JP6003314B2 - Stator for rotating electrical machine - Google Patents

Stator for rotating electrical machine Download PDF

Info

Publication number
JP6003314B2
JP6003314B2 JP2012156151A JP2012156151A JP6003314B2 JP 6003314 B2 JP6003314 B2 JP 6003314B2 JP 2012156151 A JP2012156151 A JP 2012156151A JP 2012156151 A JP2012156151 A JP 2012156151A JP 6003314 B2 JP6003314 B2 JP 6003314B2
Authority
JP
Japan
Prior art keywords
coil winding
conductor
stator
stator core
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012156151A
Other languages
Japanese (ja)
Other versions
JP2014023171A (en
Inventor
圭祐 伊藤
圭祐 伊藤
服部 宏之
宏之 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012156151A priority Critical patent/JP6003314B2/en
Publication of JP2014023171A publication Critical patent/JP2014023171A/en
Application granted granted Critical
Publication of JP6003314B2 publication Critical patent/JP6003314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、回転電機用ステータに係り、特に、ロータからの漏れ磁束によってステータコイル巻線に渦電流損が生じる回転電機用ステータに関する。   The present invention relates to a stator for a rotating electrical machine, and more particularly to a stator for a rotating electrical machine in which eddy current loss occurs in a stator coil winding due to leakage magnetic flux from a rotor.

回転電機を構成するステータのコイル巻線に駆動電流が供給されることでステータは回転磁界を発生し、ロータが回転する。このとき、ロータからステータに向かう磁束の一部が漏れ磁束となってコイル巻線を貫通し、その磁束変化によって渦電流損がステータコイル巻線に生じる。   When a drive current is supplied to the coil winding of the stator that constitutes the rotating electrical machine, the stator generates a rotating magnetic field, and the rotor rotates. At this time, a part of the magnetic flux from the rotor to the stator becomes a leakage magnetic flux and penetrates the coil winding, and eddy current loss occurs in the stator coil winding due to the change in the magnetic flux.

例えば、特許文献1は、ステータコアのティースに巻回されるコイル巻線の渦電流損がステータコアの内周側であるロータ側に近いほど多く、外周側に行くほど少ないことを指摘している。そこで、コイルについて、ステータコアの内周側のコイル巻線を分割断面型とし、外周側のコイル巻線を単一断面型とすることが開示されている。   For example, Patent Document 1 points out that the eddy current loss of the coil winding wound around the teeth of the stator core increases as it approaches the rotor side, which is the inner peripheral side of the stator core, and decreases toward the outer peripheral side. Therefore, it is disclosed that the coil winding on the inner peripheral side of the stator core is a divided cross-sectional type and the coil winding on the outer peripheral side is a single cross-sectional type.

特許文献2では、回転電機巻線用導線を集合導線で構成すると、渦電流の発生を抑制し、占積率を向上させることができる反面、集合導線の剛性が高くなるため、曲げ加工等が困難になることを指摘している。そこで、一層分を平面的に複数の導体素線に分割し、その一層分を複数層重ねて積層し、各導体素線の間と、複数層の各層の間を簡易絶縁部で結合して集合導線を構成することで、曲げ加工を容易にすることが開示されている。   In Patent Document 2, if the rotating electrical machine winding conductor is composed of a collective conductor, the generation of eddy currents can be suppressed and the space factor can be improved. It points out that it will be difficult. Therefore, one layer is divided into a plurality of conductor wires in a plane, the layers are stacked in layers, and the layers between the conductor wires and the layers of the plurality of layers are coupled by a simple insulating portion. It is disclosed that a bending process is facilitated by configuring a collective conducting wire.

特開2012−110114号公報JP2012-110114A 特開2011−188721号公報JP 2011-188721 A

コイル巻線を集合導線とし、その分割数を増やせばより渦電流損を減少させることができる。しかし、集合導線の分割数を増やすと、絶縁体被覆工程の増加、導体素線を束ねる工程の複雑化、曲げや捩じり工程の困難化等が伴い、これに伴いコイル巻線の占積率が低下する。   If the coil winding is a collective conducting wire and the number of divisions is increased, eddy current loss can be further reduced. However, increasing the number of assembly conductors increases the insulation coating process, complicates the process of bundling the conductor wires, and makes the bending and twisting processes more difficult. The rate drops.

本発明の目的は、コイル巻線の占積率を確保しながら渦電流損を効果的に低減できる回転電機用ステータを提供することである。   The objective of this invention is providing the stator for rotary electric machines which can reduce an eddy current loss effectively, ensuring the space factor of a coil winding.

