JP2004208464A - Coil structure for electric motor - Google Patents

Coil structure for electric motor Download PDF

Info

Publication number
JP2004208464A
JP2004208464A JP2002377250A JP2002377250A JP2004208464A JP 2004208464 A JP2004208464 A JP 2004208464A JP 2002377250 A JP2002377250 A JP 2002377250A JP 2002377250 A JP2002377250 A JP 2002377250A JP 2004208464 A JP2004208464 A JP 2004208464A
Authority
JP
Japan
Prior art keywords
coil
conductor
winding
electric motor
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002377250A
Other languages
Japanese (ja)
Inventor
Koichiro Yonekura
光一郎 米倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002377250A priority Critical patent/JP2004208464A/en
Publication of JP2004208464A publication Critical patent/JP2004208464A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coil structure of an electric motor, which can control the eddy current in a stator coil. <P>SOLUTION: By connecting electrically in parallel a plurality of wires 21 to 24 insulated to each other, conductor cross-section of parallel wires 2A positioned at least coil surface side is made smaller with wires wound that constitute a stator coil 2 in concentrated winding on the teeth 1A of a stator core 1B of the electric motor. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電動機の巻線構造に関し、特に、ステータのティース部に集中巻される電動機の巻線構造に関するものである。
【0002】
【従来の技術】
従来から高トルク化および高出力化を狙い、しかも小型化の要求にも対応するため、回転子コア内部に永久磁石を埋設し、且つ、ステータコイルを集中巻とする永久磁石埋め込み型同期モータが提案されている(特許文献1参照)。
【0003】
【特許文献1】
特開2000−69717号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来例のように集中巻されたステータコイルを備える永久磁石埋め込み同期モータにおいては、一般的な分布巻と比較して、ステータのティース数が少なくなる傾向にあり、ティース間距離が大きくなり、結果的にコイルが巻回されているスロット部を通過する漏れ磁束も大きくなる傾向にある。このため、スロット部を通過する磁束はそこに巻回されている導体であるコイル内部に損失となる渦電流を発生させ、コイル温度の上昇に伴う銅損増大と併せて、モータの効率を著しく悪化させる要因となっている。
【0005】
そこで本発明は、上記問題点に鑑みてなされたもので、ステータコイル内部での渦電流の発生を抑制可能な電動機の巻線構造を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、電動機のステータコアのティース部に集中巻されたステータコイルを構成する導線が、巻回された状態で少なくともコイル表面側に位置する導線の導体断面積を、互いに絶縁された複数の導線を電気的に並列に接続して構成するか、若しくは、コイル内側の導線に対して細く形成することで小さくした。
【0007】
【発明の効果】
したがって、本発明では、巻回された状態で少なくともコイル表面側に位置する導線の導体断面積を小さく形成したため、漏れ磁束の時間的変化に対応して生ずる渦電流(損失)を小さく抑制でき、コイル内の渦電流損を大幅に抑制し、モータの効率向上が可能である。
【0008】
【発明の実施の形態】
以下、本発明の電動機の巻線構造を各実施形態に基づいて説明する。
【0009】
(第1実施形態)
図1〜図3は、本発明を適用した電動機の巻線構造の第1実施形態を示し、図1は第1実施例のステータの部分断面図、図2は第2実施例のステータの部分断面図、図3は第3実施例のステータの部分断面図である。
【0010】
電動機の巻線構造の第1実施例を示す図1において、ステータ1は、モータ内周側(ロータ側)に向かって凸形状のティース部1Aを備える円筒状のステータコア1Bと、ステータコア1Bのティース部1Aに集中巻によって巻回するステータコイル2とからなり、ステータコイル2を集中巻した3N個(Nは1以上の整数)以上のティース部1Aを周方向に配置して備える。
【0011】
前記ステータコア1Bは、円筒状のヨーク部1Cの内周側に突出させて前記周方向に複数配置したティース部1Aを備え、通常は、ヨーク部1Cと複数のティース部1Aとを含む形状の磁性鋼板を軸方向に複数枚積層した状態で一体化して構成する。
【0012】
前記ステータコイル2(以下、コイルという)は、銅等の高導電材料の導体にエナメル等の絶縁材料で皮膜を施した導線により形成される。ティース部1Aに集中巻により巻回するコイル2の巻始めから巻終りまでの間は、一般的な導線よりも導体断面積の小さい導線21〜24を複数、例えば、4本毎に束ねた状態の並列導線2Aとし、図示しない巻始め端および巻終り端からの引き出し部分では、束ねた状態の並列導線2A(21〜24)同士を互に電気的に接続して構成し、結果として、巻始めから巻終りまでの間の並列導線2A(21〜24)同士は電気的に並列接続された状態とする。束ねた状態の並列導線2A(21〜24)同士の間においても、互いの接触による直接的な電気的な導通を阻止するよう、エナメル等の絶縁材料で皮膜を施して導線毎に絶縁する。図1には、ステータコア1Bのティース部1Aに集中巻されたコイル2の並列導線2A(21〜24)が4本毎に束ねられた状態でその夫々が断面図示されている。
【0013】
このステータのコイル2に所定の電流を流すと、ティース部1Aとステータ1内周側にエアギャップを介して設置された、図示しないロータとの間に磁気作用を生じ、永久磁石を埋設したロータを回転させる。このとき、ステータ1の隣り合うティース部1A間には、ロータとの磁気作用に関与しない漏れ磁束が生じることがある。この漏れ磁束はコイル2の内周側(ロータ側)部分で最も大きくなることが知られており、また、この漏れ磁束はコイル2の電流変化あるいはロータの回転によって時間的に変化する。即ち、前記漏れ磁束は励磁電流が大きいほど大きくなり、また励磁電流の周波数が高いほど時間変化が大きくなる。前記漏れ磁束の時間的変化が生じると、コイル2を形成する導線21〜24内に渦電流が発生することになる。
【0014】
しかしながら、本実施形態の電動機の巻線構造においては、ステータコイル2のステータ1のティース部1Aに集中巻により巻回する巻始めから巻終りまでの間の並列導線2Aは、複数、例えば、4本毎に束ねた状態の、一般的な導線よりも導体断面積の小さい導線21〜24としているため、励磁電流に対する抵抗の増加を小さく抑えることができる。しかも、並列導線2A(21〜24)は各導体断面積が小さいため、前記漏れ磁束の時間的変化に対応して生ずる渦電流(損失)を小さく抑制できる。このため、励磁電流に対する抵抗により生ずる銅損の増大なしにコイル内の渦電流損を大幅に抑制し、モータの効率向上が可能である。
【0015】
なお、本実施例では、並列導線2A(21〜24)として一般的な導線より導体断面積の小さい導線21〜24を4本毎に束ねる場合について説明したが、図示しないが、他の本数毎に束ねるものであってもよい。また、並列導線2A(21〜24)を束ねた状態で巻回する場合について説明したが、図示しないが、束ねることなく、並列導線2A(21〜24)の1本1本の導線21〜24を所定の回数巻く作業を、並列導線2A(21〜24)の本数分、例えば、4回繰り返し、その後に各導線21〜24の端部を互に接続して並列とするものであってもよく、同様の効果を得ることができる。また、並列導線2A(21〜24)を構成する導線21〜24の断面形状として、円形のものについて説明したが、図示しないが、四辺形の断面形状であってもよく、他の断面形状であってもよく、導線の断面形状はいかなるものであってもよい。
【0016】
図2は、第1実施形態の第2実施例の電動機の巻線構造を示すステータの部分断面図である。本実施例においては、並列導線同士を予め機械的に結合させて巻線を容易としたものである。なお、図1と同一部品には同一符号を付してその説明を省略ないし簡略化する。
【0017】
図2において、ステータ1のティース部1Aに巻回されるコイル2は、導体断面積の小さい複数の導線を束ねた並列導線2Aの各導線21〜24は、予め接着剤による接着等により互に機械的に結合させて形成している。なお、図では、並列導線2Aを構成する導線21〜24の断面として、四辺形の断面を備える導線を示すが、円形形状の導線であってもよく、他の断面形状であってもよく、導線の断面形状はいかなるものであってもよい。
【0018】
この構成によれば、部分的にせよ複数導線21〜24を並列接続で巻回するためには、あたかも1本の導線であるかのようにティース部1Aに巻回して集中巻することができる。従って、従来から使用している巻線のための設備等を変更することなく使用でき、また、巻線に要する時間も従来と変わらないという利点が生まれる。なお、このような構成を用いない場合には、並列導線2Aの各導線21〜24を束ねる等して複数本の導線21〜24を揃えて一度に巻くかあるいは複数本の導線21〜24毎に所定巻数巻く作業を複数回繰り返して各端部を電気的に接合する作業が必要である。
【0019】
図3は、第1実施形態の第3実施例の電動機の巻線構造を示すステータの部分断面図である。本実施例においては、渦電流を効果的に抑制可能な並列導線の導線形状を提供するものである。
【0020】
図3において、ステータ1のティース部1Aに巻回されるコイル2は、並列導線2A(21〜24)の断面形状が、モータ径方向に短辺、周方向に長辺を持つような長方形あるいは楕円形状とするようにしている。
【0021】
ティース部1A側面からコイル2を通過する漏れ磁束は、隣のティース1Aかロータへ向かうことになる。この漏れ磁束をモータの周方向と径方向の成分に分けて考察するに、コイル2部分では周方向成分の方が径方向成分より大きくなるのが普通であり、渦電流は磁束の向きと垂直方向に発生する。このため、本実施例のように、コイル2の導体形状を、磁束の向きと垂直方向に短辺があるような形状とすることにより、導体内に生ずる渦電流を効果的に抑制できる。
【0022】
前記並列導線2Aの各導線21〜24は、望ましくは、導体断面積の小さい薄い複数の導線21〜24を予め接着剤による接着等により互に機械的に結合させて形成する。即ち、このような薄い形状の導線21〜24を纏めてティース1Aへ巻こうとすると、各々の導線21〜24の長辺がモータの半径方向に沿うような倒れを生じてティース部1A回りに整列させることが非常に困難であるが、これら導線21〜24が複数纏めて機械的に結合されて、あたかも1本の導線であるかのように扱えるようにすることで、従来から使用している巻線のための設備等を変更することなく使用でき、また、巻線に要する時間も従来と変わらないという利点が生まれる。
【0023】
本実施形態においては、以下に記載する効果を奏することができる。
【0024】
(ア)電動機のステータコア1のティース部1Aに集中巻されたステータコイル2を構成する導線21〜24が、巻回された状態で少なくともコイル2表面側に位置する導線21〜24の導体断面積を、互いに絶縁された複数の導線21〜24を電気的に並列に接続して構成するで小さくしたため、漏れ磁束の時間的変化に対応して生ずる渦電流(損失)を小さく抑制でき、コイル2内の渦電流損を大幅に抑制し、モータの効率向上が可能である。
【0025】
(イ)1つのコイル2を構成する導線21〜24が、ティース部1Aへの巻始めから巻終りの間において互いに絶縁された複数の導線21〜24により形成し、前記巻始め部分および巻終り部分において前記複数の導線21〜24同士を電気的に接続して構成するため、漏れ磁束の時間的変化に対応して生ずる渦電流損失を小さく抑制でき、コイル2内の渦電流損を大幅に抑制できる。しかも、励磁電流に対する抵抗の増加を小さく抑えることができ、励磁電流に対する抵抗により生ずる銅損の増大を抑えることができ、モータの効率向上が可能である。
