JP5641341B2 - Armature - Google Patents

Armature Download PDF

Info

Publication number
JP5641341B2
JP5641341B2 JP2011048942A JP2011048942A JP5641341B2 JP 5641341 B2 JP5641341 B2 JP 5641341B2 JP 2011048942 A JP2011048942 A JP 2011048942A JP 2011048942 A JP2011048942 A JP 2011048942A JP 5641341 B2 JP5641341 B2 JP 5641341B2
Authority
JP
Japan
Prior art keywords
winding
layer
rotor
magnetic flux
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011048942A
Other languages
Japanese (ja)
Other versions
JP2012186938A (en
Inventor
田中 直樹
直樹 田中
裕章 梶浦
裕章 梶浦
佳純 北原
佳純 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011048942A priority Critical patent/JP5641341B2/en
Publication of JP2012186938A publication Critical patent/JP2012186938A/en
Application granted granted Critical
Publication of JP5641341B2 publication Critical patent/JP5641341B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ステータコアのスロットに巻装されるコイルに発生する渦電流損を低減することができる電機子に関する。   The present invention relates to an armature that can reduce eddy current loss generated in a coil wound around a slot of a stator core.

従来、回転電機の電機子として例えば特許文献1に記載のものが有る。この電機子は、複数のスロットを有するコアと、スロットに巻装されるコイルとを備え、磁界を発生させる界磁としての回転子に対向配置されて当該回転子とともに回転電機を構成する。コイルをなす線状導体が、スロットの深さ方向に複数本並ぶように整列配置され、少なくともスロット内の深さ方向で回転子に最も近接した位置に配置される線状導体を近接導体とするとともに、近接導体よりも回転子から離間した位置に配置される角線による線状導体を離間導体としたときに、近接導体が離間導体を構成する材料よりも抵抗率の大きい材料であるアルミ(アルミニュウム)で構成されている。このように近接導体をアルミ線とすることにより、アルミは銅よりも抵抗率が大きいので渦電流損を低減することができる。   Conventionally, as an armature of a rotating electric machine, for example, there is one described in Patent Document 1. The armature includes a core having a plurality of slots and a coil wound around the slots, and is disposed to face a rotor as a field that generates a magnetic field, and constitutes the rotating electric machine together with the rotor. A plurality of linear conductors forming a coil are aligned and arranged in the depth direction of the slot, and at least the linear conductor that is arranged closest to the rotor in the depth direction in the slot is a proximity conductor. In addition, when a linear conductor formed by a square line arranged at a position farther from the rotor than the adjacent conductor is used as the separated conductor, the proximity conductor has a higher resistivity than the material constituting the separated conductor (aluminum) (Aluminum). Thus, by using an aluminum wire as the proximity conductor, since aluminum has a higher resistivity than copper, eddy current loss can be reduced.

特開2010−183741号公報JP 2010-183741 A

ところで、上記の特許文献1の電機子の線状導体は角線であることから近接導体も角線である。この角線の場合、スロットに配置される角線断面の辺の長さが長くなるため、磁界の変化により渦電流が流れ易くなり、このため渦電流損が大きくなるという問題がある。   By the way, since the linear conductor of the armature described in Patent Document 1 is a square wire, the adjacent conductor is also a square wire. In the case of this square line, since the length of the side of the square line section arranged in the slot becomes long, an eddy current tends to flow due to a change in the magnetic field, which causes a problem that the eddy current loss increases.

本発明は、このような事情に鑑みてなされたものであり、スロットに配置される巻線に発生する渦電流損を低減させることができる電機子を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an armature that can reduce eddy current loss generated in a winding disposed in a slot.

上記目的を達成するためになされた請求項1に記載の発明は、回転子の周囲に間隙を介して配設される円環状を成し、この円環状の周方向に所定間隔で配置された複数のスロットを有するコアと、前記スロット間のティースに巻装されて前記スロット内に径方向に配置される複数の巻線とを有し、前記回転子と共に回転電機を構成する電機子において、前記スロット内に配置された複数の巻線の内、前記回転子に最も近い1層目の巻線は、前記コアの周方向に通過する第1磁束と交差する面の面積、及び前記回転子から前記スロットに入って通過する第2磁束と交差する面の面積の何れか一方又は双方が、同スロット内の他の巻線よりも小さく、前記コアを軸方向と直交する径方向に切断した際の断面が角型を成し、この角型断面の径方向の長さが同スロット内の他の巻線よりも短いことを特徴とする。 The invention according to claim 1, which has been made to achieve the above object, has an annular shape disposed around the rotor via a gap, and is arranged at predetermined intervals in the circumferential direction of the annular shape. In an armature having a core having a plurality of slots and a plurality of windings wound around teeth between the slots and arranged radially in the slots, and constituting a rotating electric machine together with the rotor, Of the plurality of windings arranged in the slot, the first layer winding closest to the rotor has a surface area intersecting with the first magnetic flux passing in the circumferential direction of the core, and the rotor. one or both of the area of the surface that intersects the second magnetic flux passing through enters the slot from is rather smaller than the other winding in the slots, cut in a radial direction perpendicular to the core and the axial direction The cross section of the square shape is square, and the radial direction of this square cross section Is is characterized short Ikoto than other winding in the slots.