本発明に係る回転電機用ステータは、周方向に沿って配置される複数のティース部を有するステータコアと、ティース部に複数回巻回され、少なくとも一部は、断面を複数の導体素線に分割し、分割した複数の導体素線を再び合させて1本のコイルとした集合導線で構成されコイル巻線部と、を備え、コイル巻線部の中で、集合導線で構成されるコイル巻線は、当該コイル巻線を通るロータからの漏れ磁束の方向に合わせてその断面を所定の複数の集合導線に分割したコイル巻線であって、ステータコアの内周側のコイル巻線は、ステータコアの径方向に平行に分割された所定の複数の導体素線が前記径方向に平行に分割された所定の複数と同じ複数の層で周方向に積層された集合導線で構成されており、ステータコアの外周側のコイル巻線は、ステータコアの周方向に平行に分割された所定の複数の導体素線が前記周方向に平行に分割された所定の複数と同じ複数の層で径方向に積層された集合導線で構成されていることを特徴とする。
Stator for rotary electric machine according to the present invention includes: a stator core having a plurality of teeth disposed along the circumferential direction, is wound several times around the teeth, at least in part, divides the cross section into a plurality of conductor element wires and, a plurality of conductor wires divided by again collecting together and a coil winding portion which is constituted by the assembly conducting wire and one coil, in the coil winding is composed of a set wire The coil winding is a coil winding whose cross section is divided into a predetermined plurality of collective conductors in accordance with the direction of the leakage magnetic flux from the rotor passing through the coil winding, and the coil winding on the inner peripheral side of the stator core is And a plurality of predetermined conductor strands divided in parallel to the radial direction of the stator core are composed of collective conducting wires laminated in the circumferential direction with the same plurality of layers as the predetermined plurality divided in parallel to the radial direction. , Coil on the outer peripheral side of the stator core Line is composed of circumferentially parallel divided predetermined plurality of sets conductors conductor strands are laminated in the radial direction at the same plurality of layers and a predetermined plurality of divided parallel to the circumferential direction of the stator core It is characterized by.

また、本発明に係る回転電機用ステータにおいて、内周側のコイル巻線の導体素線の断面形状は、外周側のコイル巻線の導体素線と同じ断面形状であることが好ましい。   In the stator for a rotating electrical machine according to the present invention, the cross-sectional shape of the conductor wire of the inner peripheral side coil winding is preferably the same as the cross-sectional shape of the conductor wire of the outer peripheral coil winding.

上記構成において、回転電機用ステータは、コイル巻線として、コイル巻線を通るロータの漏れ磁束の主たる向きに平行に分割された複数の導体素線が積層された集合導線を用いる。ロータの漏れ磁束は一様な方向ではなく、ステータコアの内周側ではステータコアの径方向に沿って流れ、ステータコアの外周側ではステータコアの周方向に沿って流れる。この漏れ磁束の方向に集合導線の分割の方向を合わせることで、渦電流のループを短くでき、渦電流損を効果的に抑制できる。また、集合導線の分割方向を変えるだけで分割数を増やさずに済むので、占積率を確保できる。   In the above-described configuration, the stator for a rotating electrical machine uses a collective conducting wire in which a plurality of conductor wires divided in parallel with the main direction of the leakage magnetic flux of the rotor passing through the coil winding are stacked as the coil winding. The leakage magnetic flux of the rotor does not flow in a uniform direction, but flows along the radial direction of the stator core on the inner circumferential side of the stator core, and flows along the circumferential direction of the stator core on the outer circumferential side of the stator core. By matching the direction of division of the collective conducting wire to the direction of the leakage magnetic flux, the eddy current loop can be shortened and eddy current loss can be effectively suppressed. Further, it is not necessary to increase the number of divisions simply by changing the dividing direction of the collective conducting wire, so that the space factor can be ensured.

そして、回転電機用ステータにおいて、ロータの漏れ磁束の方向に合わせて、内周側のコイル巻線はステータコアの径方向に平行に分割した集合導線を用い、ステータコアの外周側のコイル巻線はステータコアの周方向に平行に分割した集合導線を用いる。これによって、集合導線の分割方向を漏れ磁束の方向に合わせることができる。   In the stator for a rotating electrical machine, the inner peripheral side coil winding is divided into parallel to the radial direction of the stator core in accordance with the direction of the leakage magnetic flux of the rotor, and the outer peripheral side coil winding of the stator core is the stator core. The collective conducting wire divided in parallel with the circumferential direction is used. Thereby, the dividing direction of the collective conducting wire can be matched with the direction of the leakage magnetic flux.

また、回転電機用ステータにおいて、内周側のコイル巻線と外周側のコイル巻線は、同一断面形状の導体素線を用い、集合導体の分割方向を変更するだけである。このように、巻線の種類を増やさず、占積率を確保しながら、渦電流損を抑制できる。   Further, in the stator for a rotating electrical machine, the inner peripheral coil winding and the outer peripheral coil winding use conductor wires having the same cross-sectional shape and only change the dividing direction of the collective conductor. Thus, eddy current loss can be suppressed while ensuring the space factor without increasing the types of windings.