【0026】
(ウ)図2および図3に示す実施例においては、互いに絶縁された複数の導線21〜24を機械的に接合しているため、あたかも1本の導線であるかのようにティース部1Aに巻回して集中巻することができ、従来から使用している巻線のための設備等を変更することなく使用でき、また、巻線に要する時間も従来と変わらないという効果がある。
【0027】
(エ)図3に示す実施例においては、互いに絶縁された複数の導線21〜24個々の導線形状をモータの径方向に短辺であり周方向に長辺である略長方形もしくは楕円形断面を有するようにしたため、磁束の向きと垂直方向に短辺があるような形状とでき、導体内に生ずる渦電流をより一層効果的に抑制できる。
【0028】
(第2実施形態)
図4〜図6は、本発明を適用した電動機の巻線構造の第2実施形態を示し、図4は第1実施例のステータの部分断面図、図5は第2実施例のステータの部分断面図、図6は第3実施例のステータの部分断面図である。本実施形態においては、コイルの渦電流損失が発生する部位の導線部分のみを導体断面積の小さい導線により形成するものである。なお、第1実施形態と同一部品には同一符号を付してその説明を省略ないし簡略化する。
【0029】
図4において、ステータ1のティース部1Aに巻回されるコイル2は、巻回された状態で表面側に位置する部位の導線を導体断面積の小さい複数の導線21〜24を束ねた並列導線2Aで形成し、巻回された状態で内部に位置する部位の導線2Bを導体断面積の大きい一本の導線2Bにより形成している。
【0030】
ロータとの磁気作用に関与しない漏れ磁束は、前記したように、コイル2の内周側(ロータ側)部分で最も大きくなるため、コイル2の導線内部に発生する渦電流損失は、特に内周側(ロータ側)のコイル2に集中する傾向がある。従って、その渦電流が集中する部位に位置する導線に対して導体断面積の小さい複数の導線21〜24による並列導線2Aを使用することにより、各導体断面積を小さくして、前記漏れ磁束の時間的変化に対応して生ずる渦電流(損失)を小さく抑制する。このため、コイル2内の渦電流損を大幅に抑制し、モータの効率向上が可能である。
【0031】
しかも、導体断面積の小さい導線21〜24による並列導線2Aの使用は、巻始めから巻終りまでの間の渦電流が集中する部位に位置する導線2Aに対してのみに使用し、残りの導線2Bに対しては導体断面積の大きい一本の導線を使用するため、この部分の励磁電流に対する抵抗を小さくでき、銅損の増大を最小限に止めることができる。即ち、一般的に使用する1本の導線2Bと一般的な導線よりも導体断面積の小さい導線21〜24を束ねた状態の並列導線2Aとでは、トータルの導体断面積を夫々同じとした場合に、絶縁皮膜の分量や束ねた際の隙間により、後者の同一面積上に導体が占める割合、即ち占積率がどうしても小さくなってしまう傾向がある。そのため、並列導線2Aに僅かながら励磁電流によって生じる銅損が増大してしまうことになる。しかしながら、漏れ磁束による渦電流の影響が殆どないティース1A根元部分やコイル2中心付近では、一般的な1本の導線2Bを使用するため、前記銅損の増大を最小限に止めることが可能である。
【0032】
なお、一本の導線2Bおよび並列導線2Aを構成する導線の断面形状として、円形のものについて説明したが、図示しないが、四辺形の断面形状であってもよく、他の断面形状であってもよく、導線の断面形状はいかなるものであってもよい。
【0033】
図5は、第2実施形態の第2実施例の電動機の巻線構造を示すステータの部分断面図である。本実施例においては、ステータ1のティース部1Aに巻回されるコイル2は、巻回された状態で表面側に位置する部位の導線25を導体断面積の小さい一本の導線で形成し、巻回された状態で内部に位置する部位の導線26を導体断面積の大きい一本の導線により形成し、2種類の導線25、26を並列に接続して構成する。なお、図では、各導線25、26の断面として、四辺形の断面を備える導線を示すが、円形形状の導線であってもよく、他の断面形状であってもよく、導線の断面形状はいかなるものであってもよい。
【0034】
この実施例においても、渦電流はコイル2外周のうち、特にロータ側部分に大きく集中するから、それ以外の部位に比較的導体面積が大きい導線26を使用し、コイル外側特にロータ側に導体面積の小さい導線25を使用し、これらを並列に接続することで、励磁電流による銅損の増大なしに、コイル2の渦電流損失を効果的に抑制できる。
【0035】
図6は、第2実施形態の第3実施例の電動機の巻線構造を示すステータの部分断面図である。本実施例においては、ステータ1のティース部1Aに巻回されるコイル2は、巻回された状態で表面側に位置する部位の導線を導体断面積の小さい一本の導線27で形成し、巻回された状態で内部に位置する部位の導線を導体断面積の大きい一本の導線28により形成し、2種類の導線27、28を直列に接続して構成する。前記2種類の導線は、ティース部1Aに、先ず、導体断面積が大きい方の導線28をN1回巻き、次いで、導体面積が小さい方の導線27をN2回巻くことになる。後から巻かれる細い方の導線27は、コイル2のロータ側に集中するように巻付けることになる。トータルの巻回数(N1+N2)を当初の所定巻数とすることで、前各実施例と同様に渦電流の抑制効果を得ることができる。なお、図では、各導線27、28の断面として、円形の断面を備える導線を示すが、四辺形断面の導線であってもよく、他の断面形状であってもよく、導線の断面形状はいかなるものであってもよい。
【0036】
本実施形態においては、以下に記載した効果を奏することができる。
【0037】
(オ)電動機のステータコア1Bのティース部1Aに集中巻されたステータコイル2を構成する導線が、巻回された状態で少なくともコイル表面側に位置する導線21〜24、25、27の導体断面積を、コイル内側の導線2B、26、28に対して細く形成することで小さくしたため、漏れ磁束の時間的変化に対応して生ずる渦電流(損失)を小さく抑制でき、コイル2内の渦電流損を大幅に抑制し、モータの効率向上が可能である。
【0038】
(カ)図4に示す実施例では、1つのコイル2を構成する導線を、巻回された状態で少なくとも表面側に位置するコイル部分で互いに絶縁された複数の導線21〜24を電気的に並列に接続して構成するため、励磁電流に対する抵抗の増加を小さく抑えることができ、しかも、並列導線2Aは各導体断面積が小さいため、前記漏れ磁束の時間的変化に対応して生ずる渦電流(損失)を小さく抑制できる。このため、励磁電流に対する抵抗により生ずる銅損の増大なしにコイル2内の渦電流損を大幅に抑制し、モータの効率向上が可能である。
【0039】
(キ)図5に示す実施例では、1つのコイル2を構成する導線が、巻回された状態で表面側に位置するコイル表面側導線25と、表面側導線25とは導体断面積を異ならせてコイル内側に巻回されたコイル内側導線26と、を巻始め部分および巻終り部分において電気的に接続して構成する。即ち、渦電流はコイル2外周のうち、特にロータ側部分に大きく集中するから、それ以外の部位に比較的導体面積が大きい導線26を使用し、コイル外側特にロータ側に導体面積の小さい導線25を使用し、これらを並列に接続するものであるため、励磁電流は主として導体断面積の大きいコイル内側導線26を流れて銅損の増大がなく、また、励磁電流の残余の量が流れるコイル表面側導線25は導体断面積が小さくコイル2の渦電流損失を大幅に抑制できる。
【0040】
(ク)図6に示す実施例では、1つのコイル2を構成する導線を、巻回された状態でコイル内側導線28と、前記コイル内側導線28に直列接続されてコイル表面側に巻回されるコイル表面側導線27とで構成し、コイル内側導線28とコイル表面側導線27との断面積を異ならせている。即ち、ティース部1Aに先ず導体断面積が大きい方の導線28をN1回巻き、次いで導体面積が小さい方の導線27をN2回巻くことになり、後から巻かれる細い方の導線27は、コイル2のロータ側に集中するように巻付けることになるため、トータルの巻回数(N1+N2)を当初の所定巻数とすることで、前各実施例と同様に渦電流の抑制効果を得ることができる。
【図面の簡単な説明】
【図1】
本発明の一実施形態を示す電動機の巻線構造の第1実施例のステータの部分断面図。
【図2】本発明の第1実施形態における電動機の巻線構造の第2実施例のステータの部分断面図。
【図3】本発明の第1実施形態における電動機の巻線構造の第3実施例のステータの部分断面図。
【図4】本発明の第2実施形態を示す電動機の巻線構造の第1実施例のステータの部分断面図。
【図5】本発明の第2実施形態における電動機の巻線構造の第2実施例のステータの部分断面図。
【図6】本発明の第2実施形態における電動機の巻線構造の第3実施例のステータの部分断面図。
【符号の説明】
1 ステータ
1A ティース部
1B ステータコア
1C ヨーク部
2 コイル、ステータコイル
2A 並列導線
21〜24、2B、25〜28 導線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a winding structure of an electric motor, and more particularly, to a winding structure of an electric motor wound around a teeth portion of a stator.
[0002]
[Prior art]
Conventionally, permanent magnet embedded synchronous motors with a permanent magnet embedded inside the rotor core and a concentrated winding of the stator coil have been developed in order to respond to the demands of miniaturization, aiming for higher torque and higher output. It has been proposed (see Patent Document 1).
[0003]
[Patent Document 1]
JP 2000-69717 A
[Problems to be solved by the invention]
However, in a permanent magnet embedded synchronous motor having a concentratedly wound stator coil as in the conventional example described above, the number of teeth of the stator tends to be smaller than that of a general distributed winding, and the distance between the teeth is large. As a result, the leakage magnetic flux passing through the slot around which the coil is wound tends to increase. For this reason, the magnetic flux passing through the slot generates an eddy current, which is a loss inside the coil, which is the conductor wound around the slot. It is a factor that worsens.
[0005]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a winding structure of an electric motor capable of suppressing generation of an eddy current inside a stator coil.
[0006]
[Means for Solving the Problems]
The present invention relates to a plurality of conductors in which a conductor constituting a stator coil concentratedly wound around a tooth portion of a stator core of an electric motor has a conductor cross-sectional area of at least a conductor positioned on a coil surface side in a wound state, and insulated from each other. Are electrically connected in parallel, or made smaller by making the conductor inside the coil thinner.
[0007]
【The invention's effect】
