment, for example, a rechargeable secondary battery is assumed.

次に、本実施例で用いた血圧値P導出の原理について説明する。   Next, the principle of deriving the blood pressure value P used in this embodiment will be described.

血圧値Pは血流量Qと血流抵抗Rとを用いて以下のように表される。
血圧値P=血流量Q×血流抵抗R
血流量Q=(π×D2×v)/8 …(1)
血流抵抗R=η×C/D4 …(2)
このとき、Dは血管径、vは血流速度、ηは血液粘度、そしてCは係数である。以上をまとめると血圧値Pは以下のように表すことができる。
P=π/8×η×C×v/D2 …(3)
つまり(π/8×η×C)をある係数値として求めておけば、血流速度v及び血管径Dを求めればそのときの血圧値Pを求めることができる。
The blood pressure value P is expressed as follows using the blood flow Q and the blood flow resistance R.
Blood pressure value P = blood flow volume Q × blood flow resistance R
Blood flow rate Q = (π × D 2 × v) / 8 (1)
Blood flow resistance R = η × C / D 4 (2)
At this time, D is a blood vessel diameter, v is a blood flow velocity, η is a blood viscosity, and C is a coefficient. In summary, the blood pressure value P can be expressed as follows.
P = π / 8 × η × C × v / D 2 (3)
That is, if (π / 8 × η × C) is obtained as a certain coefficient value, the blood pressure value P at that time can be obtained by obtaining the blood flow velocity v and the blood vessel diameter D.

従来方式では、予めカフ型血圧計などにより実血圧を測定し、上記係数値を校正していた。以下では、カフ型血圧計などによる校正を必要とせずに係数値を算出又は適時校正し、血圧を導出する原理について説明する。   In the conventional method, the actual blood pressure is measured in advance using a cuff type sphygmomanometer or the like, and the coefficient value is calibrated. In the following, the principle of calculating the coefficient value or performing timely calibration and deriving the blood pressure without requiring calibration with a cuff type sphygmomanometer will be described.

校正方法(係数値π/8×η×Cの算出)について説明する。
図1のように、上腕部の異なる高さ位置HとLとに取り付けられた2つのセンサー6,8により少なくとも以下1)〜3)のパラメーターを測定する。
1)高さ位置Hにおける、一心拍以上の血管径変化とその時の平均血管径DHm
2)高さ位置Lにおける、一心拍以上の血管径変化とその時の平均血管径DLm
3)高さ位置Hにおける、一心拍以上の血流速変化。
また、1)及び2)の測定により、前記高さ位置Hでの、最高血圧値Psys(収縮期血圧)における血管径DHsysと、最低血圧値Pdia(拡張期血圧)における血管径DHdiaと、が求まり、同時にDHmとDLmとの差ΔDm(=DLm−DHm)も求まる。また3)より、位置Hでの、最高血圧値Psysにおける血流速度vHsysと、最低血圧値Pdiaにおける血流速度vHdiaが求まる。
A calibration method (calculation of coefficient value π / 8 × η × C) will be described.
As shown in FIG. 1, at least the following parameters 1) to 3) are measured by two sensors 6 and 8 attached to different height positions H and L of the upper arm.
1) Blood vessel diameter change at one height or more at height position H and average blood vessel diameter D Hm at that time.
2) The change in blood vessel diameter at one height or more at the height position L and the average blood vessel diameter D Lm at that time.
3) Change in blood flow rate at one height or more at the height position H.
Further, from the measurements of 1) and 2), the blood vessel diameter D Hsys at the maximum blood pressure value P sys (systolic blood pressure) and the blood vessel diameter D at the minimum blood pressure value P dia (diastolic blood pressure) at the height position H. Hdia is obtained, and at the same time, a difference ΔD m (= D Lm −D Hm ) between D Hm and D Lm is also obtained. Further than 3), at position H, and the blood flow velocity v Hsys in systolic blood P sys, obtained blood flow velocity v Hdia in diastolic blood pressure P dia.