本発明に係る実施の形態における回転電機用ステータの平面図と一部拡大図である。It is the top view and partial enlarged view of the stator for rotary electric machines in embodiment which concerns on this invention. 本発明に係る実施の形態の回転電機用ステータにおいて、断面積が同じ導線素線を用いて、集合導線の分割の方向を変更する様子を示す図である。It is a figure which shows a mode that the division direction of an assembly conducting wire is changed using the conducting wire with the same cross-sectional area in the stator for rotary electric machines of embodiment which concerns on this invention. 本発明に係る実施の形態の回転電機用ステータにおいて、漏れ磁束の方向と集合導線の分割の方向の関係を示す図である。It is a figure which shows the relationship between the direction of a leakage magnetic flux, and the direction of division | segmentation of an assembly conducting wire in the stator for rotary electric machines of embodiment which concerns on this invention.

以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下では、コイル巻線は集中巻方式で巻回されるものを述べるが、分布巻方式で巻回されても構わない。また、コイル巻線として断面が矩形形状の平角導線を用いるものを述べるが、これは説明のための例示であって、断面が円形の丸形導線、楕円形断面の導線、矩形形状の角部を丸めた略矩形形状断面の導線等を用いてもよい。以下で述べるステータコアのティース部の数、コイル巻線の巻数、集合導線における分割数等は説明のための例示であって、回転電機用ステータの仕様に応じ、適宜変更が可能である。   Embodiments according to the present invention will be described below in detail with reference to the drawings. In the following description, the coil winding is described as being wound by the concentrated winding method, but may be wound by the distributed winding method. In addition, a coil winding using a rectangular conductor with a rectangular cross section is described, but this is an illustrative example, and a round conductor having a circular cross section, a conductor having an elliptical cross section, and a rectangular corner. You may use the conducting wire etc. of the substantially rectangular cross section which rounded. The number of teeth portions of the stator core, the number of turns of the coil winding, the number of divisions in the collective conducting wire, etc. described below are examples for explanation, and can be appropriately changed according to the specifications of the stator for a rotating electrical machine.

以下では、全ての図面において、一または対応する要素には同一の符号を付し、重複する説明を省略する。   Hereinafter, in all the drawings, the same reference numerals are given to one or corresponding elements, and redundant description is omitted.

図1は、回転電機用ステータ10を示す図で、図1(a)は一部を破断した平面図、(b)は1つのスロットについての拡大図である。なお、図1において、回転電機用ステータ10の構成要素ではないが、ロータ6と、ロータ6を固定する回転軸8を示す。回転電機用ステータ10は、ロータ6と電磁作用的に協働して、ロータ6を回転させ、回転軸8にトルクを出力させる。   1A and 1B are diagrams showing a stator 10 for a rotating electrical machine. FIG. 1A is a plan view with a part broken away, and FIG. 1B is an enlarged view of one slot. In FIG. 1, although not a component of the rotating electrical machine stator 10, the rotor 6 and the rotating shaft 8 that fixes the rotor 6 are shown. The stator 10 for rotating electrical machines cooperates with the rotor 6 in an electromagnetic action to rotate the rotor 6 and output torque to the rotating shaft 8.

回転電機用ステータ10は、ステータコア12と、ステータコア12の周方向に沿って配置される複数のティース部14と、ティース部14の一部であってロータ6に対向する先端部16と、隣接するティース部14の間の空間であるスロット部18と、スロット部18を通りティース部14に複数回巻回されるコイル巻線部20を含む。   The stator 10 for a rotating electrical machine is adjacent to a stator core 12, a plurality of tooth portions 14 arranged along the circumferential direction of the stator core 12, and a tip portion 16 that is a part of the tooth portion 14 and faces the rotor 6. A slot 18 that is a space between the teeth 14 and a coil winding 20 that passes through the slot 18 and is wound around the teeth 14 a plurality of times are included.

ステータコア12は、内周側に複数のティース部14が配置される円環状の磁性体部材である。図1では、12個のティース部14を有するステータコア12が示されている。かかるスタータコア12は、所定の形状の電磁鋼板を複数枚積層して形成される。   The stator core 12 is an annular magnetic member in which a plurality of tooth portions 14 are disposed on the inner peripheral side. In FIG. 1, a stator core 12 having twelve teeth portions 14 is shown. The starter core 12 is formed by laminating a plurality of electromagnetic steel plates having a predetermined shape.