Therefore, in the present invention, since the conductor cross-sectional area of at least the conductor positioned on the coil surface side in the wound state is formed to be small, eddy current (loss) generated in response to a temporal change of the leakage magnetic flux can be suppressed to a small value. The eddy current loss in the coil can be greatly suppressed, and the efficiency of the motor can be improved.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the winding structure of the electric motor of the present invention will be described based on each embodiment.
[0009]
(1st Embodiment)
1 to 3 show a first embodiment of a winding structure of a motor to which the present invention is applied. FIG. 1 is a partial sectional view of a stator of a first embodiment, and FIG. 2 is a part of a stator of a second embodiment. FIG. 3 is a sectional view of the stator according to the third embodiment.
[0010]
In FIG. 1 showing a first embodiment of a winding structure of an electric motor, a stator 1 has a cylindrical stator core 1B provided with a teeth portion 1A having a convex shape toward the inner peripheral side (rotor side) of the motor, and teeth of the stator core 1B. The stator coil 2 is wound around the portion 1A by concentrated winding, and 3N (N is an integer of 1 or more) teeth portions 1A in which the stator coil 2 is concentratedly wound are arranged and provided in the circumferential direction.
[0011]
The stator core 1B is provided with a plurality of teeth portions 1A protruding inward from a cylindrical yoke portion 1C and arranged in the circumferential direction, and usually has a magnetic shape including a yoke portion 1C and a plurality of teeth portions 1A. A plurality of steel plates are integrated in a state of being stacked in the axial direction.
[0012]
The stator coil 2 (hereinafter, referred to as a coil) is formed of a conductor made of a conductor made of a highly conductive material such as copper and coated with an insulating material such as enamel. A state in which a plurality of conductive wires 21 to 24 having a conductor cross-sectional area smaller than that of a general conductive wire are bundled, for example, every four wires, from the beginning to the end of the coil 2 wound around the teeth portion 1A by concentrated winding. The parallel conductors 2A (21 to 24) in a bundled state are electrically connected to each other at a portion drawn out from a winding start end and a winding end end (not shown). The parallel conductive wires 2A (21 to 24) from the beginning to the end of the winding are electrically connected in parallel. Even between the bundled parallel conductors 2A (21 to 24), a coating is applied with an insulating material such as enamel so as to prevent direct electrical conduction due to contact with each other to insulate the conductors. FIG. 1 shows a sectional view of the parallel conductors 2A (21 to 24) of the coil 2 wound around the teeth portion 1A of the stator core 1B in a state of being bundled every four.
[0013]
When a predetermined current is applied to the coil 2 of the stator, a magnetic action is generated between the teeth portion 1A and a rotor (not shown) provided on the inner peripheral side of the stator 1 via an air gap, and a rotor having a permanent magnet embedded therein is generated. To rotate. At this time, between the adjacent teeth portions 1A of the stator 1, a leakage magnetic flux which does not participate in the magnetic action with the rotor may be generated. It is known that this leakage magnetic flux is greatest at the inner peripheral side (rotor side) portion of the coil 2, and the leakage magnetic flux changes with time due to a change in the current of the coil 2 or rotation of the rotor. That is, the leakage magnetic flux increases as the exciting current increases, and the temporal change increases as the frequency of the exciting current increases. When the leakage flux changes over time, an eddy current is generated in the conductors 21 to 24 forming the coil 2.
[0014]
However, in the winding structure of the electric motor of the present embodiment, a plurality of, for example, 4 parallel conductive wires 2A are wound around the teeth portion 1A of the stator 1 of the stator coil 2 by concentrated winding from the beginning to the end of winding. Since the conductors 21 to 24 each having a smaller conductor cross-sectional area than a general conductor in a state of being bundled for each book, an increase in resistance to an exciting current can be suppressed to be small. In addition, since the parallel conductors 2A (21 to 24) have small conductor cross-sectional areas, eddy currents (losses) generated in response to the temporal change of the leakage magnetic flux can be reduced. Therefore, the eddy current loss in the coil can be greatly suppressed without increasing the copper loss caused by the resistance to the exciting current, and the efficiency of the motor can be improved.
[0015]
In the present embodiment, a case has been described in which, as the parallel conductors 2A (21 to 24), conductors 21 to 24 each having a smaller conductor cross-sectional area than a general conductor are bundled every four wires. May be bundled. Although the case where the parallel conductors 2A (21 to 24) are wound in a bundled state has been described, the conductors 21 to 24 of the parallel conductors 2A (21 to 24) are not bundled, but not bundled. May be repeated a predetermined number of times, for example, four times for the number of the parallel conductors 2A (21 to 24), and thereafter, the ends of the conductors 21 to 24 may be connected to each other to be in parallel. Well, similar effects can be obtained. In addition, a circular cross section has been described as the cross-sectional shape of the conductors 21 to 24 constituting the parallel conductors 2A (21 to 24), but a quadrilateral cross-section may be used, although not shown, and other cross-sections may be used. The conductor may have any cross-sectional shape.