次に、最高血圧値と最低血圧値の差圧(血圧値の変化量)Psys−Pdiaを求める。
図4は、本実施形態に係る血圧変動と血管径変動を示す図である。高さ位置H及びLでの血管径Dの変動と血圧値Pの変動の関係は図4のようになる。同一血圧値P時の、位置HとLとの血管径Dの差異は、水頭圧による差と考えられるので、平均血管径の差ΔDmと、高さ位置HとLとの高低差hによる水頭圧ρgh(水頭圧、ρ:血液の密度、g:重力加速度)は一意に対応する。これより、最高血圧値と最低血圧値の差(Psys−Pdia)とその時の血管径Dの差(DHsys−DHdia)を考えると、以下の関係が近似的に成り立つ。
Next, a differential pressure (change amount of the blood pressure value) P sys -P dia between the maximum blood pressure value and the minimum blood pressure value is obtained.
FIG. 4 is a diagram showing blood pressure fluctuations and blood vessel diameter fluctuations according to the present embodiment. The relationship between the fluctuation of the blood vessel diameter D at the height positions H and L and the fluctuation of the blood pressure value P is as shown in FIG. Since the difference in the blood vessel diameter D between the positions H and L at the same blood pressure value P is considered to be a difference due to the hydrocephalic pressure, it depends on the average blood vessel diameter difference ΔD m and the height difference h between the height positions H and L. The water head pressure ρgh (water head pressure, ρ: blood density, g: gravitational acceleration) uniquely corresponds. Thus, considering the difference between the maximum blood pressure value and the minimum blood pressure value (P sys −P dia ) and the difference in blood vessel diameter D (D Hsys −D Hdia ) at that time, the following relationship is approximately established.

(Psys−Pdia):ρgh=(DHsys−DHdia):ΔDm …(4)
これより差圧Psys−Pdiaは、
sys−Pdia=ρgh×(DHsys−DHdia)/ΔDm …(5)
また、ここで式(3)より位置Hでの最高血圧値Psysと最低血圧値Pdiaとを求めると、
sys=π/8×η×C×vHsys/DHsys 2 …(6)
dia=π/8×η×C×vHdia/DHdia 2 …(7)
であるので、差圧は以下のようにも書ける。
sys−Pdia=π/8×η×C×(vHsys/DHsys 2−vHdia/DHdia 2) …(8)
式(8)より、係数値(π/8×η×C)は以下の式で算出できる。
π/8×η×C=(Psys−Pdia)/(vHsys/DHsys 2−vHdia/DHdia 2) …(9)
また、式(9)及び(5)より係数値(π/8×η×C)は以下のようにも書ける。
π/8×η×C=ρgh×(DHsys−DHdia)/{ΔDm×(vHsys/DHsys 2−vHdia/DHdia 2)} …(10)
(P sys −P dia ): ρgh = (D Hsys −D Hdia ): ΔD m (4)
Therefore , the differential pressure P sys -P dia is
P sys −P dia = ρgh × (D Hsys −D Hdia ) / ΔD m (5)
Further, when the systolic blood pressure value P sys and the diastolic blood pressure value P dia at the position H are obtained from the expression (3),
P sys = π / 8 × η × C × v Hsys / D Hsys 2 (6)
P dia = π / 8 × η × C × v Hdia / D Hdia 2 (7)
Therefore, the differential pressure can also be written as
P sys −P dia = π / 8 × η × C × (v Hsys / D Hsys 2 −v Hdia / D Hdia 2 ) (8)
From the equation (8), the coefficient value (π / 8 × η × C) can be calculated by the following equation.
π / 8 × η × C = (P sys −P dia ) / (v Hsys / D Hsys 2 −v Hdia / D Hdia 2 ) (9)
Further, the coefficient value (π / 8 × η × C) can be written as follows from equations (9) and (5).
π / 8 × η × C = ρgh × (D Hsys −D Hdia ) / {ΔD m × (v Hsys / D Hsys 2 −v Hdia / D Hdia 2 )} (10)