コイル巻線部20は、予め定めた巻数でそれぞれのティース部14に集中巻方式で巻回される絶縁被覆付導線である。複数のコイル巻線部20のそれぞれに、図示されていない駆動回路から予め定めた順序で駆動信号が供給されると、複数のティース部14の先端部16に磁界が順次発生し、ロータ6に対する回転磁界が形成される。   The coil winding part 20 is a conductor with insulation coating that is wound around each of the teeth parts 14 in a concentrated winding manner with a predetermined number of turns. When a drive signal is supplied to each of the plurality of coil winding portions 20 from a drive circuit (not shown) in a predetermined order, a magnetic field is sequentially generated at the tip portions 16 of the plurality of tooth portions 14, and A rotating magnetic field is formed.

インシュレータ32は、ステータコア12とコイル巻線部20との間、および同じスロット部18の中に配置される2つのコイル巻線部20との間に配置される絶縁体である。かかるインシュレータ32としては、適当なプラスチックシートを用いることができる。これに代えて、各コイル巻線部20の外周に絶縁性樹脂を塗布してもよい。   The insulator 32 is an insulator disposed between the stator core 12 and the coil winding portion 20 and between the two coil winding portions 20 disposed in the same slot portion 18. As the insulator 32, an appropriate plastic sheet can be used. Instead of this, an insulating resin may be applied to the outer periphery of each coil winding portion 20.

各ティース部14に巻回されるコイル巻線部20の巻数は予め設定される。図1では、各ティース部14に5回巻回されるコイル巻線部20が示され、コイル巻線部20のそれぞれの1巻きがコイル巻線22,24,26,28,30として示されている。ここで、コイル巻線部20の少なくとも一部には、集合導線が用いられる。   The number of turns of the coil winding part 20 wound around each tooth part 14 is set in advance. In FIG. 1, a coil winding portion 20 wound around each tooth portion 14 is shown, and each winding of the coil winding portion 20 is shown as coil windings 22, 24, 26, 28, 30. ing. Here, a collective conducting wire is used for at least a part of the coil winding portion 20.

集合導線とは、断面が1本の導線で構成される単一断面型の導線に対応するもので、断面が複数の導体素線に分割され、分割された複数の導体素線を再び集合させて1本のコイル巻線としたものである。分割された複数の導体素線の間は電気的に絶縁される。集合導線は、単一断面型の導線と同じ断面積を複数に分割するので、単一断面型の導線と比較して、コイル巻線に鎖交する漏れ磁束により発生する渦電流のループが短くなり、これにより渦電流損を低下させることができる。また、適切な分割によって、スロット部18内におけるコイル巻線部20の占積率を向上させることもできる。   A collective conductor corresponds to a single cross-section type conductor composed of one conductor in cross section, and the cross section is divided into a plurality of conductor strands, and the plurality of divided conductor strands are assembled again. One coil winding. The plurality of divided conductor wires are electrically insulated. The collective conductor divides the same cross-sectional area as the single cross-section type conductor into multiple sections, so the loop of the eddy current generated by the leakage flux interlinked with the coil winding is shorter than the single cross-section type conductor. Thus, eddy current loss can be reduced. Moreover, the space factor of the coil winding part 20 in the slot part 18 can also be improved by appropriate division | segmentation.

コイル巻線部20の少なくとも一部に集合導線が用いられるとは、例えば5巻きの全部を集合導線としてもよく、5巻きの中の一部を集合導線とし、残りを単一断面型の導線としてもよいことを意味する。図1(b)では、コイル巻線部20の5巻きの中で、ステータコア12の外周側の3巻きのコイル巻線22,24,26に単一断面型の導線が用いられ、ステータコア12の内周側の2巻きのコイル巻線28,30に集合導線が用いられている。なお、単一断面型の導線と、集合導線との間の接続には、導電性接着材が用いられる。これに代えて、溶接によって単一断面型の導線と集合導線との間を接続してもよい。   The fact that the collective conducting wire is used for at least a part of the coil winding portion 20 means that, for example, all five turns may be used as a collective conducting wire, and a part of the five turns may be used as a collective conducting wire, and the rest may be a single-section type conducting wire. It means that it is good. In FIG. 1 (b), a single cross-section type conductor is used for the three coil windings 22, 24, 26 on the outer peripheral side of the stator core 12 among the five windings of the coil winding portion 20. Collective conducting wires are used for the two coil windings 28 and 30 on the inner peripheral side. In addition, a conductive adhesive is used for the connection between the single cross-section type conductor and the collective conductor. Instead of this, the single cross-section conductor and the assembly conductor may be connected by welding.