[0016]
FIG. 2 is a partial cross-sectional view of a stator illustrating a winding structure of a motor according to a second example of the first embodiment. In this embodiment, the parallel conducting wires are mechanically connected in advance to facilitate the winding. The same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted or simplified.
[0017]
In FIG. 2, a coil 2 wound around a tooth portion 1A of a stator 1 has a plurality of conductors 21 to 24 of a parallel conductor 2A obtained by bundling a plurality of conductors having a small conductor cross-sectional area. It is formed by mechanical coupling. In addition, in the figure, as the cross sections of the conductors 21 to 24 configuring the parallel conductor 2A, a conductor having a quadrangular cross section is shown, but a circular conductor may be used, or another cross section may be used. The conductor may have any cross-sectional shape.
[0018]
According to this configuration, in order to partially wind the plurality of conductors 21 to 24 in parallel connection, the conductors 21 to 24 can be wound around the teeth portion 1 </ b> A as if they are one conductor, and can be concentratedly wound. . Therefore, there is an advantage that the conventional winding equipment can be used without changing the equipment and the time required for the winding is the same as the conventional one. When such a configuration is not used, the conductors 21 to 24 of the parallel conductor 2 </ b> A are bundled or the like, and a plurality of conductors 21 to 24 are aligned and wound at once, or each of the plurality of conductors 21 to 24 is wound. It is necessary to repeat the operation of winding a predetermined number of turns a plurality of times to electrically connect the ends.
[0019]
FIG. 3 is a partial cross-sectional view of a stator illustrating a winding structure of a motor according to a third example of the first embodiment. The present embodiment provides a conductor shape of a parallel conductor that can effectively suppress eddy currents.
[0020]
In FIG. 3, the coil 2 wound around the teeth portion 1A of the stator 1 has a parallel conductor 2A (21 to 24) having a rectangular or rectangular shape having a short side in the motor radial direction and a long side in the circumferential direction. It has an elliptical shape.
[0021]
The leakage magnetic flux passing through the coil 2 from the side surface of the tooth portion 1A is directed to the adjacent tooth 1A or the rotor. When considering this leakage magnetic flux separately in the circumferential and radial components of the motor, the circumferential component is usually larger than the radial component in the coil 2 portion, and the eddy current is perpendicular to the direction of the magnetic flux. Occurs in the direction. For this reason, the eddy current generated in the conductor can be effectively suppressed by making the conductor shape of the coil 2 a shape having a short side in a direction perpendicular to the direction of the magnetic flux as in the present embodiment.
[0022]
Desirably, the conductors 21 to 24 of the parallel conductor 2A are formed by mechanically connecting a plurality of thin conductors 21 to 24 having a small conductor cross-sectional area to each other in advance by bonding with an adhesive or the like. That is, when the thin conductive wires 21 to 24 are collectively wound around the teeth 1A, the long sides of each of the conductive wires 21 to 24 fall down along the radial direction of the motor, and the teeth 21A around the tooth portion 1A. Although it is very difficult to align the wires, a plurality of these wires 21 to 24 are mechanically coupled together so that they can be handled as if they were a single wire. There is an advantage that it can be used without changing the equipment and the like for the winding, and the time required for the winding is not different from the conventional one.
[0023]
In the present embodiment, the following effects can be obtained.
[0024]
(A) Conductor cross-sections of conductors 21 to 24 which are positioned at least on the surface side of coil 2 in a state where conductors 21 to 24 constituting stator coil 2 wound around teeth portion 1A of stator core 1 of the electric motor are wound. Is made by electrically connecting a plurality of insulated wires 21 to 24 electrically in parallel to each other, so that the eddy current (loss) generated in response to the temporal change of the leakage magnetic flux can be suppressed to a small value. The eddy current loss in the inside can be greatly suppressed, and the efficiency of the motor can be improved.
[0025]
(A) Conductors 21 to 24 constituting one coil 2 are formed by a plurality of conductors 21 to 24 which are insulated from each other between the start and end of winding of the teeth portion 1A, and the winding start portion and the end of winding are formed. Since the plurality of conductive wires 21 to 24 are electrically connected to each other at a portion, an eddy current loss generated in response to a temporal change of a leakage magnetic flux can be suppressed small, and an eddy current loss in the coil 2 is greatly reduced. Can be suppressed. In addition, an increase in resistance to the exciting current can be suppressed small, an increase in copper loss caused by the resistance to the exciting current can be suppressed, and the efficiency of the motor can be improved.
[0026]
(C) In the embodiment shown in FIG. 2 and FIG. 3, since the plurality of conductive wires 21 to 24 insulated from each other are mechanically joined, the teeth portion 1A is connected to the tooth portion 1A as if it were a single conductive wire. Winding can be performed in a concentrated manner, so that it can be used without changing equipment and the like for windings that have been conventionally used, and the time required for winding has the same effect as in the past.