この構成によれば、スロット内の1層目の巻線の第1磁束が交差する面の面積を小さくした場合、この面を通過する第1磁束の量が減少するので、その第1磁束の通過に応じて発生する渦電流が減少し、これによって渦電流損が低減する。また、スロット内の1層目の巻線の第2磁束が交差する面の面積を小さくした場合、この面を通過する第2磁束の量が減少するので、その第2磁束の通過に応じて発生する渦電流が減少し、これによって渦電流損が低減する。更に、巻線における第1磁束の交差面と第2磁束の交差面との双方の断面積を小さくすれば、第1磁束の交差面と第2磁束の交差面の何れか一方の断面積を小さくする場合よりも、より渦電流損の低減効果を得ることが出来る。   According to this configuration, when the area of the surface where the first magnetic flux of the first layer winding in the slot intersects is reduced, the amount of the first magnetic flux passing through this surface is reduced. The eddy current generated in response to the passage is reduced, thereby reducing the eddy current loss. Further, when the area of the surface where the second magnetic flux of the first layer winding in the slot intersects is reduced, the amount of the second magnetic flux passing through this surface is reduced, so that according to the passage of the second magnetic flux. The generated eddy current is reduced, thereby reducing the eddy current loss. Further, if the cross-sectional area of both the crossing surface of the first magnetic flux and the crossing surface of the second magnetic flux in the winding is reduced, the cross-sectional area of either the crossing surface of the first magnetic flux or the crossing surface of the second magnetic flux is reduced. The effect of reducing eddy current loss can be obtained more than in the case of reducing the size.

また、1層目の巻線の角型断面の径方向の長さが短いので、この径方向の面に交差する第1磁束が通過する量が減少する。従って、第1磁束の通過に応じて発生する渦電流が減少し、これによって渦電流損が低減する。 In addition , since the radial length of the square cross section of the first layer winding is short, the amount of passage of the first magnetic flux that intersects this radial surface is reduced. Therefore, the eddy current generated in response to the passage of the first magnetic flux is reduced, thereby reducing the eddy current loss.

請求項に記載の発明は、前記スリット内に配置された巻線の内、前記1層目から外周側に向かう複数の巻線が当該1層目の巻線と同形状であることを特徴とする。 The invention according to claim 2 is characterized in that, among the windings arranged in the slit, a plurality of windings from the first layer to the outer peripheral side have the same shape as the winding of the first layer. And

この構成によれば、同一スロット内に配置された全ての巻線の内、回転子に最も近い側(1層目)から外周側に向かうに従って渦電流損が小さくなる。そこで、1層目の巻線のみならず1層目の外側の2層目も1層目と同じ形状とすることによって、2層目の巻線でも渦電流損が低減できるので、1層目の渦電流損の低減効果と合わさって、より大きな渦電流損の低減効果を得ることが出来る。同様に、3層目の巻線、4層目の巻線、4+n(n=1つずつ増加する整数)層目の巻線を、1層目と同形状とする追加を逐次行うことによって、更なる大きな渦電流損の低減効果を得ることが出来る。   According to this configuration, the eddy current loss decreases from the winding closest to the rotor (first layer) to the outer peripheral side among all the windings arranged in the same slot. Therefore, not only the first layer winding but also the second layer outside the first layer has the same shape as the first layer, so that the eddy current loss can be reduced even in the second layer winding. Combined with the effect of reducing the eddy current loss, a larger effect of reducing the eddy current loss can be obtained. Similarly, by sequentially adding the third layer winding, the fourth layer winding, and the 4 + n (n = integer increasing by 1) layer winding to the same shape as the first layer, A further large eddy current loss reduction effect can be obtained.

請求項に記載の発明は、前記ティースの前記回転子に対向する端面と前記1層目の巻線の当該回転子に対向する対向面との距離を、当該対向面に前記第2磁束が通過する量が所定量減少する長さとしたことを特徴とする。 According to a third aspect of the present invention, the distance between the end surface of the teeth facing the rotor and the facing surface of the first layer winding facing the rotor is set, and the second magnetic flux is applied to the facing surface. It is characterized in that the passing amount is reduced by a predetermined amount.