ステータコア12の内周側の2巻きのコイル巻線28,30は、いずれも、断面を3つの導体素線で分割した集合導線が用いられるが、ステータコア12の最内周側のコイル巻線30の導体素線の分割方向と、コイル巻線30よりもステータコア12の外周側のコイル巻線28の導体素線の分割方向は異なっている。   As the two coil windings 28 and 30 on the inner peripheral side of the stator core 12, a collective conducting wire whose cross section is divided by three conductor strands is used, but the innermost coil winding 30 of the stator core 12 is used. The direction in which the conductor wires are divided differs from the direction in which the conductor wires of the coil winding 28 on the outer peripheral side of the stator core 12 are located with respect to the coil winding 30.

なお、図1では、各ティース部14に巻回されるコイル巻線部20の巻数を5巻きとしたが、これ以外の巻数であっても構わない。また、5巻きの中で、3巻きを単一断面型の導線、2巻きを集合導線としたが、ステータコア12において、より外周側に単一断面型の導線が巻回され、より内周側に集合導線が巻回されればよく、単一断面型の導線と集合導線の配分はこれ以外であってもよい。また、集合導線として3本の導体素線に分割されるものとしたが、これ以外の分割数であってもよい。   In FIG. 1, the number of turns of the coil winding portion 20 wound around each tooth portion 14 is five, but other turns may be used. Further, among the 5 windings, 3 windings are single cross-section conducting wires, and 2 windings are collective conducting wires. However, in the stator core 12, a single cross-section conducting wire is wound on the outer peripheral side, and more on the inner peripheral side. It is only necessary that the collective conducting wire is wound around, and the distribution of the single-section type conducting wire and the collective conducting wire may be other than this. Further, although the assembly conductor is divided into three conductor strands, other division numbers may be used.

図2は、2つのコイル巻線28,30を比較した図で、図2(a)は、より外周側に巻回されるコイル巻線28の断面図、図2(b)は、最内周側に巻回されるコイル巻線30の断面図である。コイル巻線28,30は、それぞれ3つの導体素線34を用い、各導体素線34の外周は絶縁層36で被覆される。これによって、コイル巻線28を構成する3つの導体素線34の間は電気的に絶縁される。同様に、コイル巻線30を構成する3つの導体素線34の間も電気的に絶縁される。   FIG. 2 is a diagram comparing the two coil windings 28 and 30. FIG. 2A is a cross-sectional view of the coil winding 28 wound on the outer peripheral side, and FIG. It is sectional drawing of the coil winding 30 wound by the circumference side. Each of the coil windings 28 and 30 uses three conductor wires 34, and the outer periphery of each conductor wire 34 is covered with an insulating layer 36. Thereby, the three conductor strands 34 constituting the coil winding 28 are electrically insulated. Similarly, the three conductor wires 34 constituting the coil winding 30 are also electrically insulated.

かかる単一断面型の導線や導体素線34としては、銅線が用いられる。銅線に代えて、アルミニウム、銀、鉄、金、またはこれらの合金で構成される導線を用いてもよい。また、コイル巻線部20の絶縁被覆や導体素線34の外周の絶縁層36としては、ポリイミド、ポリアミドイミド、ポリエステルイミド等のイミド系樹脂が用いられる。これに代えて、ポリビニルブチラール系、ポリアミド系、エポキシ系の融着材や、エチレン−酢酸ビニル共重合系樹脂(EVA系樹脂)、アクリル系、ウレタン系、シリコーン系の絶縁接着材を用いることができる。   A copper wire is used as the single cross-section conducting wire or conductor wire 34. Instead of the copper wire, a conductive wire made of aluminum, silver, iron, gold, or an alloy thereof may be used. In addition, as the insulating coating of the coil winding portion 20 and the insulating layer 36 on the outer periphery of the conductor wire 34, an imide resin such as polyimide, polyamideimide, or polyesterimide is used. Instead, polyvinyl butyral, polyamide, and epoxy-based fusion materials, ethylene-vinyl acetate copolymer resins (EVA resins), acrylic, urethane, and silicone insulating adhesives may be used. it can.

各導体素線34は、断面形状が矩形で、長い方の寸法がA、短い方の寸法がBの矩形の断面形状を有する。ここで、絶縁層36の厚さが寸法A,Bに比較して無視できる程度に薄いとして、A=3Bに設定される。つまり、コイル巻線28,30は、いずれも、一辺の長さがA(=3B)の正方形の断面形状を有する。コイル巻線28,30の違いは、この正方形断面を3つに分割する方向が横方向か縦方向かである。   Each conductor wire 34 has a rectangular cross-sectional shape having a rectangular cross-sectional shape with a longer dimension A and a shorter dimension B. Here, it is assumed that A = 3B, assuming that the thickness of the insulating layer 36 is negligibly small compared to the dimensions A and B. That is, the coil windings 28 and 30 both have a square cross-sectional shape with a side length of A (= 3B). The difference between the coil windings 28 and 30 is whether the direction of dividing the square cross section into three is the horizontal direction or the vertical direction.