[0027]
(D) In the embodiment shown in FIG. 3, the shape of each of the plurality of conductive wires 21 to 24 insulated from each other is formed into a substantially rectangular or elliptical cross section having a short side in the radial direction of the motor and a long side in the circumferential direction. As a result, the shape can be such that there is a short side in the direction perpendicular to the direction of the magnetic flux, and the eddy current generated in the conductor can be more effectively suppressed.
[0028]
(2nd Embodiment)
4 to 6 show a second embodiment of a winding structure of a motor to which the present invention is applied. FIG. 4 is a partial cross-sectional view of the stator of the first embodiment, and FIG. 5 is a part of the stator of the second embodiment. FIG. 6 is a sectional view of the stator according to the third embodiment. In the present embodiment, only the conductor portion of the coil where eddy current loss occurs is formed by a conductor having a small conductor cross-sectional area. The same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof will be omitted or simplified.
[0029]
In FIG. 4, a coil 2 wound around a tooth portion 1 </ b> A of a stator 1 is a parallel conductor obtained by binding a plurality of conductors 21 to 24 having a small conductor cross-sectional area to a conductor located at a surface side in a wound state. The conductive wire 2B formed of 2A and located inside in a wound state is formed of one conductive wire 2B having a large conductor cross-sectional area.
[0030]
As described above, the leakage magnetic flux which does not participate in the magnetic action with the rotor is largest at the inner circumference side (rotor side) of the coil 2, and thus the eddy current loss generated inside the conductor of the coil 2 is particularly large in the inner circumference. Tends to concentrate on the coil 2 on the side (rotor side). Therefore, by using a parallel conductor 2A composed of a plurality of conductors 21 to 24 having a small conductor cross-section with respect to a conductor located at a portion where the eddy current is concentrated, each conductor cross-section is reduced, and the leakage magnetic flux is reduced. Eddy current (loss) generated in response to a temporal change is suppressed to a small value. Therefore, the eddy current loss in the coil 2 can be largely suppressed, and the efficiency of the motor can be improved.
[0031]
In addition, the use of the parallel conductor 2A with the conductors 21 to 24 having a small conductor cross-section is used only for the conductor 2A located at a portion where the eddy current is concentrated from the beginning to the end of the winding, and the remaining conductor is used. Since a single conductor having a large conductor cross-sectional area is used for 2B, the resistance to the exciting current in this portion can be reduced, and the increase in copper loss can be minimized. That is, in the case where the total conductor cross-sectional area is the same between one generally used conductor 2B and the parallel conductor 2A in which the conductors 21 to 24 having a smaller conductor cross-sectional area than the general conductor are bundled. In addition, the ratio of the conductor occupying the same area of the latter, that is, the space factor, tends to be inevitably reduced due to the amount of the insulating film and the gap at the time of bundling. Therefore, the copper loss caused by the exciting current slightly increases in the parallel conducting wire 2A. However, in the vicinity of the root of the tooth 1A or near the center of the coil 2 where there is almost no influence of the eddy current due to the leakage magnetic flux, an increase in the copper loss can be suppressed to a minimum because the general single conductor 2B is used. is there.
[0032]
In addition, although the cross-sectional shape of the conductor which comprises one conductor 2B and the parallel conductor 2A was demonstrated to be circular, although not shown, a quadrangular cross-section may be sufficient and other cross-sections may be sufficient. The cross section of the conductive wire may be any shape.
[0033]
FIG. 5 is a partial cross-sectional view of a stator showing a winding structure of a motor according to a second example of the second embodiment. In the present embodiment, the coil 2 wound around the teeth portion 1A of the stator 1 forms the conductor 25 at a portion located on the front surface side in a wound state by a single conductor having a small conductor cross-sectional area, The conductive wire 26 located inside in the wound state is formed by a single conductive wire having a large conductor cross-sectional area, and two types of conductive wires 25 and 26 are connected in parallel. In the drawing, as the cross section of each of the conductors 25 and 26, a conductor having a quadrangular cross section is shown. However, the conductor may have a circular shape or another cross section. Anything may be used.
[0034]
Also in this embodiment, since the eddy current is largely concentrated on the outer periphery of the coil 2, particularly on the rotor side, a conductor 26 having a relatively large conductor area is used in other portions, and the conductor area is provided on the outer side of the coil, especially on the rotor side. Eddy current loss of the coil 2 can be effectively suppressed without increasing the copper loss due to the exciting current by using the conductive wires 25 having a small diameter.
[0035]