この構成によれば、ティースの端面と1層目の巻線の回転子との対向面との距離を、その対向面に第2磁束が通過する量が所定量減少する長さとしたので、1層目の巻線の回転子対向面への第2磁束の通過量が減少し、その分、渦電流の発生が減少し、渦電流損が低減するといった効果が得られる。   According to this configuration, the distance between the end face of the teeth and the facing surface of the first layer winding rotor is set to a length that reduces the amount of the second magnetic flux passing through the facing surface by a predetermined amount. The amount of passage of the second magnetic flux to the rotor-facing surface of the layer winding is reduced, and an effect that the generation of eddy current is reduced and the eddy current loss is reduced correspondingly.

本発明の実施形態に係る電機子を有する回転電機の構造を示す回転軸方向の断面図である。It is sectional drawing of the rotating shaft direction which shows the structure of the rotary electric machine which has the armature which concerns on embodiment of this invention. (a)電機子のコアを軸方向と直交する径方向に切断した際の角型巻線の一部断面図、(b)(a)の破線枠で囲んだ1スロットの部分を表す図である。(A) Partial cross-sectional view of the rectangular winding when the core of the armature is cut in the radial direction perpendicular to the axial direction, (b) A diagram showing a portion of one slot surrounded by a broken line frame in (a). is there. (a)通常のスロット内に配列された角型巻線の断面図、(b)(a)に示す各角型巻線に発生する渦電流損の割合を示す図である。(A) Cross-sectional view of rectangular windings arranged in a normal slot, (b) A diagram showing a ratio of eddy current loss generated in each rectangular winding shown in (a). 従来の電機子の巻線による渦電流損の低減量と抵抗損の増加量を示す図である。It is a figure which shows the reduction amount of the eddy current loss by the winding of the conventional armature, and the increase amount of resistance loss. 本実施形態の電機子の巻線による渦電流損の低減量と抵抗損の増加量を示す図である。It is a figure which shows the reduction amount of the eddy current loss by the winding of the armature of this embodiment, and the increase amount of resistance loss. (a)参考例の電機子の1層目の角型巻線の回転子への対向面の面積を減少させた構成を示し、(b)回転子からスロットを斜めに通過する第2磁束を示す図である。(A) The structure which reduced the area of the surface facing the rotor of the square winding of the 1st layer of the armature of a reference example , (b) The 2nd magnetic flux which passes through a slot diagonally from a rotor is shown. FIG. (a)1層目及び2層目の角型巻線の径方向長L1を短くした構成を示し、(b)1層目〜3層目の角型巻線の径方向長L1を短くした構成を示し、(c)1層目〜4層目の角型巻線の径方向長L1を短くした構成を示す図である。(A) The structure which shortened radial direction length L1 of the 1st layer and 2nd layer square winding, (b) The radial direction length L1 of the 1st layer-3rd layer square winding was shortened It is a figure which shows a structure and shows the structure which shortened radial direction length L1 of the square winding of (c) 1st layer-the 4th layer. 本実施形態の電機子のコアの回転子に対向するティースの端面と1層目の角型巻線の面との距離L5を所定長長くした構成を示す図である。It is a figure which shows the structure which lengthened the distance L5 of the end surface of the teeth which opposes the rotor of the core of the armature of this embodiment, and the surface of the 1st-layer square coil | winding by predetermined length.

以下、本発明の実施形態を、図面を参照して説明する。但し、本明細書中の全図において相互に対応する部分には同一符号を付し、重複部分においては後述での説明を適時省略する。   Embodiments of the present invention will be described below with reference to the drawings. However, parts corresponding to each other in all the drawings in this specification are denoted by the same reference numerals, and description of the overlapping parts will be omitted as appropriate.

図1は、本発明の実施形態に係る電機子を有する回転電機の構造を示す回転軸方向の断面図である。   FIG. 1 is a cross-sectional view in the rotation axis direction showing the structure of a rotating electrical machine having an armature according to an embodiment of the present invention.

