JP2011238784A - Flat coil and electromagnetic energy converter using the same - Google Patents

Flat coil and electromagnetic energy converter using the same Download PDF

Info

Publication number
JP2011238784A
JP2011238784A JP2010109210A JP2010109210A JP2011238784A JP 2011238784 A JP2011238784 A JP 2011238784A JP 2010109210 A JP2010109210 A JP 2010109210A JP 2010109210 A JP2010109210 A JP 2010109210A JP 2011238784 A JP2011238784 A JP 2011238784A
Authority
JP
Japan
Prior art keywords
coil
wire
insulated wire
row
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010109210A
Other languages
Japanese (ja)
Other versions
JP5681380B2 (en
Inventor
Noriyoshi Okura
則良 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama Giken Co Ltd
Original Assignee
Okayama Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama Giken Co Ltd filed Critical Okayama Giken Co Ltd
Priority to JP2010109210A priority Critical patent/JP5681380B2/en
Publication of JP2011238784A publication Critical patent/JP2011238784A/en
Application granted granted Critical
Publication of JP5681380B2 publication Critical patent/JP5681380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flat coil with a small thickness in the axial direction and an electromagnetic energy converter using the same that are satisfactorily applicable to a non-contact charging system for portable devices.SOLUTION: An insulation strand wire is arranged side by side with another within one plane and then wound so as to form a spiral-spring shaped, planar multi-layer and multi-wire coil consisting of insulation strand wires as many as greater than a value obtained by dividing a square of "a conductor diameter required for a given allowable current value" by "a conductor diameter of the insulation strand wire". The planar multi-layer and multi-wire coil is stacked on another to form two stacked coils as shown in FIG. 1. The insulation strand wires constituting each of the two stacked coils are connected in parallel inside the respective coil and the two stacked coils are serially connected at the innermost circumference thereof so as to form one coil wire whose terminals are positioned at the outermost circumference of the two stacked coils. Preferably, the planar multi-layer and multi-wire coil has a cross section pressure-deformed in the coil axial direction so as to have a thickness equal to or greater than "π/4" times an outer diameter of the insulation strand wire constituting the coil.

Description

本発明は、コ−ドレス電話器や携帯用機器(例えば携帯電話器,デシタルカメラ,携帯用ゲ−ム機器)等に利用される非接触式充電システムに好適な軸方向厚さの薄い偏平コイルに関するものである。   The present invention relates to a flat coil having a small axial thickness suitable for a non-contact charging system used for a cordless telephone or a portable device (for example, a cellular phone, a digital camera, a portable game device). It is about.

近年、コイルに流れる電流により生じる磁束を利用して別体のコイルに誘導起電力を発生させるという“電磁誘導作用”を利用した機器類が広く一般に活用されるようになってきた。
コ−ドレス電話器,携帯電話器,デシタルカメラ,携帯用ゲ−ム機器等に用いられる非接触式の充電システムもその1つである。
In recent years, devices using an “electromagnetic induction action” in which an induced electromotive force is generated in a separate coil by using a magnetic flux generated by a current flowing in the coil has been widely used.
One of them is a contactless charging system used for a cordless phone, a mobile phone, a digital camera, a portable game device, and the like.

例えば特許文献1には、電磁誘導作用により充電部から被充電部へ金属接点を介さずに非接触で電力を伝送するための図3に示すような電磁誘導コイルを使用した充電器の構造が紹介されている。
この図3に示される非接触式充電器の充電部は、コイルボビン11に電力伝送用コイル12を巻線し、これにコア13を挿入した後、それらを筐体14に入れて構成されている。被充電部は、コイルボビン15に受電コイル16を巻線し筐体17に入れることによって構成されている。
このように構成された充電部と被充電部を近接させることにより充電回路が形成され、電力伝送が行われる。
For example, Patent Document 1 discloses a charger structure using an electromagnetic induction coil as shown in FIG. 3 for transmitting electric power from a charging part to a charged part without contact via a metal contact by electromagnetic induction. It has been introduced.
The charging part of the non-contact charger shown in FIG. 3 is configured by winding a coil 12 for power transmission around a coil bobbin 11, inserting a core 13 into the coil bobbin 11, and then putting them in a casing 14. . The charged portion is configured by winding a power receiving coil 16 around a coil bobbin 15 and placing it in a housing 17.
A charging circuit is formed by bringing the charging unit and the charged unit configured as described above close to each other, and power transmission is performed.

しかし、最近では、これら充電システム等のコンパクト化要求が一段と高まっており、そのためコイルに使用する絶縁電線(導体)を細くしてコイル体積を減少することも考えられたが、電気機器では細い導体ほど発熱が大きくなるのでこの手立ては採用できないものであった。
また、非接触式充電器では磁束を授受する電力伝送用コイルと受電コイルとの距離が小さいほど効率が良いため、設計に際してはこの点で有利と考えられる軸方向厚さの薄い偏平なコイルが望まれていた。
このようなことから、できるだけ太い導体を巻回したコイルの偏平化が緊急の課題となっている。
Recently, however, the demand for compactness of these charging systems and the like has increased further. For this reason, it has been considered to reduce the coil volume by reducing the insulated wire (conductor) used for the coil. This method could not be adopted because the heat generation was so high.
In addition, in a non-contact charger, the smaller the distance between the power transmission coil that receives and receives the magnetic flux and the power receiving coil, the better the efficiency.Therefore, a flat coil with a thin axial thickness, which is considered advantageous in this respect, is required in designing. It was desired.
For this reason, flattening of a coil wound with as thick a conductor as possible has become an urgent issue.