FIG. 6 is a partial cross-sectional view of a stator illustrating a winding structure of a motor according to a third example of the second embodiment. In the present embodiment, the coil 2 wound around the teeth portion 1A of the stator 1 forms a conductor at a portion located on the surface side in a wound state with one conductor 27 having a small conductor cross-sectional area, A conductive wire located inside in a wound state is formed by one conductive wire having a large conductor cross-sectional area, and two types of conductive wires 27 are connected in series. In the two types of conductors, first, the conductor 28 having the larger conductor cross-sectional area is wound N1 times around the teeth portion 1A, and then the conductor 27 having the smaller conductor area is wound N2 times. The thin conductive wire 27 wound later is wound so as to concentrate on the rotor side of the coil 2. By setting the total number of turns (N1 + N2) to the initial predetermined number of turns, the effect of suppressing the eddy current can be obtained as in the previous embodiments. In addition, in the figure, as the cross section of each of the conductors 27 and 28, a conductor having a circular cross section is shown, but a conductor having a quadrangular cross section or another cross section may be used. Anything may be used.
[0036]
In the present embodiment, the following effects can be obtained.
[0037]
(E) Conductor cross-sectional areas of the conductors 21 to 24, 25, and 27 that are at least located on the coil surface side in a wound state, in which the conductor forming the stator coil 2 wound around the teeth portion 1A of the stator core 1B of the electric motor is wound. Is made smaller by making the conductors 2B, 26, and 28 inside the coil thinner, the eddy current (loss) generated in response to the temporal change of the leakage magnetic flux can be reduced, and the eddy current loss in the coil 2 can be reduced. And the efficiency of the motor can be improved.
[0038]
(F) In the embodiment shown in FIG. 4, a plurality of conductive wires 21 to 24 which are insulated from each other at least by a coil portion located on the surface side in a wound state are formed by electrically connecting a conductive wire constituting one coil 2. Since the configuration is connected in parallel, the increase in resistance to the exciting current can be suppressed to a small value. Further, since the parallel conductor 2A has a small cross-sectional area of each conductor, the eddy current generated in response to the temporal change of the leakage magnetic flux is generated. (Loss) can be suppressed small. Therefore, the eddy current loss in the coil 2 can be greatly suppressed without increasing the copper loss caused by the resistance to the exciting current, and the efficiency of the motor can be improved.
[0039]
(G) In the embodiment shown in FIG. 5, if the conductor forming one coil 2 has a different conductor cross-sectional area than the coil surface-side conductor 25 located on the surface side in the wound state, and the surface-side conductor 25, The coil inner conductive wire 26 wound inside the coil is electrically connected at a winding start portion and a winding end portion. That is, since the eddy current is largely concentrated particularly on the rotor side of the outer periphery of the coil 2, a conductor 26 having a relatively large conductor area is used in other portions, and a conductor 25 having a small conductor area is provided outside the coil, particularly on the rotor side. These are connected in parallel, so that the exciting current mainly flows through the coil inner conductor 26 having a large conductor cross-sectional area, so that the copper loss does not increase, and the remaining amount of the exciting current flows through the coil surface. The side conductor 25 has a small conductor cross-sectional area, and can greatly suppress the eddy current loss of the coil 2.
[0040]
(H) In the embodiment shown in FIG. 6, the conductor forming one coil 2 is wound in the wound state on the coil inner conductor 28 in series with the coil inner conductor 28 and wound on the coil surface side. And the coil inner conductor 28 and the coil surface conductor 27 have different cross-sectional areas. That is, first, the conductor 28 having a larger conductor cross-sectional area is wound N1 times around the teeth portion 1A, and then the conductor 27 having a smaller conductor area is wound N2 times, and the thinner conductor 27 wound later is formed by a coil. Since the windings are concentrated so as to concentrate on the rotor side of No. 2, by setting the total number of turns (N1 + N2) to the initial predetermined number of turns, the effect of suppressing the eddy current can be obtained as in the previous embodiments. .
[Brief description of the drawings]
FIG.
1 is a partial cross-sectional view of a stator according to a first example of a winding structure of an electric motor according to an embodiment of the present invention.
FIG. 2 is a partial cross-sectional view of a stator of a second example of the winding structure of the electric motor according to the first embodiment of the present invention.
FIG. 3 is a partial cross-sectional view of a stator of a third example of the winding structure of the electric motor according to the first embodiment of the present invention.
FIG. 4 is a partial cross-sectional view of a stator of a first example of a winding structure of an electric motor according to a second embodiment of the present invention.
FIG. 5 is a partial sectional view of a stator according to a second example of the winding structure of the electric motor according to the second embodiment of the present invention.
FIG. 6 is a partial sectional view of a stator according to a third embodiment of the winding structure of the electric motor according to the second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Stator 1A Teeth part 1B Stator core 1C Yoke part 2 Coil, stator coil 2A Parallel conducting wires 21-24, 2B, 25-28 conducting wires