以上より血圧値Pは、適時測定した血管径Dとその時の血流速度v、及び上記により求めた係数値(π/8×η×C)を式(3)に代入することにより容易に求めることができる。   As described above, the blood pressure value P can be easily obtained by substituting the time-measured blood vessel diameter D, the blood flow velocity v at that time, and the coefficient value (π / 8 × η × C) obtained as described above into the equation (3). be able to.

図5は、本実施形態に係る血圧測定方法を示す図である。
先ず、スイッチ42を投入後、ステップS10に示すように、係数値(π/8×η×C)算出のための校正を行う。ステップS10の詳細については後述する。
続いて、ステップS20に示すように、血管径D及び血流速度vを測定する。測定方法は前述のエコートラッキング法により血管径Dを測定するものや、ドプラ法により血流速度vを測定する方法を用いる。
FIG. 5 is a diagram showing a blood pressure measurement method according to the present embodiment.
First, after the switch 42 is turned on, calibration for calculating the coefficient value (π / 8 × η × C) is performed as shown in step S10. Details of step S10 will be described later.
Subsequently, as shown in step S20, the blood vessel diameter D and the blood flow velocity v are measured. As a measuring method, a method of measuring the blood vessel diameter D by the above-described echo tracking method or a method of measuring the blood flow velocity v by the Doppler method is used.

次に、ステップS30では、ステップS10の校正ルーチンにより求めた係数値(π/8×η×C)を用いて血圧値Pを算出する。同一箇所、同時刻の血管径D及び血流速度vの時間的変化を求め、血圧値Pの時間変化を算出することもできる。   Next, in step S30, the blood pressure value P is calculated using the coefficient value (π / 8 × η × C) obtained by the calibration routine in step S10. The temporal change of the blood pressure value P can also be calculated by obtaining temporal changes in the blood vessel diameter D and the blood flow velocity v at the same location and at the same time.

次に、ステップS40に示すように、ステップS30で求めた血圧値Pを表示部41に表示する。また、それをグラフなどで可視化して表示部41に表示することもできる。さらに、脈拍についても同様に表示してもよい。   Next, as shown in step S40, the blood pressure value P obtained in step S30 is displayed on the display unit 41. Further, it can be visualized by a graph or the like and displayed on the display unit 41. Further, the pulse may be displayed in the same manner.

この段階で、ステップS50に示すように、校正が再度必要であるか判断する。必要があればステップS10に戻り校正を行う。必要がなければステップS60へ進む。校正が必要である場合とは、例えば最高血圧値が通常と比べて±15mmHg以上変化した場合である。この場合再校正の指示が表示部41に表示される。
最後に、ステップS60に示すように、測定の続行が必要であるか判断する。必要があればステップS20に戻り血管径D及び血流速度vを測定する。必要がなければ終了する。これにより、カフ型血圧計を使わず簡易に校正ができ、被測定者が自由行動下で常時血圧測定することができる。
At this stage, as shown in step S50, it is determined whether calibration is necessary again. If necessary, return to step S10 and perform calibration. If not necessary, the process proceeds to step S60. The case where calibration is necessary is, for example, a case where the maximum blood pressure value changes by ± 15 mmHg or more compared to normal. In this case, a recalibration instruction is displayed on the display unit 41.
Finally, as shown in step S60, it is determined whether it is necessary to continue the measurement. If necessary, the process returns to step S20 to measure the blood vessel diameter D and the blood flow velocity v. Exit if not needed. As a result, calibration can be easily performed without using a cuff-type sphygmomanometer, and the measurement subject can constantly measure blood pressure under free action.

図6は、本実施形態に係る校正ルーチンであって、図5のステップS10を詳細に示す図である。   FIG. 6 is a calibration routine according to the present embodiment and is a diagram showing in detail step S10 of FIG.