図1に示す回転電機10は、車両等に用いられ、回転軸11に挿通されて嵌合された円環状で且つ薄板状の鋼板が多数積層された積層鋼板12及び当該積層鋼板12の外周近傍部分に軸方向に埋め込まれた永久磁石13とを有する回転子14を備えると共に、回転子14の外周面に対して所定間隔の間隙を介して配置された円環状を成し、図示せぬ電力変換用のインバータに接続された導電材料による三相の巻線16と、この巻線16が巻装された積層鋼板によるコア17とを有する電機子18を備えて構成されている。巻線16は例えば銅線である。   A rotating electrical machine 10 shown in FIG. 1 is used in a vehicle or the like, and a laminated steel plate 12 in which a large number of annular and thin steel plates that are inserted through and fitted into a rotating shaft 11 are laminated, and the vicinity of the outer periphery of the laminated steel plate 12. A rotor 14 having a permanent magnet 13 embedded in the axial direction in a portion is provided, and an annular shape is formed on the outer peripheral surface of the rotor 14 with a predetermined gap therebetween, and an electric power (not shown) The armature 18 includes a three-phase winding 16 made of a conductive material connected to an inverter for conversion, and a core 17 made of a laminated steel plate around which the winding 16 is wound. The winding 16 is, for example, a copper wire.

ここで、図2(a)にコア17を軸方向と直交する径方向に切断した際の角型巻線16の断面の一部を表す。電機子18は、図2(a)に示すように、コア17に周方向に所定間隔で形成された複数のスロット17aを備え、このスロット17a間のティース17bに巻線16が巻かれ、この巻線16がスロット17a内に径方向に配列されている。巻線16は、図示の通り断面形状が角型を成しており、以降、角型巻線16ともいう。   Here, FIG. 2A shows a part of a cross section of the rectangular winding 16 when the core 17 is cut in a radial direction orthogonal to the axial direction. As shown in FIG. 2A, the armature 18 includes a plurality of slots 17a formed at predetermined intervals in the circumferential direction in the core 17, and windings 16 are wound around teeth 17b between the slots 17a. Windings 16 are arranged radially in slots 17a. As shown in the drawing, the winding 16 has a square cross-sectional shape, and is hereinafter also referred to as a square winding 16.

図2(a)の破線枠で囲んだ1スロット17aの部分を表す(b)に示すように、スロット17aには、各角型巻線16−1〜16−6が、回転子14側から1層目の角型巻線16−1、2層目の角型巻線16−2、3層目の角型巻線16−3、4層目の角型巻線16−4、5層目の角型巻線16−5、6層目の角型巻線16−6と順に外周側へ向かって配置されている。   As shown in FIG. 2B, which represents a portion of one slot 17a surrounded by a broken line frame in FIG. 2A, each of the rectangular windings 16-1 to 16-6 is provided in the slot 17a from the rotor 14 side. 1st layer square winding 16-1, 2nd layer square winding 16-2, 3rd layer square winding 16-3, 4th layer square winding 16-4, 5th layer The square winding 16-5 of the eye and the square winding 16-6 of the sixth layer are arranged in this order toward the outer peripheral side.

1層目の角型巻線16−1は、その径方向の長さ(径方向長)L1を、他の角型巻線16−2〜16−6の径方向長L2よりも短くしてある。言い換えれば、1層目の角型巻線16−1は、電機子18を周方向に流れる磁束(第1磁束とも称す)φ1に交差する辺の長さL1を、他の角型巻線16−2〜16−6の同じ辺の長さL2よりも短くしてあり、これによって第1磁束φ1が交差する面の面積が、他の角型巻線16−2〜16−6の面積よりも小さくなっている。   The square winding 16-1 in the first layer has a radial length (radial length) L1 shorter than the radial length L2 of the other square windings 16-2 to 16-6. is there. In other words, the square winding 16-1 in the first layer has the length L1 of the side intersecting with the magnetic flux (also referred to as a first magnetic flux) φ1 flowing in the circumferential direction through the armature 18 as another square winding 16. It is shorter than the length L2 of the same side of −2 to 16-6, so that the area of the surface where the first magnetic flux φ1 intersects is larger than the areas of the other square windings 16-2 to 16-6. Is also getting smaller.

このように、回転子14に所定間隔を介して対向する1層目の角型巻線16−1の径方向長L1を短くした場合、言い換えれば、第1磁束φ1が交差する面の面積を小さくした場合、この径方向長L1の面を通過する第1磁束φ1の数が減少するので、その第1磁束φ1の通過に応じて発生する渦電流が減少する。これによって渦電流損が低減することになる。   As described above, when the radial length L1 of the first-layer rectangular winding 16-1 facing the rotor 14 with a predetermined interval is shortened, in other words, the area of the surface where the first magnetic flux φ1 intersects is reduced. When it is made smaller, the number of the first magnetic flux φ1 passing through the surface having the radial length L1 is reduced, so that the eddy current generated in response to the passage of the first magnetic flux φ1 is reduced. This reduces eddy current loss.