Claims (7)

ステータコアのティース部に集中巻されたステータコイルを備える電動機の巻線構造において、
1つのコイルを構成する導線が、巻回された状態で少なくとも表面側に位置するコイル部分で互いに絶縁された複数の導線を電気的に並列に接続して構成することを特徴とする電動機の巻線構造。
In a winding structure of an electric motor having a stator coil concentratedly wound around a tooth portion of a stator core,
A winding of an electric motor, wherein a plurality of conducting wires which are insulated from each other at least in a coil portion located on a surface side in a wound state are formed by electrically connecting a plurality of conducting wires constituting one coil. Line structure.
前記1つのコイルを構成する導線が、ティース部への巻始めから巻終りの間において互いに絶縁された複数の導線により形成し、前記巻始め部分および巻終り部分において前記複数の導線同士を電気的に接続して構成することを特徴とする請求項1に記載の電動機の巻線構造。The conductor forming the one coil is formed by a plurality of conductors insulated from each other between the start and end of winding on the teeth portion, and the plurality of conductors are electrically connected to each other at the winding start portion and the winding end portion. The winding structure for an electric motor according to claim 1, wherein the winding structure is connected to the motor. 前記互いに絶縁された複数の導線は、機械的に接合されていることを特徴とする請求項1または請求項2に記載の電動機の巻線構造。3. The winding structure for an electric motor according to claim 1, wherein the plurality of conductive wires insulated from each other are mechanically joined. 前記互いに絶縁された複数の導線は、個々の導線形状をモータの径方向に短辺であり周方向に長辺である略長方形もしくは楕円形断面を有することを特徴とする請求項1ないし請求項3のいずれか一つに記載の電動機の巻線構造。The plurality of conductive wires insulated from each other have a substantially rectangular or elliptical cross-section in which each conductive wire shape has a short side in a radial direction of the motor and a long side in a circumferential direction of the motor. 3. The winding structure of the electric motor according to any one of 3. ステータコアのティース部に集中巻されたステータコイルを備える電動機の巻線構造において、
1つのコイルを構成する導線は、巻回された状態で少なくともコイル表面側に位置する導線の導体断面積をコイル内側の導線に対して小さく形成したことを特徴とする電動機の巻線構造。
In a winding structure of an electric motor having a stator coil concentratedly wound around a tooth portion of a stator core,
A winding structure for an electric motor, wherein a conductor constituting one coil is formed such that a conductor cross-sectional area of at least a conductor located on the coil surface side in a wound state is smaller than a conductor inside the coil.
前記1つのコイルを構成する導線が、巻回された状態で表面側に位置するコイル表面側導線と、表面側導線とは導体断面積を異ならせてコイル内側に巻回されたコイル内側導線と、を巻始め部分および巻終り部分において電気的に接続して構成することを特徴とする請求項5に記載の電動機の巻線構造。A conductor constituting the one coil, a coil surface-side conductor positioned on the surface side in a wound state, and a coil-side conductor wound inside the coil with a different conductor cross-sectional area from the surface-side conductor. 6. The winding structure for an electric motor according to claim 5, wherein the first and second windings are electrically connected at a winding start portion and a winding end portion. 前記1つのコイルを構成する導線が、巻回された状態でコイル内側導線と、前記コイル内側導線に直列接続されてコイル表面側に巻回されるコイル表面側導線とで構成し、コイル内側導線とコイル表面側導線との断面積を異ならせたことを特徴とする請求項5に記載の電動機の巻線構造。The conductor forming the one coil includes a coil inner conductor in a wound state, and a coil surface-side conductor connected in series to the coil inner conductor and wound on the coil surface side, and a coil inner conductor. 6. The winding structure for an electric motor according to claim 5, wherein a cross-sectional area of the coil and a coil surface side conductive wire are different.
JP2002377250A 2002-12-26 2002-12-26 Coil structure for electric motor Pending JP2004208464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377250A JP2004208464A (en) 2002-12-26 2002-12-26 Coil structure for electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377250A JP2004208464A (en) 2002-12-26 2002-12-26 Coil structure for electric motor