図1を参照して、図2にステータコア12の周方向と径方向を示した。図2の紙面上で横方向がステータコア12の周方向で、縦方向がステータコア12の径方向である。したがって、ステータコア12のより外周側に巻回されるコイル巻線28は、ステータコア12の周方向に平行に分割された3本の導体素線34が径方向に積層される。ステータコア12の最内周側のコイル巻線30は、ステータコア12の径方向に平行に分割された3本の導体素線34が周方向に積層される。   With reference to FIG. 1, the circumferential direction and radial direction of the stator core 12 are shown in FIG. On the paper surface of FIG. 2, the horizontal direction is the circumferential direction of the stator core 12, and the vertical direction is the radial direction of the stator core 12. Therefore, in the coil winding 28 wound on the outer peripheral side of the stator core 12, the three conductor strands 34 divided in parallel to the circumferential direction of the stator core 12 are laminated in the radial direction. In the coil winding 30 on the innermost circumferential side of the stator core 12, three conductor strands 34 that are divided in parallel to the radial direction of the stator core 12 are laminated in the circumferential direction.

図3は、上記構成の作用効果を示す図である。図3は図1(b)に対応する図であるが、コイル巻線22,24,26,28,30に作用する漏れ磁束40が矢印で示されている。ロータ6からの磁束は、主に、ティース部14の先端部16を通って磁気抵抗の小さいティース部14を流れるが、ティース部14が磁気飽和した場合あるいは磁気飽和に近いときに、ティース部14の先端部16を通らずにティース部14から漏れてスロット部18を通る。これがコイル巻線22,24,26,28に作用する漏れ磁束40となる。   FIG. 3 is a diagram showing the effect of the above configuration. FIG. 3 is a diagram corresponding to FIG. 1B, but the leakage magnetic flux 40 acting on the coil windings 22, 24, 26, 28, 30 is indicated by arrows. The magnetic flux from the rotor 6 mainly flows through the tip portion 16 of the tooth portion 14 through the tooth portion 14 having a small magnetic resistance, but when the teeth portion 14 is magnetically saturated or close to magnetic saturation, the teeth portion 14. Leaks from the tooth portion 14 without passing through the distal end portion 16 of the lip and passes through the slot portion 18. This is the leakage magnetic flux 40 that acts on the coil windings 22, 24, 26, and 28.

ティース部14の先端部16を通らない漏れ磁束40の方向は、ステータコア12の最内周側では、ステータコア12の径方向にほぼ平行である。漏れ磁束40は、最内周側から外周側に行くにつれ、スロット部18よりも磁気抵抗の小さいティース部14に向かうので、その向きは次第にステータコア12の周方向に平行になる。図3では、ステータコア12の最内周側に巻回されるコイル巻線30の位置では、漏れ磁束40の方向がステータコア12の径方向にほぼ平行であるが、コイル巻線30よりもステータコア12の外周側に巻回されるコイル巻線28の位置では、漏れ磁束40の方向がステータコア12の周方向にほぼ平行となる。   The direction of the leakage magnetic flux 40 that does not pass through the tip portion 16 of the tooth portion 14 is substantially parallel to the radial direction of the stator core 12 on the innermost peripheral side of the stator core 12. As the leakage magnetic flux 40 goes from the innermost circumferential side to the outer circumferential side, the leakage magnetic flux 40 is directed to the tooth portion 14 having a smaller magnetic resistance than the slot portion 18, so that the direction gradually becomes parallel to the circumferential direction of the stator core 12. In FIG. 3, at the position of the coil winding 30 wound on the innermost peripheral side of the stator core 12, the direction of the leakage magnetic flux 40 is substantially parallel to the radial direction of the stator core 12. At the position of the coil winding 28 that is wound around the outer periphery of the stator core 12, the direction of the leakage magnetic flux 40 is substantially parallel to the circumferential direction of the stator core 12.

コイル巻線30は、ステータコア12の径方向に平行に分割された3本の導体素線34が周方向に積層されるので、この分割方向は、コイル巻線30の位置における漏れ磁束40の主たる方向に平行である。また、コイル巻線28は、ステータコア12の周方向に平行に分割された3本の導体素線34が径方向に積層されるので、この分割方向も、コイル巻線28の位置における漏れ磁束40の主たる方向に平行である。このように、集合導線で構成されるコイル巻線28,30は、当該コイル巻線28,30を通る漏れ磁束40の主たる向きに平行に分割された複数の導体素線34が積層されている。   In the coil winding 30, three conductor strands 34 that are divided in parallel to the radial direction of the stator core 12 are laminated in the circumferential direction, and this division direction is the main direction of the leakage magnetic flux 40 at the position of the coil winding 30. Parallel to the direction. Further, the coil winding 28 has three conductor strands 34 that are divided in parallel to the circumferential direction of the stator core 12 and are laminated in the radial direction. Parallel to the main direction. As described above, the coil windings 28 and 30 formed of the collective conducting wires are laminated with a plurality of conductor strands 34 that are divided in parallel in the main direction of the leakage magnetic flux 40 that passes through the coil windings 28 and 30. .