例えば、図3(a)に示すように、1層目の角型巻線16−1aの径方向長L1が他のものと同じで全ての角型巻線16−1a,16−2〜16−6の断面積が同じである場合、全角型巻線16−1a,16−2〜16−6に発生する渦電流損の割合は、図3(b)に示すように、1層目が46%、2層目が27%、3相目が16%、4相目が8%となり、5及び6層目は合計で3%となる。従って、全角型巻線16−1a,16−2〜16−6に発生する渦電流損のうち、1層目の角型巻線16−1aに発生する渦電流損の割合が約半分を占める。   For example, as shown in FIG. 3A, the radial length L1 of the first-layer rectangular winding 16-1a is the same as the other ones, and all the rectangular windings 16-1a, 16-2 to 16-16 are used. When the cross-sectional area of −6 is the same, the ratio of the eddy current loss generated in the full-width windings 16-1a and 16-2 to 16-6 is as shown in FIG. 46%, the second layer is 27%, the third phase is 16%, the fourth phase is 8%, and the fifth and sixth layers are 3% in total. Accordingly, the ratio of the eddy current loss generated in the first-layer square winding 16-1a accounts for about half of the eddy current loss generated in the full-angle windings 16-1a and 16-2 to 16-6. .

このことから図2(b)に示したように、1層目の角型巻線16−1の径方向長L1を短くして第1磁束φ1との交差面の面積を小さくし、これにより渦電流損を低減させた場合、全角型巻線16−1〜16−6に発生する渦電流損に対して比較的大きな割合で渦電流損を低減させることができる。   Therefore, as shown in FIG. 2B, the radial length L1 of the first-layer square winding 16-1 is shortened to reduce the area of the crossing surface with the first magnetic flux φ1, thereby When the eddy current loss is reduced, the eddy current loss can be reduced at a relatively large ratio with respect to the eddy current loss generated in the full-width windings 16-1 to 16-6.

例えば、従来の特許文献1のように1層目の巻線のみをアルミ線とした場合、アルミは抵抗率が銅の1.6倍あるので、図4(a)に示す銅線の渦電流損が(b)のアルミ線に示すように1/1.6と低減する。しかし、アルミ線は抵抗率が上記のように銅よりも大きいので、(a)から(b)に示すように抵抗損が1.6倍と増加する。   For example, when only the first layer winding is made of an aluminum wire as in Patent Document 1, since aluminum has a resistivity 1.6 times that of copper, the eddy current of the copper wire shown in FIG. The loss is reduced to 1 / 1.6 as shown in the aluminum wire of (b). However, since the resistivity of the aluminum wire is larger than that of copper as described above, the resistance loss increases by 1.6 times as shown in (a) to (b).

一方、本実施形態にように、1層目の角型巻線16−1の径方向長L1を短くして第1磁束φ1との交差面の面積を小さくし、これにより渦電流損を低減させた場合、図5(a)に示す銅線の渦電流損が(b)の銅線に示すように1/3と低減する。また、径方向長L1が短くなって断面積が小さくなった分、抵抗率が高くなるので、(a)から(b)に示すように1.5倍と増加する。つまり、本実施形態の場合、渦電流損を1/3と、従来の1/1.6よりも大きく低減させることができる。   On the other hand, as in this embodiment, the radial length L1 of the first-layer square winding 16-1 is shortened to reduce the area of the crossing surface with the first magnetic flux φ1, thereby reducing eddy current loss. In this case, the eddy current loss of the copper wire shown in FIG. 5A is reduced to 1/3 as shown in the copper wire of FIG. Further, since the resistivity increases as the radial length L1 becomes shorter and the cross-sectional area becomes smaller, it increases by 1.5 times as shown in FIGS. That is, in the case of this embodiment, the eddy current loss can be reduced to 1/3, which is larger than the conventional 1 / 1.6.