先ず、ステップS11に示すように、図1の高さ位置H及びLでの血管径Dを計測すると同時に平均血管径DHm,DLmを算出する。平均血管径DHm,DLmは、1心拍内において特定してもよいし、血管径D変化を10秒程度測定し、複数心拍分のアンサンブル平均を算出し、取得してもよい。 First, as shown in step S11, the blood vessel diameter D at the height positions H and L in FIG. 1 is measured, and at the same time, the average blood vessel diameters D Hm and D Lm are calculated. The average blood vessel diameters D Hm and D Lm may be specified within one heartbeat, or a change in blood vessel diameter D may be measured for about 10 seconds, and an ensemble average for a plurality of heartbeats may be calculated and acquired.

次に、ステップS12では、図1の高さ位置Hでの血流速度vを測定する。なお、血流速度vの測定は、ステップS11で測定した血管径変化とできる限り時間的に近接しているのが望ましい。   Next, in step S12, the blood flow velocity v at the height position H in FIG. 1 is measured. The measurement of blood flow velocity v is preferably as close as possible to the change in blood vessel diameter measured in step S11.

次に、ステップS13に示すように、ステップS11及びS12で測定した高さ位置Hでの、血管径Dと血流速度vとの時間変化より、最高血圧値に対応する血管径DHsys及び血流速度vHsys、最低血圧値に対応する血管径DHdia及び血流速度vHdiaを算出する。 Next, as shown in step S13, the blood vessel diameter D Hsys and blood corresponding to the maximum blood pressure value are obtained from the temporal change of the blood vessel diameter D and the blood flow velocity v at the height position H measured in steps S11 and S12. The flow velocity v Hsys , the blood vessel diameter D Hdia corresponding to the minimum blood pressure value, and the blood flow velocity v Hdia are calculated.

次に、ステップS14に示すように、ステップS11で算出した平均血管径DHm,DLmより、平均血管径変化ΔDmを算出する。 Next, as shown in step S14, mean vessel diameter D Hm calculated in step S11, from D Lm, and calculates the mean vessel diameter change [Delta] D m.

ここで、ステップS15に示すように、水頭圧(ρgh)を算出する。水頭圧の算出及びそのための高低差hの決定方法の詳細については後述する。   Here, as shown in step S15, the hydraulic head pressure (ρgh) is calculated. Details of the calculation of the water head pressure and the method for determining the height difference h will be described later.

そして、ステップS16に示すように、最低血圧値Pdia及び最高血圧値Psysの血圧差(Psys−Pdia)を算出する。図1の高さ位置Hでの、最高血圧値Psysにおける血管径DHsysと、最低血圧値Pdiaとにおける血管径DHdiaを用いると、式(4)を変形して式(5)より、最低血圧値Pdiaと最高血圧値Psysとの血圧差(Psys−Pdia)を算出する。 Then, as shown in step S16, and calculates the blood pressure difference between the diastolic blood pressure value P dia and systolic P sys the (P sys -P dia). At the height position H of FIG. 1, and the blood vessel diameter D Hsys in systolic blood P sys, the use of vascular diameter D Hdia in the diastolic blood pressure P dia, the equation (5) by transforming the equation (4) The blood pressure difference (P sys −P dia ) between the minimum blood pressure value P dia and the maximum blood pressure value P sys is calculated.

最後、ステップS17に示すように、式(9)にステップS16で算出した血圧差(Psys−Pdia)と、ステップS13で算出した高さ位置Hでの、最高血圧値Psysに対応する血管径D及び血流速度v、最低血圧値Pdiaに対応する血管径D及び血流速度vより、係数値(π/8×η×C)を算出する。 Finally, as shown in step S17, the blood pressure difference calculated in step S16 in equation (9) and (P sys -P dia), at a height position H calculated in step S13, corresponding to the systolic blood pressure value P sys A coefficient value (π / 8 × η × C) is calculated from the blood vessel diameter D and the blood flow velocity v corresponding to the blood vessel diameter D, the blood flow velocity v, and the minimum blood pressure value Pdia .