ところで、軸方向の厚さが最も薄い偏平多層コイルは絶縁電線を一列に多層に巻いたコイルであることは言うまでもないが、図4に示すように、多層巻きコイル18では絶縁電線の巻始め線部19がコイルの最内周に位置し巻終り線部20がコイルの最外周に位置することになるので、リ−ド線として巻始め線部19をコイルの外部(外周の外側)に導出させるには、コイル端面を横切らせる形で巻始め線部をコイルの外部に導く必要がある。
そのため、コイルの厚さはこの“コイル端面を横切る巻始め線部”の線径分(即ち絶縁電線の直径分)だけ無為に厚くなってしまい、導体密度が不十分なコイルになってしまうという問題があった。
By the way, it goes without saying that the flat multilayer coil having the smallest axial thickness is a coil in which insulated wires are wound in multiple layers in a row. However, as shown in FIG. Since the portion 19 is located on the innermost circumference of the coil and the winding end wire portion 20 is located on the outermost circumference of the coil, the winding start wire portion 19 is led out to the outside of the coil (outside the outer circumference) as a lead wire. In order to achieve this, it is necessary to guide the winding start wire portion to the outside of the coil so as to cross the coil end face.
Therefore, the thickness of the coil is unnecessarily increased by the wire diameter of this “winding start wire portion that crosses the coil end face” (that is, the diameter of the insulated wire), resulting in a coil with insufficient conductor density. There was a problem.

そこで、特許文献2には、図5に示したような、巻枠軸方向に摺動が可能な“スリット21が設けられたフレ−ム(フランジ)”22を有したコイルの巻枠23を用い、前記摺動可能フレ−ム22に設けられたスリット21を通して外側に絶縁電線の巻始め線部24が十分な長さで残るように図った上で絶縁電線を整列巻きで多層に巻回して巻終り線部25をコイルの最外周であってかつ前記摺動可能フレ−ム22が位置する側に残した後、摺動可能フレ−ム22を外側方向に絶縁電線1本分だけ摺動させてコイル端面とフレ−ム面との間にスペ−ス26を開け、このスペ−ス26にて残しておいた絶縁電線の巻始め線部24を更に多層巻きすることによりコイルの端面を無為に横切らせることなく巻始め端をコイル最外周に至らしめる(図中の符号27は多層巻きが終わった巻始め線部の先端を示す)という手法によって得られるところの、巻始め線部と巻終り線部が共にコイルの最外周から導出した導体密度の高い整列多層巻きコイルが提案されている。   Therefore, Patent Document 2 discloses a coil winding frame 23 having a “frame (flange) 22 provided with a slit 21” that can slide in the winding axis direction as shown in FIG. In addition, the insulated wire is wound in multiple layers by aligning windings so that the winding start wire portion 24 of the insulated wire remains with a sufficient length outside through the slit 21 provided in the slidable frame 22. After the winding end wire portion 25 is left on the outermost periphery of the coil and on the side where the slidable frame 22 is located, the slidable frame 22 is slid by one insulated wire outward. The space 26 is opened between the coil end surface and the frame surface, and the winding start wire portion 24 of the insulated wire left in the space 26 is further wound in multiple layers to thereby end the coil end surface. The winding start end is brought to the outermost periphery of the coil without crossing the coil involuntarily. Where obtained by a method that shows the distal end of the fit line portion), winding-start wire portion and the winding end wire part of the coil both high aligned multilayer wound coil of conductor density derived from the outermost periphery has been proposed.

しかしながら、特許文献2に示された上記整列多層巻きコイルでもその軸方向厚さを使用する絶縁電線の外径の2倍(絶縁電線2本分)より薄くすることはできず、偏平化には限界があった。   However, even the above-mentioned aligned multilayer winding coil disclosed in Patent Document 2 cannot be made thinner than twice the outer diameter of the insulated wire using the axial thickness (for two insulated wires). There was a limit.

特開平9−121481号公報JP 9-121481 A 特開昭58−51502号公報JP 58-51502 A

前述した事情を考慮して本発明が課題としたのは、コイルに必要とされる電流(許容電流)を流すことができる導体径を有した絶縁電線以上の導体断面積を有し、かつ軸方向厚さが当該絶縁電線の外径の2倍(絶縁電線2本分)よりも薄い薄型多層巻偏平コイルを提供することである。   The present invention has been made in consideration of the above-described circumstances, and has a conductor cross-sectional area larger than an insulated wire having a conductor diameter capable of flowing a current required for a coil (allowable current) and a shaft. It is to provide a thin multilayer wound flat coil whose directional thickness is thinner than twice the outer diameter of the insulated wire (for two insulated wires).

本発明者は上記課題を解決すべく種々検討を重ね、次の知見を得ることができた。
即ち、巻枠に絶縁電線を一列多層巻きして渦巻バネ状の単コイルを作製すると、得られる単コイルは前記特許文献2にも示されているようにその内径部(巻枠の軸が存在した部分)に“絶縁電線が存在しない円盤状空隙部”が形成される。
そこで、図1に示す如く、このような渦巻バネ状の1列多層巻きコイル(単コイル)1を2枚重ね合わせ、コイル内径部の“絶縁電線が存在しない円盤状空隙部”2内で両コイルの巻始め線部同士を直列に接続して(符号3は接続部を示す)電流が2枚のコイルを順方向に流れるように図ると、コイルを構成する絶縁電線の両端末(リ−ド線部)4,4がコイルの最外周に位置すると共に、コイル端面に無為な突出部がなくて軸方向厚さが薄い薄型偏平コイルを極めて簡易に得ることができる。
The present inventor has made various studies in order to solve the above problems, and has obtained the following knowledge.
That is, when a single coil of a spiral spring is manufactured by winding a single row of insulated wires around a winding frame, the obtained single coil has an inner diameter portion (the axis of the winding frame exists) as shown in Patent Document 2 above. The “disc-shaped gap portion in which no insulated wire exists” is formed in the portion).
Therefore, as shown in FIG. 1, two such single-row multi-layered coils (single coil) 1 in the form of a spiral spring are overlapped, and both are formed in the “disk-shaped air gap where there is no insulated wire” 2 at the inner diameter of the coil. When the winding start wire portions of the coils are connected in series (reference numeral 3 indicates a connection portion) so that current flows through the two coils in the forward direction, both ends of the insulated wires constituting the coils (relief) The thin flat coil having a thin axial thickness can be obtained very easily.