なお、図6(a)に、1層目の角型巻線16−1bを、その周方向の長さ(周方向長)L3を、他の角型巻線16−2〜16−6の周方向長L4よりも短くして、回転子14に対向する面の面積を小さくした参考例が示されている。この場合、図6(b)に示すように、回転子14からスロット17aに斜め方向に入る磁束(第2磁束とも称す)φ2が1層目の角型巻線16−1bを通過する量を低減させることができる。従って、磁束φ2の通過に応じて発生する渦電流を減少させることができ、これによって渦電流損を低減させることができる。また、第2磁束φ2は、第1磁束φ1よりも大きいので、その周方向長L3を短くして第2磁束φ2の交差面の面積を小さくする割合によっては、より渦電流損の低減効果を得ることが出来る。 Incidentally, in FIG. 6 (a), a first layer of prismatic winding 16-1b, the circumferential length (circumferential direction length) L3, other rectangular winding 16-2~16-6 A reference example is shown in which the area of the surface facing the rotor 14 is made smaller than the circumferential length L4. In this case, as shown in FIG. 6B, the amount of magnetic flux (also referred to as second magnetic flux) φ2 entering the slot 17a obliquely from the rotor 14 passes through the first-layer square winding 16-1b. Can be reduced. Therefore, the eddy current generated in response to the passage of the magnetic flux φ2 can be reduced, thereby reducing the eddy current loss. Further, since the second magnetic flux φ2 is larger than the first magnetic flux φ1, depending on the ratio of shortening the circumferential length L3 and reducing the area of the intersecting surface of the second magnetic flux φ2, the effect of reducing the eddy current loss can be further increased. Can be obtained.

本発明は、上記した実施形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々の変形または拡張を施すことができる。例えば、第1磁束φ1の交差面と第2磁束φ2の交差面との双方の面積を小さくすれば、第1磁束φ1の交差面と第2磁束φ2の交差面の何れか一方の面積を小さくする場合よりも、より渦電流損の低減効果を得ることが出来る。 The present invention is not limited to the above-described embodiments, and various modifications or expansions can be made without departing from the spirit of the present invention. For example , if the area of both the crossing surface of the first magnetic flux φ1 and the crossing surface of the second magnetic flux φ2 is reduced, the area of either the crossing surface of the first magnetic flux φ1 or the crossing surface of the second magnetic flux φ2 is reduced. The effect of reducing eddy current loss can be obtained more than in the case of doing so.

また、図7(a)に示すように、2層目の角型巻線16−2aの径方向長L1も、1層目の角型巻線16−1の径方向長L1と同じにしてもよい。この場合、上述したように2層目は渦電流損の割合が27%あるので、1相目の46%と合わせれば、渦電流損の割合が73%となる。この73%の渦電流損のうち所定の渦電流損を低減させるので、より渦電流損の低減効果を得ることが出来る。   Further, as shown in FIG. 7A, the radial length L1 of the second-layer square winding 16-2a is also the same as the radial length L1 of the first-layer square winding 16-1. Also good. In this case, since the ratio of the eddy current loss is 27% in the second layer as described above, the ratio of the eddy current loss is 73% when combined with 46% of the first phase. Since the predetermined eddy current loss is reduced out of the 73% eddy current loss, the effect of reducing the eddy current loss can be further obtained.

更に、図7(b)に示すように、3層目の角型巻線16−3aの径方向長L1も、1層目及び2層目の角型巻線16−1,16−2aの径方向長L1と同じにしてもよい。この場合も、上述したように3層目は渦電流損の割合が16%あるので、1及び2相目の73%と合わせれば、渦電流損の割合が89%となる。この89%の渦電流損のうち所定の渦電流損を低減させるので、より渦電流損の低減効果を得ることが出来る。   Further, as shown in FIG. 7B, the radial length L1 of the third-layer square winding 16-3a is also the same as that of the first-layer and second-layer square windings 16-1, 16-2a. It may be the same as the radial length L1. Also in this case, since the ratio of the eddy current loss is 16% in the third layer as described above, the ratio of the eddy current loss is 89% when combined with 73% of the first and second phases. Of the 89% eddy current loss, the predetermined eddy current loss is reduced, so that the effect of reducing the eddy current loss can be obtained.

更には、図7(c)に示すように、4層目の角型巻線16−4aの径方向長L1も、1〜3層目の角型巻線16−1,16−2a,16−3aの径方向長L1と同じにしてもよい。この場合も、上述したように4層目は渦電流損の割合が8%あるので、1〜3相目の89%と合わせれば、渦電流損の割合が97%となる。この97%の渦電流損のうち所定の渦電流損を低減させるので、より渦電流損の低減効果を得ることが出来る。   Further, as shown in FIG. 7C, the radial length L1 of the fourth-layer square winding 16-4a is also set to the first to third-layer square windings 16-1, 16-2a, 16. It may be the same as the radial direction length L1 of −3a. Also in this case, since the ratio of eddy current loss is 8% in the fourth layer as described above, the ratio of eddy current loss becomes 97% when combined with 89% of the first to third phases. Of the 97% eddy current loss, the predetermined eddy current loss is reduced, so that the effect of reducing the eddy current loss can be obtained.