係数値(π/8×η×C)算出に必要な水頭圧の算出方法について説明する。   A method for calculating the hydraulic head pressure necessary for calculating the coefficient value (π / 8 × η × C) will be described.

水頭圧ρghを求めるには、重力加速度g(≒9.8m/s2)のほかに、血液の密度及び高低差hが必要となる。血液の密度ρは男女差で1.055±0.005g/cm3程度なので、血圧値への影響は±0.数mmHgであることからここでは一定と見做すものとする。つまり、精度良く水頭圧を決定するには高低差hを正確に測定する必要がある。図1に示す通り、高低差hは、センサー6と8との間の距離を予め定規などで測定しておけば求めることができる。あるいは、センサー6と8とを任意長さの固定部材により繋いでおけば、該任意長さを高低差とすることもできる。ところで、被測定対象部が鉛直方向に揃っていれば前記決定方法で問題ないが、被測定対象部が鉛直方向から傾いている場合を考えると、誤差が生まれる。その場合は、センサー6又は8の角度を傾斜センサーなどで検出し、該検出角度とセンサー6と8との間の距離から高低差hを算出することもできる。あるいは、水晶デバイスを用いた超小型気圧センサーでは、高低差hをmmオーダーの分解能で測定可能となる可能性がある。これを用いれば、簡易に高低差hを精度良く測定することもできる。被測定対象部が鉛直方向から傾くことは、被測定者3が自由行動下で適時校正を行う場合に頻繁に起こりうると考えられる。よって、以上のような技術は被測定者3が自由行動下で測定する際に必要となる可能性が高いと考えられる。なお、前記方法はあくまで一例であり、ある手法により高低差hを正確に求めることができれば、水頭圧も精度よく算出できる。実際のところ、高低差hは上腕部で15cm程度と考えれば、水頭圧は11.6mmHg程度である。 In order to obtain the water head pressure ρgh, in addition to the gravitational acceleration g (≈9.8 m / s 2 ), the blood density and the height difference h are required. Since the density ρ of blood is about 1.055 ± 0.005 g / cm 3 between men and women, the effect on blood pressure is ± 0.00. Since it is several mmHg, it is assumed to be constant here. That is, it is necessary to accurately measure the height difference h in order to accurately determine the water head pressure. As shown in FIG. 1, the height difference h can be obtained by measuring the distance between the sensors 6 and 8 with a ruler in advance. Alternatively, if the sensors 6 and 8 are connected by a fixing member having an arbitrary length, the arbitrary length can be set to a height difference. By the way, if the measurement target parts are aligned in the vertical direction, there is no problem in the determination method. However, when the measurement target part is inclined from the vertical direction, an error occurs. In that case, the angle of the sensor 6 or 8 can be detected by an inclination sensor or the like, and the height difference h can be calculated from the distance between the detected angle and the sensors 6 and 8. Alternatively, in a micro air pressure sensor using a quartz device, there is a possibility that the height difference h can be measured with a resolution on the order of mm. If this is used, the height difference h can be easily measured with high accuracy. It can be considered that the measurement target portion tilts from the vertical direction frequently when the measurement subject 3 performs timely calibration under free action. Therefore, it is considered that the technique as described above is likely to be required when the measurement subject 3 performs measurement under free action. In addition, the said method is an example to the last, and if the height difference h can be calculated | required correctly with a certain method, a hydraulic head pressure can also be calculated accurately. Actually, if the height difference h is considered to be about 15 cm at the upper arm, the hydraulic head pressure is about 11.6 mmHg.