このように集合導線の分割方向を漏れ磁束40の主たる向きに平行とすることで、渦電流のループを短くでき、渦電流損を効果的に抑制できる。例えば、コイル巻線28では、径方向の表面に略垂直に漏れ磁束40が通過するが、径方向の表面が3つの導体素線34によって3つに分割されるので、径方向の表面に流れる渦電流のループの長さが約1/3となる。同様に、コイル巻線30では、周方向の表面に略垂直に漏れ磁束40が通過するが、周方向の表面が3つの導体素線34によって3つに分割されるので、周方向の表面に流れる渦電流のループの長さが約1/3となる。これによって、漏れ磁束40の変動に起因する渦電流損を効果的に抑制できる。   Thus, by making the dividing direction of the collective conducting wire parallel to the main direction of the leakage magnetic flux 40, the loop of the eddy current can be shortened, and the eddy current loss can be effectively suppressed. For example, in the coil winding 28, the leakage magnetic flux 40 passes substantially perpendicularly to the radial surface, but the radial surface is divided into three by the three conductor wires 34, and therefore flows to the radial surface. The length of the eddy current loop is about 1/3. Similarly, in the coil winding 30, the leakage magnetic flux 40 passes substantially perpendicularly to the circumferential surface. However, since the circumferential surface is divided into three by the three conductor wires 34, The loop length of the eddy current flowing is about 1/3. Thereby, the eddy current loss resulting from the fluctuation | variation of the leakage magnetic flux 40 can be suppressed effectively.

また、図2で説明したように、コイル巻線28,30は、同じ断面形状の導体素線34の積層方向を変更しただけであるので、コイル巻線の種類を増やす必要がない。また、コイル巻線28,30の断面積は同じであるので、占積率を維持できる。   Further, as described with reference to FIG. 2, the coil windings 28 and 30 are only changed in the stacking direction of the conductor wires 34 having the same cross-sectional shape, so that it is not necessary to increase the types of coil windings. Moreover, since the coil windings 28 and 30 have the same cross-sectional area, the space factor can be maintained.

6 ロータ、8 回転軸、10 回転電機用ステータ、12 ステータコア、14 ティース部、16 先端部、18 スロット部、20 コイル巻線部、22,24,26 (単一断面型導線で構成される)コイル巻線、28,30 (集合導線で構成される)コイル巻線、32 インシュレータ、34 導体素線、36 絶縁層、40 漏れ磁束。   6 Rotor, 8 Rotating shaft, 10 Rotating electrical machine stator, 12 Stator core, 14 Teeth section, 16 Tip section, 18 Slot section, 20 Coil winding section, 22, 24, 26 (Consists of single cross section type conductor) Coil winding, 28, 30 Coil winding (consisting of collective conducting wire), 32 insulator, 34 conductor wire, 36 insulating layer, 40 leakage flux.

Claims (2)

周方向に沿って配置される複数のティース部を有するステータコアと、
ティース部に複数回巻回され、少なくとも一部は、断面を複数の導体素線に分割し、分割した複数の導体素線を再び合させて1本のコイルとした集合導線で構成されコイル巻線部と、
を備え、
コイル巻線部の中で、集合導線で構成されるコイル巻線は、当該コイル巻線を通るロータからの漏れ磁束の方向に合わせてその断面を所定の複数の集合導線に分割したコイル巻線であって
ステータコアの内周側のコイル巻線は、ステータコアの径方向に平行に分割された所定の複数の導体素線が前記径方向に平行に分割された所定の複数と同じ複数の層で周方向に積層された集合導線で構成されており、
ステータコアの外周側のコイル巻線は、ステータコアの周方向に平行に分割された所定の複数の導体素線が前記周方向に平行に分割された所定の複数と同じ複数の層で径方向に積層された集合導線で構成されていることを特徴とする回転電機用ステータ。
A stator core having a plurality of teeth disposed along the circumferential direction;
Wound several times around the teeth, at least in part, by dividing the cross section into a plurality of conductor element wires, a plurality of conductor wires divided was again consists of a set conductors was one coil is engaged condensing A coil winding section;
With
In the coil winding portion, the coil winding constituted by the collective conducting wire is a coil winding obtained by dividing the cross section into a plurality of predetermined collective conducting wires in accordance with the direction of the leakage magnetic flux from the rotor passing through the coil winding. Because
The coil winding on the inner peripheral side of the stator core is formed of a plurality of predetermined conductor strands divided in parallel with the radial direction of the stator core in the circumferential direction with the same plurality of layers divided in parallel with the radial direction. Consists of laminated conductor wires,
The coil winding on the outer peripheral side of the stator core is laminated in the radial direction with a plurality of predetermined conductor strands divided in parallel to the circumferential direction of the stator core in the same plurality of layers divided in parallel to the circumferential direction. A stator for a rotating electric machine, characterized in that the stator is composed of a collective conducting wire.
請求項1に記載の回転電機用ステータにおいて、
内周側のコイル巻線の導体素線の断面形状は、外周側のコイル巻線の導体素線と同じ断面形状であることを特徴とする回転電機用ステータ。
The stator for a rotating electrical machine according to claim 1,
A stator for a rotating electrical machine, wherein a cross-sectional shape of a conductor wire of an inner peripheral side coil winding is the same cross-sectional shape as a conductor wire of an outer peripheral side coil winding.
JP2012156151A 2012-07-12 2012-07-12 Stator for rotating electrical machine Active JP6003314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012156151A JP6003314B2 (en) 2012-07-12 2012-07-12 Stator for rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012156151A JP6003314B2 (en) 2012-07-12 2012-07-12 Stator for rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2014023171A JP2014023171A (en) 2014-02-03
JP6003314B2 true JP6003314B2 (en) 2016-10-05