この他、図8に示すように、回転子14に対向するティース17bの端面と1層目の角型巻線16−1の面との距離L5を長くしてもよい。この距離L5は、1層目の角型巻線16−1の回転子14への対向面に第2磁束φ2が通過する量が所定量減少する長さとする。つまり、距離L5が短い場合は、1層目の角型巻線16−1の回転子対向面が、スロット17aの開口に近いので第2磁束φ2が通過し易く、その分、第2磁束φ2の通過量が多い。このため渦電流が多く発生して渦電流損が大きくなる。   In addition, as shown in FIG. 8, the distance L5 between the end surface of the teeth 17b facing the rotor 14 and the surface of the first-layer square winding 16-1 may be increased. This distance L5 is set to a length that reduces the amount by which the second magnetic flux φ2 passes through the surface of the first-layer square winding 16-1 facing the rotor 14 by a predetermined amount. That is, when the distance L5 is short, the rotor-facing surface of the first-layer square winding 16-1 is close to the opening of the slot 17a, so that the second magnetic flux φ2 can easily pass therethrough. There is a lot of passing through. For this reason, many eddy currents are generated and eddy current loss increases.

しかし、距離L5が長ければ、1層目の角型巻線16−1の回転子対向面への第2磁束φ2の通過量が減少するので、その分、渦電流の発生が減少し、渦電流損が低減するといった効果が得られる。   However, if the distance L5 is long, the amount of passage of the second magnetic flux φ2 to the rotor-facing surface of the first-layer square winding 16-1 decreases, and accordingly, the generation of eddy currents decreases and the eddy current decreases. The effect that current loss is reduced is obtained.

以上の説明では、巻線16は断面が角型であることを前提としたが、角型以外の形状であっても上述と同様の効果を得ることが出来る。   In the above description, it is assumed that the winding 16 has a square cross section, but the same effect as described above can be obtained even if the winding 16 has a shape other than the square shape.

10 回転電機
11 回転軸
12 積層鋼板
13 永久磁石
14 回転子
16 巻線
16−1,16−1a,16−1b 1層目の角型巻線
16−2,16−2a 2層目の角型巻線
16−3,16−3a 3層目の角型巻線
16−4,16−4a 4層目の角型巻線
16−5 5層目の角型巻線
16−6 6層目の角型巻線
17 コア
17a スロット
17b ティース
18 電機子
φ1,φ2 磁束
DESCRIPTION OF SYMBOLS 10 Rotating electrical machine 11 Rotating shaft 12 Laminated steel plate 13 Permanent magnet 14 Rotor 16 Winding 16-1, 16-1a, 16-1b First layer square winding 16-2, 16-2a Second layer square Winding 16-3, 16-3a 3rd layer square winding 16-4, 16-4a 4th layer square winding 16-5 5th layer square winding 16-6 6th layer Square winding 17 Core 17a Slot 17b Teeth 18 Armature φ1, φ2 Magnetic flux

Claims (3)

回転子の周囲に間隙を介して配設される円環状を成し、この円環状の周方向に所定間隔で配置された複数のスロットを有するコアと、前記スロット間のティースに巻装されて前記スロット内に径方向に配置される複数の巻線とを有し、前記回転子と共に回転電機を構成する電機子において、
前記スロット内に配置された複数の巻線の内、前記回転子に最も近い1層目の巻線は、前記コアの周方向に通過する第1磁束と交差する面の面積、及び前記回転子から前記スロットに入って通過する第2磁束と交差する面の面積の何れか一方又は双方が、同スロット内の他の巻線よりも小さく、前記コアを軸方向と直交する径方向に切断した際の断面が角型を成し、この角型断面の径方向の長さが同スロット内の他の巻線よりも短いことを特徴とする電機子。
A ring is arranged around the rotor via a gap, and is wound around a core having a plurality of slots arranged at predetermined intervals in the circumferential direction of the ring, and a tooth between the slots. In the armature having a plurality of windings arranged in the radial direction in the slot, and constituting a rotating electrical machine together with the rotor,
Of the plurality of windings arranged in the slot, the first layer winding closest to the rotor has a surface area intersecting with the first magnetic flux passing in the circumferential direction of the core, and the rotor. one or both of the area of the surface that intersects the second magnetic flux passing through enters the slot from is rather smaller than the other winding in the slots, cut in a radial direction perpendicular to the core and the axial direction an armature section of when the the angled type, the length of the radial direction of the rectangular cross section and wherein the short Ikoto than other winding in the slots.
前記スロット内に配置された巻線の内、前記1層目から外周側に向かう複数の巻線が当該1層目の巻線と同形状であることを特徴とする請求項に記載の電機子。 Electrical machine according to claim 1, wherein among the arranged windings in the slots, a plurality of windings toward the outer peripheral side from the first layer is a winding of the same shape of the first layer Child. 前記ティースの前記回転子に対向する端面と前記1層目の巻線の当該回転子に対向する対向面との距離を、当該対向面に前記第2磁束が通過する量が所定量減少する長さとしたことを特徴とする請求項1または2に記載の電機子。 The distance between the end surface of the teeth facing the rotor and the facing surface of the first layer winding facing the rotor is a length that reduces the amount of the second magnetic flux passing through the facing surface by a predetermined amount. the armature according to claim 1 or 2, characterized in that Satoshi.
JP2011048942A 2011-03-07 2011-03-07 Armature Active JP5641341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011048942A JP5641341B2 (en) 2011-03-07 2011-03-07 Armature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011048942A JP5641341B2 (en) 2011-03-07 2011-03-07 Armature