本実施形態においては、センサー6の位置Hを心臓4の高さ位置としたが、仮に位置Hと心臓4の高さが違う場合でも、予め心臓4からの高低差hを求めておけば水頭圧分の加減算により上記実施形態と同様に血圧値Pを算出することができる。また、本実施形態では、被測定対象を生体と仮定し、流体圧として血圧を算出したが、本発明はこれに限定されるものではない。   In the present embodiment, the position H of the sensor 6 is the height position of the heart 4. However, even if the height of the heart 4 is different from the position H, if the height difference h from the heart 4 is obtained in advance, the water head The blood pressure value P can be calculated by adding and subtracting the pressure as in the above embodiment. In the present embodiment, the blood pressure is calculated as the fluid pressure assuming that the measurement target is a living body, but the present invention is not limited to this.

本実施形態の流体圧測定装置及び流体圧測定方法によれば、他の圧力測定装置を使用することなく適時校正を簡便にすることができ、精度良く流体圧Pを測定することができる。またそれを生体に応用した場合、カフ型血圧計を使用することなく血圧を算出するための係数値を適時校正することができ、それによりウエアラブルで常時計測可能な血圧測定装置及び血圧測定方法が提供できる。   According to the fluid pressure measuring device and the fluid pressure measuring method of the present embodiment, timely calibration can be simplified without using another pressure measuring device, and the fluid pressure P can be measured with high accuracy. Moreover, when it is applied to a living body, a coefficient value for calculating blood pressure can be calibrated in a timely manner without using a cuff type sphygmomanometer. Can be provided.

1…血圧測定装置 2…バンド 3…被測定者 4…心臓 5…上腕動脈(血管) 6,8…センサー 10…血流速度センサー(測定部) 11…駆動部(血流速度センサー駆動部) 12…発信部(送信用素子) 13…受信部(受信用素子) 14…信号演算部(血流速度センサー信号演算部) 15…血流速度センサー部 20…血管径センサー(測定部) 21…駆動部(血管径センサー駆動部) 22…発信部(送信用素子) 23…受信部(受信用素子) 24…信号演算部(血管径センサー信号演算部) 25…血管径センサー部 30…高低差決定部 40…電源部 41…表示部 42…スイッチ 43…血圧値演算部 44…操作パネル。   DESCRIPTION OF SYMBOLS 1 ... Blood pressure measuring device 2 ... Band 3 ... Person to be measured 4 ... Heart 5 ... Brachial artery (blood vessel) 6, 8 ... Sensor 10 ... Blood flow rate sensor (measurement unit) 11 ... Drive unit (blood flow rate sensor drive unit) DESCRIPTION OF SYMBOLS 12 ... Transmitting part (transmission element) 13 ... Reception part (receiving element) 14 ... Signal calculation part (blood flow velocity sensor signal calculation part) 15 ... Blood flow velocity sensor part 20 ... Blood vessel diameter sensor (measurement part) 21 ... Driving unit (blood vessel diameter sensor driving unit) 22 ... Transmitting unit (transmitting element) 23 ... Receiving unit (receiving element) 24 ... Signal calculating unit (blood vessel diameter sensor signal calculating unit) 25 ... Blood vessel diameter sensor unit 30 ... Height difference Determination unit 40 ... power supply unit 41 ... display unit 42 ... switch 43 ... blood pressure value calculation unit 44 ... operation panel.

Claims (2)