Publications (1)

Publication Number Publication Date
JP2004208464A true JP2004208464A (en) 2004-07-22

Family

ID=32814474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377250A Pending JP2004208464A (en) 2002-12-26 2002-12-26 Coil structure for electric motor

Country Status (1)

Country Link
JP (1) JP2004208464A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1633032A1 (en) * 2004-09-01 2006-03-08 Switched Reluctance Drives Limited Windings for electrical machines
JP2006158024A (en) * 2004-11-26 2006-06-15 Sumitomo Electric Ind Ltd Coil and its manufacturing method
CN103259358A (en) * 2012-02-20 2013-08-21 阿尔斯通风力有限个人公司 Generator
WO2013121786A1 (en) 2012-02-14 2013-08-22 日本発條株式会社 Stator core for motor
JP2014023170A (en) * 2012-07-12 2014-02-03 Toyota Motor Corp Stator for rotary electric machine
EP2190103A4 (en) * 2007-09-14 2016-05-25 Shinetsu Chemical Co Axial gap type coreless rotating machine
CN113472113A (en) * 2020-03-31 2021-10-01 日本电产株式会社 Motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1633032A1 (en) * 2004-09-01 2006-03-08 Switched Reluctance Drives Limited Windings for electrical machines
JP2006158024A (en) * 2004-11-26 2006-06-15 Sumitomo Electric Ind Ltd Coil and its manufacturing method
EP2190103A4 (en) * 2007-09-14 2016-05-25 Shinetsu Chemical Co Axial gap type coreless rotating machine
WO2013121786A1 (en) 2012-02-14 2013-08-22 日本発條株式会社 Stator core for motor
KR20140128368A (en) 2012-02-14 2014-11-05 닛폰 하츠죠 가부시키가이샤 Stator core for motor
CN103259358A (en) * 2012-02-20 2013-08-21 阿尔斯通风力有限个人公司 Generator
US20130214632A1 (en) * 2012-02-20 2013-08-22 Alstom Wind, S.L.U. Generator
US9705371B2 (en) 2012-02-20 2017-07-11 Alstom Renewable Technologies Generator
JP2014023170A (en) * 2012-07-12 2014-02-03 Toyota Motor Corp Stator for rotary electric machine
CN113472113A (en) * 2020-03-31 2021-10-01 日本电产株式会社 Motor
CN113472113B (en) * 2020-03-31 2024-04-12 日本电产株式会社 Motor

Similar Documents

Publication Publication Date Title
US7081697B2 (en) Dynamoelectric machine stator core with mini caps
JP3586186B2 (en) Rotating machine stator
EP1073179B1 (en) Slotless stator winding and method for manufacturing such winding
JP6222032B2 (en) Rotating electric machine
JPH1169749A (en) Motor structure and manufacture thereof
TW201521330A (en) Concentrated type motor
JP2008514173A (en) Permanent magnet synchronous machine with rectangular wire winding
JP2009171839A (en) Stator winding for slotless motor
JP2009232607A (en) Winding for stator of rotating electric machine and rotating electric machine
JP4254152B2 (en) AC motor stator
KR101071001B1 (en) Stator of an electrical machine
US20190372408A1 (en) Rotating electric machine
JP2017221077A (en) Rotor for rotary electric machine
JP2009213259A (en) Magnet generator
JP2004208464A (en) Coil structure for electric motor
US6922001B2 (en) Process for assembling an alternator stator with clips that allows radial insertion of square wire with small slot openings
US20200287427A1 (en) Electric machine
JP2004135412A (en) Winding fixing structure for rotary transforming resolver
GB2250384A (en) Securing armature lead wire on insulated commutator base
JP2005269693A (en) Permanent magnet motor
JP2002315251A (en) Stator of motor and method of manufacturing the same
JPH10271795A (en) Stepping motor
JP5972154B2 (en) Rotating electric machine
JP2002369429A (en) Dynamo-electric machine
WO2022254806A1 (en) Rotating electric machine stator and rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A131 Notification of reasons for refusal

Effective date: 20090707

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104