Publications (2)

Publication Number Publication Date
JP2012186938A JP2012186938A (en) 2012-09-27
JP5641341B2 true JP5641341B2 (en) 2014-12-17

Family

ID=47016493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011048942A Active JP5641341B2 (en) 2011-03-07 2011-03-07 Armature

Country Status (1)

Country Link
JP (1) JP5641341B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6196928B2 (en) * 2014-03-31 2017-09-13 本田技研工業株式会社 Rotating electric machine stator
KR102487162B1 (en) * 2016-11-23 2023-01-10 현대자동차 주식회사 Hairpin winding type stator of driving motor
DE102016123067A1 (en) 2016-11-30 2018-05-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rod winding arrangement of a stator or a rotor of an electrical machine
DE102016123068A1 (en) * 2016-11-30 2018-05-30 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rotary electric machine and specially adapted method for producing such
JP7065303B2 (en) * 2017-02-21 2022-05-12 パナソニックIpマネジメント株式会社 motor
US20180367005A1 (en) * 2017-06-14 2018-12-20 GM Global Technology Operations LLC Stator assembly with uneven conductors
JP2021022975A (en) * 2019-07-25 2021-02-18 シンフォニアテクノロジー株式会社 Motor and manufacturing method thereof
WO2021117320A1 (en) * 2019-12-12 2021-06-17 パナソニックIpマネジメント株式会社 Coil and motor comprising same
JP7186927B2 (en) * 2020-06-09 2022-12-09 株式会社東芝 Rotating electric machine stator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000092765A (en) * 1998-09-10 2000-03-31 Fuji Electric Co Ltd Rotating machine using power cable as armature winding
JPWO2008044703A1 (en) * 2006-10-12 2010-02-12 三菱電機株式会社 Stator for rotating electrical machine, method for manufacturing the stator, and method for manufacturing the rotating electrical machine
JP2010041795A (en) * 2008-08-04 2010-02-18 Denso Corp Stator for rotating electric machine
JP2010166708A (en) * 2009-01-15 2010-07-29 Aisin Aw Co Ltd Armature
JP2010200596A (en) * 2009-01-28 2010-09-09 Aisin Aw Co Ltd Armature for rotating electrical machine and manufacturing method of same

Also Published As

Publication number Publication date
JP2012186938A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP5641341B2 (en) Armature
JP5620759B2 (en) Electric machine
TWI536712B (en) Axial air gap type rotary motor
JP6048191B2 (en) Multi-gap rotating electric machine
JP5696694B2 (en) Rotating electric machine stator
US20120086288A1 (en) Electric rotating machine
US9716414B2 (en) Stator of rotating electric machine
JPWO2019008848A1 (en) Rotating electric machine and direct acting motor
JP5888179B2 (en) Rotating electric machine stator
JP2010041786A (en) Stator windings and electric rotary machine
JP2018098859A (en) Rotor of multilayer flux barrier type reluctance motor
JP6589721B2 (en) Rotating electric machine
JP2018148632A (en) Rotary electric machine
JP5471653B2 (en) Permanent magnet type electric motor
JP5949788B2 (en) Rotating electric machine
JP5884463B2 (en) Rotating electric machine
JP5601534B2 (en) Armature
JP2010220387A (en) Stator
JP2005124378A (en) Induction motor having annular stator coil
JP5884464B2 (en) Rotating electric machine
JP5712852B2 (en) Rotating electric machine stator
JP6733568B2 (en) Rotating electric machine
JP2013243904A (en) Rotary electric machine
JP5556565B2 (en) Rotating electric machine
JP2013153609A (en) Rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141015

R151 Written notification of patent or utility model registration

Ref document number: 5641341

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250