超音波を血管に対して送出し前記血管から反射する前記超音波によって、心拍の収縮期の血管径および前記心拍の拡張期の血管径を複数心拍分、計測する複数の計測部と、
前記心拍の収縮期の血管径の平均値を平均収縮期血管径として算出し、前記心拍の拡張期の血管径の平均値を平均拡張期血管径として算出する平均血管径算出部と、
前記平均拡張期血管径と前記平均収縮期血管径との差を平均血管径差として算出する平均血管径差算出部と、
複数の前記計測部の間の距離に応じ水頭差を算出する水頭差算出部と、
前記平均血管径差と前記水頭差とを用いて前記血管の血圧の最大値と最小値との差分である脈圧を算出する脈圧算出部と、
を有する、
ことを特徴とする脈圧計測装置。
A plurality of measurement units for measuring a heartbeat systolic blood vessel diameter and a heartbeat diastole blood vessel diameter for a plurality of heartbeats by transmitting ultrasonic waves to the blood vessel and reflecting from the blood vessel ;
Calculating an average value of the systolic blood vessel diameter of the heartbeat as an average systolic blood vessel diameter, and calculating an average blood vessel diameter of the heartbeat diastole as an average diastolic blood vessel diameter;
An average blood vessel diameter difference calculating unit for calculating a difference between the average diastolic blood vessel diameter and the average systolic blood vessel diameter as an average blood vessel diameter difference;
A head difference calculation unit that calculates a head difference according to the distance between the plurality of measurement units;
A pulse pressure calculating section for calculating pulse pressure which is the difference between the maximum value and the minimum value of the blood pressure of the blood vessel using said water head difference between the average vessel diameter difference,
Having
A pulse pressure measuring device characterized by that.
超音波を血管に対して送出し前記血管から反射する前記超音波によって、心拍の収縮期の前記血管の血管径および前記心拍の拡張期の前記血管の血管径を複数心拍分、前記血管の複数の計測箇所で計測する工程と、
前記心拍の収縮期の血管径の平均を平均収縮期血管径として算出し、前記心拍の拡張期の血管径の平均を平均拡張期血管径として算出する工程と、
前記平均収縮期血管径と前記平均拡張期血管径との差を平均血管径差として算出する工程と、
前記血管の複数の計測箇所の間の距離に応じて水頭差を算出する工程と、
前記平均血管径差と前記水頭差とを用いて前記血管の血圧の最大値と最小値との差分である脈圧を算出する工程と、
を有することを特徴とする脈圧計測方法。
The ultrasonic wave transmitted to the blood vessel and reflected from the blood vessel is obtained by dividing the blood vessel diameter of the blood vessel in the systole of the heartbeat and the blood vessel diameter of the blood vessel in the diastole of the heartbeat by a plurality of heartbeats. The process of measuring at the measurement point of
Calculating the average systolic blood vessel diameter of the heartbeat as a systolic blood vessel diameter, and calculating the average of the diastolic blood vessel diameter of the heartbeat as an average diastolic blood vessel diameter;
Calculating a difference between the average systolic blood vessel diameter and the average diastolic blood vessel diameter as an average blood vessel diameter difference;
Calculating a water head difference according to a distance between a plurality of measurement points of the blood vessel;
Calculating a pulse pressure that is a difference between a maximum value and a minimum value of the blood pressure of the blood vessel using the average blood vessel diameter difference and the hydrocephalic difference;
A method for measuring pulse pressure, comprising :
JP2010207675A 2010-09-16 2010-09-16 Pulse pressure measuring device and pulse pressure measuring method Expired - Fee Related JP5552982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010207675A JP5552982B2 (en) 2010-09-16 2010-09-16 Pulse pressure measuring device and pulse pressure measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010207675A JP5552982B2 (en) 2010-09-16 2010-09-16 Pulse pressure measuring device and pulse pressure measuring method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014111017A Division JP2014176745A (en) 2014-05-29 2014-05-29 Blood pressure measuring device and blood pressure measuring method

Publications (3)

Publication Number Publication Date
JP2012061131A JP2012061131A (en) 2012-03-29
JP2012061131A5 JP2012061131A5 (en) 2013-10-10
JP5552982B2 true JP5552982B2 (en) 2014-07-16

Family

ID=46057497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010207675A Expired - Fee Related JP5552982B2 (en) 2010-09-16 2010-09-16 Pulse pressure measuring device and pulse pressure measuring method

Country Status (1)