Family

ID=50197526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012156151A Active JP6003314B2 (en) 2012-07-12 2012-07-12 Stator for rotating electrical machine

Country Status (1)

Country Link
JP (1) JP6003314B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11942841B2 (en) 2020-03-05 2024-03-26 Kabushiki Kaisha Toshiba Stator of rotary electric machine and rotary electric machine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6196928B2 (en) * 2014-03-31 2017-09-13 本田技研工業株式会社 Rotating electric machine stator
JP6665628B2 (en) * 2016-03-29 2020-03-13 アイシン・エィ・ダブリュ株式会社 Stator for rotating electric machine
DE102016123068A1 (en) * 2016-11-30 2018-05-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rotary electric machine and specially adapted method for producing such
JP7293702B2 (en) * 2019-02-08 2023-06-20 株式会社デンソー Rotating electric machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158840A (en) * 2001-11-16 2003-05-30 Toyota Motor Corp Stator for rotating electric machine for vehicle
JP2004153874A (en) * 2002-10-28 2004-05-27 Nissan Motor Co Ltd Stator for motor
JP4878002B2 (en) * 2006-07-06 2012-02-15 株式会社日本自動車部品総合研究所 Electromagnetic equipment
JP2010041786A (en) * 2008-08-01 2010-02-18 Nippon Soken Inc Stator windings and electric rotary machine
JP2011234443A (en) * 2010-04-26 2011-11-17 Aisin Seiki Co Ltd Coil and armature
JP2012110114A (en) * 2010-11-17 2012-06-07 Toyota Motor Corp Coil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11942841B2 (en) 2020-03-05 2024-03-26 Kabushiki Kaisha Toshiba Stator of rotary electric machine and rotary electric machine

Also Published As

Publication number Publication date
JP2014023171A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5692247B2 (en) Collective conductor for motor winding
JP5229381B2 (en) Motor lead and motor coil
JP6003314B2 (en) Stator for rotating electrical machine
JP5742805B2 (en) Rotating electric machine stator
JP5641341B2 (en) Armature
TW201521330A (en) Concentrated type motor
TW201541809A (en) Axial air-gap rotary electric machine
CN111245164B (en) Rotating electric machine and method for manufacturing same
JP2019126241A (en) Stator structure and resolver
JP5874554B2 (en) Stator for rotating electrical machine
JP6288002B2 (en) Manufacturing method of rotating electrical machine stator and cassette coil for rotating electrical machine
JP2004153874A (en) Stator for motor
WO2016088270A1 (en) Rotating electric machine and method for manufacturing assembled conductor and assembled conductor segment coil used in same
JP2017034826A (en) Resolver
JP5972154B2 (en) Rotating electric machine
JP2004208464A (en) Coil structure for electric motor
JP5958216B2 (en) Rotating electric machine stator
JP2020150678A (en) Rotary electric machine stator
JP2014057462A (en) Stator of rotary electric machine
JP2012110114A (en) Coil
KR20100030932A (en) Coil in moter and manufacturing method of it
JP2019221009A (en) Motor coil substrate
JP6308036B2 (en) Reactor
JP2013183567A (en) Conductor segment and dynamoelectric machine stator using conductor segment
JP2013005652A (en) Rotary electric machine and concentrated winding coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R151 Written notification of patent or utility model registration

Ref document number: 6003314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151