ただ、この場合には偏平コイルの軸方向厚さを絶縁電線2本分の寸法(絶縁電線の外径の2倍の寸法)よりも小さくすることができない。
しかし、コイルを構成する絶縁電線として“設定された許容電流値を達成するのに必要な導体径を有した絶縁電線”よりも外径の小さい絶縁電線(絶縁電線素線)を準備してから、図2に示すようにこの絶縁電線素線の複数本を多層に重ねて一列状態を保つように巻回して渦巻バネ状の多条一列多層巻コイル(単コイル)となし、このようにして得た渦巻バネ状の多条一列多層巻コイル(単コイル)の2枚を前記図1の如く重ね合わせて、単コイル内の複数の絶縁電線素線の両端部は単コイル内で並列接続し、2枚の単コイル間はコイル最内周部で直列に接続すると、コイルを構成する絶縁電線の両端末(リ−ド線部)がコイルの最外周に位置すると共に、コイル軸方向厚さが“細い絶縁電線素線の2本分”に納まる非常に薄い薄型偏平コイルを得ることができる。即ち、細い導体の絶縁電線をもって導体断面積の大きい薄型偏平コイルを得ることができる。
However, in this case, the thickness of the flat coil in the axial direction cannot be made smaller than the dimension of two insulated wires (dimension twice the outer diameter of the insulated wires).
However, after preparing an insulated wire (insulated wire strand) having an outer diameter smaller than “insulated wire having a conductor diameter necessary to achieve a set allowable current value” as an insulated wire constituting the coil As shown in FIG. 2, a plurality of insulated wire strands are stacked in multiple layers and wound so as to maintain a single-row state to form a spiral spring-like multi-row single-row multi-layer coil (single coil). Two of the obtained spiral spring-like multi-strip single-row multi-layer winding coil (single coil) are overlapped as shown in FIG. 1, and both ends of a plurality of insulated wires in the single coil are connected in parallel in the single coil. When two single coils are connected in series at the innermost periphery of the coil, both ends (lead wire portions) of the insulated wire constituting the coil are located at the outermost periphery of the coil, and the thickness in the axial direction of the coil Is a very thin and thin flat carp that fits into "two of the thin insulated wires" It is possible to obtain. That is, a thin flat coil having a large conductor cross-sectional area can be obtained with a thin conductor insulated wire.

この場合、前記多条一列多層巻コイル(単コイル)を作製するために重ね合わせて巻回する絶縁電線素線の本数は、「“設定された許容電流値を達成するのに必要な導体径”を“絶縁電線素線の導体径”で除した値を二乗した数」以上とすべきであり、これによって“複数の絶縁電線素線で構成されるコイルの導体断面積”は設定された許容電流値に十分対応できるものとなる。   In this case, the number of insulated wires that are wound in an overlapping manner in order to produce the multi-row, single-row multilayer coil (single coil) is “the conductor diameter necessary to achieve the set allowable current value”. Should be greater than or equal to the value obtained by dividing the value obtained by dividing "the conductor diameter of the insulated wire" by this, so that "the conductor cross-sectional area of the coil composed of a plurality of insulated wires" is set. It will be able to handle the allowable current value sufficiently.

ところで、絶縁電線を一列多層に巻回するためには巻枠の鍔(フランジ)の間隔が絶縁電線の外径よりも多少大きくなければならず、鍔の間隔が絶縁電線の外径と同じであると巻回時の鍔面と絶縁電線との摩擦抵抗のために巻き込みができない。このように、巻枠の鍔の間隔を絶縁電線の外径よりも大きめとしなければならないので、巻回が終わった一列多層巻コイルは実際には一層毎に巻枠の軸方向へ位置がぶれることとなり、コイル端面が絶縁電線一層おきに凹凸のある面になる。
しかるに、上述したような凹凸のある端面を有した一列多層巻きコイルであっても、従来にない手法ではあるが、その両側から押圧する手立てを講じることによって凹凸面は容易に整形されて均一平面となることが分かった。しかも、押圧の程度を増して絶縁電線を多少押し潰すように変形させたとしても、変形後の絶縁電線の厚みとして絶縁電線の元の外径のπ/4倍以上(0.7854倍以上)が確保されておればコイル端面の平坦性に悪影響を来たすことはなく(因みに押圧の程度が前記の値を超えて大きいと逆にコイル面にゆがみ変形が生じてしまう)、また電気・磁気特性の劣化を伴うこともないので、このようなコイルを2枚重ね合わせて得られる薄型偏平コイルの軸方向厚さを更に薄くすることができる。
By the way, in order to wind an insulated wire in a single layer, the gap between the flanges (flanges) of the winding frame must be slightly larger than the outer diameter of the insulated wire, and the gap between the flanges is the same as the outer diameter of the insulated wire. If it exists, it cannot wind due to the frictional resistance between the flange surface and the insulated wire during winding. As described above, since the gap between the reels of the winding frame must be larger than the outer diameter of the insulated wire, the single-row multilayer winding coil that has been wound is actually displaced in the axial direction of the winding frame for each layer. As a result, the coil end face becomes uneven with every other insulated wire.
However, even with a single-row multilayer coil having an uneven end surface as described above, it is an unprecedented technique, but the uneven surface can be easily shaped by pressing the both sides of the coil so that it is a uniform flat surface. I found out that Moreover, even if the insulation wire is deformed so that it is slightly crushed by increasing the degree of pressing, the thickness of the insulated wire after deformation is secured at least π / 4 times (0.7854 times or more) the original outer diameter of the insulated wire. If this is done, the flatness of the coil end surface will not be adversely affected (if the degree of pressing exceeds the above value, the coil surface will be distorted and deformed), and the electrical and magnetic characteristics will deteriorate. Therefore, the axial thickness of the thin flat coil obtained by superposing two such coils can be further reduced.

本発明は上記知見事項等を基に完成されたものであり、軸方向厚さの薄い偏平コイルを次の構成とした点に特徴を有するものである。
1)“設定された許容電流値を達成するのに必要な導体径”を“絶縁電線素線の導体径” で除した値を二乗した数以上の複数の絶縁電線素線が一列に重ねられて巻回されてなる 渦巻バネ状の多条一列多層巻コイルの2枚が重ね合わせられると共に、これら各コイル を構成する複数の絶縁電線素線が、コイル内は並列に、そしてコイル間はコイルの最内 周部で直列につながってなることを特徴とする、コイル線の両端末が共にコイル最外周 に位置する偏平コイル。
2)多条一列多層巻コイルのそれぞれが、コイルを構成する絶縁電線素線の外径の“π/ 4”倍を下回らない範囲でコイル軸方向に押圧変形された断面を有してなる、前記 1) 項記載の偏平コイル。
3)前記 1)項又は 2)項に記載の偏平コイルを用いた電気磁気エネルギ−変換器。
The present invention has been completed based on the above knowledge and the like, and is characterized in that a flat coil having a small axial thickness is configured as follows.
1) Multiple insulated wire strands more than the square of the value obtained by dividing "conductor diameter necessary to achieve the set allowable current value" by "conductor diameter of insulated wire strands" are stacked in a row. A spiral spring-shaped multi-row, single-row, multi-layer wound coil is superposed, and a plurality of insulated wire elements constituting each of these coils are arranged in parallel within the coil and between the coils. A flat coil in which both ends of the coil wire are located on the outermost periphery of the coil, which are connected in series at the innermost periphery of the coil.
2) Each of the multi-row, single-row, multi-layer wound coils has a cross section that is pressed and deformed in the coil axial direction within a range not less than “π / 4” times the outer diameter of the insulated wire constituting the coil. The flat coil according to 1) above.
3) An electromagnetic energy converter using the flat coil described in 1) or 2) above.

本発明によれば、コイルを構成する絶縁電線の両端末(リ−ド線部)がコイルの最外周に位置し、かつ軸方向厚さが“設定された許容電流値を達成するのに必要な導体径を有した絶縁電線”の外径の2倍(コイルに必要とされる電流を流すことができる絶縁電線の2本分)よりも薄い多層巻偏平コイルをを提供することができ、コ−ドレス電話器や携帯用機器類のコンパクト化,高性能化に大きく寄与することができる。   According to the present invention, both ends (lead wire portions) of the insulated wire constituting the coil are located on the outermost periphery of the coil and the axial thickness is necessary to achieve the set allowable current value. A multilayer wound flat coil that is thinner than twice the outer diameter of the insulated wire having a uniform conductor diameter (for two insulated wires that can pass the current required for the coil), This can greatly contribute to the compactness and high performance of cordless telephones and portable devices.

図1は本発明に係る偏平コイルを説明するための概要図であり、図1(a)はその断面概要を、図1(b)は平面方向からの観察概要図を示している。FIG. 1 is a schematic diagram for explaining a flat coil according to the present invention. FIG. 1 (a) shows an outline of the cross section, and FIG. 1 (b) shows an outline of observation from the plane direction. 図2は複数本の絶縁電線素線をコイル状に巻回する手法の説明図である。FIG. 2 is an explanatory diagram of a method of winding a plurality of insulated wire strands in a coil shape. 図3は先行文献に記載された非接触式充電器の説明図である。FIG. 3 is an explanatory diagram of the non-contact charger described in the prior art. 図4は多層巻きコイルの巻始め線部をコイルの外部(外周の外側)に導出させた状態を示す説明図である。FIG. 4 is an explanatory view showing a state in which the winding start line portion of the multilayer winding coil is led out of the coil (outside of the outer periphery). 図5は先行文献に記載された整列多層巻きコイルの説明図である。FIG. 5 is an explanatory diagram of an aligned multilayer wound coil described in the prior art.

図1は本発明に係る偏平コイルの1例を説明するための概要図であって、図1(a)はその断面を、そして図1(b)は平面方向から見た概要を示しているが、偏平コイルは、巻枠に絶縁電線を1列多層巻きして作製した渦巻バネ状の単コイル1を2枚重ね合わせ、コイル内径部に生じている“絶縁電線が存在しない円盤状空隙部”2内で両コイルの巻始め線部同士を直列に接続3して構成されている。
ここで、本発明に係る偏平コイルでは、絶縁電線として“設定された許容電流値を達成するのに必要な導体径を有した絶縁電線”よりも外径の小さい絶縁電線(絶縁電線素線)が用いられ、その複数本を同時に巻回して多条一列多層巻コイルとした後、その多条一列多層巻コイル(単コイル)を2枚重ねた構成とされる。ここで、絶縁電線素線としてはコイルの製作容易性の点から自己融着絶縁電線を用いるのが良い。
FIG. 1 is a schematic view for explaining an example of a flat coil according to the present invention. FIG. 1 (a) shows a cross section thereof, and FIG. 1 (b) shows an outline viewed from a plane direction. However, a flat coil is formed by overlapping two spiral spring-shaped single coils 1 produced by winding one row of insulated wires on a winding frame, and is formed in the inner diameter portion of the coil “a disc-shaped gap having no insulated wires. "2" is formed by connecting 3 winding start wire portions of both coils in series.
Here, in the flat coil according to the present invention, an insulated wire (insulated wire element wire) having an outer diameter smaller than that of “insulated wire having a conductor diameter necessary to achieve a set allowable current value” as an insulated wire. Are used, and a plurality of single-row multi-layer wound coils are wound at the same time, and then two multi-row single-row multilayer coils (single coils) are stacked. Here, as the insulated wire, a self-fused insulated wire is preferably used from the viewpoint of ease of manufacturing the coil.

なお、用いる絶縁電線素線の本数は“設定された許容電流値を達成するのに必要な導体径”を“絶縁電線素線の導体径”で除した値を二乗した数以上とされ、コイルに巻回後はそれらの巻始め線部と巻終り線部がそれぞれ並列に接続されるので、コイルの導体断面積は設定された許容電流値に十分対応できるものとなる。   The number of insulated wire strands used is equal to or greater than the square of the value obtained by dividing the “conductor diameter necessary to achieve the set allowable current value” by the “conductor diameter of insulated wire strands”. Since the winding start line portion and the winding end line portion are respectively connected in parallel after winding, the conductor cross-sectional area of the coil can sufficiently correspond to the set allowable current value.

ところで、前記多条一列多層巻コイル(単コイル)は、多数本の絶縁電線素線を一列の多層巻き状態に巻回したものであるので巻回された各絶縁電線素線は内側に位置するものと外側に位置するものとで長さが異なる結果となり、そのため理論上はコイルを構成する各絶縁電線素線はそれぞれ電気抵抗にも違いが生じてしまって電気的・磁気的特性が部位によらず均一性を保った偏平コイルとはならないとの懸念がなくもないが、実際上はこのような弊害は認められない。しかも、上述のような多条一列多層巻コイル(単コイル)の2枚を巻き方向が逆になるように重ね合わせると共に、この2枚の単コイルをコイル最内周部で直列に接続して電流が2枚のコイルを順方向に流れるように図ると、絶縁電線素線の位置の違いによる電気抵抗の差が平準化された偏平コイルが実現されるので何ら問題はない。   By the way, the multi-row single-row multi-layer coil (single coil) is obtained by winding a large number of insulated wire strands in a single-layer multi-winding state, so that each wound insulated wire strand is located inside. As a result, the length of the wire is different from that of the wire that is located on the outside. Therefore, theoretically, each insulated wire that constitutes the coil also has a difference in electrical resistance, and the electrical and magnetic characteristics vary depending on the region. There is no doubt that it will not be a flat coil that maintains uniformity, but in practice this problem is not recognized. In addition, two multi-row single-row wound coils (single coils) as described above are stacked so that the winding directions are reversed, and the two single coils are connected in series at the innermost periphery of the coil. When the current flows through the two coils in the forward direction, there is no problem because a flat coil in which the difference in electric resistance due to the difference in the position of the insulated wire is leveled is realized.

因みに、本発明に係る偏平コイルは、作製した2枚の単コイルを重ね合わせてからそれらの各巻始め線を接続する手法によって製作するのが良いが、コイル作製作業が煩雑ではあるものの、特許文献2に示された工法(図5を参照)によって、多条一列多層巻コイルが2枚重なると共に当該2枚のコイルがその巻始め線部同士がコイルの最内周(巻枠の軸面部)で連続的につながっていて、かつコイルの2つのリ−ド線部(巻終り部)が何れもコイルの最外周に位置する偏平コイルとなしても良い。   Incidentally, the flat coil according to the present invention is preferably manufactured by a method in which two single coils thus manufactured are overlapped and then connected to each winding start line. 2 (see FIG. 5), two multi-row, single-layer, multi-layer coils are overlapped, and the two coils have their winding start wire portions at the innermost circumference of the coil (axial surface portion of the winding frame). The two lead wire portions (winding end portions) of the coil may be a flat coil that is continuously connected at the outermost periphery of the coil.

前述したように、本発明に係る偏平コイルは、絶縁電線のリ−ド線部がコイルの最外周に位置し、かつ軸方向厚さが“設定された許容電流値を達成するのに必要な導体径を有した絶縁電線”の外径の2倍(コイルに必要とされる電流を流すことができる絶縁電線の2本分)よりも薄いものであるが、この偏平コイルの製作にあたっては例えば次の手順を採ることができる。
a.例えば“計器の設計上要求される許容電流値の達成に必要な導体径”を“絶縁電 線素線の導体径”で除した値を二乗した数以上の複数の自己融着絶縁電線素線を準 備する,
b.前記複数の自己融着絶縁電線素線を多層に重ね、これをコイルの巻枠を用いて一 列状態を保つように巻回して渦巻バネ状の多条一列多層巻コイル(単コイル)を作 製する,
c.作製された単コイルの2枚を、巻方向が逆となるように重ね合わせると共に、単 コイルの複数の絶縁電線素線の両端部を並列に接続し、また2枚の単コイルの巻始 め線部同士をコイル最内周で直列に接続することにより、コイル線の両端末がコイ ルの最外周に位置するところの、多条一列多層巻コイルが2枚重なった偏平コイル とする。
As described above, in the flat coil according to the present invention, the lead wire portion of the insulated wire is located on the outermost periphery of the coil, and the axial thickness is necessary to achieve the set allowable current value. Although it is thinner than twice the outer diameter of an insulated wire having a conductor diameter (two insulated wires that can pass the current required for the coil), The following procedure can be taken.
a. For example, a plurality of self-bonding insulated wire elements whose number is equal to or greater than the square of the value obtained by dividing "the conductor diameter necessary to achieve the allowable current value required for instrument design" by "the conductor diameter of the insulated wire". To prepare,
b. The plurality of self-bonding insulated wires are stacked in multiple layers and wound using a coil winding frame so as to maintain a single-row state, thereby creating a spiral spring-shaped multi-row single-row multilayer coil (single coil). Make,
c. Two produced single coils are overlapped so that the winding direction is reversed, both ends of a plurality of insulated wire strands of the single coil are connected in parallel, and winding of the two single coils is started. By connecting the wire parts in series at the innermost circumference of the coil, a flat coil with two multi-row, one-row, multi-layer winding coils where both ends of the coil wire are located on the outermost circumference of the coil.

因みに、許容電流値の点から 0.3mmφの絶縁電線が望まれるコイルの場合には、例えば0.15mmφの絶縁電線を素線とし、これの4本を図2に示すように多層に重ねた状態で巻回して偏平な多条一列多層巻コイル(単コイル)を作製し、それら絶縁電線の両端を並列に接続すると、“ 0.3mmφの絶縁電線の断面積”と“0.15mmφの絶縁電線を4本組み合わせたものの総断面積”は等価となるので、“0.15mmφの絶縁電線を4本組み合わせて用いたコイル”であっても“ 0.3mmφの絶縁電線を用いたコイル”と許容電流値は変わらないものとなる。
そのため、“0.15mmφの絶縁電線を4本組み合わせて用いた単コイル”を2枚重ね合わせて作製した偏平コイルは、 0.3mmφの絶縁電線を用いて同様に作製した偏平コイルに比べて軸方向厚さが 1/2 に低減する。
Incidentally, in the case of a coil where a 0.3 mmφ insulated wire is desired from the viewpoint of the allowable current value, for example, a 0.15 mmφ insulated wire is used as a bare wire, and four of them are stacked in a multilayer as shown in FIG. Winding flat multi-row single-row multilayer coil (single coil), and connecting both ends of these insulated wires in parallel, "cross-sectional area of 0.3mmφ insulated wire" and "0.15mmφ insulated wire" Since the total cross-sectional area of the combination is equivalent, even if it is a “coil using a combination of four 0.15 mmφ insulated wires”, the allowable current value is the same as “a coil using 0.3 mmφ insulated wires” It will be a thing.
Therefore, the flat coil made by stacking two “single coils using a combination of four 0.15 mmφ insulated wires” is thicker in the axial direction than the flat coil similarly made using 0.3 mmφ insulated wires. Is reduced to 1/2.

ただ、先にも説明した通り、絶縁電線を一列多層に巻回して一列多層巻コイルを作製すると、実際には絶縁電線の一層おきに凹凸のある端面になってしまう。また、巻枠からコイルを取り出すと巻圧のためコイル面の凹凸が大きくなる。この凹凸はコイル面の厚みを絶縁電線の外径よりも大きくすることになる。
この問題を解決するためには次の工法が有効である。
However, as described above, when an insulated wire is wound in a single row and multiple layers to produce a single row multilayer coil, in fact, it becomes an end surface with irregularities in every other layer of the insulated wire. Further, when the coil is taken out from the winding frame, the unevenness of the coil surface increases due to the winding pressure. This unevenness makes the thickness of the coil surface larger than the outer diameter of the insulated wire.
The following method is effective to solve this problem.

即ち、外径dの絶縁電線の円形断面の面積は“π×(d/2)2 ”であって、この面積は“π×d×d/4”と表すことができ、長辺がdで短辺がπ/4×dの長方形の面積と等価である。従って、凹凸のある一列多層巻コイルの端面をその両側から押圧すると、まず凹凸面は容易に整形されて均一平面となるが、押圧の度合いを更に増すと絶縁電線は或る程度押し潰されて変形するものの、絶縁電線の押圧方向の厚みが元の絶縁電線の外径dの“π/4”倍以上(即ち“0.7854×d”以上)を保つ程度であれば断面が長方形状に変形するだけであるので隣り合う絶縁電線が占める寸法dの領域を干渉することはなく、そのためコイルは偏平形状を保って整形が進むこととなり、端面が非常に平らな多層巻き状態に固定されることとなる。
しかも、このような一列多層巻コイルは電気・磁気特性の劣化を伴うこともないので、薄型偏平コイルの軸方向厚さを更に薄くする上で有利である。
That is, the area of the circular cross section of the insulated wire having the outer diameter d is “π × (d / 2) 2 ”, which can be expressed as “π × d × d / 4”, and the long side is d. Is equivalent to a rectangular area having a short side of π / 4 × d. Therefore, when pressing the end surface of a single-layer multilayer coil with unevenness from both sides, the uneven surface is first easily shaped into a uniform plane, but if the degree of pressing is further increased, the insulated wire will be crushed to some extent. Although deformed, if the thickness of the insulated wire in the pressing direction is at least “π / 4” times the outer diameter d of the original insulated wire (that is, “0.7854 × d” or more), the cross section is deformed into a rectangular shape. Therefore, there is no interference with the area of the dimension d occupied by the adjacent insulated wire, so that the coil is shaped while maintaining a flat shape, and the end face is fixed in a very flat multi-layer winding state. Become.
In addition, such a single-layer multilayer coil is not accompanied by deterioration of electrical and magnetic characteristics, and is advantageous in further reducing the axial thickness of the thin flat coil.

例えば、巻軸径が10mmで鍔間隔が0.18mmの巻枠を用い、導体径が0.15mmで外径が0.17mmの自己融着絶縁電線を4本同時に15タ−ン巻回して多条一列多層巻コイルを作製したが、このコイルのデ−タは次の通りであった。
コイル内径:10mm,
コイル外径:31mm,
コイルの軸方向厚さ(面厚):0.19mm,
直流抵抗:0.24Ω。
そして、このコイルの端面を両側から押圧して端面の整形を行ったもののデ−タは次の通りであった。
コイル内径:10mm,
コイル外径:31mm,
コイルの軸方向厚さ(面厚):0.15mm,
直流抵抗:0.24Ω。
このように端面を整形した多条一列多層巻コイルの2枚を巻方向を逆に重ね合わせ、各コイル内の絶縁電線を巻始め端部及び巻終り端部でそれぞれ並列接続すると共に、各コイルの巻始め線部をコイル内周部で直列接続してコイルの両端が共に最外周に位置する偏平コイルを作製したが、この偏平コイルのデ−タは次の通りであった。
コイル内径:10mm,
コイル外径:31mm,
コイルの軸方向厚さ:0.30mm,
直流抵抗:0.48Ω。
For example, using a winding frame with a reel diameter of 10 mm and a heel spacing of 0.18 mm, winding four self-fusing insulated wires with a conductor diameter of 0.15 mm and an outer diameter of 0.17 mm at the same time for 15 turns A multi-layer wound coil was produced, and the data of this coil was as follows.
Coil inner diameter: 10mm,
Coil outer diameter: 31mm,
Coil axial thickness (surface thickness): 0.19mm,
DC resistance: 0.24Ω.
The data of the end face shaped by pressing the end face of the coil from both sides was as follows.
Coil inner diameter: 10mm,
Coil outer diameter: 31mm,
Coil axial thickness (surface thickness): 0.15mm,
DC resistance: 0.24Ω.
In this way, two multi-row, single-row, multi-layer wound coils whose end surfaces are shaped are overlapped with each other in the winding direction, and the insulated wires in each coil are connected in parallel at the winding start end and winding end, respectively. A flat coil in which both ends of the coil are located on the outermost periphery was produced by connecting the winding start wire portions in series at the inner peripheral portion of the coil. The data of the flat coil was as follows.
Coil inner diameter: 10mm,
Coil outer diameter: 31mm,
Coil axial thickness: 0.30mm,
DC resistance: 0.48Ω.

上述のような本発明に係る偏平コイルをコ−ドレス電話器や携帯用機器(携帯電話器,デシタルカメラ,携帯用ゲ−ム機器)等の電気磁気エネルギ−変換器に適用すれば、そのコンパクト化,高性能化に非常に有利である。   If the above-described flat coil according to the present invention is applied to an electromagnetic energy converter such as a cordless phone or a portable device (mobile phone, digital camera, portable game device), etc., its compactness is achieved. This is very advantageous for high performance and high performance.

以上に説明した通り、本発明によると、高性能の薄型偏平コイルを容易かつ安価に提供することができ、例えば携帯用電子機器類に適用される非接触式充電システム等のコンパクト化,高性能化,低価格化に大きく寄与することが可能であるなど、産業上の利用性は図り知れない。   As described above, according to the present invention, a high-performance thin flat coil can be provided easily and inexpensively. For example, a non-contact charging system applied to portable electronic devices can be made compact and high-performance. Industrial applicability, such as being able to make a significant contribution to cost reduction and price reduction, cannot be realized.

1 1列多層巻きコイル
2 絶縁電線が存在しない円盤状空隙部
3 接続部
4 絶縁電線の端末(リ−ド線部)
11,15 コイルボビン
12 電力伝送用コイル
13 コア
14,17 筐体
16 受電コイル
18 多層巻きコイル
19,24 巻始め線部
20,25 巻終り線部
21 スリット
22 摺動可能フレ−ム
23 巻枠
26 スペ−ス
27 多層巻きが終わった巻始め線部の先端
DESCRIPTION OF SYMBOLS 1 Single row | line | column multilayer winding coil 2 The disk-shaped space | gap part in which an insulated wire does not exist 3 Connection part 4 The terminal (lead wire part) of an insulated wire
11, 15 Coil bobbin
12 Coil for power transmission
13 core
14, 17 housing
16 Power receiving coil
18 Multi-layer coil
19, 24 Winding start line
20, 25 End of line
21 Slit
22 Slideable frame
23 reel
26 Space
27 End of winding start line after multi-layer winding

Claims (3)

“設定された許容電流値を達成するのに必要な導体径”を“絶縁電線素線の導体径”で除した値を二乗した数以上の複数の絶縁電線素線が一列に重ねられて巻回されてなる渦巻バネ状の多条一列多層巻コイルの2枚が重ね合わせられると共に、これら各コイルを構成する複数の絶縁電線素線が、コイル内は並列に、そしてコイル間はコイルの最内周部で直列につながってなることを特徴とする、コイル線の両端末が共にコイル最外周に位置する偏平コイル。 Multiple insulated wire strands more than the square of the value obtained by dividing the “conductor diameter necessary to achieve the set allowable current value” by the “conductor diameter of insulated wire strands” are stacked and wound in a row. Two spiral spring-shaped multi-row, single-row, multi-layer wound coils are superposed, and a plurality of insulated wires constituting each of the coils are arranged in parallel within the coils and between the coils. A flat coil in which both ends of a coil wire are located on the outermost periphery of the coil, characterized by being connected in series at the inner periphery. 多条一列多層巻コイルのそれぞれが、コイルを構成する絶縁電線素線の外径の“π/4”倍を下回らない範囲でコイル軸方向に押圧変形された断面を有してなる、請求項1記載の偏平コイル。 Each of the multi-row, single-row, multi-layer wound coil has a cross section that is pressed and deformed in the coil axial direction within a range not less than "π / 4" times the outer diameter of the insulated wire constituting the coil. The flat coil according to 1. 請求項1又は2に記載の偏平コイルを用いた電気磁気エネルギ−変換器。 An electromagnetic energy converter using the flat coil according to claim 1.
JP2010109210A 2010-05-11 2010-05-11 Flat coil and electromagnetic energy converter using the same Active JP5681380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010109210A JP5681380B2 (en) 2010-05-11 2010-05-11 Flat coil and electromagnetic energy converter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010109210A JP5681380B2 (en) 2010-05-11 2010-05-11 Flat coil and electromagnetic energy converter using the same

Publications (2)

Publication Number Publication Date
JP2011238784A true JP2011238784A (en) 2011-11-24
JP5681380B2 JP5681380B2 (en) 2015-03-04

Family

ID=45326431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010109210A Active JP5681380B2 (en) 2010-05-11 2010-05-11 Flat coil and electromagnetic energy converter using the same

Country Status (1)

Country Link
JP (1) JP5681380B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098919A (en) * 2015-09-24 2020-06-25 株式会社Fuji Power reception coil and noncontact power supply system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025132B1 (en) * 1969-02-08 1975-08-21
JPH04137504A (en) * 1990-09-28 1992-05-12 Toshiba Lighting & Technol Corp Plane inductance element
JPH0523748A (en) * 1991-07-24 1993-02-02 Furukawa Electric Co Ltd:The Manufacture of thin coil for high frequency power source
JPH0686321U (en) * 1993-05-26 1994-12-13 株式会社アイキューフォー Air core choke coil
JPH07201575A (en) * 1994-01-10 1995-08-04 Fujitsu Denso Ltd Flat winding and its manufacture
JP2005085560A (en) * 2003-09-08 2005-03-31 Showa Electric Wire & Cable Co Ltd Litz wire coil
JP2005327834A (en) * 2004-05-13 2005-11-24 Goto Denshi Kk Coil and its manufacturing method
JP2009064856A (en) * 2007-09-05 2009-03-26 Totoku Electric Co Ltd Spiral coil
JP2009158598A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Planar coil and non-contact power transfer device using the same
JP2010016235A (en) * 2008-07-04 2010-01-21 Panasonic Electric Works Co Ltd Plane coil

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5025132B1 (en) * 1969-02-08 1975-08-21
JPH04137504A (en) * 1990-09-28 1992-05-12 Toshiba Lighting & Technol Corp Plane inductance element
JPH0523748A (en) * 1991-07-24 1993-02-02 Furukawa Electric Co Ltd:The Manufacture of thin coil for high frequency power source
JPH0686321U (en) * 1993-05-26 1994-12-13 株式会社アイキューフォー Air core choke coil
JPH07201575A (en) * 1994-01-10 1995-08-04 Fujitsu Denso Ltd Flat winding and its manufacture
JP2005085560A (en) * 2003-09-08 2005-03-31 Showa Electric Wire & Cable Co Ltd Litz wire coil
JP2005327834A (en) * 2004-05-13 2005-11-24 Goto Denshi Kk Coil and its manufacturing method
JP2009064856A (en) * 2007-09-05 2009-03-26 Totoku Electric Co Ltd Spiral coil
JP2009158598A (en) * 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd Planar coil and non-contact power transfer device using the same
JP2010016235A (en) * 2008-07-04 2010-01-21 Panasonic Electric Works Co Ltd Plane coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020098919A (en) * 2015-09-24 2020-06-25 株式会社Fuji Power reception coil and noncontact power supply system

Also Published As

Publication number Publication date
JP5681380B2 (en) 2015-03-04

Similar Documents

Publication Publication Date Title
US20180175645A1 (en) Wireless charging module having a wireless charging coil and a magnetic sheet
WO2009081934A1 (en) Plane coil, and non-contact power transmission device using the same
JP4835786B1 (en) Non-contact charging module and non-contact charging device
JP2007181303A (en) Motor
JP4835787B1 (en) Non-contact charging module and non-contact charging device
JP6092862B2 (en) Coiled member and coil device
US8729855B2 (en) Non-contact charging module and non-contact charger
US9716414B2 (en) Stator of rotating electric machine
JP6056100B2 (en) Spiral coil
JP4835800B1 (en) Non-contact charging module and non-contact charging device
JP2013094019A (en) Segment coil, method of manufacturing segment coil, and stator
WO2014041979A1 (en) Coil device
JP5445545B2 (en) Non-contact charging module, non-contact charger and electronic device
JP4962634B1 (en) Method for manufacturing contactless charging module
JP6003314B2 (en) Stator for rotating electrical machine
US20130063237A1 (en) Reactor
JP5681380B2 (en) Flat coil and electromagnetic energy converter using the same
JP2010050241A (en) Coil for electric equipment and electric wire for coil
JP2012114222A (en) Coil module and coil unit including the same
JP6539024B2 (en) Coil and coil component
JP2012191704A (en) Non contact charging module and non contact charger
JP2014057462A (en) Stator of rotary electric machine
CN112216481A (en) Magnetic induction coil
JP6500669B2 (en) DC motor and method of manufacturing the same
TW202232523A (en) Choke coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150109

R150 Certificate of patent or registration of utility model

Ref document number: 5681380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250