Country Link
JP (1) JP5552982B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223375A (en) * 2011-04-20 2012-11-15 Seiko Epson Corp Ultrasonic measuring apparatus and ultrasonic measuring method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6051744B2 (en) * 2012-09-28 2016-12-27 オムロンヘルスケア株式会社 Electronic blood pressure monitor
JP6060649B2 (en) * 2012-11-28 2017-01-18 セイコーエプソン株式会社 Blood pressure measurement device and blood pressure measurement method
US10039455B2 (en) * 2014-05-19 2018-08-07 Qualcomm Incorporated Continuous calibration of a blood pressure measurement device
US11020058B2 (en) 2016-02-12 2021-06-01 Qualcomm Incorporated Methods and devices for calculating blood pressure based on measurements of arterial blood flow and arterial lumen
JP6597410B2 (en) * 2016-03-04 2019-10-30 セイコーエプソン株式会社 Biological information measuring device and biological information measuring method
US11337657B2 (en) 2016-06-24 2022-05-24 Philips Healthcare Informatics, Inc. Dynamic calibration of a blood pressure measurement device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001275998A (en) * 2000-03-30 2001-10-09 Mitsuba Corp Method and instrument for blood pressure measurement
JP3910521B2 (en) * 2002-11-05 2007-04-25 セイコーインスツル株式会社 Blood pressure measurement device
JP3908660B2 (en) * 2002-12-25 2007-04-25 セイコーインスツル株式会社 Blood pressure measurement device
JP4412660B2 (en) * 2004-10-06 2010-02-10 日本電信電話株式会社 Blood pressure monitor, blood pressure correction method, and measurement start pressure correction method
JP4641809B2 (en) * 2005-01-26 2011-03-02 セイコーインスツル株式会社 Biological information measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223375A (en) * 2011-04-20 2012-11-15 Seiko Epson Corp Ultrasonic measuring apparatus and ultrasonic measuring method

Also Published As

Publication number Publication date
JP2012061131A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5884256B2 (en) Blood pressure measuring device and blood pressure measuring method
JP5552982B2 (en) Pulse pressure measuring device and pulse pressure measuring method
US6814705B2 (en) Arteriosclerosis-degree evaluating apparatus
US8047998B2 (en) Non-invasive blood pressure determination method
US4245648A (en) Method and apparatus for measuring blood pressure and pulse rate
US9326692B2 (en) Blood pressure measurement device and blood pressure measurement method
KR20150082401A (en) Improved blood pressure monitor and method
KR101764527B1 (en) Portable device for measuring blood pressure and method thereof
WO2017093150A1 (en) Monitoring apparatus and monitoring method for determining vital sign information of a subject
JP2002253519A (en) Method for measuring blood quantity, and living body signal monitoring device
JP2016516503A (en) Improved blood pressure monitoring method
US20110288420A1 (en) Blood pressure measuring device and blood pressure measuring method
JP2017127494A (en) Blood vessel elasticity index value measuring device, blood pressure measuring device, and blood vessel elasticity index value measuring method
JP3908660B2 (en) Blood pressure measurement device
JPH01214335A (en) Peripheral resistance examination and detection apparatus
JP5552984B2 (en) Pulse pressure measuring device and pulse pressure measuring method
US20220218217A1 (en) Blood pressure measurement system and blood pressure measurement method using the same
EP2369984B1 (en) Method of measuring blood pressure and apparatus for performing the same
JP2011104208A (en) Pulse wave propagation velocity measuring device
US7056291B2 (en) Arteriosclerosis evaluating apparatus
US20230043552A1 (en) Constitutive equation for non-invasive blood pressure measurement systems and methods
JP2008161546A (en) Ultrasonic diagnostic apparatus
JP3675586B2 (en) Aortic pressure waveform detector
JP2014176745A (en) Blood pressure measuring device and blood pressure measuring method
JP2012061130A (en) Device and method for measuring pulse pressure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent or registration of utility model

Ref document number: 5552982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees